2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
20 * Links to the TRM for the board itself and to the various Application
21 * Notes which document the FPGA images can be found here:
22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26 * Application Note AN505:
27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * Application Note AN521:
29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32 * (ARM ECM0601256) for the details of some of the device layout:
33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35 * most of the device layout:
36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/i2c/arm_sbcon_i2c.h"
62 #include "hw/net/lan9118.h"
64 #include "hw/core/split-irq.h"
66 #define MPS2TZ_NUMIRQ 92
68 typedef enum MPS2TZFPGAType
{
75 MPS2TZFPGAType fpga_type
;
77 const char *armsse_type
;
84 MemoryRegion ssram
[3];
85 MemoryRegion ssram1_m
;
91 ArmSbconI2CState i2c
[4];
92 UnimplementedDeviceState i2s_audio
;
93 UnimplementedDeviceState gpio
[4];
94 UnimplementedDeviceState gfx
;
98 SplitIRQ sec_resp_splitter
;
99 qemu_or_irq uart_irq_orgate
;
100 DeviceState
*lan9118
;
101 SplitIRQ cpu_irq_splitter
[MPS2TZ_NUMIRQ
];
102 } MPS2TZMachineState
;
104 #define TYPE_MPS2TZ_MACHINE "mps2tz"
105 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
106 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
108 #define MPS2TZ_MACHINE(obj) \
109 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
110 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
111 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
112 #define MPS2TZ_MACHINE_CLASS(klass) \
113 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
115 /* Main SYSCLK frequency in Hz */
116 #define SYSCLK_FRQ 20000000
118 /* Create an alias of an entire original MemoryRegion @orig
119 * located at @base in the memory map.
121 static void make_ram_alias(MemoryRegion
*mr
, const char *name
,
122 MemoryRegion
*orig
, hwaddr base
)
124 memory_region_init_alias(mr
, NULL
, name
, orig
, 0,
125 memory_region_size(orig
));
126 memory_region_add_subregion(get_system_memory(), base
, mr
);
129 static qemu_irq
get_sse_irq_in(MPS2TZMachineState
*mms
, int irqno
)
131 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
132 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
134 assert(irqno
< MPS2TZ_NUMIRQ
);
136 switch (mmc
->fpga_type
) {
138 return qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
), "EXP_IRQ", irqno
);
140 return qdev_get_gpio_in(DEVICE(&mms
->cpu_irq_splitter
[irqno
]), 0);
142 g_assert_not_reached();
146 /* Most of the devices in the AN505 FPGA image sit behind
147 * Peripheral Protection Controllers. These data structures
148 * define the layout of which devices sit behind which PPCs.
149 * The devfn for each port is a function which creates, configures
150 * and initializes the device, returning the MemoryRegion which
151 * needs to be plugged into the downstream end of the PPC port.
153 typedef MemoryRegion
*MakeDevFn(MPS2TZMachineState
*mms
, void *opaque
,
154 const char *name
, hwaddr size
);
156 typedef struct PPCPortInfo
{
164 typedef struct PPCInfo
{
166 PPCPortInfo ports
[TZ_NUM_PORTS
];
169 static MemoryRegion
*make_unimp_dev(MPS2TZMachineState
*mms
,
171 const char *name
, hwaddr size
)
173 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
174 * and return a pointer to its MemoryRegion.
176 UnimplementedDeviceState
*uds
= opaque
;
178 object_initialize_child(OBJECT(mms
), name
, uds
, TYPE_UNIMPLEMENTED_DEVICE
);
179 qdev_prop_set_string(DEVICE(uds
), "name", name
);
180 qdev_prop_set_uint64(DEVICE(uds
), "size", size
);
181 sysbus_realize(SYS_BUS_DEVICE(uds
), &error_fatal
);
182 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
185 static MemoryRegion
*make_uart(MPS2TZMachineState
*mms
, void *opaque
,
186 const char *name
, hwaddr size
)
188 CMSDKAPBUART
*uart
= opaque
;
189 int i
= uart
- &mms
->uart
[0];
191 int txirqno
= i
* 2 + 1;
192 int combirqno
= i
+ 10;
194 DeviceState
*orgate_dev
= DEVICE(&mms
->uart_irq_orgate
);
196 object_initialize_child(OBJECT(mms
), name
, uart
, TYPE_CMSDK_APB_UART
);
197 qdev_prop_set_chr(DEVICE(uart
), "chardev", serial_hd(i
));
198 qdev_prop_set_uint32(DEVICE(uart
), "pclk-frq", SYSCLK_FRQ
);
199 sysbus_realize(SYS_BUS_DEVICE(uart
), &error_fatal
);
200 s
= SYS_BUS_DEVICE(uart
);
201 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, txirqno
));
202 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, rxirqno
));
203 sysbus_connect_irq(s
, 2, qdev_get_gpio_in(orgate_dev
, i
* 2));
204 sysbus_connect_irq(s
, 3, qdev_get_gpio_in(orgate_dev
, i
* 2 + 1));
205 sysbus_connect_irq(s
, 4, get_sse_irq_in(mms
, combirqno
));
206 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart
), 0);
209 static MemoryRegion
*make_scc(MPS2TZMachineState
*mms
, void *opaque
,
210 const char *name
, hwaddr size
)
212 MPS2SCC
*scc
= opaque
;
214 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
216 object_initialize_child(OBJECT(mms
), "scc", scc
, TYPE_MPS2_SCC
);
217 sccdev
= DEVICE(scc
);
218 qdev_prop_set_uint32(sccdev
, "scc-cfg4", 0x2);
219 qdev_prop_set_uint32(sccdev
, "scc-aid", 0x00200008);
220 qdev_prop_set_uint32(sccdev
, "scc-id", mmc
->scc_id
);
221 sysbus_realize(SYS_BUS_DEVICE(scc
), &error_fatal
);
222 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev
), 0);
225 static MemoryRegion
*make_fpgaio(MPS2TZMachineState
*mms
, void *opaque
,
226 const char *name
, hwaddr size
)
228 MPS2FPGAIO
*fpgaio
= opaque
;
230 object_initialize_child(OBJECT(mms
), "fpgaio", fpgaio
, TYPE_MPS2_FPGAIO
);
231 sysbus_realize(SYS_BUS_DEVICE(fpgaio
), &error_fatal
);
232 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio
), 0);
235 static MemoryRegion
*make_eth_dev(MPS2TZMachineState
*mms
, void *opaque
,
236 const char *name
, hwaddr size
)
239 NICInfo
*nd
= &nd_table
[0];
241 /* In hardware this is a LAN9220; the LAN9118 is software compatible
242 * except that it doesn't support the checksum-offload feature.
244 qemu_check_nic_model(nd
, "lan9118");
245 mms
->lan9118
= qdev_new(TYPE_LAN9118
);
246 qdev_set_nic_properties(mms
->lan9118
, nd
);
248 s
= SYS_BUS_DEVICE(mms
->lan9118
);
249 sysbus_realize_and_unref(s
, &error_fatal
);
250 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, 16));
251 return sysbus_mmio_get_region(s
, 0);
254 static MemoryRegion
*make_mpc(MPS2TZMachineState
*mms
, void *opaque
,
255 const char *name
, hwaddr size
)
258 int i
= mpc
- &mms
->ssram_mpc
[0];
259 MemoryRegion
*ssram
= &mms
->ssram
[i
];
260 MemoryRegion
*upstream
;
261 char *mpcname
= g_strdup_printf("%s-mpc", name
);
262 static uint32_t ramsize
[] = { 0x00400000, 0x00200000, 0x00200000 };
263 static uint32_t rambase
[] = { 0x00000000, 0x28000000, 0x28200000 };
265 memory_region_init_ram(ssram
, NULL
, name
, ramsize
[i
], &error_fatal
);
267 object_initialize_child(OBJECT(mms
), mpcname
, mpc
, TYPE_TZ_MPC
);
268 object_property_set_link(OBJECT(mpc
), "downstream", OBJECT(ssram
),
270 sysbus_realize(SYS_BUS_DEVICE(mpc
), &error_fatal
);
271 /* Map the upstream end of the MPC into system memory */
272 upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
273 memory_region_add_subregion(get_system_memory(), rambase
[i
], upstream
);
274 /* and connect its interrupt to the IoTKit */
275 qdev_connect_gpio_out_named(DEVICE(mpc
), "irq", 0,
276 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
277 "mpcexp_status", i
));
279 /* The first SSRAM is a special case as it has an alias; accesses to
280 * the alias region at 0x00400000 must also go to the MPC upstream.
283 make_ram_alias(&mms
->ssram1_m
, "mps.ssram1_m", upstream
, 0x00400000);
287 /* Return the register interface MR for our caller to map behind the PPC */
288 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 0);
291 static MemoryRegion
*make_dma(MPS2TZMachineState
*mms
, void *opaque
,
292 const char *name
, hwaddr size
)
294 PL080State
*dma
= opaque
;
295 int i
= dma
- &mms
->dma
[0];
297 char *mscname
= g_strdup_printf("%s-msc", name
);
298 TZMSC
*msc
= &mms
->msc
[i
];
299 DeviceState
*iotkitdev
= DEVICE(&mms
->iotkit
);
300 MemoryRegion
*msc_upstream
;
301 MemoryRegion
*msc_downstream
;
304 * Each DMA device is a PL081 whose transaction master interface
305 * is guarded by a Master Security Controller. The downstream end of
306 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
307 * DMA devices can see all devices and memory that the CPU does.
309 object_initialize_child(OBJECT(mms
), mscname
, msc
, TYPE_TZ_MSC
);
310 msc_downstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms
->iotkit
), 0);
311 object_property_set_link(OBJECT(msc
), "downstream",
312 OBJECT(msc_downstream
), &error_fatal
);
313 object_property_set_link(OBJECT(msc
), "idau", OBJECT(mms
), &error_fatal
);
314 sysbus_realize(SYS_BUS_DEVICE(msc
), &error_fatal
);
316 qdev_connect_gpio_out_named(DEVICE(msc
), "irq", 0,
317 qdev_get_gpio_in_named(iotkitdev
,
318 "mscexp_status", i
));
319 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_clear", i
,
320 qdev_get_gpio_in_named(DEVICE(msc
),
322 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_ns", i
,
323 qdev_get_gpio_in_named(DEVICE(msc
),
325 qdev_connect_gpio_out(DEVICE(&mms
->sec_resp_splitter
),
326 ARRAY_SIZE(mms
->ppc
) + i
,
327 qdev_get_gpio_in_named(DEVICE(msc
),
329 msc_upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(msc
), 0);
331 object_initialize_child(OBJECT(mms
), name
, dma
, TYPE_PL081
);
332 object_property_set_link(OBJECT(dma
), "downstream", OBJECT(msc_upstream
),
334 sysbus_realize(SYS_BUS_DEVICE(dma
), &error_fatal
);
336 s
= SYS_BUS_DEVICE(dma
);
337 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
338 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, 58 + i
* 3));
339 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, 56 + i
* 3));
340 sysbus_connect_irq(s
, 2, get_sse_irq_in(mms
, 57 + i
* 3));
343 return sysbus_mmio_get_region(s
, 0);
346 static MemoryRegion
*make_spi(MPS2TZMachineState
*mms
, void *opaque
,
347 const char *name
, hwaddr size
)
350 * The AN505 has five PL022 SPI controllers.
351 * One of these should have the LCD controller behind it; the others
352 * are connected only to the FPGA's "general purpose SPI connector"
353 * or "shield" expansion connectors.
354 * Note that if we do implement devices behind SPI, the chip select
355 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
357 PL022State
*spi
= opaque
;
358 int i
= spi
- &mms
->spi
[0];
361 object_initialize_child(OBJECT(mms
), name
, spi
, TYPE_PL022
);
362 sysbus_realize(SYS_BUS_DEVICE(spi
), &error_fatal
);
363 s
= SYS_BUS_DEVICE(spi
);
364 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, 51 + i
));
365 return sysbus_mmio_get_region(s
, 0);
368 static MemoryRegion
*make_i2c(MPS2TZMachineState
*mms
, void *opaque
,
369 const char *name
, hwaddr size
)
371 ArmSbconI2CState
*i2c
= opaque
;
374 object_initialize_child(OBJECT(mms
), name
, i2c
, TYPE_ARM_SBCON_I2C
);
375 s
= SYS_BUS_DEVICE(i2c
);
376 sysbus_realize(s
, &error_fatal
);
377 return sysbus_mmio_get_region(s
, 0);
380 static void mps2tz_common_init(MachineState
*machine
)
382 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(machine
);
383 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
384 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
385 MemoryRegion
*system_memory
= get_system_memory();
386 DeviceState
*iotkitdev
;
387 DeviceState
*dev_splitter
;
390 if (strcmp(machine
->cpu_type
, mc
->default_cpu_type
) != 0) {
391 error_report("This board can only be used with CPU %s",
392 mc
->default_cpu_type
);
396 if (machine
->ram_size
!= mc
->default_ram_size
) {
397 char *sz
= size_to_str(mc
->default_ram_size
);
398 error_report("Invalid RAM size, should be %s", sz
);
403 object_initialize_child(OBJECT(machine
), TYPE_IOTKIT
, &mms
->iotkit
,
405 iotkitdev
= DEVICE(&mms
->iotkit
);
406 object_property_set_link(OBJECT(&mms
->iotkit
), "memory",
407 OBJECT(system_memory
), &error_abort
);
408 qdev_prop_set_uint32(iotkitdev
, "EXP_NUMIRQ", MPS2TZ_NUMIRQ
);
409 qdev_prop_set_uint32(iotkitdev
, "MAINCLK", SYSCLK_FRQ
);
410 sysbus_realize(SYS_BUS_DEVICE(&mms
->iotkit
), &error_fatal
);
413 * The AN521 needs us to create splitters to feed the IRQ inputs
414 * for each CPU in the SSE-200 from each device in the board.
416 if (mmc
->fpga_type
== FPGA_AN521
) {
417 for (i
= 0; i
< MPS2TZ_NUMIRQ
; i
++) {
418 char *name
= g_strdup_printf("mps2-irq-splitter%d", i
);
419 SplitIRQ
*splitter
= &mms
->cpu_irq_splitter
[i
];
421 object_initialize_child_with_props(OBJECT(machine
), name
,
422 splitter
, sizeof(*splitter
),
423 TYPE_SPLIT_IRQ
, &error_fatal
,
427 object_property_set_int(OBJECT(splitter
), "num-lines", 2,
429 qdev_realize(DEVICE(splitter
), NULL
, &error_fatal
);
430 qdev_connect_gpio_out(DEVICE(splitter
), 0,
431 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
433 qdev_connect_gpio_out(DEVICE(splitter
), 1,
434 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
439 /* The sec_resp_cfg output from the IoTKit must be split into multiple
440 * lines, one for each of the PPCs we create here, plus one per MSC.
442 object_initialize_child(OBJECT(machine
), "sec-resp-splitter",
443 &mms
->sec_resp_splitter
, TYPE_SPLIT_IRQ
);
444 object_property_set_int(OBJECT(&mms
->sec_resp_splitter
), "num-lines",
445 ARRAY_SIZE(mms
->ppc
) + ARRAY_SIZE(mms
->msc
),
447 qdev_realize(DEVICE(&mms
->sec_resp_splitter
), NULL
, &error_fatal
);
448 dev_splitter
= DEVICE(&mms
->sec_resp_splitter
);
449 qdev_connect_gpio_out_named(iotkitdev
, "sec_resp_cfg", 0,
450 qdev_get_gpio_in(dev_splitter
, 0));
452 /* The IoTKit sets up much of the memory layout, including
453 * the aliases between secure and non-secure regions in the
454 * address space. The FPGA itself contains:
456 * 0x00000000..0x003fffff SSRAM1
457 * 0x00400000..0x007fffff alias of SSRAM1
458 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
459 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
460 * 0x80000000..0x80ffffff 16MB PSRAM
463 /* The FPGA images have an odd combination of different RAMs,
464 * because in hardware they are different implementations and
465 * connected to different buses, giving varying performance/size
466 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
467 * call the 16MB our "system memory", as it's the largest lump.
469 memory_region_add_subregion(system_memory
, 0x80000000, machine
->ram
);
471 /* The overflow IRQs for all UARTs are ORed together.
472 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
473 * Create the OR gate for this.
475 object_initialize_child(OBJECT(mms
), "uart-irq-orgate",
476 &mms
->uart_irq_orgate
, TYPE_OR_IRQ
);
477 object_property_set_int(OBJECT(&mms
->uart_irq_orgate
), "num-lines", 10,
479 qdev_realize(DEVICE(&mms
->uart_irq_orgate
), NULL
, &error_fatal
);
480 qdev_connect_gpio_out(DEVICE(&mms
->uart_irq_orgate
), 0,
481 get_sse_irq_in(mms
, 15));
483 /* Most of the devices in the FPGA are behind Peripheral Protection
484 * Controllers. The required order for initializing things is:
485 * + initialize the PPC
486 * + initialize, configure and realize downstream devices
487 * + connect downstream device MemoryRegions to the PPC
489 * + map the PPC's MemoryRegions to the places in the address map
490 * where the downstream devices should appear
491 * + wire up the PPC's control lines to the IoTKit object
494 const PPCInfo ppcs
[] = { {
495 .name
= "apb_ppcexp0",
497 { "ssram-0", make_mpc
, &mms
->ssram_mpc
[0], 0x58007000, 0x1000 },
498 { "ssram-1", make_mpc
, &mms
->ssram_mpc
[1], 0x58008000, 0x1000 },
499 { "ssram-2", make_mpc
, &mms
->ssram_mpc
[2], 0x58009000, 0x1000 },
502 .name
= "apb_ppcexp1",
504 { "spi0", make_spi
, &mms
->spi
[0], 0x40205000, 0x1000 },
505 { "spi1", make_spi
, &mms
->spi
[1], 0x40206000, 0x1000 },
506 { "spi2", make_spi
, &mms
->spi
[2], 0x40209000, 0x1000 },
507 { "spi3", make_spi
, &mms
->spi
[3], 0x4020a000, 0x1000 },
508 { "spi4", make_spi
, &mms
->spi
[4], 0x4020b000, 0x1000 },
509 { "uart0", make_uart
, &mms
->uart
[0], 0x40200000, 0x1000 },
510 { "uart1", make_uart
, &mms
->uart
[1], 0x40201000, 0x1000 },
511 { "uart2", make_uart
, &mms
->uart
[2], 0x40202000, 0x1000 },
512 { "uart3", make_uart
, &mms
->uart
[3], 0x40203000, 0x1000 },
513 { "uart4", make_uart
, &mms
->uart
[4], 0x40204000, 0x1000 },
514 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x40207000, 0x1000 },
515 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x40208000, 0x1000 },
516 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x4020c000, 0x1000 },
517 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x4020d000, 0x1000 },
520 .name
= "apb_ppcexp2",
522 { "scc", make_scc
, &mms
->scc
, 0x40300000, 0x1000 },
523 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
,
524 0x40301000, 0x1000 },
525 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x40302000, 0x1000 },
528 .name
= "ahb_ppcexp0",
530 { "gfx", make_unimp_dev
, &mms
->gfx
, 0x41000000, 0x140000 },
531 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x40100000, 0x1000 },
532 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x40101000, 0x1000 },
533 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x40102000, 0x1000 },
534 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x40103000, 0x1000 },
535 { "eth", make_eth_dev
, NULL
, 0x42000000, 0x100000 },
538 .name
= "ahb_ppcexp1",
540 { "dma0", make_dma
, &mms
->dma
[0], 0x40110000, 0x1000 },
541 { "dma1", make_dma
, &mms
->dma
[1], 0x40111000, 0x1000 },
542 { "dma2", make_dma
, &mms
->dma
[2], 0x40112000, 0x1000 },
543 { "dma3", make_dma
, &mms
->dma
[3], 0x40113000, 0x1000 },
548 for (i
= 0; i
< ARRAY_SIZE(ppcs
); i
++) {
549 const PPCInfo
*ppcinfo
= &ppcs
[i
];
550 TZPPC
*ppc
= &mms
->ppc
[i
];
555 object_initialize_child(OBJECT(machine
), ppcinfo
->name
, ppc
,
557 ppcdev
= DEVICE(ppc
);
559 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
560 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
568 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
);
569 portname
= g_strdup_printf("port[%d]", port
);
570 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
575 sysbus_realize(SYS_BUS_DEVICE(ppc
), &error_fatal
);
577 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
578 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
583 sysbus_mmio_map(SYS_BUS_DEVICE(ppc
), port
, pinfo
->addr
);
585 gpioname
= g_strdup_printf("%s_nonsec", ppcinfo
->name
);
586 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
587 qdev_get_gpio_in_named(ppcdev
,
591 gpioname
= g_strdup_printf("%s_ap", ppcinfo
->name
);
592 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
593 qdev_get_gpio_in_named(ppcdev
,
598 gpioname
= g_strdup_printf("%s_irq_enable", ppcinfo
->name
);
599 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
600 qdev_get_gpio_in_named(ppcdev
,
603 gpioname
= g_strdup_printf("%s_irq_clear", ppcinfo
->name
);
604 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
605 qdev_get_gpio_in_named(ppcdev
,
608 gpioname
= g_strdup_printf("%s_irq_status", ppcinfo
->name
);
609 qdev_connect_gpio_out_named(ppcdev
, "irq", 0,
610 qdev_get_gpio_in_named(iotkitdev
,
614 qdev_connect_gpio_out(dev_splitter
, i
,
615 qdev_get_gpio_in_named(ppcdev
,
619 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
621 armv7m_load_kernel(ARM_CPU(first_cpu
), machine
->kernel_filename
, 0x400000);
624 static void mps2_tz_idau_check(IDAUInterface
*ii
, uint32_t address
,
625 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
628 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
629 * the Master Security Controllers. Thes have the same logic as
630 * is used by the IoTKit for the IDAU connected to the CPU, except
631 * that MSCs don't care about the NSC attribute.
633 int region
= extract32(address
, 28, 4);
637 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
638 *exempt
= (address
& 0xeff00000) == 0xe0000000;
642 static void mps2tz_class_init(ObjectClass
*oc
, void *data
)
644 MachineClass
*mc
= MACHINE_CLASS(oc
);
645 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(oc
);
647 mc
->init
= mps2tz_common_init
;
648 iic
->check
= mps2_tz_idau_check
;
649 mc
->default_ram_size
= 16 * MiB
;
650 mc
->default_ram_id
= "mps.ram";
653 static void mps2tz_an505_class_init(ObjectClass
*oc
, void *data
)
655 MachineClass
*mc
= MACHINE_CLASS(oc
);
656 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
658 mc
->desc
= "ARM MPS2 with AN505 FPGA image for Cortex-M33";
659 mc
->default_cpus
= 1;
660 mc
->min_cpus
= mc
->default_cpus
;
661 mc
->max_cpus
= mc
->default_cpus
;
662 mmc
->fpga_type
= FPGA_AN505
;
663 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
664 mmc
->scc_id
= 0x41045050;
665 mmc
->armsse_type
= TYPE_IOTKIT
;
668 static void mps2tz_an521_class_init(ObjectClass
*oc
, void *data
)
670 MachineClass
*mc
= MACHINE_CLASS(oc
);
671 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
673 mc
->desc
= "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
674 mc
->default_cpus
= 2;
675 mc
->min_cpus
= mc
->default_cpus
;
676 mc
->max_cpus
= mc
->default_cpus
;
677 mmc
->fpga_type
= FPGA_AN521
;
678 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
679 mmc
->scc_id
= 0x41045210;
680 mmc
->armsse_type
= TYPE_SSE200
;
683 static const TypeInfo mps2tz_info
= {
684 .name
= TYPE_MPS2TZ_MACHINE
,
685 .parent
= TYPE_MACHINE
,
687 .instance_size
= sizeof(MPS2TZMachineState
),
688 .class_size
= sizeof(MPS2TZMachineClass
),
689 .class_init
= mps2tz_class_init
,
690 .interfaces
= (InterfaceInfo
[]) {
691 { TYPE_IDAU_INTERFACE
},
696 static const TypeInfo mps2tz_an505_info
= {
697 .name
= TYPE_MPS2TZ_AN505_MACHINE
,
698 .parent
= TYPE_MPS2TZ_MACHINE
,
699 .class_init
= mps2tz_an505_class_init
,
702 static const TypeInfo mps2tz_an521_info
= {
703 .name
= TYPE_MPS2TZ_AN521_MACHINE
,
704 .parent
= TYPE_MPS2TZ_MACHINE
,
705 .class_init
= mps2tz_an521_class_init
,
708 static void mps2tz_machine_init(void)
710 type_register_static(&mps2tz_info
);
711 type_register_static(&mps2tz_an505_info
);
712 type_register_static(&mps2tz_an521_info
);
715 type_init(mps2tz_machine_init
);