4 #include "host-utils.h"
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
10 int access_type
, int is_user
,
11 hwaddr
*phys_ptr
, int *prot
,
12 target_ulong
*page_size
);
15 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
19 /* VFP data registers are always little-endian. */
20 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
22 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
25 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
26 /* Aliases for Q regs. */
29 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
30 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
34 switch (reg
- nregs
) {
35 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
36 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
37 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
42 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
46 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
48 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
51 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
54 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
55 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
59 switch (reg
- nregs
) {
60 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
61 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
62 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
67 static int dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
70 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
74 static int fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
76 if (env
->cp15
.c13_fcse
!= value
) {
77 /* Unlike real hardware the qemu TLB uses virtual addresses,
78 * not modified virtual addresses, so this causes a TLB flush.
81 env
->cp15
.c13_fcse
= value
;
85 static int contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
88 if (env
->cp15
.c13_context
!= value
&& !arm_feature(env
, ARM_FEATURE_MPU
)) {
89 /* For VMSA (when not using the LPAE long descriptor page table
90 * format) this register includes the ASID, so do a TLB flush.
91 * For PMSA it is purely a process ID and no action is needed.
95 env
->cp15
.c13_context
= value
;
99 static int tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
102 /* Invalidate all (TLBIALL) */
107 static int tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
110 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
111 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
115 static int tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
118 /* Invalidate by ASID (TLBIASID) */
119 tlb_flush(env
, value
== 0);
123 static int tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
126 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
127 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
131 static const ARMCPRegInfo cp_reginfo
[] = {
132 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
133 * version" bits will read as a reserved value, which should cause
134 * Linux to not try to use the debug hardware.
136 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
137 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
138 /* MMU Domain access control / MPU write buffer control */
139 { .name
= "DACR", .cp
= 15,
140 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
141 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
142 .resetvalue
= 0, .writefn
= dacr_write
},
143 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
144 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
145 .resetvalue
= 0, .writefn
= fcse_write
},
146 { .name
= "CONTEXTIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 1,
147 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
148 .resetvalue
= 0, .writefn
= contextidr_write
},
149 /* ??? This covers not just the impdef TLB lockdown registers but also
150 * some v7VMSA registers relating to TEX remap, so it is overly broad.
152 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
153 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
154 /* MMU TLB control. Note that the wildcarding means we cover not just
155 * the unified TLB ops but also the dside/iside/inner-shareable variants.
157 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
158 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
, },
159 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
160 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
, },
161 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
162 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
, },
163 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
164 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
, },
165 /* Cache maintenance ops; some of this space may be overridden later. */
166 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
167 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
168 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
172 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
173 /* Not all pre-v6 cores implemented this WFI, so this is slightly
176 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
177 .access
= PL1_W
, .type
= ARM_CP_WFI
},
181 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
182 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
183 * is UNPREDICTABLE; we choose to NOP as most implementations do).
185 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
186 .access
= PL1_W
, .type
= ARM_CP_WFI
},
187 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
188 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
189 * OMAPCP will override this space.
191 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
192 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
194 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
195 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
197 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
198 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
199 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
203 static int cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
205 if (env
->cp15
.c1_coproc
!= value
) {
206 env
->cp15
.c1_coproc
= value
;
207 /* ??? Is this safe when called from within a TB? */
213 static const ARMCPRegInfo v6_cp_reginfo
[] = {
214 /* prefetch by MVA in v6, NOP in v7 */
215 { .name
= "MVA_prefetch",
216 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
217 .access
= PL1_W
, .type
= ARM_CP_NOP
},
218 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
219 .access
= PL0_W
, .type
= ARM_CP_NOP
},
220 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
221 .access
= PL0_W
, .type
= ARM_CP_NOP
},
222 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
223 .access
= PL0_W
, .type
= ARM_CP_NOP
},
224 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
225 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_insn
),
227 /* Watchpoint Fault Address Register : should actually only be present
228 * for 1136, 1176, 11MPCore.
230 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
231 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
232 { .name
= "CPACR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
233 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
234 .resetvalue
= 0, .writefn
= cpacr_write
},
238 static int pmreg_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
241 /* Generic performance monitor register read function for where
242 * user access may be allowed by PMUSERENR.
244 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
247 *value
= CPREG_FIELD32(env
, ri
);
251 static int pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
254 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
257 /* only the DP, X, D and E bits are writable */
258 env
->cp15
.c9_pmcr
&= ~0x39;
259 env
->cp15
.c9_pmcr
|= (value
& 0x39);
263 static int pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
266 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
270 env
->cp15
.c9_pmcnten
|= value
;
274 static int pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
277 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
281 env
->cp15
.c9_pmcnten
&= ~value
;
285 static int pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
288 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
291 env
->cp15
.c9_pmovsr
&= ~value
;
295 static int pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
298 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
301 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
305 static int pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
308 env
->cp15
.c9_pmuserenr
= value
& 1;
312 static int pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
315 /* We have no event counters so only the C bit can be changed */
317 env
->cp15
.c9_pminten
|= value
;
321 static int pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
325 env
->cp15
.c9_pminten
&= ~value
;
329 static int ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
332 ARMCPU
*cpu
= arm_env_get_cpu(env
);
333 *value
= cpu
->ccsidr
[env
->cp15
.c0_cssel
];
337 static int csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
340 env
->cp15
.c0_cssel
= value
& 0xf;
344 static const ARMCPRegInfo v7_cp_reginfo
[] = {
345 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
348 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
349 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
350 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
351 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
352 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
353 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
354 .access
= PL1_W
, .type
= ARM_CP_NOP
},
355 /* Performance monitors are implementation defined in v7,
356 * but with an ARM recommended set of registers, which we
357 * follow (although we don't actually implement any counters)
359 * Performance registers fall into three categories:
360 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
361 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
362 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
363 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
364 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
366 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
367 .access
= PL0_RW
, .resetvalue
= 0,
368 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
369 .readfn
= pmreg_read
, .writefn
= pmcntenset_write
},
370 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
371 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
372 .readfn
= pmreg_read
, .writefn
= pmcntenclr_write
},
373 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
374 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
375 .readfn
= pmreg_read
, .writefn
= pmovsr_write
},
376 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
379 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
380 .access
= PL0_W
, .type
= ARM_CP_NOP
},
381 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
382 * We choose to RAZ/WI. XXX should respect PMUSERENR.
384 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
385 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
386 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
387 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
388 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
389 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
391 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
392 .readfn
= pmreg_read
, .writefn
= pmxevtyper_write
},
393 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
394 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
395 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
396 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
397 .access
= PL0_R
| PL1_RW
,
398 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
400 .writefn
= pmuserenr_write
},
401 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
403 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
405 .writefn
= pmintenset_write
},
406 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
408 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
410 .writefn
= pmintenclr_write
},
411 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
412 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_scr
),
414 { .name
= "CCSIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
415 .access
= PL1_R
, .readfn
= ccsidr_read
},
416 { .name
= "CSSELR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
417 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
418 .writefn
= csselr_write
, .resetvalue
= 0 },
419 /* Auxiliary ID register: this actually has an IMPDEF value but for now
420 * just RAZ for all cores:
422 { .name
= "AIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 7,
423 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
427 static int teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
434 static int teehbr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
437 /* This is a helper function because the user access rights
438 * depend on the value of the TEECR.
440 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
443 *value
= env
->teehbr
;
447 static int teehbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
450 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
457 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
458 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
459 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
461 .writefn
= teecr_write
},
462 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
463 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
465 .readfn
= teehbr_read
, .writefn
= teehbr_write
},
469 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
470 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
472 .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_tls1
),
474 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
475 .access
= PL0_R
|PL1_W
,
476 .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_tls2
),
478 { .name
= "TPIDRPRW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 4,
480 .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_tls3
),
485 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
486 /* Dummy implementation: RAZ/WI the whole crn=14 space */
487 { .name
= "GENERIC_TIMER", .cp
= 15, .crn
= 14,
488 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
489 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
493 static int par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
495 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
496 env
->cp15
.c7_par
= value
;
497 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
498 env
->cp15
.c7_par
= value
& 0xfffff6ff;
500 env
->cp15
.c7_par
= value
& 0xfffff1ff;
505 #ifndef CONFIG_USER_ONLY
506 /* get_phys_addr() isn't present for user-mode-only targets */
508 /* Return true if extended addresses are enabled, ie this is an
509 * LPAE implementation and we are using the long-descriptor translation
510 * table format because the TTBCR EAE bit is set.
512 static inline bool extended_addresses_enabled(CPUARMState
*env
)
514 return arm_feature(env
, ARM_FEATURE_LPAE
)
515 && (env
->cp15
.c2_control
& (1 << 31));
518 static int ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
521 target_ulong page_size
;
523 int ret
, is_user
= ri
->opc2
& 2;
524 int access_type
= ri
->opc2
& 1;
527 /* Other states are only available with TrustZone */
530 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
531 &phys_addr
, &prot
, &page_size
);
532 if (extended_addresses_enabled(env
)) {
533 /* ret is a DFSR/IFSR value for the long descriptor
534 * translation table format, but with WnR always clear.
535 * Convert it to a 64-bit PAR.
537 uint64_t par64
= (1 << 11); /* LPAE bit always set */
539 par64
|= phys_addr
& ~0xfffULL
;
540 /* We don't set the ATTR or SH fields in the PAR. */
543 par64
|= (ret
& 0x3f) << 1; /* FS */
544 /* Note that S2WLK and FSTAGE are always zero, because we don't
545 * implement virtualization and therefore there can't be a stage 2
549 env
->cp15
.c7_par
= par64
;
550 env
->cp15
.c7_par_hi
= par64
>> 32;
552 /* ret is a DFSR/IFSR value for the short descriptor
553 * translation table format (with WnR always clear).
554 * Convert it to a 32-bit PAR.
557 /* We do not set any attribute bits in the PAR */
558 if (page_size
== (1 << 24)
559 && arm_feature(env
, ARM_FEATURE_V7
)) {
560 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
562 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
565 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
566 ((ret
& (12 << 1)) >> 6) |
567 ((ret
& 0xf) << 1) | 1;
569 env
->cp15
.c7_par_hi
= 0;
575 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
576 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
577 .access
= PL1_RW
, .resetvalue
= 0,
578 .fieldoffset
= offsetof(CPUARMState
, cp15
.c7_par
),
579 .writefn
= par_write
},
580 #ifndef CONFIG_USER_ONLY
581 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
582 .access
= PL1_W
, .writefn
= ats_write
},
587 /* Return basic MPU access permission bits. */
588 static uint32_t simple_mpu_ap_bits(uint32_t val
)
595 for (i
= 0; i
< 16; i
+= 2) {
596 ret
|= (val
>> i
) & mask
;
602 /* Pad basic MPU access permission bits to extended format. */
603 static uint32_t extended_mpu_ap_bits(uint32_t val
)
610 for (i
= 0; i
< 16; i
+= 2) {
611 ret
|= (val
& mask
) << i
;
617 static int pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
620 env
->cp15
.c5_data
= extended_mpu_ap_bits(value
);
624 static int pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
627 *value
= simple_mpu_ap_bits(env
->cp15
.c5_data
);
631 static int pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
634 env
->cp15
.c5_insn
= extended_mpu_ap_bits(value
);
638 static int pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
641 *value
= simple_mpu_ap_bits(env
->cp15
.c5_insn
);
645 static int arm946_prbs_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
651 *value
= env
->cp15
.c6_region
[ri
->crm
];
655 static int arm946_prbs_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
661 env
->cp15
.c6_region
[ri
->crm
] = value
;
665 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
666 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
668 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0,
669 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
670 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
672 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0,
673 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
674 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
676 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
677 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
679 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
680 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
682 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
683 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
685 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
686 /* Protection region base and size registers */
687 { .name
= "946_PRBS", .cp
= 15, .crn
= 6, .crm
= CP_ANY
, .opc1
= 0,
688 .opc2
= CP_ANY
, .access
= PL1_RW
,
689 .readfn
= arm946_prbs_read
, .writefn
= arm946_prbs_write
, },
693 static int vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
696 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
697 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
698 /* With LPAE the TTBCR could result in a change of ASID
699 * via the TTBCR.A1 bit, so do a TLB flush.
705 /* Note that we always calculate c2_mask and c2_base_mask, but
706 * they are only used for short-descriptor tables (ie if EAE is 0);
707 * for long-descriptor tables the TTBCR fields are used differently
708 * and the c2_mask and c2_base_mask values are meaningless.
710 env
->cp15
.c2_control
= value
;
711 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> value
);
712 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> value
);
716 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
718 env
->cp15
.c2_base_mask
= 0xffffc000u
;
719 env
->cp15
.c2_control
= 0;
720 env
->cp15
.c2_mask
= 0;
723 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
724 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
726 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
727 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
729 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
730 { .name
= "TTBR0", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
732 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base0
), .resetvalue
= 0, },
733 { .name
= "TTBR1", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
735 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base1
), .resetvalue
= 0, },
736 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
737 .access
= PL1_RW
, .writefn
= vmsa_ttbcr_write
,
738 .resetfn
= vmsa_ttbcr_reset
,
739 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
740 { .name
= "DFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
741 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_data
),
746 static int omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
749 env
->cp15
.c15_ticonfig
= value
& 0xe7;
750 /* The OS_TYPE bit in this register changes the reported CPUID! */
751 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
752 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
756 static int omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
759 env
->cp15
.c15_threadid
= value
& 0xffff;
763 static int omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
766 /* Wait-for-interrupt (deprecated) */
767 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
771 static int omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
774 /* On OMAP there are registers indicating the max/min index of dcache lines
775 * containing a dirty line; cache flush operations have to reset these.
777 env
->cp15
.c15_i_max
= 0x000;
778 env
->cp15
.c15_i_min
= 0xff0;
782 static const ARMCPRegInfo omap_cp_reginfo
[] = {
783 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
784 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
785 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
786 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
787 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
788 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
790 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
791 .writefn
= omap_ticonfig_write
},
792 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
794 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
795 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
796 .access
= PL1_RW
, .resetvalue
= 0xff0,
797 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
798 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
800 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
801 .writefn
= omap_threadid_write
},
802 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
803 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
804 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
805 /* TODO: Peripheral port remap register:
806 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
807 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
810 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
811 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
, .type
= ARM_CP_OVERRIDE
,
812 .writefn
= omap_cachemaint_write
},
813 { .name
= "C9", .cp
= 15, .crn
= 9,
814 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
815 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
819 static int xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
823 if (env
->cp15
.c15_cpar
!= value
) {
824 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
826 env
->cp15
.c15_cpar
= value
;
831 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
832 { .name
= "XSCALE_CPAR",
833 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
834 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
835 .writefn
= xscale_cpar_write
, },
836 { .name
= "XSCALE_AUXCR",
837 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
838 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
843 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
844 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
845 * implementation of this implementation-defined space.
846 * Ideally this should eventually disappear in favour of actually
847 * implementing the correct behaviour for all cores.
849 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
850 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
851 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
855 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
856 /* Cache status: RAZ because we have no cache so it's always clean */
857 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
858 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
862 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
863 /* We never have a a block transfer operation in progress */
864 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
865 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
866 /* The cache ops themselves: these all NOP for QEMU */
867 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
868 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
869 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
870 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
871 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
872 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
873 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
874 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
875 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
876 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
877 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
878 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
882 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
883 /* The cache test-and-clean instructions always return (1 << 30)
884 * to indicate that there are no dirty cache lines.
886 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
887 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= (1 << 30) },
888 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
889 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= (1 << 30) },
893 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
894 /* Ignore ReadBuffer accesses */
895 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
896 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
897 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
902 static int mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
905 uint32_t mpidr
= env
->cpu_index
;
906 /* We don't support setting cluster ID ([8..11])
907 * so these bits always RAZ.
909 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
911 /* Cores which are uniprocessor (non-coherent)
912 * but still implement the MP extensions set
913 * bit 30. (For instance, A9UP.) However we do
914 * not currently model any of those cores.
921 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
922 { .name
= "MPIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
923 .access
= PL1_R
, .readfn
= mpidr_read
},
927 static int par64_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
929 *value
= ((uint64_t)env
->cp15
.c7_par_hi
<< 32) | env
->cp15
.c7_par
;
933 static int par64_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
935 env
->cp15
.c7_par_hi
= value
>> 32;
936 env
->cp15
.c7_par
= value
;
940 static void par64_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
942 env
->cp15
.c7_par_hi
= 0;
943 env
->cp15
.c7_par
= 0;
946 static int ttbr064_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
949 *value
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
953 static int ttbr064_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
956 env
->cp15
.c2_base0_hi
= value
>> 32;
957 env
->cp15
.c2_base0
= value
;
958 /* Writes to the 64 bit format TTBRs may change the ASID */
963 static void ttbr064_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
965 env
->cp15
.c2_base0_hi
= 0;
966 env
->cp15
.c2_base0
= 0;
969 static int ttbr164_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
972 *value
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
976 static int ttbr164_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
979 env
->cp15
.c2_base1_hi
= value
>> 32;
980 env
->cp15
.c2_base1
= value
;
984 static void ttbr164_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
986 env
->cp15
.c2_base1_hi
= 0;
987 env
->cp15
.c2_base1
= 0;
990 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
991 /* NOP AMAIR0/1: the override is because these clash with the rather
992 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
994 { .name
= "AMAIR0", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
995 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
997 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
998 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1000 /* 64 bit access versions of the (dummy) debug registers */
1001 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
1002 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1003 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
1004 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1005 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1006 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1007 .readfn
= par64_read
, .writefn
= par64_write
, .resetfn
= par64_reset
},
1008 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1009 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr064_read
,
1010 .writefn
= ttbr064_write
, .resetfn
= ttbr064_reset
},
1011 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1012 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr164_read
,
1013 .writefn
= ttbr164_write
, .resetfn
= ttbr164_reset
},
1017 static int sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1019 env
->cp15
.c1_sys
= value
;
1020 /* ??? Lots of these bits are not implemented. */
1021 /* This may enable/disable the MMU, so do a TLB flush. */
1026 void register_cp_regs_for_features(ARMCPU
*cpu
)
1028 /* Register all the coprocessor registers based on feature bits */
1029 CPUARMState
*env
= &cpu
->env
;
1030 if (arm_feature(env
, ARM_FEATURE_M
)) {
1031 /* M profile has no coprocessor registers */
1035 define_arm_cp_regs(cpu
, cp_reginfo
);
1036 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1037 /* The ID registers all have impdef reset values */
1038 ARMCPRegInfo v6_idregs
[] = {
1039 { .name
= "ID_PFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1040 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1041 .resetvalue
= cpu
->id_pfr0
},
1042 { .name
= "ID_PFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1043 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1044 .resetvalue
= cpu
->id_pfr1
},
1045 { .name
= "ID_DFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1046 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1047 .resetvalue
= cpu
->id_dfr0
},
1048 { .name
= "ID_AFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1049 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1050 .resetvalue
= cpu
->id_afr0
},
1051 { .name
= "ID_MMFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1052 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1053 .resetvalue
= cpu
->id_mmfr0
},
1054 { .name
= "ID_MMFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1055 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1056 .resetvalue
= cpu
->id_mmfr1
},
1057 { .name
= "ID_MMFR2", .cp
= 15, .crn
= 0, .crm
= 1,
1058 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1059 .resetvalue
= cpu
->id_mmfr2
},
1060 { .name
= "ID_MMFR3", .cp
= 15, .crn
= 0, .crm
= 1,
1061 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1062 .resetvalue
= cpu
->id_mmfr3
},
1063 { .name
= "ID_ISAR0", .cp
= 15, .crn
= 0, .crm
= 2,
1064 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1065 .resetvalue
= cpu
->id_isar0
},
1066 { .name
= "ID_ISAR1", .cp
= 15, .crn
= 0, .crm
= 2,
1067 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1068 .resetvalue
= cpu
->id_isar1
},
1069 { .name
= "ID_ISAR2", .cp
= 15, .crn
= 0, .crm
= 2,
1070 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1071 .resetvalue
= cpu
->id_isar2
},
1072 { .name
= "ID_ISAR3", .cp
= 15, .crn
= 0, .crm
= 2,
1073 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1074 .resetvalue
= cpu
->id_isar3
},
1075 { .name
= "ID_ISAR4", .cp
= 15, .crn
= 0, .crm
= 2,
1076 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1077 .resetvalue
= cpu
->id_isar4
},
1078 { .name
= "ID_ISAR5", .cp
= 15, .crn
= 0, .crm
= 2,
1079 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1080 .resetvalue
= cpu
->id_isar5
},
1081 /* 6..7 are as yet unallocated and must RAZ */
1082 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
1083 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1085 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
1086 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1090 define_arm_cp_regs(cpu
, v6_idregs
);
1091 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
1093 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
1095 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1096 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
1098 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1099 /* v7 performance monitor control register: same implementor
1100 * field as main ID register, and we implement no event counters.
1102 ARMCPRegInfo pmcr
= {
1103 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
1104 .access
= PL0_RW
, .resetvalue
= cpu
->midr
& 0xff000000,
1105 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
1106 .readfn
= pmreg_read
, .writefn
= pmcr_write
1108 ARMCPRegInfo clidr
= {
1109 .name
= "CLIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
1110 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
1112 define_one_arm_cp_reg(cpu
, &pmcr
);
1113 define_one_arm_cp_reg(cpu
, &clidr
);
1114 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
1116 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
1118 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1119 /* These are the MPU registers prior to PMSAv6. Any new
1120 * PMSA core later than the ARM946 will require that we
1121 * implement the PMSAv6 or PMSAv7 registers, which are
1122 * completely different.
1124 assert(!arm_feature(env
, ARM_FEATURE_V6
));
1125 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
1127 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
1129 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
1130 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
1132 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1133 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
1135 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
1136 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
1138 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
1139 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
1141 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
1142 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
1144 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
1145 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
1147 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1148 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
1150 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1151 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
1153 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1154 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
1156 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
1157 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
1159 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
1160 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
1162 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1163 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
1165 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1166 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1167 * be read-only (ie write causes UNDEF exception).
1170 ARMCPRegInfo id_cp_reginfo
[] = {
1171 /* Note that the MIDR isn't a simple constant register because
1172 * of the TI925 behaviour where writes to another register can
1173 * cause the MIDR value to change.
1176 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
1177 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
1178 .writefn
= arm_cp_write_ignore
,
1179 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
) },
1181 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
1182 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
1184 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
1185 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1187 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
1188 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1189 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1191 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
1192 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1194 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
1195 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1197 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
1198 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1200 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
1201 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1203 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
1204 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1207 ARMCPRegInfo crn0_wi_reginfo
= {
1208 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
1209 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
1210 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
1212 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
1213 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1215 /* Register the blanket "writes ignored" value first to cover the
1216 * whole space. Then define the specific ID registers, but update
1217 * their access field to allow write access, so that they ignore
1218 * writes rather than causing them to UNDEF.
1220 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
1221 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
1223 define_one_arm_cp_reg(cpu
, r
);
1226 /* Just register the standard ID registers (read-only, meaning
1227 * that writes will UNDEF).
1229 define_arm_cp_regs(cpu
, id_cp_reginfo
);
1233 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
1234 ARMCPRegInfo auxcr
= {
1235 .name
= "AUXCR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1,
1236 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
1237 .resetvalue
= cpu
->reset_auxcr
1239 define_one_arm_cp_reg(cpu
, &auxcr
);
1242 /* Generic registers whose values depend on the implementation */
1244 ARMCPRegInfo sctlr
= {
1245 .name
= "SCTLR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
1246 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
1247 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
1249 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1250 /* Normally we would always end the TB on an SCTLR write, but Linux
1251 * arch/arm/mach-pxa/sleep.S expects two instructions following
1252 * an MMU enable to execute from cache. Imitate this behaviour.
1254 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
1256 define_one_arm_cp_reg(cpu
, &sctlr
);
1260 ARMCPU
*cpu_arm_init(const char *cpu_model
)
1264 static int inited
= 0;
1266 if (!object_class_by_name(cpu_model
)) {
1269 cpu
= ARM_CPU(object_new(cpu_model
));
1271 env
->cpu_model_str
= cpu_model
;
1272 arm_cpu_realize(cpu
);
1274 if (tcg_enabled() && !inited
) {
1276 arm_translate_init();
1279 cpu_reset(CPU(cpu
));
1280 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
1281 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1282 51, "arm-neon.xml", 0);
1283 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
1284 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1285 35, "arm-vfp3.xml", 0);
1286 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
1287 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1288 19, "arm-vfp.xml", 0);
1290 qemu_init_vcpu(env
);
1294 typedef struct ARMCPUListState
{
1295 fprintf_function cpu_fprintf
;
1299 /* Sort alphabetically by type name, except for "any". */
1300 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
1302 ObjectClass
*class_a
= (ObjectClass
*)a
;
1303 ObjectClass
*class_b
= (ObjectClass
*)b
;
1304 const char *name_a
, *name_b
;
1306 name_a
= object_class_get_name(class_a
);
1307 name_b
= object_class_get_name(class_b
);
1308 if (strcmp(name_a
, "any") == 0) {
1310 } else if (strcmp(name_b
, "any") == 0) {
1313 return strcmp(name_a
, name_b
);
1317 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
1319 ObjectClass
*oc
= data
;
1320 ARMCPUListState
*s
= user_data
;
1322 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
1323 object_class_get_name(oc
));
1326 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
1328 ARMCPUListState s
= {
1330 .cpu_fprintf
= cpu_fprintf
,
1334 list
= object_class_get_list(TYPE_ARM_CPU
, false);
1335 list
= g_slist_sort(list
, arm_cpu_list_compare
);
1336 (*cpu_fprintf
)(f
, "Available CPUs:\n");
1337 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
1341 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
1342 const ARMCPRegInfo
*r
, void *opaque
)
1344 /* Define implementations of coprocessor registers.
1345 * We store these in a hashtable because typically
1346 * there are less than 150 registers in a space which
1347 * is 16*16*16*8*8 = 262144 in size.
1348 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1349 * If a register is defined twice then the second definition is
1350 * used, so this can be used to define some generic registers and
1351 * then override them with implementation specific variations.
1352 * At least one of the original and the second definition should
1353 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1354 * against accidental use.
1356 int crm
, opc1
, opc2
;
1357 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
1358 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
1359 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
1360 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
1361 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
1362 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
1363 /* 64 bit registers have only CRm and Opc1 fields */
1364 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
1365 /* Check that the register definition has enough info to handle
1366 * reads and writes if they are permitted.
1368 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
1369 if (r
->access
& PL3_R
) {
1370 assert(r
->fieldoffset
|| r
->readfn
);
1372 if (r
->access
& PL3_W
) {
1373 assert(r
->fieldoffset
|| r
->writefn
);
1376 /* Bad type field probably means missing sentinel at end of reg list */
1377 assert(cptype_valid(r
->type
));
1378 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
1379 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
1380 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
1381 uint32_t *key
= g_new(uint32_t, 1);
1382 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
1383 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
1384 *key
= ENCODE_CP_REG(r
->cp
, is64
, r
->crn
, crm
, opc1
, opc2
);
1385 r2
->opaque
= opaque
;
1386 /* Make sure reginfo passed to helpers for wildcarded regs
1387 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1392 /* Overriding of an existing definition must be explicitly
1395 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
1396 ARMCPRegInfo
*oldreg
;
1397 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
1398 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
1399 fprintf(stderr
, "Register redefined: cp=%d %d bit "
1400 "crn=%d crm=%d opc1=%d opc2=%d, "
1401 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
1402 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
1403 oldreg
->name
, r2
->name
);
1407 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
1413 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
1414 const ARMCPRegInfo
*regs
, void *opaque
)
1416 /* Define a whole list of registers */
1417 const ARMCPRegInfo
*r
;
1418 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
1419 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
1423 const ARMCPRegInfo
*get_arm_cp_reginfo(ARMCPU
*cpu
, uint32_t encoded_cp
)
1425 return g_hash_table_lookup(cpu
->cp_regs
, &encoded_cp
);
1428 int arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1431 /* Helper coprocessor write function for write-ignore registers */
1435 int arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
1437 /* Helper coprocessor write function for read-as-zero registers */
1442 static int bad_mode_switch(CPUARMState
*env
, int mode
)
1444 /* Return true if it is not valid for us to switch to
1445 * this CPU mode (ie all the UNPREDICTABLE cases in
1446 * the ARM ARM CPSRWriteByInstr pseudocode).
1449 case ARM_CPU_MODE_USR
:
1450 case ARM_CPU_MODE_SYS
:
1451 case ARM_CPU_MODE_SVC
:
1452 case ARM_CPU_MODE_ABT
:
1453 case ARM_CPU_MODE_UND
:
1454 case ARM_CPU_MODE_IRQ
:
1455 case ARM_CPU_MODE_FIQ
:
1462 uint32_t cpsr_read(CPUARMState
*env
)
1465 ZF
= (env
->ZF
== 0);
1466 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
1467 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
1468 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
1469 | ((env
->condexec_bits
& 0xfc) << 8)
1473 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
1475 if (mask
& CPSR_NZCV
) {
1476 env
->ZF
= (~val
) & CPSR_Z
;
1478 env
->CF
= (val
>> 29) & 1;
1479 env
->VF
= (val
<< 3) & 0x80000000;
1482 env
->QF
= ((val
& CPSR_Q
) != 0);
1484 env
->thumb
= ((val
& CPSR_T
) != 0);
1485 if (mask
& CPSR_IT_0_1
) {
1486 env
->condexec_bits
&= ~3;
1487 env
->condexec_bits
|= (val
>> 25) & 3;
1489 if (mask
& CPSR_IT_2_7
) {
1490 env
->condexec_bits
&= 3;
1491 env
->condexec_bits
|= (val
>> 8) & 0xfc;
1493 if (mask
& CPSR_GE
) {
1494 env
->GE
= (val
>> 16) & 0xf;
1497 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
1498 if (bad_mode_switch(env
, val
& CPSR_M
)) {
1499 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1500 * We choose to ignore the attempt and leave the CPSR M field
1505 switch_mode(env
, val
& CPSR_M
);
1508 mask
&= ~CACHED_CPSR_BITS
;
1509 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
1512 /* Sign/zero extend */
1513 uint32_t HELPER(sxtb16
)(uint32_t x
)
1516 res
= (uint16_t)(int8_t)x
;
1517 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
1521 uint32_t HELPER(uxtb16
)(uint32_t x
)
1524 res
= (uint16_t)(uint8_t)x
;
1525 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
1529 uint32_t HELPER(clz
)(uint32_t x
)
1534 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
1538 if (num
== INT_MIN
&& den
== -1)
1543 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
1550 uint32_t HELPER(rbit
)(uint32_t x
)
1552 x
= ((x
& 0xff000000) >> 24)
1553 | ((x
& 0x00ff0000) >> 8)
1554 | ((x
& 0x0000ff00) << 8)
1555 | ((x
& 0x000000ff) << 24);
1556 x
= ((x
& 0xf0f0f0f0) >> 4)
1557 | ((x
& 0x0f0f0f0f) << 4);
1558 x
= ((x
& 0x88888888) >> 3)
1559 | ((x
& 0x44444444) >> 1)
1560 | ((x
& 0x22222222) << 1)
1561 | ((x
& 0x11111111) << 3);
1565 #if defined(CONFIG_USER_ONLY)
1567 void do_interrupt (CPUARMState
*env
)
1569 env
->exception_index
= -1;
1572 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
, int rw
,
1576 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1577 env
->cp15
.c6_insn
= address
;
1579 env
->exception_index
= EXCP_DATA_ABORT
;
1580 env
->cp15
.c6_data
= address
;
1585 /* These should probably raise undefined insn exceptions. */
1586 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
1588 cpu_abort(env
, "v7m_mrs %d\n", reg
);
1591 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
1593 cpu_abort(env
, "v7m_mrs %d\n", reg
);
1597 void switch_mode(CPUARMState
*env
, int mode
)
1599 if (mode
!= ARM_CPU_MODE_USR
)
1600 cpu_abort(env
, "Tried to switch out of user mode\n");
1603 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
1605 cpu_abort(env
, "banked r13 write\n");
1608 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
1610 cpu_abort(env
, "banked r13 read\n");
1616 /* Map CPU modes onto saved register banks. */
1617 static inline int bank_number(CPUARMState
*env
, int mode
)
1620 case ARM_CPU_MODE_USR
:
1621 case ARM_CPU_MODE_SYS
:
1623 case ARM_CPU_MODE_SVC
:
1625 case ARM_CPU_MODE_ABT
:
1627 case ARM_CPU_MODE_UND
:
1629 case ARM_CPU_MODE_IRQ
:
1631 case ARM_CPU_MODE_FIQ
:
1634 cpu_abort(env
, "Bad mode %x\n", mode
);
1638 void switch_mode(CPUARMState
*env
, int mode
)
1643 old_mode
= env
->uncached_cpsr
& CPSR_M
;
1644 if (mode
== old_mode
)
1647 if (old_mode
== ARM_CPU_MODE_FIQ
) {
1648 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
1649 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
1650 } else if (mode
== ARM_CPU_MODE_FIQ
) {
1651 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
1652 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
1655 i
= bank_number(env
, old_mode
);
1656 env
->banked_r13
[i
] = env
->regs
[13];
1657 env
->banked_r14
[i
] = env
->regs
[14];
1658 env
->banked_spsr
[i
] = env
->spsr
;
1660 i
= bank_number(env
, mode
);
1661 env
->regs
[13] = env
->banked_r13
[i
];
1662 env
->regs
[14] = env
->banked_r14
[i
];
1663 env
->spsr
= env
->banked_spsr
[i
];
1666 static void v7m_push(CPUARMState
*env
, uint32_t val
)
1669 stl_phys(env
->regs
[13], val
);
1672 static uint32_t v7m_pop(CPUARMState
*env
)
1675 val
= ldl_phys(env
->regs
[13]);
1680 /* Switch to V7M main or process stack pointer. */
1681 static void switch_v7m_sp(CPUARMState
*env
, int process
)
1684 if (env
->v7m
.current_sp
!= process
) {
1685 tmp
= env
->v7m
.other_sp
;
1686 env
->v7m
.other_sp
= env
->regs
[13];
1687 env
->regs
[13] = tmp
;
1688 env
->v7m
.current_sp
= process
;
1692 static void do_v7m_exception_exit(CPUARMState
*env
)
1697 type
= env
->regs
[15];
1698 if (env
->v7m
.exception
!= 0)
1699 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
1701 /* Switch to the target stack. */
1702 switch_v7m_sp(env
, (type
& 4) != 0);
1703 /* Pop registers. */
1704 env
->regs
[0] = v7m_pop(env
);
1705 env
->regs
[1] = v7m_pop(env
);
1706 env
->regs
[2] = v7m_pop(env
);
1707 env
->regs
[3] = v7m_pop(env
);
1708 env
->regs
[12] = v7m_pop(env
);
1709 env
->regs
[14] = v7m_pop(env
);
1710 env
->regs
[15] = v7m_pop(env
);
1711 xpsr
= v7m_pop(env
);
1712 xpsr_write(env
, xpsr
, 0xfffffdff);
1713 /* Undo stack alignment. */
1716 /* ??? The exception return type specifies Thread/Handler mode. However
1717 this is also implied by the xPSR value. Not sure what to do
1718 if there is a mismatch. */
1719 /* ??? Likewise for mismatches between the CONTROL register and the stack
1723 static void do_interrupt_v7m(CPUARMState
*env
)
1725 uint32_t xpsr
= xpsr_read(env
);
1730 if (env
->v7m
.current_sp
)
1732 if (env
->v7m
.exception
== 0)
1735 /* For exceptions we just mark as pending on the NVIC, and let that
1737 /* TODO: Need to escalate if the current priority is higher than the
1738 one we're raising. */
1739 switch (env
->exception_index
) {
1741 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
1745 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
1747 case EXCP_PREFETCH_ABORT
:
1748 case EXCP_DATA_ABORT
:
1749 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
1752 if (semihosting_enabled
) {
1754 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
1757 env
->regs
[0] = do_arm_semihosting(env
);
1761 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
1764 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
1766 case EXCP_EXCEPTION_EXIT
:
1767 do_v7m_exception_exit(env
);
1770 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
1771 return; /* Never happens. Keep compiler happy. */
1774 /* Align stack pointer. */
1775 /* ??? Should only do this if Configuration Control Register
1776 STACKALIGN bit is set. */
1777 if (env
->regs
[13] & 4) {
1781 /* Switch to the handler mode. */
1782 v7m_push(env
, xpsr
);
1783 v7m_push(env
, env
->regs
[15]);
1784 v7m_push(env
, env
->regs
[14]);
1785 v7m_push(env
, env
->regs
[12]);
1786 v7m_push(env
, env
->regs
[3]);
1787 v7m_push(env
, env
->regs
[2]);
1788 v7m_push(env
, env
->regs
[1]);
1789 v7m_push(env
, env
->regs
[0]);
1790 switch_v7m_sp(env
, 0);
1792 env
->condexec_bits
= 0;
1794 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
1795 env
->regs
[15] = addr
& 0xfffffffe;
1796 env
->thumb
= addr
& 1;
1799 /* Handle a CPU exception. */
1800 void do_interrupt(CPUARMState
*env
)
1808 do_interrupt_v7m(env
);
1811 /* TODO: Vectored interrupt controller. */
1812 switch (env
->exception_index
) {
1814 new_mode
= ARM_CPU_MODE_UND
;
1823 if (semihosting_enabled
) {
1824 /* Check for semihosting interrupt. */
1826 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
1829 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
1832 /* Only intercept calls from privileged modes, to provide some
1833 semblance of security. */
1834 if (((mask
== 0x123456 && !env
->thumb
)
1835 || (mask
== 0xab && env
->thumb
))
1836 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
1837 env
->regs
[0] = do_arm_semihosting(env
);
1841 new_mode
= ARM_CPU_MODE_SVC
;
1844 /* The PC already points to the next instruction. */
1848 /* See if this is a semihosting syscall. */
1849 if (env
->thumb
&& semihosting_enabled
) {
1850 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
1852 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
1854 env
->regs
[0] = do_arm_semihosting(env
);
1858 env
->cp15
.c5_insn
= 2;
1859 /* Fall through to prefetch abort. */
1860 case EXCP_PREFETCH_ABORT
:
1861 new_mode
= ARM_CPU_MODE_ABT
;
1863 mask
= CPSR_A
| CPSR_I
;
1866 case EXCP_DATA_ABORT
:
1867 new_mode
= ARM_CPU_MODE_ABT
;
1869 mask
= CPSR_A
| CPSR_I
;
1873 new_mode
= ARM_CPU_MODE_IRQ
;
1875 /* Disable IRQ and imprecise data aborts. */
1876 mask
= CPSR_A
| CPSR_I
;
1880 new_mode
= ARM_CPU_MODE_FIQ
;
1882 /* Disable FIQ, IRQ and imprecise data aborts. */
1883 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
1887 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
1888 return; /* Never happens. Keep compiler happy. */
1891 if (env
->cp15
.c1_sys
& (1 << 13)) {
1894 switch_mode (env
, new_mode
);
1895 env
->spsr
= cpsr_read(env
);
1896 /* Clear IT bits. */
1897 env
->condexec_bits
= 0;
1898 /* Switch to the new mode, and to the correct instruction set. */
1899 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
1900 env
->uncached_cpsr
|= mask
;
1901 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1902 * and we should just guard the thumb mode on V4 */
1903 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
1904 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
1906 env
->regs
[14] = env
->regs
[15] + offset
;
1907 env
->regs
[15] = addr
;
1908 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
1911 /* Check section/page access permissions.
1912 Returns the page protection flags, or zero if the access is not
1914 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
1915 int access_type
, int is_user
)
1919 if (domain_prot
== 3) {
1920 return PAGE_READ
| PAGE_WRITE
;
1923 if (access_type
== 1)
1926 prot_ro
= PAGE_READ
;
1930 if (access_type
== 1)
1932 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
1934 return is_user
? 0 : PAGE_READ
;
1941 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
1946 return PAGE_READ
| PAGE_WRITE
;
1948 return PAGE_READ
| PAGE_WRITE
;
1949 case 4: /* Reserved. */
1952 return is_user
? 0 : prot_ro
;
1956 if (!arm_feature (env
, ARM_FEATURE_V6K
))
1964 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
1968 if (address
& env
->cp15
.c2_mask
)
1969 table
= env
->cp15
.c2_base1
& 0xffffc000;
1971 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
1973 table
|= (address
>> 18) & 0x3ffc;
1977 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
1978 int is_user
, hwaddr
*phys_ptr
,
1979 int *prot
, target_ulong
*page_size
)
1990 /* Pagetable walk. */
1991 /* Lookup l1 descriptor. */
1992 table
= get_level1_table_address(env
, address
);
1993 desc
= ldl_phys(table
);
1995 domain
= (desc
>> 5) & 0x0f;
1996 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
1998 /* Section translation fault. */
2002 if (domain_prot
== 0 || domain_prot
== 2) {
2004 code
= 9; /* Section domain fault. */
2006 code
= 11; /* Page domain fault. */
2011 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2012 ap
= (desc
>> 10) & 3;
2014 *page_size
= 1024 * 1024;
2016 /* Lookup l2 entry. */
2018 /* Coarse pagetable. */
2019 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2021 /* Fine pagetable. */
2022 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
2024 desc
= ldl_phys(table
);
2026 case 0: /* Page translation fault. */
2029 case 1: /* 64k page. */
2030 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2031 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2032 *page_size
= 0x10000;
2034 case 2: /* 4k page. */
2035 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2036 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2037 *page_size
= 0x1000;
2039 case 3: /* 1k page. */
2041 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2042 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2044 /* Page translation fault. */
2049 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
2051 ap
= (desc
>> 4) & 3;
2055 /* Never happens, but compiler isn't smart enough to tell. */
2060 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
2062 /* Access permission fault. */
2066 *phys_ptr
= phys_addr
;
2069 return code
| (domain
<< 4);
2072 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
2073 int is_user
, hwaddr
*phys_ptr
,
2074 int *prot
, target_ulong
*page_size
)
2087 /* Pagetable walk. */
2088 /* Lookup l1 descriptor. */
2089 table
= get_level1_table_address(env
, address
);
2090 desc
= ldl_phys(table
);
2092 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
2093 /* Section translation fault, or attempt to use the encoding
2094 * which is Reserved on implementations without PXN.
2099 if ((type
== 1) || !(desc
& (1 << 18))) {
2100 /* Page or Section. */
2101 domain
= (desc
>> 5) & 0x0f;
2103 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
2104 if (domain_prot
== 0 || domain_prot
== 2) {
2106 code
= 9; /* Section domain fault. */
2108 code
= 11; /* Page domain fault. */
2113 if (desc
& (1 << 18)) {
2115 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
2116 *page_size
= 0x1000000;
2119 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2120 *page_size
= 0x100000;
2122 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
2123 xn
= desc
& (1 << 4);
2127 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
2128 pxn
= (desc
>> 2) & 1;
2130 /* Lookup l2 entry. */
2131 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2132 desc
= ldl_phys(table
);
2133 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
2135 case 0: /* Page translation fault. */
2138 case 1: /* 64k page. */
2139 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2140 xn
= desc
& (1 << 15);
2141 *page_size
= 0x10000;
2143 case 2: case 3: /* 4k page. */
2144 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2146 *page_size
= 0x1000;
2149 /* Never happens, but compiler isn't smart enough to tell. */
2154 if (domain_prot
== 3) {
2155 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
2157 if (pxn
&& !is_user
) {
2160 if (xn
&& access_type
== 2)
2163 /* The simplified model uses AP[0] as an access control bit. */
2164 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
2165 /* Access flag fault. */
2166 code
= (code
== 15) ? 6 : 3;
2169 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
2171 /* Access permission fault. */
2178 *phys_ptr
= phys_addr
;
2181 return code
| (domain
<< 4);
2184 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2185 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2188 translation_fault
= 1,
2190 permission_fault
= 3,
2193 static int get_phys_addr_lpae(CPUARMState
*env
, uint32_t address
,
2194 int access_type
, int is_user
,
2195 hwaddr
*phys_ptr
, int *prot
,
2196 target_ulong
*page_size_ptr
)
2198 /* Read an LPAE long-descriptor translation table. */
2199 MMUFaultType fault_type
= translation_fault
;
2207 uint32_t tableattrs
;
2208 target_ulong page_size
;
2211 /* Determine whether this address is in the region controlled by
2212 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2213 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2214 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2216 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 3);
2217 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 3);
2218 if (t0sz
&& !extract32(address
, 32 - t0sz
, t0sz
)) {
2219 /* there is a ttbr0 region and we are in it (high bits all zero) */
2221 } else if (t1sz
&& !extract32(~address
, 32 - t1sz
, t1sz
)) {
2222 /* there is a ttbr1 region and we are in it (high bits all one) */
2225 /* ttbr0 region is "everything not in the ttbr1 region" */
2228 /* ttbr1 region is "everything not in the ttbr0 region" */
2231 /* in the gap between the two regions, this is a Translation fault */
2232 fault_type
= translation_fault
;
2236 /* Note that QEMU ignores shareability and cacheability attributes,
2237 * so we don't need to do anything with the SH, ORGN, IRGN fields
2238 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2239 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2240 * implement any ASID-like capability so we can ignore it (instead
2241 * we will always flush the TLB any time the ASID is changed).
2243 if (ttbr_select
== 0) {
2244 ttbr
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
2245 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
2248 ttbr
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
2249 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
2254 /* Translation table walk disabled => Translation fault on TLB miss */
2258 /* If the region is small enough we will skip straight to a 2nd level
2259 * lookup. This affects the number of bits of the address used in
2260 * combination with the TTBR to find the first descriptor. ('n' here
2261 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2262 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2271 /* Clear the vaddr bits which aren't part of the within-region address,
2272 * so that we don't have to special case things when calculating the
2273 * first descriptor address.
2275 address
&= (0xffffffffU
>> tsz
);
2277 /* Now we can extract the actual base address from the TTBR */
2278 descaddr
= extract64(ttbr
, 0, 40);
2279 descaddr
&= ~((1ULL << n
) - 1);
2283 uint64_t descriptor
;
2285 descaddr
|= ((address
>> (9 * (4 - level
))) & 0xff8);
2286 descriptor
= ldq_phys(descaddr
);
2287 if (!(descriptor
& 1) ||
2288 (!(descriptor
& 2) && (level
== 3))) {
2289 /* Invalid, or the Reserved level 3 encoding */
2292 descaddr
= descriptor
& 0xfffffff000ULL
;
2294 if ((descriptor
& 2) && (level
< 3)) {
2295 /* Table entry. The top five bits are attributes which may
2296 * propagate down through lower levels of the table (and
2297 * which are all arranged so that 0 means "no effect", so
2298 * we can gather them up by ORing in the bits at each level).
2300 tableattrs
|= extract64(descriptor
, 59, 5);
2304 /* Block entry at level 1 or 2, or page entry at level 3.
2305 * These are basically the same thing, although the number
2306 * of bits we pull in from the vaddr varies.
2308 page_size
= (1 << (39 - (9 * level
)));
2309 descaddr
|= (address
& (page_size
- 1));
2310 /* Extract attributes from the descriptor and merge with table attrs */
2311 attrs
= extract64(descriptor
, 2, 10)
2312 | (extract64(descriptor
, 52, 12) << 10);
2313 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
2314 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
2315 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2316 * means "force PL1 access only", which means forcing AP[1] to 0.
2318 if (extract32(tableattrs
, 2, 1)) {
2321 /* Since we're always in the Non-secure state, NSTable is ignored. */
2324 /* Here descaddr is the final physical address, and attributes
2327 fault_type
= access_fault
;
2328 if ((attrs
& (1 << 8)) == 0) {
2332 fault_type
= permission_fault
;
2333 if (is_user
&& !(attrs
& (1 << 4))) {
2334 /* Unprivileged access not enabled */
2337 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
2338 if (attrs
& (1 << 12) || (!is_user
&& (attrs
& (1 << 11)))) {
2340 if (access_type
== 2) {
2343 *prot
&= ~PAGE_EXEC
;
2345 if (attrs
& (1 << 5)) {
2346 /* Write access forbidden */
2347 if (access_type
== 1) {
2350 *prot
&= ~PAGE_WRITE
;
2353 *phys_ptr
= descaddr
;
2354 *page_size_ptr
= page_size
;
2358 /* Long-descriptor format IFSR/DFSR value */
2359 return (1 << 9) | (fault_type
<< 2) | level
;
2362 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
2363 int access_type
, int is_user
,
2364 hwaddr
*phys_ptr
, int *prot
)
2370 *phys_ptr
= address
;
2371 for (n
= 7; n
>= 0; n
--) {
2372 base
= env
->cp15
.c6_region
[n
];
2373 if ((base
& 1) == 0)
2375 mask
= 1 << ((base
>> 1) & 0x1f);
2376 /* Keep this shift separate from the above to avoid an
2377 (undefined) << 32. */
2378 mask
= (mask
<< 1) - 1;
2379 if (((base
^ address
) & ~mask
) == 0)
2385 if (access_type
== 2) {
2386 mask
= env
->cp15
.c5_insn
;
2388 mask
= env
->cp15
.c5_data
;
2390 mask
= (mask
>> (n
* 4)) & 0xf;
2397 *prot
= PAGE_READ
| PAGE_WRITE
;
2402 *prot
|= PAGE_WRITE
;
2405 *prot
= PAGE_READ
| PAGE_WRITE
;
2416 /* Bad permission. */
2423 /* get_phys_addr - get the physical address for this virtual address
2425 * Find the physical address corresponding to the given virtual address,
2426 * by doing a translation table walk on MMU based systems or using the
2427 * MPU state on MPU based systems.
2429 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2430 * prot and page_size are not filled in, and the return value provides
2431 * information on why the translation aborted, in the format of a
2432 * DFSR/IFSR fault register, with the following caveats:
2433 * * we honour the short vs long DFSR format differences.
2434 * * the WnR bit is never set (the caller must do this).
2435 * * for MPU based systems we don't bother to return a full FSR format
2439 * @address: virtual address to get physical address for
2440 * @access_type: 0 for read, 1 for write, 2 for execute
2441 * @is_user: 0 for privileged access, 1 for user
2442 * @phys_ptr: set to the physical address corresponding to the virtual address
2443 * @prot: set to the permissions for the page containing phys_ptr
2444 * @page_size: set to the size of the page containing phys_ptr
2446 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
2447 int access_type
, int is_user
,
2448 hwaddr
*phys_ptr
, int *prot
,
2449 target_ulong
*page_size
)
2451 /* Fast Context Switch Extension. */
2452 if (address
< 0x02000000)
2453 address
+= env
->cp15
.c13_fcse
;
2455 if ((env
->cp15
.c1_sys
& 1) == 0) {
2456 /* MMU/MPU disabled. */
2457 *phys_ptr
= address
;
2458 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
2459 *page_size
= TARGET_PAGE_SIZE
;
2461 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
2462 *page_size
= TARGET_PAGE_SIZE
;
2463 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
2465 } else if (extended_addresses_enabled(env
)) {
2466 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
2468 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
2469 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
2472 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
2477 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
,
2478 int access_type
, int mmu_idx
)
2481 target_ulong page_size
;
2485 is_user
= mmu_idx
== MMU_USER_IDX
;
2486 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
2489 /* Map a single [sub]page. */
2490 phys_addr
&= ~(hwaddr
)0x3ff;
2491 address
&= ~(uint32_t)0x3ff;
2492 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
2496 if (access_type
== 2) {
2497 env
->cp15
.c5_insn
= ret
;
2498 env
->cp15
.c6_insn
= address
;
2499 env
->exception_index
= EXCP_PREFETCH_ABORT
;
2501 env
->cp15
.c5_data
= ret
;
2502 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
2503 env
->cp15
.c5_data
|= (1 << 11);
2504 env
->cp15
.c6_data
= address
;
2505 env
->exception_index
= EXCP_DATA_ABORT
;
2510 hwaddr
cpu_get_phys_page_debug(CPUARMState
*env
, target_ulong addr
)
2513 target_ulong page_size
;
2517 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
2525 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
2527 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2528 env
->regs
[13] = val
;
2530 env
->banked_r13
[bank_number(env
, mode
)] = val
;
2534 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
2536 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2537 return env
->regs
[13];
2539 return env
->banked_r13
[bank_number(env
, mode
)];
2543 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2547 return xpsr_read(env
) & 0xf8000000;
2549 return xpsr_read(env
) & 0xf80001ff;
2551 return xpsr_read(env
) & 0xff00fc00;
2553 return xpsr_read(env
) & 0xff00fdff;
2555 return xpsr_read(env
) & 0x000001ff;
2557 return xpsr_read(env
) & 0x0700fc00;
2559 return xpsr_read(env
) & 0x0700edff;
2561 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
2563 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
2564 case 16: /* PRIMASK */
2565 return (env
->uncached_cpsr
& CPSR_I
) != 0;
2566 case 17: /* BASEPRI */
2567 case 18: /* BASEPRI_MAX */
2568 return env
->v7m
.basepri
;
2569 case 19: /* FAULTMASK */
2570 return (env
->uncached_cpsr
& CPSR_F
) != 0;
2571 case 20: /* CONTROL */
2572 return env
->v7m
.control
;
2574 /* ??? For debugging only. */
2575 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
2580 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
2584 xpsr_write(env
, val
, 0xf8000000);
2587 xpsr_write(env
, val
, 0xf8000000);
2590 xpsr_write(env
, val
, 0xfe00fc00);
2593 xpsr_write(env
, val
, 0xfe00fc00);
2596 /* IPSR bits are readonly. */
2599 xpsr_write(env
, val
, 0x0600fc00);
2602 xpsr_write(env
, val
, 0x0600fc00);
2605 if (env
->v7m
.current_sp
)
2606 env
->v7m
.other_sp
= val
;
2608 env
->regs
[13] = val
;
2611 if (env
->v7m
.current_sp
)
2612 env
->regs
[13] = val
;
2614 env
->v7m
.other_sp
= val
;
2616 case 16: /* PRIMASK */
2618 env
->uncached_cpsr
|= CPSR_I
;
2620 env
->uncached_cpsr
&= ~CPSR_I
;
2622 case 17: /* BASEPRI */
2623 env
->v7m
.basepri
= val
& 0xff;
2625 case 18: /* BASEPRI_MAX */
2627 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
2628 env
->v7m
.basepri
= val
;
2630 case 19: /* FAULTMASK */
2632 env
->uncached_cpsr
|= CPSR_F
;
2634 env
->uncached_cpsr
&= ~CPSR_F
;
2636 case 20: /* CONTROL */
2637 env
->v7m
.control
= val
& 3;
2638 switch_v7m_sp(env
, (val
& 2) != 0);
2641 /* ??? For debugging only. */
2642 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
2649 /* Note that signed overflow is undefined in C. The following routines are
2650 careful to use unsigned types where modulo arithmetic is required.
2651 Failure to do so _will_ break on newer gcc. */
2653 /* Signed saturating arithmetic. */
2655 /* Perform 16-bit signed saturating addition. */
2656 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
2661 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
2670 /* Perform 8-bit signed saturating addition. */
2671 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
2676 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
2685 /* Perform 16-bit signed saturating subtraction. */
2686 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
2691 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
2700 /* Perform 8-bit signed saturating subtraction. */
2701 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
2706 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
2715 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2716 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2717 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2718 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2721 #include "op_addsub.h"
2723 /* Unsigned saturating arithmetic. */
2724 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
2733 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2741 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2750 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2758 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2759 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2760 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2761 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2764 #include "op_addsub.h"
2766 /* Signed modulo arithmetic. */
2767 #define SARITH16(a, b, n, op) do { \
2769 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2770 RESULT(sum, n, 16); \
2772 ge |= 3 << (n * 2); \
2775 #define SARITH8(a, b, n, op) do { \
2777 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2778 RESULT(sum, n, 8); \
2784 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2785 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2786 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2787 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2791 #include "op_addsub.h"
2793 /* Unsigned modulo arithmetic. */
2794 #define ADD16(a, b, n) do { \
2796 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2797 RESULT(sum, n, 16); \
2798 if ((sum >> 16) == 1) \
2799 ge |= 3 << (n * 2); \
2802 #define ADD8(a, b, n) do { \
2804 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2805 RESULT(sum, n, 8); \
2806 if ((sum >> 8) == 1) \
2810 #define SUB16(a, b, n) do { \
2812 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2813 RESULT(sum, n, 16); \
2814 if ((sum >> 16) == 0) \
2815 ge |= 3 << (n * 2); \
2818 #define SUB8(a, b, n) do { \
2820 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2821 RESULT(sum, n, 8); \
2822 if ((sum >> 8) == 0) \
2829 #include "op_addsub.h"
2831 /* Halved signed arithmetic. */
2832 #define ADD16(a, b, n) \
2833 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2834 #define SUB16(a, b, n) \
2835 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2836 #define ADD8(a, b, n) \
2837 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2838 #define SUB8(a, b, n) \
2839 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2842 #include "op_addsub.h"
2844 /* Halved unsigned arithmetic. */
2845 #define ADD16(a, b, n) \
2846 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2847 #define SUB16(a, b, n) \
2848 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2849 #define ADD8(a, b, n) \
2850 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2851 #define SUB8(a, b, n) \
2852 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2855 #include "op_addsub.h"
2857 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2865 /* Unsigned sum of absolute byte differences. */
2866 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2869 sum
= do_usad(a
, b
);
2870 sum
+= do_usad(a
>> 8, b
>> 8);
2871 sum
+= do_usad(a
>> 16, b
>>16);
2872 sum
+= do_usad(a
>> 24, b
>> 24);
2876 /* For ARMv6 SEL instruction. */
2877 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2890 return (a
& mask
) | (b
& ~mask
);
2893 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2895 return (val
>> 32) | (val
!= 0);
2898 /* VFP support. We follow the convention used for VFP instructions:
2899 Single precision routines have a "s" suffix, double precision a
2902 /* Convert host exception flags to vfp form. */
2903 static inline int vfp_exceptbits_from_host(int host_bits
)
2905 int target_bits
= 0;
2907 if (host_bits
& float_flag_invalid
)
2909 if (host_bits
& float_flag_divbyzero
)
2911 if (host_bits
& float_flag_overflow
)
2913 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
2915 if (host_bits
& float_flag_inexact
)
2916 target_bits
|= 0x10;
2917 if (host_bits
& float_flag_input_denormal
)
2918 target_bits
|= 0x80;
2922 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
2927 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2928 | (env
->vfp
.vec_len
<< 16)
2929 | (env
->vfp
.vec_stride
<< 20);
2930 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2931 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
2932 fpscr
|= vfp_exceptbits_from_host(i
);
2936 uint32_t vfp_get_fpscr(CPUARMState
*env
)
2938 return HELPER(vfp_get_fpscr
)(env
);
2941 /* Convert vfp exception flags to target form. */
2942 static inline int vfp_exceptbits_to_host(int target_bits
)
2946 if (target_bits
& 1)
2947 host_bits
|= float_flag_invalid
;
2948 if (target_bits
& 2)
2949 host_bits
|= float_flag_divbyzero
;
2950 if (target_bits
& 4)
2951 host_bits
|= float_flag_overflow
;
2952 if (target_bits
& 8)
2953 host_bits
|= float_flag_underflow
;
2954 if (target_bits
& 0x10)
2955 host_bits
|= float_flag_inexact
;
2956 if (target_bits
& 0x80)
2957 host_bits
|= float_flag_input_denormal
;
2961 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
2966 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2967 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2968 env
->vfp
.vec_len
= (val
>> 16) & 7;
2969 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2972 if (changed
& (3 << 22)) {
2973 i
= (val
>> 22) & 3;
2976 i
= float_round_nearest_even
;
2982 i
= float_round_down
;
2985 i
= float_round_to_zero
;
2988 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2990 if (changed
& (1 << 24)) {
2991 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2992 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2994 if (changed
& (1 << 25))
2995 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
2997 i
= vfp_exceptbits_to_host(val
);
2998 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2999 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
3002 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
3004 HELPER(vfp_set_fpscr
)(env
, val
);
3007 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3009 #define VFP_BINOP(name) \
3010 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3012 float_status *fpst = fpstp; \
3013 return float32_ ## name(a, b, fpst); \
3015 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3017 float_status *fpst = fpstp; \
3018 return float64_ ## name(a, b, fpst); \
3026 float32
VFP_HELPER(neg
, s
)(float32 a
)
3028 return float32_chs(a
);
3031 float64
VFP_HELPER(neg
, d
)(float64 a
)
3033 return float64_chs(a
);
3036 float32
VFP_HELPER(abs
, s
)(float32 a
)
3038 return float32_abs(a
);
3041 float64
VFP_HELPER(abs
, d
)(float64 a
)
3043 return float64_abs(a
);
3046 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
3048 return float32_sqrt(a
, &env
->vfp
.fp_status
);
3051 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
3053 return float64_sqrt(a
, &env
->vfp
.fp_status
);
3056 /* XXX: check quiet/signaling case */
3057 #define DO_VFP_cmp(p, type) \
3058 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3061 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3062 case 0: flags = 0x6; break; \
3063 case -1: flags = 0x8; break; \
3064 case 1: flags = 0x2; break; \
3065 default: case 2: flags = 0x3; break; \
3067 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3068 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3070 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3073 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3074 case 0: flags = 0x6; break; \
3075 case -1: flags = 0x8; break; \
3076 case 1: flags = 0x2; break; \
3077 default: case 2: flags = 0x3; break; \
3079 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3080 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3082 DO_VFP_cmp(s
, float32
)
3083 DO_VFP_cmp(d
, float64
)
3086 /* Integer to float and float to integer conversions */
3088 #define CONV_ITOF(name, fsz, sign) \
3089 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3091 float_status *fpst = fpstp; \
3092 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3095 #define CONV_FTOI(name, fsz, sign, round) \
3096 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3098 float_status *fpst = fpstp; \
3099 if (float##fsz##_is_any_nan(x)) { \
3100 float_raise(float_flag_invalid, fpst); \
3103 return float##fsz##_to_##sign##int32##round(x, fpst); \
3106 #define FLOAT_CONVS(name, p, fsz, sign) \
3107 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3108 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3109 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3111 FLOAT_CONVS(si
, s
, 32, )
3112 FLOAT_CONVS(si
, d
, 64, )
3113 FLOAT_CONVS(ui
, s
, 32, u
)
3114 FLOAT_CONVS(ui
, d
, 64, u
)
3120 /* floating point conversion */
3121 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
3123 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
3124 /* ARM requires that S<->D conversion of any kind of NaN generates
3125 * a quiet NaN by forcing the most significant frac bit to 1.
3127 return float64_maybe_silence_nan(r
);
3130 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
3132 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
3133 /* ARM requires that S<->D conversion of any kind of NaN generates
3134 * a quiet NaN by forcing the most significant frac bit to 1.
3136 return float32_maybe_silence_nan(r
);
3139 /* VFP3 fixed point conversion. */
3140 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3141 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3144 float_status *fpst = fpstp; \
3146 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3147 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3149 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3152 float_status *fpst = fpstp; \
3154 if (float##fsz##_is_any_nan(x)) { \
3155 float_raise(float_flag_invalid, fpst); \
3158 tmp = float##fsz##_scalbn(x, shift, fpst); \
3159 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3162 VFP_CONV_FIX(sh
, d
, 64, int16
, )
3163 VFP_CONV_FIX(sl
, d
, 64, int32
, )
3164 VFP_CONV_FIX(uh
, d
, 64, uint16
, u
)
3165 VFP_CONV_FIX(ul
, d
, 64, uint32
, u
)
3166 VFP_CONV_FIX(sh
, s
, 32, int16
, )
3167 VFP_CONV_FIX(sl
, s
, 32, int32
, )
3168 VFP_CONV_FIX(uh
, s
, 32, uint16
, u
)
3169 VFP_CONV_FIX(ul
, s
, 32, uint32
, u
)
3172 /* Half precision conversions. */
3173 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
3175 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
3176 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
3178 return float32_maybe_silence_nan(r
);
3183 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
3185 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
3186 float16 r
= float32_to_float16(a
, ieee
, s
);
3188 r
= float16_maybe_silence_nan(r
);
3190 return float16_val(r
);
3193 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
3195 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
3198 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
3200 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
3203 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
3205 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
3208 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
3210 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
3213 #define float32_two make_float32(0x40000000)
3214 #define float32_three make_float32(0x40400000)
3215 #define float32_one_point_five make_float32(0x3fc00000)
3217 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
3219 float_status
*s
= &env
->vfp
.standard_fp_status
;
3220 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
3221 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
3222 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
3223 float_raise(float_flag_input_denormal
, s
);
3227 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
3230 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
3232 float_status
*s
= &env
->vfp
.standard_fp_status
;
3234 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
3235 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
3236 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
3237 float_raise(float_flag_input_denormal
, s
);
3239 return float32_one_point_five
;
3241 product
= float32_mul(a
, b
, s
);
3242 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
3247 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3248 * int->float conversions at run-time. */
3249 #define float64_256 make_float64(0x4070000000000000LL)
3250 #define float64_512 make_float64(0x4080000000000000LL)
3252 /* The algorithm that must be used to calculate the estimate
3253 * is specified by the ARM ARM.
3255 static float64
recip_estimate(float64 a
, CPUARMState
*env
)
3257 /* These calculations mustn't set any fp exception flags,
3258 * so we use a local copy of the fp_status.
3260 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3261 float_status
*s
= &dummy_status
;
3262 /* q = (int)(a * 512.0) */
3263 float64 q
= float64_mul(float64_512
, a
, s
);
3264 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3266 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3267 q
= int64_to_float64(q_int
, s
);
3268 q
= float64_add(q
, float64_half
, s
);
3269 q
= float64_div(q
, float64_512
, s
);
3270 q
= float64_div(float64_one
, q
, s
);
3272 /* s = (int)(256.0 * r + 0.5) */
3273 q
= float64_mul(q
, float64_256
, s
);
3274 q
= float64_add(q
, float64_half
, s
);
3275 q_int
= float64_to_int64_round_to_zero(q
, s
);
3277 /* return (double)s / 256.0 */
3278 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3281 float32
HELPER(recpe_f32
)(float32 a
, CPUARMState
*env
)
3283 float_status
*s
= &env
->vfp
.standard_fp_status
;
3285 uint32_t val32
= float32_val(a
);
3288 int a_exp
= (val32
& 0x7f800000) >> 23;
3289 int sign
= val32
& 0x80000000;
3291 if (float32_is_any_nan(a
)) {
3292 if (float32_is_signaling_nan(a
)) {
3293 float_raise(float_flag_invalid
, s
);
3295 return float32_default_nan
;
3296 } else if (float32_is_infinity(a
)) {
3297 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3298 } else if (float32_is_zero_or_denormal(a
)) {
3299 if (!float32_is_zero(a
)) {
3300 float_raise(float_flag_input_denormal
, s
);
3302 float_raise(float_flag_divbyzero
, s
);
3303 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3304 } else if (a_exp
>= 253) {
3305 float_raise(float_flag_underflow
, s
);
3306 return float32_set_sign(float32_zero
, float32_is_neg(a
));
3309 f64
= make_float64((0x3feULL
<< 52)
3310 | ((int64_t)(val32
& 0x7fffff) << 29));
3312 result_exp
= 253 - a_exp
;
3314 f64
= recip_estimate(f64
, env
);
3317 | ((result_exp
& 0xff) << 23)
3318 | ((float64_val(f64
) >> 29) & 0x7fffff);
3319 return make_float32(val32
);
3322 /* The algorithm that must be used to calculate the estimate
3323 * is specified by the ARM ARM.
3325 static float64
recip_sqrt_estimate(float64 a
, CPUARMState
*env
)
3327 /* These calculations mustn't set any fp exception flags,
3328 * so we use a local copy of the fp_status.
3330 float_status dummy_status
= env
->vfp
.standard_fp_status
;
3331 float_status
*s
= &dummy_status
;
3335 if (float64_lt(a
, float64_half
, s
)) {
3336 /* range 0.25 <= a < 0.5 */
3338 /* a in units of 1/512 rounded down */
3339 /* q0 = (int)(a * 512.0); */
3340 q
= float64_mul(float64_512
, a
, s
);
3341 q_int
= float64_to_int64_round_to_zero(q
, s
);
3343 /* reciprocal root r */
3344 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3345 q
= int64_to_float64(q_int
, s
);
3346 q
= float64_add(q
, float64_half
, s
);
3347 q
= float64_div(q
, float64_512
, s
);
3348 q
= float64_sqrt(q
, s
);
3349 q
= float64_div(float64_one
, q
, s
);
3351 /* range 0.5 <= a < 1.0 */
3353 /* a in units of 1/256 rounded down */
3354 /* q1 = (int)(a * 256.0); */
3355 q
= float64_mul(float64_256
, a
, s
);
3356 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
3358 /* reciprocal root r */
3359 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3360 q
= int64_to_float64(q_int
, s
);
3361 q
= float64_add(q
, float64_half
, s
);
3362 q
= float64_div(q
, float64_256
, s
);
3363 q
= float64_sqrt(q
, s
);
3364 q
= float64_div(float64_one
, q
, s
);
3366 /* r in units of 1/256 rounded to nearest */
3367 /* s = (int)(256.0 * r + 0.5); */
3369 q
= float64_mul(q
, float64_256
,s
);
3370 q
= float64_add(q
, float64_half
, s
);
3371 q_int
= float64_to_int64_round_to_zero(q
, s
);
3373 /* return (double)s / 256.0;*/
3374 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
3377 float32
HELPER(rsqrte_f32
)(float32 a
, CPUARMState
*env
)
3379 float_status
*s
= &env
->vfp
.standard_fp_status
;
3385 val
= float32_val(a
);
3387 if (float32_is_any_nan(a
)) {
3388 if (float32_is_signaling_nan(a
)) {
3389 float_raise(float_flag_invalid
, s
);
3391 return float32_default_nan
;
3392 } else if (float32_is_zero_or_denormal(a
)) {
3393 if (!float32_is_zero(a
)) {
3394 float_raise(float_flag_input_denormal
, s
);
3396 float_raise(float_flag_divbyzero
, s
);
3397 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3398 } else if (float32_is_neg(a
)) {
3399 float_raise(float_flag_invalid
, s
);
3400 return float32_default_nan
;
3401 } else if (float32_is_infinity(a
)) {
3402 return float32_zero
;
3405 /* Normalize to a double-precision value between 0.25 and 1.0,
3406 * preserving the parity of the exponent. */
3407 if ((val
& 0x800000) == 0) {
3408 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3410 | ((uint64_t)(val
& 0x7fffff) << 29));
3412 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3414 | ((uint64_t)(val
& 0x7fffff) << 29));
3417 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
3419 f64
= recip_sqrt_estimate(f64
, env
);
3421 val64
= float64_val(f64
);
3423 val
= ((result_exp
& 0xff) << 23)
3424 | ((val64
>> 29) & 0x7fffff);
3425 return make_float32(val
);
3428 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUARMState
*env
)
3432 if ((a
& 0x80000000) == 0) {
3436 f64
= make_float64((0x3feULL
<< 52)
3437 | ((int64_t)(a
& 0x7fffffff) << 21));
3439 f64
= recip_estimate (f64
, env
);
3441 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3444 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUARMState
*env
)
3448 if ((a
& 0xc0000000) == 0) {
3452 if (a
& 0x80000000) {
3453 f64
= make_float64((0x3feULL
<< 52)
3454 | ((uint64_t)(a
& 0x7fffffff) << 21));
3455 } else { /* bits 31-30 == '01' */
3456 f64
= make_float64((0x3fdULL
<< 52)
3457 | ((uint64_t)(a
& 0x3fffffff) << 22));
3460 f64
= recip_sqrt_estimate(f64
, env
);
3462 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3465 /* VFPv4 fused multiply-accumulate */
3466 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
3468 float_status
*fpst
= fpstp
;
3469 return float32_muladd(a
, b
, c
, 0, fpst
);
3472 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
3474 float_status
*fpst
= fpstp
;
3475 return float64_muladd(a
, b
, c
, 0, fpst
);