virtio-pci: move virtio_pci_add_mem_cap call to virtio_pci_modern_region_map
[qemu/ar7.git] / target-arm / psci.c
blobd8fafab2fe15e441886f6687325c1496b742a1ef
1 /*
2 * Copyright (C) 2014 - Linaro
3 * Author: Rob Herring <rob.herring@linaro.org>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 #include <cpu.h>
19 #include <cpu-qom.h>
20 #include <exec/helper-proto.h>
21 #include <kvm-consts.h>
22 #include <sysemu/sysemu.h>
23 #include "internals.h"
25 bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
27 /* Return true if the r0/x0 value indicates a PSCI call and
28 * the exception type matches the configured PSCI conduit. This is
29 * called before the SMC/HVC instruction is executed, to decide whether
30 * we should treat it as a PSCI call or with the architecturally
31 * defined behaviour for an SMC or HVC (which might be UNDEF or trap
32 * to EL2 or to EL3).
34 CPUARMState *env = &cpu->env;
35 uint64_t param = is_a64(env) ? env->xregs[0] : env->regs[0];
37 switch (excp_type) {
38 case EXCP_HVC:
39 if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) {
40 return false;
42 break;
43 case EXCP_SMC:
44 if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
45 return false;
47 break;
48 default:
49 return false;
52 switch (param) {
53 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
54 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
55 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
56 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
57 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
58 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
59 case QEMU_PSCI_0_1_FN_CPU_ON:
60 case QEMU_PSCI_0_2_FN_CPU_ON:
61 case QEMU_PSCI_0_2_FN64_CPU_ON:
62 case QEMU_PSCI_0_1_FN_CPU_OFF:
63 case QEMU_PSCI_0_2_FN_CPU_OFF:
64 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
65 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
66 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
67 case QEMU_PSCI_0_1_FN_MIGRATE:
68 case QEMU_PSCI_0_2_FN_MIGRATE:
69 return true;
70 default:
71 return false;
75 void arm_handle_psci_call(ARMCPU *cpu)
78 * This function partially implements the logic for dispatching Power State
79 * Coordination Interface (PSCI) calls (as described in ARM DEN 0022B.b),
80 * to the extent required for bringing up and taking down secondary cores,
81 * and for handling reset and poweroff requests.
82 * Additional information about the calling convention used is available in
83 * the document 'SMC Calling Convention' (ARM DEN 0028)
85 CPUState *cs = CPU(cpu);
86 CPUARMState *env = &cpu->env;
87 uint64_t param[4];
88 uint64_t context_id, mpidr;
89 target_ulong entry;
90 int32_t ret = 0;
91 int i;
93 for (i = 0; i < 4; i++) {
95 * All PSCI functions take explicit 32-bit or native int sized
96 * arguments so we can simply zero-extend all arguments regardless
97 * of which exact function we are about to call.
99 param[i] = is_a64(env) ? env->xregs[i] : env->regs[i];
102 if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) {
103 ret = QEMU_PSCI_RET_INVALID_PARAMS;
104 goto err;
107 switch (param[0]) {
108 CPUState *target_cpu_state;
109 ARMCPU *target_cpu;
110 CPUClass *target_cpu_class;
112 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
113 ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
114 break;
115 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
116 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
117 break;
118 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
119 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
120 mpidr = param[1];
122 switch (param[2]) {
123 case 0:
124 target_cpu_state = qemu_get_cpu(mpidr & 0xff);
125 if (!target_cpu_state) {
126 ret = QEMU_PSCI_RET_INVALID_PARAMS;
127 break;
129 target_cpu = ARM_CPU(target_cpu_state);
130 ret = target_cpu->powered_off ? 1 : 0;
131 break;
132 default:
133 /* Everything above affinity level 0 is always on. */
134 ret = 0;
136 break;
137 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
138 qemu_system_reset_request();
139 /* QEMU reset and shutdown are async requests, but PSCI
140 * mandates that we never return from the reset/shutdown
141 * call, so power the CPU off now so it doesn't execute
142 * anything further.
144 goto cpu_off;
145 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
146 qemu_system_shutdown_request();
147 goto cpu_off;
148 case QEMU_PSCI_0_1_FN_CPU_ON:
149 case QEMU_PSCI_0_2_FN_CPU_ON:
150 case QEMU_PSCI_0_2_FN64_CPU_ON:
151 mpidr = param[1];
152 entry = param[2];
153 context_id = param[3];
155 /* change to the cpu we are powering up */
156 target_cpu_state = qemu_get_cpu(mpidr & 0xff);
157 if (!target_cpu_state) {
158 ret = QEMU_PSCI_RET_INVALID_PARAMS;
159 break;
161 target_cpu = ARM_CPU(target_cpu_state);
162 if (!target_cpu->powered_off) {
163 ret = QEMU_PSCI_RET_ALREADY_ON;
164 break;
166 target_cpu_class = CPU_GET_CLASS(target_cpu);
168 /* Initialize the cpu we are turning on */
169 cpu_reset(target_cpu_state);
170 target_cpu->powered_off = false;
171 target_cpu_state->halted = 0;
174 * The PSCI spec mandates that newly brought up CPUs enter the
175 * exception level of the caller in the same execution mode as
176 * the caller, with context_id in x0/r0, respectively.
178 * For now, it is sufficient to assert() that CPUs come out of
179 * reset in the same mode as the calling CPU, since we only
180 * implement EL1, which means that
181 * (a) there is no EL2 for the calling CPU to trap into to change
182 * its state
183 * (b) the newly brought up CPU enters EL1 immediately after coming
184 * out of reset in the default state
186 assert(is_a64(env) == is_a64(&target_cpu->env));
187 if (is_a64(env)) {
188 if (entry & 1) {
189 ret = QEMU_PSCI_RET_INVALID_PARAMS;
190 break;
192 target_cpu->env.xregs[0] = context_id;
193 } else {
194 target_cpu->env.regs[0] = context_id;
195 target_cpu->env.thumb = entry & 1;
197 target_cpu_class->set_pc(target_cpu_state, entry);
199 ret = 0;
200 break;
201 case QEMU_PSCI_0_1_FN_CPU_OFF:
202 case QEMU_PSCI_0_2_FN_CPU_OFF:
203 goto cpu_off;
204 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
205 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
206 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
207 /* Affinity levels are not supported in QEMU */
208 if (param[1] & 0xfffe0000) {
209 ret = QEMU_PSCI_RET_INVALID_PARAMS;
210 break;
212 /* Powerdown is not supported, we always go into WFI */
213 if (is_a64(env)) {
214 env->xregs[0] = 0;
215 } else {
216 env->regs[0] = 0;
218 helper_wfi(env);
219 break;
220 case QEMU_PSCI_0_1_FN_MIGRATE:
221 case QEMU_PSCI_0_2_FN_MIGRATE:
222 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
223 break;
224 default:
225 g_assert_not_reached();
228 err:
229 if (is_a64(env)) {
230 env->xregs[0] = ret;
231 } else {
232 env->regs[0] = ret;
234 return;
236 cpu_off:
237 cpu->powered_off = true;
238 cs->halted = 1;
239 cs->exception_index = EXCP_HLT;
240 cpu_loop_exit(cs);
241 /* notreached */