target/arm: Drop IS_M() macro
[qemu/ar7.git] / target / arm / helper.c
blobce7e43bbaca8cde4e8dda8c64bc6c6e2b79702ac
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 int access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 int access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD 0x8
36 #define PMCRC 0x4
37 #define PMCRE 0x1
38 #endif
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
42 int nregs;
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
64 return 0;
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
69 int nregs;
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
89 return 0;
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 return CPREG_FIELD64(env, ri);
139 } else {
140 return CPREG_FIELD32(env, ri);
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
147 assert(ri->fieldoffset);
148 if (cpreg_field_is_64bit(ri)) {
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
157 return (char *)env + ri->fieldoffset;
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri->type & ARM_CP_CONST) {
164 return ri->resetvalue;
165 } else if (ri->raw_readfn) {
166 return ri->raw_readfn(env, ri);
167 } else if (ri->readfn) {
168 return ri->readfn(env, ri);
169 } else {
170 return raw_read(env, ri);
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t v)
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
182 if (ri->type & ARM_CP_CONST) {
183 return;
184 } else if (ri->raw_writefn) {
185 ri->raw_writefn(env, ri, v);
186 } else if (ri->writefn) {
187 ri->writefn(env, ri, v);
188 } else {
189 raw_write(env, ri, v);
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
211 return true;
214 bool write_cpustate_to_list(ARMCPU *cpu)
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 if (!ri) {
226 ok = false;
227 continue;
229 if (ri->type & ARM_CP_NO_RAW) {
230 continue;
232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
234 return ok;
237 bool write_list_to_cpustate(ARMCPU *cpu)
239 int i;
240 bool ok = true;
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
245 const ARMCPRegInfo *ri;
247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 if (!ri) {
249 ok = false;
250 continue;
252 if (ri->type & ARM_CP_NO_RAW) {
253 continue;
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 ok = false;
264 return ok;
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
273 regidx = *(uint32_t *)key;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
283 static void count_cpreg(gpointer key, gpointer opaque)
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
289 regidx = *(uint32_t *)key;
290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 cpu->cpreg_array_len++;
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
302 if (aidx > bidx) {
303 return 1;
305 if (aidx < bidx) {
306 return -1;
308 return 0;
311 void init_cpreg_list(ARMCPU *cpu)
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
316 GList *keys;
317 int arraylen;
319 keys = g_hash_table_get_keys(cpu->cp_regs);
320 keys = g_list_sort(keys, cpreg_key_compare);
322 cpu->cpreg_array_len = 0;
324 g_list_foreach(keys, count_cpreg, cpu);
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
336 assert(cpu->cpreg_array_len == arraylen);
338 g_list_free(keys);
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 const ARMCPRegInfo *ri,
350 bool isread)
352 bool secure = arm_is_secure_below_el3(env);
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
358 return CP_ACCESS_OK;
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 const ARMCPRegInfo *ri,
363 bool isread)
365 if (!arm_el_is_aa64(env, 3)) {
366 return access_el3_aa32ns(env, ri, isread);
368 return CP_ACCESS_OK;
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 const ARMCPRegInfo *ri,
378 bool isread)
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
390 /* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
396 int el = arm_current_el(env);
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
405 return CP_ACCESS_OK;
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
414 int el = arm_current_el(env);
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
423 return CP_ACCESS_OK;
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
432 int el = arm_current_el(env);
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
441 return CP_ACCESS_OK;
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
450 int el = arm_current_el(env);
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
459 return CP_ACCESS_OK;
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
464 ARMCPU *cpu = arm_env_get_cpu(env);
466 raw_write(env, ri, value);
467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
472 ARMCPU *cpu = arm_env_get_cpu(env);
474 if (raw_read(env, ri) != value) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
478 tlb_flush(CPU(cpu));
479 raw_write(env, ri, value);
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
486 ARMCPU *cpu = arm_env_get_cpu(env);
488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
489 && !extended_addresses_enabled(env)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
494 tlb_flush(CPU(cpu));
496 raw_write(env, ri, value);
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 /* Invalidate all (TLBIALL) */
503 ARMCPU *cpu = arm_env_get_cpu(env);
505 tlb_flush(CPU(cpu));
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU *cpu = arm_env_get_cpu(env);
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU *cpu = arm_env_get_cpu(env);
523 tlb_flush(CPU(cpu));
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU *cpu = arm_env_get_cpu(env);
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
539 CPUState *other_cs;
541 CPU_FOREACH(other_cs) {
542 tlb_flush(other_cs);
546 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
549 CPUState *other_cs;
551 CPU_FOREACH(other_cs) {
552 tlb_flush(other_cs);
556 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
559 CPUState *other_cs;
561 CPU_FOREACH(other_cs) {
562 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
566 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567 uint64_t value)
569 CPUState *other_cs;
571 CPU_FOREACH(other_cs) {
572 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
576 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
577 uint64_t value)
579 CPUState *cs = ENV_GET_CPU(env);
581 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
582 ARMMMUIdx_S2NS, -1);
585 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
586 uint64_t value)
588 CPUState *other_cs;
590 CPU_FOREACH(other_cs) {
591 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
592 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
596 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
597 uint64_t value)
599 /* Invalidate by IPA. This has to invalidate any structures that
600 * contain only stage 2 translation information, but does not need
601 * to apply to structures that contain combined stage 1 and stage 2
602 * translation information.
603 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
605 CPUState *cs = ENV_GET_CPU(env);
606 uint64_t pageaddr;
608 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
609 return;
612 pageaddr = sextract64(value << 12, 0, 40);
614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
617 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
620 CPUState *other_cs;
621 uint64_t pageaddr;
623 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
624 return;
627 pageaddr = sextract64(value << 12, 0, 40);
629 CPU_FOREACH(other_cs) {
630 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
634 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
635 uint64_t value)
637 CPUState *cs = ENV_GET_CPU(env);
639 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
642 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
643 uint64_t value)
645 CPUState *other_cs;
647 CPU_FOREACH(other_cs) {
648 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
652 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
658 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
661 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
662 uint64_t value)
664 CPUState *other_cs;
665 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
667 CPU_FOREACH(other_cs) {
668 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
672 static const ARMCPRegInfo cp_reginfo[] = {
673 /* Define the secure and non-secure FCSE identifier CP registers
674 * separately because there is no secure bank in V8 (no _EL3). This allows
675 * the secure register to be properly reset and migrated. There is also no
676 * v8 EL1 version of the register so the non-secure instance stands alone.
678 { .name = "FCSEIDR(NS)",
679 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
680 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
681 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
682 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
683 { .name = "FCSEIDR(S)",
684 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
685 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
686 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
687 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
688 /* Define the secure and non-secure context identifier CP registers
689 * separately because there is no secure bank in V8 (no _EL3). This allows
690 * the secure register to be properly reset and migrated. In the
691 * non-secure case, the 32-bit register will have reset and migration
692 * disabled during registration as it is handled by the 64-bit instance.
694 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
695 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
696 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
697 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
698 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
699 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
700 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
701 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
702 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
703 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
704 REGINFO_SENTINEL
707 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
708 /* NB: Some of these registers exist in v8 but with more precise
709 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
711 /* MMU Domain access control / MPU write buffer control */
712 { .name = "DACR",
713 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
714 .access = PL1_RW, .resetvalue = 0,
715 .writefn = dacr_write, .raw_writefn = raw_write,
716 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
717 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
718 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
719 * For v6 and v5, these mappings are overly broad.
721 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
722 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
723 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
724 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
725 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
726 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
727 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
728 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
729 /* Cache maintenance ops; some of this space may be overridden later. */
730 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
731 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
732 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
733 REGINFO_SENTINEL
736 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
737 /* Not all pre-v6 cores implemented this WFI, so this is slightly
738 * over-broad.
740 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
741 .access = PL1_W, .type = ARM_CP_WFI },
742 REGINFO_SENTINEL
745 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
746 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
747 * is UNPREDICTABLE; we choose to NOP as most implementations do).
749 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
750 .access = PL1_W, .type = ARM_CP_WFI },
751 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
752 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
753 * OMAPCP will override this space.
755 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
756 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
757 .resetvalue = 0 },
758 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
759 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
760 .resetvalue = 0 },
761 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
762 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
763 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
764 .resetvalue = 0 },
765 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
766 * implementing it as RAZ means the "debug architecture version" bits
767 * will read as a reserved value, which should cause Linux to not try
768 * to use the debug hardware.
770 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
771 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
772 /* MMU TLB control. Note that the wildcarding means we cover not just
773 * the unified TLB ops but also the dside/iside/inner-shareable variants.
775 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
776 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
777 .type = ARM_CP_NO_RAW },
778 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
779 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
780 .type = ARM_CP_NO_RAW },
781 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
782 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
783 .type = ARM_CP_NO_RAW },
784 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
785 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
786 .type = ARM_CP_NO_RAW },
787 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
788 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
789 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
790 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
791 REGINFO_SENTINEL
794 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
797 uint32_t mask = 0;
799 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
800 if (!arm_feature(env, ARM_FEATURE_V8)) {
801 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
802 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
803 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
805 if (arm_feature(env, ARM_FEATURE_VFP)) {
806 /* VFP coprocessor: cp10 & cp11 [23:20] */
807 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
809 if (!arm_feature(env, ARM_FEATURE_NEON)) {
810 /* ASEDIS [31] bit is RAO/WI */
811 value |= (1 << 31);
814 /* VFPv3 and upwards with NEON implement 32 double precision
815 * registers (D0-D31).
817 if (!arm_feature(env, ARM_FEATURE_NEON) ||
818 !arm_feature(env, ARM_FEATURE_VFP3)) {
819 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
820 value |= (1 << 30);
823 value &= mask;
825 env->cp15.cpacr_el1 = value;
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 &&
834 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
843 return CP_ACCESS_OK;
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
851 return CP_ACCESS_TRAP_EL3;
854 return CP_ACCESS_OK;
857 static const ARMCPRegInfo v6_cp_reginfo[] = {
858 /* prefetch by MVA in v6, NOP in v7 */
859 { .name = "MVA_prefetch",
860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
861 .access = PL1_W, .type = ARM_CP_NOP },
862 /* We need to break the TB after ISB to execute self-modifying code
863 * correctly and also to take any pending interrupts immediately.
864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NOP },
870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
873 .access = PL1_RW,
874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
875 offsetof(CPUARMState, cp15.ifar_ns) },
876 .resetvalue = 0, },
877 /* Watchpoint Fault Address Register : should actually only be present
878 * for 1136, 1176, 11MPCore.
880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
885 .resetvalue = 0, .writefn = cpacr_write },
886 REGINFO_SENTINEL
889 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
890 bool isread)
892 /* Performance monitor registers user accessibility is controlled
893 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
894 * trapping to EL2 or EL3 for other accesses.
896 int el = arm_current_el(env);
898 if (el == 0 && !env->cp15.c9_pmuserenr) {
899 return CP_ACCESS_TRAP;
901 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
902 && !arm_is_secure_below_el3(env)) {
903 return CP_ACCESS_TRAP_EL2;
905 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
906 return CP_ACCESS_TRAP_EL3;
909 return CP_ACCESS_OK;
912 #ifndef CONFIG_USER_ONLY
914 static inline bool arm_ccnt_enabled(CPUARMState *env)
916 /* This does not support checking PMCCFILTR_EL0 register */
918 if (!(env->cp15.c9_pmcr & PMCRE)) {
919 return false;
922 return true;
925 void pmccntr_sync(CPUARMState *env)
927 uint64_t temp_ticks;
929 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
932 if (env->cp15.c9_pmcr & PMCRD) {
933 /* Increment once every 64 processor clock cycles */
934 temp_ticks /= 64;
937 if (arm_ccnt_enabled(env)) {
938 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
942 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
943 uint64_t value)
945 pmccntr_sync(env);
947 if (value & PMCRC) {
948 /* The counter has been reset */
949 env->cp15.c15_ccnt = 0;
952 /* only the DP, X, D and E bits are writable */
953 env->cp15.c9_pmcr &= ~0x39;
954 env->cp15.c9_pmcr |= (value & 0x39);
956 pmccntr_sync(env);
959 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
961 uint64_t total_ticks;
963 if (!arm_ccnt_enabled(env)) {
964 /* Counter is disabled, do not change value */
965 return env->cp15.c15_ccnt;
968 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
969 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
971 if (env->cp15.c9_pmcr & PMCRD) {
972 /* Increment once every 64 processor clock cycles */
973 total_ticks /= 64;
975 return total_ticks - env->cp15.c15_ccnt;
978 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
979 uint64_t value)
981 uint64_t total_ticks;
983 if (!arm_ccnt_enabled(env)) {
984 /* Counter is disabled, set the absolute value */
985 env->cp15.c15_ccnt = value;
986 return;
989 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
990 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
992 if (env->cp15.c9_pmcr & PMCRD) {
993 /* Increment once every 64 processor clock cycles */
994 total_ticks /= 64;
996 env->cp15.c15_ccnt = total_ticks - value;
999 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1000 uint64_t value)
1002 uint64_t cur_val = pmccntr_read(env, NULL);
1004 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1007 #else /* CONFIG_USER_ONLY */
1009 void pmccntr_sync(CPUARMState *env)
1013 #endif
1015 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1016 uint64_t value)
1018 pmccntr_sync(env);
1019 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1020 pmccntr_sync(env);
1023 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1024 uint64_t value)
1026 value &= (1 << 31);
1027 env->cp15.c9_pmcnten |= value;
1030 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1031 uint64_t value)
1033 value &= (1 << 31);
1034 env->cp15.c9_pmcnten &= ~value;
1037 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1038 uint64_t value)
1040 env->cp15.c9_pmovsr &= ~value;
1043 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1044 uint64_t value)
1046 env->cp15.c9_pmxevtyper = value & 0xff;
1049 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1050 uint64_t value)
1052 env->cp15.c9_pmuserenr = value & 1;
1055 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1056 uint64_t value)
1058 /* We have no event counters so only the C bit can be changed */
1059 value &= (1 << 31);
1060 env->cp15.c9_pminten |= value;
1063 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1064 uint64_t value)
1066 value &= (1 << 31);
1067 env->cp15.c9_pminten &= ~value;
1070 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1071 uint64_t value)
1073 /* Note that even though the AArch64 view of this register has bits
1074 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1075 * architectural requirements for bits which are RES0 only in some
1076 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1077 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1079 raw_write(env, ri, value & ~0x1FULL);
1082 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1084 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1085 * For bits that vary between AArch32/64, code needs to check the
1086 * current execution mode before directly using the feature bit.
1088 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1090 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1091 valid_mask &= ~SCR_HCE;
1093 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1094 * supported if EL2 exists. The bit is UNK/SBZP when
1095 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1096 * when EL2 is unavailable.
1097 * On ARMv8, this bit is always available.
1099 if (arm_feature(env, ARM_FEATURE_V7) &&
1100 !arm_feature(env, ARM_FEATURE_V8)) {
1101 valid_mask &= ~SCR_SMD;
1105 /* Clear all-context RES0 bits. */
1106 value &= valid_mask;
1107 raw_write(env, ri, value);
1110 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1112 ARMCPU *cpu = arm_env_get_cpu(env);
1114 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1115 * bank
1117 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1118 ri->secure & ARM_CP_SECSTATE_S);
1120 return cpu->ccsidr[index];
1123 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t value)
1126 raw_write(env, ri, value & 0xf);
1129 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1131 CPUState *cs = ENV_GET_CPU(env);
1132 uint64_t ret = 0;
1134 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1135 ret |= CPSR_I;
1137 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1138 ret |= CPSR_F;
1140 /* External aborts are not possible in QEMU so A bit is always clear */
1141 return ret;
1144 static const ARMCPRegInfo v7_cp_reginfo[] = {
1145 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1146 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1147 .access = PL1_W, .type = ARM_CP_NOP },
1148 /* Performance monitors are implementation defined in v7,
1149 * but with an ARM recommended set of registers, which we
1150 * follow (although we don't actually implement any counters)
1152 * Performance registers fall into three categories:
1153 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1154 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1155 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1156 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1157 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1159 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1160 .access = PL0_RW, .type = ARM_CP_ALIAS,
1161 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1162 .writefn = pmcntenset_write,
1163 .accessfn = pmreg_access,
1164 .raw_writefn = raw_write },
1165 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1167 .access = PL0_RW, .accessfn = pmreg_access,
1168 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1169 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1170 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1171 .access = PL0_RW,
1172 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1173 .accessfn = pmreg_access,
1174 .writefn = pmcntenclr_write,
1175 .type = ARM_CP_ALIAS },
1176 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1177 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1178 .access = PL0_RW, .accessfn = pmreg_access,
1179 .type = ARM_CP_ALIAS,
1180 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1181 .writefn = pmcntenclr_write },
1182 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1183 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1184 .accessfn = pmreg_access,
1185 .writefn = pmovsr_write,
1186 .raw_writefn = raw_write },
1187 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1188 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1189 .access = PL0_RW, .accessfn = pmreg_access,
1190 .type = ARM_CP_ALIAS,
1191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1192 .writefn = pmovsr_write,
1193 .raw_writefn = raw_write },
1194 /* Unimplemented so WI. */
1195 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1196 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1197 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1198 * We choose to RAZ/WI.
1200 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1201 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1202 .accessfn = pmreg_access },
1203 #ifndef CONFIG_USER_ONLY
1204 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1205 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1206 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1207 .accessfn = pmreg_access },
1208 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1209 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1210 .access = PL0_RW, .accessfn = pmreg_access,
1211 .type = ARM_CP_IO,
1212 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1213 #endif
1214 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1215 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1216 .writefn = pmccfiltr_write,
1217 .access = PL0_RW, .accessfn = pmreg_access,
1218 .type = ARM_CP_IO,
1219 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1220 .resetvalue = 0, },
1221 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1222 .access = PL0_RW,
1223 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1224 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1225 .raw_writefn = raw_write },
1226 /* Unimplemented, RAZ/WI. */
1227 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1228 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1229 .accessfn = pmreg_access },
1230 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1231 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1232 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1233 .resetvalue = 0,
1234 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1235 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1236 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1237 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1238 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1239 .resetvalue = 0,
1240 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1241 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1242 .access = PL1_RW, .accessfn = access_tpm,
1243 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1244 .resetvalue = 0,
1245 .writefn = pmintenset_write, .raw_writefn = raw_write },
1246 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1247 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1248 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1249 .writefn = pmintenclr_write, },
1250 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1251 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1252 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1253 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1254 .writefn = pmintenclr_write },
1255 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1256 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1257 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1258 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1259 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1260 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1261 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1262 offsetof(CPUARMState, cp15.csselr_ns) } },
1263 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1264 * just RAZ for all cores:
1266 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1267 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1268 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1269 /* Auxiliary fault status registers: these also are IMPDEF, and we
1270 * choose to RAZ/WI for all cores.
1272 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1273 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1274 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1275 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1276 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1277 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1278 /* MAIR can just read-as-written because we don't implement caches
1279 * and so don't need to care about memory attributes.
1281 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1282 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1283 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1284 .resetvalue = 0 },
1285 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1287 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1288 .resetvalue = 0 },
1289 /* For non-long-descriptor page tables these are PRRR and NMRR;
1290 * regardless they still act as reads-as-written for QEMU.
1292 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1293 * allows them to assign the correct fieldoffset based on the endianness
1294 * handled in the field definitions.
1296 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1297 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1298 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1299 offsetof(CPUARMState, cp15.mair0_ns) },
1300 .resetfn = arm_cp_reset_ignore },
1301 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1302 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1303 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1304 offsetof(CPUARMState, cp15.mair1_ns) },
1305 .resetfn = arm_cp_reset_ignore },
1306 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1307 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1308 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1309 /* 32 bit ITLB invalidates */
1310 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1311 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1312 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1313 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1314 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1315 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1316 /* 32 bit DTLB invalidates */
1317 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1318 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1319 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1320 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1321 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1322 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1323 /* 32 bit TLB invalidates */
1324 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1325 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1326 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1327 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1328 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1329 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1330 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1331 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1332 REGINFO_SENTINEL
1335 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1336 /* 32 bit TLB invalidates, Inner Shareable */
1337 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1338 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1339 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1340 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1341 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1342 .type = ARM_CP_NO_RAW, .access = PL1_W,
1343 .writefn = tlbiasid_is_write },
1344 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1345 .type = ARM_CP_NO_RAW, .access = PL1_W,
1346 .writefn = tlbimvaa_is_write },
1347 REGINFO_SENTINEL
1350 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1351 uint64_t value)
1353 value &= 1;
1354 env->teecr = value;
1357 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1358 bool isread)
1360 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1361 return CP_ACCESS_TRAP;
1363 return CP_ACCESS_OK;
1366 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1367 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1368 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1369 .resetvalue = 0,
1370 .writefn = teecr_write },
1371 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1372 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1373 .accessfn = teehbr_access, .resetvalue = 0 },
1374 REGINFO_SENTINEL
1377 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1378 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1379 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1380 .access = PL0_RW,
1381 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1382 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1383 .access = PL0_RW,
1384 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1385 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1386 .resetfn = arm_cp_reset_ignore },
1387 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1388 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1389 .access = PL0_R|PL1_W,
1390 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1391 .resetvalue = 0},
1392 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1393 .access = PL0_R|PL1_W,
1394 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1395 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1396 .resetfn = arm_cp_reset_ignore },
1397 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1398 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1399 .access = PL1_RW,
1400 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1401 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1402 .access = PL1_RW,
1403 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1404 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1405 .resetvalue = 0 },
1406 REGINFO_SENTINEL
1409 #ifndef CONFIG_USER_ONLY
1411 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1412 bool isread)
1414 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1415 * Writable only at the highest implemented exception level.
1417 int el = arm_current_el(env);
1419 switch (el) {
1420 case 0:
1421 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1422 return CP_ACCESS_TRAP;
1424 break;
1425 case 1:
1426 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1427 arm_is_secure_below_el3(env)) {
1428 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1429 return CP_ACCESS_TRAP_UNCATEGORIZED;
1431 break;
1432 case 2:
1433 case 3:
1434 break;
1437 if (!isread && el < arm_highest_el(env)) {
1438 return CP_ACCESS_TRAP_UNCATEGORIZED;
1441 return CP_ACCESS_OK;
1444 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1445 bool isread)
1447 unsigned int cur_el = arm_current_el(env);
1448 bool secure = arm_is_secure(env);
1450 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1451 if (cur_el == 0 &&
1452 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1453 return CP_ACCESS_TRAP;
1456 if (arm_feature(env, ARM_FEATURE_EL2) &&
1457 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1458 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1459 return CP_ACCESS_TRAP_EL2;
1461 return CP_ACCESS_OK;
1464 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1465 bool isread)
1467 unsigned int cur_el = arm_current_el(env);
1468 bool secure = arm_is_secure(env);
1470 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1471 * EL0[PV]TEN is zero.
1473 if (cur_el == 0 &&
1474 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1475 return CP_ACCESS_TRAP;
1478 if (arm_feature(env, ARM_FEATURE_EL2) &&
1479 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1480 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1481 return CP_ACCESS_TRAP_EL2;
1483 return CP_ACCESS_OK;
1486 static CPAccessResult gt_pct_access(CPUARMState *env,
1487 const ARMCPRegInfo *ri,
1488 bool isread)
1490 return gt_counter_access(env, GTIMER_PHYS, isread);
1493 static CPAccessResult gt_vct_access(CPUARMState *env,
1494 const ARMCPRegInfo *ri,
1495 bool isread)
1497 return gt_counter_access(env, GTIMER_VIRT, isread);
1500 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1501 bool isread)
1503 return gt_timer_access(env, GTIMER_PHYS, isread);
1506 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1507 bool isread)
1509 return gt_timer_access(env, GTIMER_VIRT, isread);
1512 static CPAccessResult gt_stimer_access(CPUARMState *env,
1513 const ARMCPRegInfo *ri,
1514 bool isread)
1516 /* The AArch64 register view of the secure physical timer is
1517 * always accessible from EL3, and configurably accessible from
1518 * Secure EL1.
1520 switch (arm_current_el(env)) {
1521 case 1:
1522 if (!arm_is_secure(env)) {
1523 return CP_ACCESS_TRAP;
1525 if (!(env->cp15.scr_el3 & SCR_ST)) {
1526 return CP_ACCESS_TRAP_EL3;
1528 return CP_ACCESS_OK;
1529 case 0:
1530 case 2:
1531 return CP_ACCESS_TRAP;
1532 case 3:
1533 return CP_ACCESS_OK;
1534 default:
1535 g_assert_not_reached();
1539 static uint64_t gt_get_countervalue(CPUARMState *env)
1541 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1544 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1546 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1548 if (gt->ctl & 1) {
1549 /* Timer enabled: calculate and set current ISTATUS, irq, and
1550 * reset timer to when ISTATUS next has to change
1552 uint64_t offset = timeridx == GTIMER_VIRT ?
1553 cpu->env.cp15.cntvoff_el2 : 0;
1554 uint64_t count = gt_get_countervalue(&cpu->env);
1555 /* Note that this must be unsigned 64 bit arithmetic: */
1556 int istatus = count - offset >= gt->cval;
1557 uint64_t nexttick;
1558 int irqstate;
1560 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1562 irqstate = (istatus && !(gt->ctl & 2));
1563 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1565 if (istatus) {
1566 /* Next transition is when count rolls back over to zero */
1567 nexttick = UINT64_MAX;
1568 } else {
1569 /* Next transition is when we hit cval */
1570 nexttick = gt->cval + offset;
1572 /* Note that the desired next expiry time might be beyond the
1573 * signed-64-bit range of a QEMUTimer -- in this case we just
1574 * set the timer for as far in the future as possible. When the
1575 * timer expires we will reset the timer for any remaining period.
1577 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1578 nexttick = INT64_MAX / GTIMER_SCALE;
1580 timer_mod(cpu->gt_timer[timeridx], nexttick);
1581 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1582 } else {
1583 /* Timer disabled: ISTATUS and timer output always clear */
1584 gt->ctl &= ~4;
1585 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1586 timer_del(cpu->gt_timer[timeridx]);
1587 trace_arm_gt_recalc_disabled(timeridx);
1591 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1592 int timeridx)
1594 ARMCPU *cpu = arm_env_get_cpu(env);
1596 timer_del(cpu->gt_timer[timeridx]);
1599 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1601 return gt_get_countervalue(env);
1604 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1606 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1609 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 int timeridx,
1611 uint64_t value)
1613 trace_arm_gt_cval_write(timeridx, value);
1614 env->cp15.c14_timer[timeridx].cval = value;
1615 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1618 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1619 int timeridx)
1621 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1623 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1624 (gt_get_countervalue(env) - offset));
1627 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1628 int timeridx,
1629 uint64_t value)
1631 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1633 trace_arm_gt_tval_write(timeridx, value);
1634 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1635 sextract64(value, 0, 32);
1636 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1639 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1640 int timeridx,
1641 uint64_t value)
1643 ARMCPU *cpu = arm_env_get_cpu(env);
1644 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1646 trace_arm_gt_ctl_write(timeridx, value);
1647 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1648 if ((oldval ^ value) & 1) {
1649 /* Enable toggled */
1650 gt_recalc_timer(cpu, timeridx);
1651 } else if ((oldval ^ value) & 2) {
1652 /* IMASK toggled: don't need to recalculate,
1653 * just set the interrupt line based on ISTATUS
1655 int irqstate = (oldval & 4) && !(value & 2);
1657 trace_arm_gt_imask_toggle(timeridx, irqstate);
1658 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1662 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1664 gt_timer_reset(env, ri, GTIMER_PHYS);
1667 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value)
1670 gt_cval_write(env, ri, GTIMER_PHYS, value);
1673 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1675 return gt_tval_read(env, ri, GTIMER_PHYS);
1678 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1679 uint64_t value)
1681 gt_tval_write(env, ri, GTIMER_PHYS, value);
1684 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1685 uint64_t value)
1687 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1690 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1692 gt_timer_reset(env, ri, GTIMER_VIRT);
1695 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1696 uint64_t value)
1698 gt_cval_write(env, ri, GTIMER_VIRT, value);
1701 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 return gt_tval_read(env, ri, GTIMER_VIRT);
1706 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1707 uint64_t value)
1709 gt_tval_write(env, ri, GTIMER_VIRT, value);
1712 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1713 uint64_t value)
1715 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1718 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1719 uint64_t value)
1721 ARMCPU *cpu = arm_env_get_cpu(env);
1723 trace_arm_gt_cntvoff_write(value);
1724 raw_write(env, ri, value);
1725 gt_recalc_timer(cpu, GTIMER_VIRT);
1728 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1730 gt_timer_reset(env, ri, GTIMER_HYP);
1733 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 uint64_t value)
1736 gt_cval_write(env, ri, GTIMER_HYP, value);
1739 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1741 return gt_tval_read(env, ri, GTIMER_HYP);
1744 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1747 gt_tval_write(env, ri, GTIMER_HYP, value);
1750 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value)
1753 gt_ctl_write(env, ri, GTIMER_HYP, value);
1756 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1758 gt_timer_reset(env, ri, GTIMER_SEC);
1761 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1764 gt_cval_write(env, ri, GTIMER_SEC, value);
1767 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1769 return gt_tval_read(env, ri, GTIMER_SEC);
1772 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773 uint64_t value)
1775 gt_tval_write(env, ri, GTIMER_SEC, value);
1778 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1779 uint64_t value)
1781 gt_ctl_write(env, ri, GTIMER_SEC, value);
1784 void arm_gt_ptimer_cb(void *opaque)
1786 ARMCPU *cpu = opaque;
1788 gt_recalc_timer(cpu, GTIMER_PHYS);
1791 void arm_gt_vtimer_cb(void *opaque)
1793 ARMCPU *cpu = opaque;
1795 gt_recalc_timer(cpu, GTIMER_VIRT);
1798 void arm_gt_htimer_cb(void *opaque)
1800 ARMCPU *cpu = opaque;
1802 gt_recalc_timer(cpu, GTIMER_HYP);
1805 void arm_gt_stimer_cb(void *opaque)
1807 ARMCPU *cpu = opaque;
1809 gt_recalc_timer(cpu, GTIMER_SEC);
1812 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1813 /* Note that CNTFRQ is purely reads-as-written for the benefit
1814 * of software; writing it doesn't actually change the timer frequency.
1815 * Our reset value matches the fixed frequency we implement the timer at.
1817 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1818 .type = ARM_CP_ALIAS,
1819 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1820 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1822 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1823 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1824 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1825 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1826 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1828 /* overall control: mostly access permissions */
1829 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1830 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1831 .access = PL1_RW,
1832 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1833 .resetvalue = 0,
1835 /* per-timer control */
1836 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1837 .secure = ARM_CP_SECSTATE_NS,
1838 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1839 .accessfn = gt_ptimer_access,
1840 .fieldoffset = offsetoflow32(CPUARMState,
1841 cp15.c14_timer[GTIMER_PHYS].ctl),
1842 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1844 { .name = "CNTP_CTL(S)",
1845 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1846 .secure = ARM_CP_SECSTATE_S,
1847 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1848 .accessfn = gt_ptimer_access,
1849 .fieldoffset = offsetoflow32(CPUARMState,
1850 cp15.c14_timer[GTIMER_SEC].ctl),
1851 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1853 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1854 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1855 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1856 .accessfn = gt_ptimer_access,
1857 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1858 .resetvalue = 0,
1859 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1861 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1862 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1863 .accessfn = gt_vtimer_access,
1864 .fieldoffset = offsetoflow32(CPUARMState,
1865 cp15.c14_timer[GTIMER_VIRT].ctl),
1866 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1868 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1869 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1870 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1871 .accessfn = gt_vtimer_access,
1872 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1873 .resetvalue = 0,
1874 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1876 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1877 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1878 .secure = ARM_CP_SECSTATE_NS,
1879 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1880 .accessfn = gt_ptimer_access,
1881 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1883 { .name = "CNTP_TVAL(S)",
1884 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1885 .secure = ARM_CP_SECSTATE_S,
1886 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1887 .accessfn = gt_ptimer_access,
1888 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1890 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1892 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1893 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1894 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1896 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1897 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1898 .accessfn = gt_vtimer_access,
1899 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1901 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1902 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1903 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1904 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1905 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1907 /* The counter itself */
1908 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1909 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1910 .accessfn = gt_pct_access,
1911 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1913 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1915 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1916 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1918 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1919 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1920 .accessfn = gt_vct_access,
1921 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1923 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1924 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1925 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1926 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1928 /* Comparison value, indicating when the timer goes off */
1929 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1930 .secure = ARM_CP_SECSTATE_NS,
1931 .access = PL1_RW | PL0_R,
1932 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1933 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1934 .accessfn = gt_ptimer_access,
1935 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1937 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1938 .secure = ARM_CP_SECSTATE_S,
1939 .access = PL1_RW | PL0_R,
1940 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1942 .accessfn = gt_ptimer_access,
1943 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1945 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1947 .access = PL1_RW | PL0_R,
1948 .type = ARM_CP_IO,
1949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1950 .resetvalue = 0, .accessfn = gt_ptimer_access,
1951 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1953 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1954 .access = PL1_RW | PL0_R,
1955 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1956 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1957 .accessfn = gt_vtimer_access,
1958 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1960 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1961 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1962 .access = PL1_RW | PL0_R,
1963 .type = ARM_CP_IO,
1964 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1965 .resetvalue = 0, .accessfn = gt_vtimer_access,
1966 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1968 /* Secure timer -- this is actually restricted to only EL3
1969 * and configurably Secure-EL1 via the accessfn.
1971 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1972 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1973 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1974 .accessfn = gt_stimer_access,
1975 .readfn = gt_sec_tval_read,
1976 .writefn = gt_sec_tval_write,
1977 .resetfn = gt_sec_timer_reset,
1979 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1980 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1981 .type = ARM_CP_IO, .access = PL1_RW,
1982 .accessfn = gt_stimer_access,
1983 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1984 .resetvalue = 0,
1985 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1987 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1988 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1989 .type = ARM_CP_IO, .access = PL1_RW,
1990 .accessfn = gt_stimer_access,
1991 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1992 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1994 REGINFO_SENTINEL
1997 #else
1998 /* In user-mode none of the generic timer registers are accessible,
1999 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2000 * so instead just don't register any of them.
2002 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2003 REGINFO_SENTINEL
2006 #endif
2008 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2010 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2011 raw_write(env, ri, value);
2012 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2013 raw_write(env, ri, value & 0xfffff6ff);
2014 } else {
2015 raw_write(env, ri, value & 0xfffff1ff);
2019 #ifndef CONFIG_USER_ONLY
2020 /* get_phys_addr() isn't present for user-mode-only targets */
2022 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2023 bool isread)
2025 if (ri->opc2 & 4) {
2026 /* The ATS12NSO* operations must trap to EL3 if executed in
2027 * Secure EL1 (which can only happen if EL3 is AArch64).
2028 * They are simply UNDEF if executed from NS EL1.
2029 * They function normally from EL2 or EL3.
2031 if (arm_current_el(env) == 1) {
2032 if (arm_is_secure_below_el3(env)) {
2033 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2035 return CP_ACCESS_TRAP_UNCATEGORIZED;
2038 return CP_ACCESS_OK;
2041 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2042 int access_type, ARMMMUIdx mmu_idx)
2044 hwaddr phys_addr;
2045 target_ulong page_size;
2046 int prot;
2047 uint32_t fsr;
2048 bool ret;
2049 uint64_t par64;
2050 MemTxAttrs attrs = {};
2051 ARMMMUFaultInfo fi = {};
2053 ret = get_phys_addr(env, value, access_type, mmu_idx,
2054 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2055 if (extended_addresses_enabled(env)) {
2056 /* fsr is a DFSR/IFSR value for the long descriptor
2057 * translation table format, but with WnR always clear.
2058 * Convert it to a 64-bit PAR.
2060 par64 = (1 << 11); /* LPAE bit always set */
2061 if (!ret) {
2062 par64 |= phys_addr & ~0xfffULL;
2063 if (!attrs.secure) {
2064 par64 |= (1 << 9); /* NS */
2066 /* We don't set the ATTR or SH fields in the PAR. */
2067 } else {
2068 par64 |= 1; /* F */
2069 par64 |= (fsr & 0x3f) << 1; /* FS */
2070 /* Note that S2WLK and FSTAGE are always zero, because we don't
2071 * implement virtualization and therefore there can't be a stage 2
2072 * fault.
2075 } else {
2076 /* fsr is a DFSR/IFSR value for the short descriptor
2077 * translation table format (with WnR always clear).
2078 * Convert it to a 32-bit PAR.
2080 if (!ret) {
2081 /* We do not set any attribute bits in the PAR */
2082 if (page_size == (1 << 24)
2083 && arm_feature(env, ARM_FEATURE_V7)) {
2084 par64 = (phys_addr & 0xff000000) | (1 << 1);
2085 } else {
2086 par64 = phys_addr & 0xfffff000;
2088 if (!attrs.secure) {
2089 par64 |= (1 << 9); /* NS */
2091 } else {
2092 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2093 ((fsr & 0xf) << 1) | 1;
2096 return par64;
2099 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2101 int access_type = ri->opc2 & 1;
2102 uint64_t par64;
2103 ARMMMUIdx mmu_idx;
2104 int el = arm_current_el(env);
2105 bool secure = arm_is_secure_below_el3(env);
2107 switch (ri->opc2 & 6) {
2108 case 0:
2109 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2110 switch (el) {
2111 case 3:
2112 mmu_idx = ARMMMUIdx_S1E3;
2113 break;
2114 case 2:
2115 mmu_idx = ARMMMUIdx_S1NSE1;
2116 break;
2117 case 1:
2118 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2119 break;
2120 default:
2121 g_assert_not_reached();
2123 break;
2124 case 2:
2125 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2126 switch (el) {
2127 case 3:
2128 mmu_idx = ARMMMUIdx_S1SE0;
2129 break;
2130 case 2:
2131 mmu_idx = ARMMMUIdx_S1NSE0;
2132 break;
2133 case 1:
2134 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2135 break;
2136 default:
2137 g_assert_not_reached();
2139 break;
2140 case 4:
2141 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2142 mmu_idx = ARMMMUIdx_S12NSE1;
2143 break;
2144 case 6:
2145 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2146 mmu_idx = ARMMMUIdx_S12NSE0;
2147 break;
2148 default:
2149 g_assert_not_reached();
2152 par64 = do_ats_write(env, value, access_type, mmu_idx);
2154 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2157 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2158 uint64_t value)
2160 int access_type = ri->opc2 & 1;
2161 uint64_t par64;
2163 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2165 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2168 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2169 bool isread)
2171 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2172 return CP_ACCESS_TRAP;
2174 return CP_ACCESS_OK;
2177 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2178 uint64_t value)
2180 int access_type = ri->opc2 & 1;
2181 ARMMMUIdx mmu_idx;
2182 int secure = arm_is_secure_below_el3(env);
2184 switch (ri->opc2 & 6) {
2185 case 0:
2186 switch (ri->opc1) {
2187 case 0: /* AT S1E1R, AT S1E1W */
2188 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2189 break;
2190 case 4: /* AT S1E2R, AT S1E2W */
2191 mmu_idx = ARMMMUIdx_S1E2;
2192 break;
2193 case 6: /* AT S1E3R, AT S1E3W */
2194 mmu_idx = ARMMMUIdx_S1E3;
2195 break;
2196 default:
2197 g_assert_not_reached();
2199 break;
2200 case 2: /* AT S1E0R, AT S1E0W */
2201 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2202 break;
2203 case 4: /* AT S12E1R, AT S12E1W */
2204 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2205 break;
2206 case 6: /* AT S12E0R, AT S12E0W */
2207 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2208 break;
2209 default:
2210 g_assert_not_reached();
2213 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2215 #endif
2217 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2218 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2219 .access = PL1_RW, .resetvalue = 0,
2220 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2221 offsetoflow32(CPUARMState, cp15.par_ns) },
2222 .writefn = par_write },
2223 #ifndef CONFIG_USER_ONLY
2224 /* This underdecoding is safe because the reginfo is NO_RAW. */
2225 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2226 .access = PL1_W, .accessfn = ats_access,
2227 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2228 #endif
2229 REGINFO_SENTINEL
2232 /* Return basic MPU access permission bits. */
2233 static uint32_t simple_mpu_ap_bits(uint32_t val)
2235 uint32_t ret;
2236 uint32_t mask;
2237 int i;
2238 ret = 0;
2239 mask = 3;
2240 for (i = 0; i < 16; i += 2) {
2241 ret |= (val >> i) & mask;
2242 mask <<= 2;
2244 return ret;
2247 /* Pad basic MPU access permission bits to extended format. */
2248 static uint32_t extended_mpu_ap_bits(uint32_t val)
2250 uint32_t ret;
2251 uint32_t mask;
2252 int i;
2253 ret = 0;
2254 mask = 3;
2255 for (i = 0; i < 16; i += 2) {
2256 ret |= (val & mask) << i;
2257 mask <<= 2;
2259 return ret;
2262 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2263 uint64_t value)
2265 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2268 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2270 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2273 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2274 uint64_t value)
2276 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2279 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2281 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2284 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2286 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2288 if (!u32p) {
2289 return 0;
2292 u32p += env->cp15.c6_rgnr;
2293 return *u32p;
2296 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2297 uint64_t value)
2299 ARMCPU *cpu = arm_env_get_cpu(env);
2300 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2302 if (!u32p) {
2303 return;
2306 u32p += env->cp15.c6_rgnr;
2307 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2308 *u32p = value;
2311 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2313 ARMCPU *cpu = arm_env_get_cpu(env);
2314 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2316 if (!u32p) {
2317 return;
2320 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2323 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2324 uint64_t value)
2326 ARMCPU *cpu = arm_env_get_cpu(env);
2327 uint32_t nrgs = cpu->pmsav7_dregion;
2329 if (value >= nrgs) {
2330 qemu_log_mask(LOG_GUEST_ERROR,
2331 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2332 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2333 return;
2336 raw_write(env, ri, value);
2339 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2340 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2341 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2342 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2343 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2344 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2345 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2346 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2347 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2348 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2349 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2350 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2351 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2352 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2353 .access = PL1_RW,
2354 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2355 .writefn = pmsav7_rgnr_write },
2356 REGINFO_SENTINEL
2359 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2360 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2361 .access = PL1_RW, .type = ARM_CP_ALIAS,
2362 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2363 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2364 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2365 .access = PL1_RW, .type = ARM_CP_ALIAS,
2366 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2367 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2368 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2369 .access = PL1_RW,
2370 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2371 .resetvalue = 0, },
2372 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2373 .access = PL1_RW,
2374 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2375 .resetvalue = 0, },
2376 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2377 .access = PL1_RW,
2378 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2379 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2380 .access = PL1_RW,
2381 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2382 /* Protection region base and size registers */
2383 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2384 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2385 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2386 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2387 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2388 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2389 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2390 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2391 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2392 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2393 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2394 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2395 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2396 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2397 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2398 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2399 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2400 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2401 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2402 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2403 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2404 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2405 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2406 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2407 REGINFO_SENTINEL
2410 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2411 uint64_t value)
2413 TCR *tcr = raw_ptr(env, ri);
2414 int maskshift = extract32(value, 0, 3);
2416 if (!arm_feature(env, ARM_FEATURE_V8)) {
2417 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2418 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2419 * using Long-desciptor translation table format */
2420 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2421 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2422 /* In an implementation that includes the Security Extensions
2423 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2424 * Short-descriptor translation table format.
2426 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2427 } else {
2428 value &= TTBCR_N;
2432 /* Update the masks corresponding to the TCR bank being written
2433 * Note that we always calculate mask and base_mask, but
2434 * they are only used for short-descriptor tables (ie if EAE is 0);
2435 * for long-descriptor tables the TCR fields are used differently
2436 * and the mask and base_mask values are meaningless.
2438 tcr->raw_tcr = value;
2439 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2440 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2443 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2444 uint64_t value)
2446 ARMCPU *cpu = arm_env_get_cpu(env);
2448 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2449 /* With LPAE the TTBCR could result in a change of ASID
2450 * via the TTBCR.A1 bit, so do a TLB flush.
2452 tlb_flush(CPU(cpu));
2454 vmsa_ttbcr_raw_write(env, ri, value);
2457 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2459 TCR *tcr = raw_ptr(env, ri);
2461 /* Reset both the TCR as well as the masks corresponding to the bank of
2462 * the TCR being reset.
2464 tcr->raw_tcr = 0;
2465 tcr->mask = 0;
2466 tcr->base_mask = 0xffffc000u;
2469 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2470 uint64_t value)
2472 ARMCPU *cpu = arm_env_get_cpu(env);
2473 TCR *tcr = raw_ptr(env, ri);
2475 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2476 tlb_flush(CPU(cpu));
2477 tcr->raw_tcr = value;
2480 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2481 uint64_t value)
2483 /* 64 bit accesses to the TTBRs can change the ASID and so we
2484 * must flush the TLB.
2486 if (cpreg_field_is_64bit(ri)) {
2487 ARMCPU *cpu = arm_env_get_cpu(env);
2489 tlb_flush(CPU(cpu));
2491 raw_write(env, ri, value);
2494 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2495 uint64_t value)
2497 ARMCPU *cpu = arm_env_get_cpu(env);
2498 CPUState *cs = CPU(cpu);
2500 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2501 if (raw_read(env, ri) != value) {
2502 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2503 ARMMMUIdx_S2NS, -1);
2504 raw_write(env, ri, value);
2508 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2509 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2510 .access = PL1_RW, .type = ARM_CP_ALIAS,
2511 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2512 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2513 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2514 .access = PL1_RW, .resetvalue = 0,
2515 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2516 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2517 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2518 .access = PL1_RW, .resetvalue = 0,
2519 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2520 offsetof(CPUARMState, cp15.dfar_ns) } },
2521 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2522 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2523 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2524 .resetvalue = 0, },
2525 REGINFO_SENTINEL
2528 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2529 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2530 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2531 .access = PL1_RW,
2532 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2533 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2534 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2535 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2536 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2537 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2538 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2539 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2540 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2541 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2542 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2543 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2544 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2545 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2546 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2547 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2548 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2549 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2550 .raw_writefn = vmsa_ttbcr_raw_write,
2551 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2552 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2553 REGINFO_SENTINEL
2556 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2557 uint64_t value)
2559 env->cp15.c15_ticonfig = value & 0xe7;
2560 /* The OS_TYPE bit in this register changes the reported CPUID! */
2561 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2562 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2565 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566 uint64_t value)
2568 env->cp15.c15_threadid = value & 0xffff;
2571 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2572 uint64_t value)
2574 /* Wait-for-interrupt (deprecated) */
2575 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2578 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2579 uint64_t value)
2581 /* On OMAP there are registers indicating the max/min index of dcache lines
2582 * containing a dirty line; cache flush operations have to reset these.
2584 env->cp15.c15_i_max = 0x000;
2585 env->cp15.c15_i_min = 0xff0;
2588 static const ARMCPRegInfo omap_cp_reginfo[] = {
2589 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2590 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2591 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2592 .resetvalue = 0, },
2593 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2594 .access = PL1_RW, .type = ARM_CP_NOP },
2595 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2596 .access = PL1_RW,
2597 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2598 .writefn = omap_ticonfig_write },
2599 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2600 .access = PL1_RW,
2601 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2602 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2603 .access = PL1_RW, .resetvalue = 0xff0,
2604 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2605 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2606 .access = PL1_RW,
2607 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2608 .writefn = omap_threadid_write },
2609 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2610 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2611 .type = ARM_CP_NO_RAW,
2612 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2613 /* TODO: Peripheral port remap register:
2614 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2615 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2616 * when MMU is off.
2618 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2619 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2620 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2621 .writefn = omap_cachemaint_write },
2622 { .name = "C9", .cp = 15, .crn = 9,
2623 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2624 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2625 REGINFO_SENTINEL
2628 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2629 uint64_t value)
2631 env->cp15.c15_cpar = value & 0x3fff;
2634 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2635 { .name = "XSCALE_CPAR",
2636 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2637 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2638 .writefn = xscale_cpar_write, },
2639 { .name = "XSCALE_AUXCR",
2640 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2641 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2642 .resetvalue = 0, },
2643 /* XScale specific cache-lockdown: since we have no cache we NOP these
2644 * and hope the guest does not really rely on cache behaviour.
2646 { .name = "XSCALE_LOCK_ICACHE_LINE",
2647 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2648 .access = PL1_W, .type = ARM_CP_NOP },
2649 { .name = "XSCALE_UNLOCK_ICACHE",
2650 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2651 .access = PL1_W, .type = ARM_CP_NOP },
2652 { .name = "XSCALE_DCACHE_LOCK",
2653 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2654 .access = PL1_RW, .type = ARM_CP_NOP },
2655 { .name = "XSCALE_UNLOCK_DCACHE",
2656 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2657 .access = PL1_W, .type = ARM_CP_NOP },
2658 REGINFO_SENTINEL
2661 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2662 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2663 * implementation of this implementation-defined space.
2664 * Ideally this should eventually disappear in favour of actually
2665 * implementing the correct behaviour for all cores.
2667 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2668 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2669 .access = PL1_RW,
2670 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2671 .resetvalue = 0 },
2672 REGINFO_SENTINEL
2675 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2676 /* Cache status: RAZ because we have no cache so it's always clean */
2677 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2678 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2679 .resetvalue = 0 },
2680 REGINFO_SENTINEL
2683 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2684 /* We never have a a block transfer operation in progress */
2685 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2686 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2687 .resetvalue = 0 },
2688 /* The cache ops themselves: these all NOP for QEMU */
2689 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2690 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2691 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2692 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2693 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2694 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2695 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2696 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2697 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2698 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2699 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2700 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2701 REGINFO_SENTINEL
2704 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2705 /* The cache test-and-clean instructions always return (1 << 30)
2706 * to indicate that there are no dirty cache lines.
2708 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2709 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2710 .resetvalue = (1 << 30) },
2711 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2712 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2713 .resetvalue = (1 << 30) },
2714 REGINFO_SENTINEL
2717 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2718 /* Ignore ReadBuffer accesses */
2719 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2720 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2721 .access = PL1_RW, .resetvalue = 0,
2722 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2723 REGINFO_SENTINEL
2726 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2728 ARMCPU *cpu = arm_env_get_cpu(env);
2729 unsigned int cur_el = arm_current_el(env);
2730 bool secure = arm_is_secure(env);
2732 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2733 return env->cp15.vpidr_el2;
2735 return raw_read(env, ri);
2738 static uint64_t mpidr_read_val(CPUARMState *env)
2740 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2741 uint64_t mpidr = cpu->mp_affinity;
2743 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2744 mpidr |= (1U << 31);
2745 /* Cores which are uniprocessor (non-coherent)
2746 * but still implement the MP extensions set
2747 * bit 30. (For instance, Cortex-R5).
2749 if (cpu->mp_is_up) {
2750 mpidr |= (1u << 30);
2753 return mpidr;
2756 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2758 unsigned int cur_el = arm_current_el(env);
2759 bool secure = arm_is_secure(env);
2761 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2762 return env->cp15.vmpidr_el2;
2764 return mpidr_read_val(env);
2767 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2768 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2769 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2770 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2771 REGINFO_SENTINEL
2774 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2775 /* NOP AMAIR0/1 */
2776 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2777 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2778 .access = PL1_RW, .type = ARM_CP_CONST,
2779 .resetvalue = 0 },
2780 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2781 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2782 .access = PL1_RW, .type = ARM_CP_CONST,
2783 .resetvalue = 0 },
2784 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2785 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2786 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2787 offsetof(CPUARMState, cp15.par_ns)} },
2788 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2789 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2791 offsetof(CPUARMState, cp15.ttbr0_ns) },
2792 .writefn = vmsa_ttbr_write, },
2793 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2794 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2796 offsetof(CPUARMState, cp15.ttbr1_ns) },
2797 .writefn = vmsa_ttbr_write, },
2798 REGINFO_SENTINEL
2801 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2803 return vfp_get_fpcr(env);
2806 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2807 uint64_t value)
2809 vfp_set_fpcr(env, value);
2812 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2814 return vfp_get_fpsr(env);
2817 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2818 uint64_t value)
2820 vfp_set_fpsr(env, value);
2823 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2824 bool isread)
2826 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2827 return CP_ACCESS_TRAP;
2829 return CP_ACCESS_OK;
2832 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2833 uint64_t value)
2835 env->daif = value & PSTATE_DAIF;
2838 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2839 const ARMCPRegInfo *ri,
2840 bool isread)
2842 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2843 * SCTLR_EL1.UCI is set.
2845 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2846 return CP_ACCESS_TRAP;
2848 return CP_ACCESS_OK;
2851 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2852 * Page D4-1736 (DDI0487A.b)
2855 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2858 ARMCPU *cpu = arm_env_get_cpu(env);
2859 CPUState *cs = CPU(cpu);
2861 if (arm_is_secure_below_el3(env)) {
2862 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2863 } else {
2864 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2868 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2869 uint64_t value)
2871 bool sec = arm_is_secure_below_el3(env);
2872 CPUState *other_cs;
2874 CPU_FOREACH(other_cs) {
2875 if (sec) {
2876 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2877 } else {
2878 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2879 ARMMMUIdx_S12NSE0, -1);
2884 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2885 uint64_t value)
2887 /* Note that the 'ALL' scope must invalidate both stage 1 and
2888 * stage 2 translations, whereas most other scopes only invalidate
2889 * stage 1 translations.
2891 ARMCPU *cpu = arm_env_get_cpu(env);
2892 CPUState *cs = CPU(cpu);
2894 if (arm_is_secure_below_el3(env)) {
2895 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2896 } else {
2897 if (arm_feature(env, ARM_FEATURE_EL2)) {
2898 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2899 ARMMMUIdx_S2NS, -1);
2900 } else {
2901 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2906 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907 uint64_t value)
2909 ARMCPU *cpu = arm_env_get_cpu(env);
2910 CPUState *cs = CPU(cpu);
2912 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2915 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2918 ARMCPU *cpu = arm_env_get_cpu(env);
2919 CPUState *cs = CPU(cpu);
2921 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2924 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2925 uint64_t value)
2927 /* Note that the 'ALL' scope must invalidate both stage 1 and
2928 * stage 2 translations, whereas most other scopes only invalidate
2929 * stage 1 translations.
2931 bool sec = arm_is_secure_below_el3(env);
2932 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2933 CPUState *other_cs;
2935 CPU_FOREACH(other_cs) {
2936 if (sec) {
2937 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2938 } else if (has_el2) {
2939 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2940 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2941 } else {
2942 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2943 ARMMMUIdx_S12NSE0, -1);
2948 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949 uint64_t value)
2951 CPUState *other_cs;
2953 CPU_FOREACH(other_cs) {
2954 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2958 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2959 uint64_t value)
2961 CPUState *other_cs;
2963 CPU_FOREACH(other_cs) {
2964 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2968 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2969 uint64_t value)
2971 /* Invalidate by VA, EL1&0 (AArch64 version).
2972 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2973 * since we don't support flush-for-specific-ASID-only or
2974 * flush-last-level-only.
2976 ARMCPU *cpu = arm_env_get_cpu(env);
2977 CPUState *cs = CPU(cpu);
2978 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2980 if (arm_is_secure_below_el3(env)) {
2981 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2982 ARMMMUIdx_S1SE0, -1);
2983 } else {
2984 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2985 ARMMMUIdx_S12NSE0, -1);
2989 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2990 uint64_t value)
2992 /* Invalidate by VA, EL2
2993 * Currently handles both VAE2 and VALE2, since we don't support
2994 * flush-last-level-only.
2996 ARMCPU *cpu = arm_env_get_cpu(env);
2997 CPUState *cs = CPU(cpu);
2998 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3000 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
3003 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3004 uint64_t value)
3006 /* Invalidate by VA, EL3
3007 * Currently handles both VAE3 and VALE3, since we don't support
3008 * flush-last-level-only.
3010 ARMCPU *cpu = arm_env_get_cpu(env);
3011 CPUState *cs = CPU(cpu);
3012 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3014 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
3017 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3018 uint64_t value)
3020 bool sec = arm_is_secure_below_el3(env);
3021 CPUState *other_cs;
3022 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3024 CPU_FOREACH(other_cs) {
3025 if (sec) {
3026 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
3027 ARMMMUIdx_S1SE0, -1);
3028 } else {
3029 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
3030 ARMMMUIdx_S12NSE0, -1);
3035 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036 uint64_t value)
3038 CPUState *other_cs;
3039 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3041 CPU_FOREACH(other_cs) {
3042 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
3046 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047 uint64_t value)
3049 CPUState *other_cs;
3050 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3052 CPU_FOREACH(other_cs) {
3053 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
3057 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3058 uint64_t value)
3060 /* Invalidate by IPA. This has to invalidate any structures that
3061 * contain only stage 2 translation information, but does not need
3062 * to apply to structures that contain combined stage 1 and stage 2
3063 * translation information.
3064 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3066 ARMCPU *cpu = arm_env_get_cpu(env);
3067 CPUState *cs = CPU(cpu);
3068 uint64_t pageaddr;
3070 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3071 return;
3074 pageaddr = sextract64(value << 12, 0, 48);
3076 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
3079 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3080 uint64_t value)
3082 CPUState *other_cs;
3083 uint64_t pageaddr;
3085 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3086 return;
3089 pageaddr = sextract64(value << 12, 0, 48);
3091 CPU_FOREACH(other_cs) {
3092 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
3096 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3097 bool isread)
3099 /* We don't implement EL2, so the only control on DC ZVA is the
3100 * bit in the SCTLR which can prohibit access for EL0.
3102 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3103 return CP_ACCESS_TRAP;
3105 return CP_ACCESS_OK;
3108 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3110 ARMCPU *cpu = arm_env_get_cpu(env);
3111 int dzp_bit = 1 << 4;
3113 /* DZP indicates whether DC ZVA access is allowed */
3114 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3115 dzp_bit = 0;
3117 return cpu->dcz_blocksize | dzp_bit;
3120 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3121 bool isread)
3123 if (!(env->pstate & PSTATE_SP)) {
3124 /* Access to SP_EL0 is undefined if it's being used as
3125 * the stack pointer.
3127 return CP_ACCESS_TRAP_UNCATEGORIZED;
3129 return CP_ACCESS_OK;
3132 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3134 return env->pstate & PSTATE_SP;
3137 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3139 update_spsel(env, val);
3142 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3143 uint64_t value)
3145 ARMCPU *cpu = arm_env_get_cpu(env);
3147 if (raw_read(env, ri) == value) {
3148 /* Skip the TLB flush if nothing actually changed; Linux likes
3149 * to do a lot of pointless SCTLR writes.
3151 return;
3154 raw_write(env, ri, value);
3155 /* ??? Lots of these bits are not implemented. */
3156 /* This may enable/disable the MMU, so do a TLB flush. */
3157 tlb_flush(CPU(cpu));
3160 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3161 bool isread)
3163 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3164 return CP_ACCESS_TRAP_FP_EL2;
3166 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3167 return CP_ACCESS_TRAP_FP_EL3;
3169 return CP_ACCESS_OK;
3172 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3173 uint64_t value)
3175 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3178 static const ARMCPRegInfo v8_cp_reginfo[] = {
3179 /* Minimal set of EL0-visible registers. This will need to be expanded
3180 * significantly for system emulation of AArch64 CPUs.
3182 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3183 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3184 .access = PL0_RW, .type = ARM_CP_NZCV },
3185 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3186 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3187 .type = ARM_CP_NO_RAW,
3188 .access = PL0_RW, .accessfn = aa64_daif_access,
3189 .fieldoffset = offsetof(CPUARMState, daif),
3190 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3191 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3192 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3193 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3194 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3195 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3196 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3197 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3198 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3199 .access = PL0_R, .type = ARM_CP_NO_RAW,
3200 .readfn = aa64_dczid_read },
3201 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3202 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3203 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3204 #ifndef CONFIG_USER_ONLY
3205 /* Avoid overhead of an access check that always passes in user-mode */
3206 .accessfn = aa64_zva_access,
3207 #endif
3209 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3210 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3211 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3212 /* Cache ops: all NOPs since we don't emulate caches */
3213 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3215 .access = PL1_W, .type = ARM_CP_NOP },
3216 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3217 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3218 .access = PL1_W, .type = ARM_CP_NOP },
3219 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3220 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3221 .access = PL0_W, .type = ARM_CP_NOP,
3222 .accessfn = aa64_cacheop_access },
3223 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3224 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3225 .access = PL1_W, .type = ARM_CP_NOP },
3226 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3227 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3228 .access = PL1_W, .type = ARM_CP_NOP },
3229 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3230 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3231 .access = PL0_W, .type = ARM_CP_NOP,
3232 .accessfn = aa64_cacheop_access },
3233 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3235 .access = PL1_W, .type = ARM_CP_NOP },
3236 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3238 .access = PL0_W, .type = ARM_CP_NOP,
3239 .accessfn = aa64_cacheop_access },
3240 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3241 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3242 .access = PL0_W, .type = ARM_CP_NOP,
3243 .accessfn = aa64_cacheop_access },
3244 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3245 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3246 .access = PL1_W, .type = ARM_CP_NOP },
3247 /* TLBI operations */
3248 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3249 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3250 .access = PL1_W, .type = ARM_CP_NO_RAW,
3251 .writefn = tlbi_aa64_vmalle1is_write },
3252 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3254 .access = PL1_W, .type = ARM_CP_NO_RAW,
3255 .writefn = tlbi_aa64_vae1is_write },
3256 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3257 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3258 .access = PL1_W, .type = ARM_CP_NO_RAW,
3259 .writefn = tlbi_aa64_vmalle1is_write },
3260 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3261 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3262 .access = PL1_W, .type = ARM_CP_NO_RAW,
3263 .writefn = tlbi_aa64_vae1is_write },
3264 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3265 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3266 .access = PL1_W, .type = ARM_CP_NO_RAW,
3267 .writefn = tlbi_aa64_vae1is_write },
3268 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3269 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3270 .access = PL1_W, .type = ARM_CP_NO_RAW,
3271 .writefn = tlbi_aa64_vae1is_write },
3272 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3273 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3274 .access = PL1_W, .type = ARM_CP_NO_RAW,
3275 .writefn = tlbi_aa64_vmalle1_write },
3276 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3277 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3278 .access = PL1_W, .type = ARM_CP_NO_RAW,
3279 .writefn = tlbi_aa64_vae1_write },
3280 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3281 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3282 .access = PL1_W, .type = ARM_CP_NO_RAW,
3283 .writefn = tlbi_aa64_vmalle1_write },
3284 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3285 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3286 .access = PL1_W, .type = ARM_CP_NO_RAW,
3287 .writefn = tlbi_aa64_vae1_write },
3288 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3289 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3290 .access = PL1_W, .type = ARM_CP_NO_RAW,
3291 .writefn = tlbi_aa64_vae1_write },
3292 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3294 .access = PL1_W, .type = ARM_CP_NO_RAW,
3295 .writefn = tlbi_aa64_vae1_write },
3296 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3297 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3298 .access = PL2_W, .type = ARM_CP_NO_RAW,
3299 .writefn = tlbi_aa64_ipas2e1is_write },
3300 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3301 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3302 .access = PL2_W, .type = ARM_CP_NO_RAW,
3303 .writefn = tlbi_aa64_ipas2e1is_write },
3304 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3305 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3306 .access = PL2_W, .type = ARM_CP_NO_RAW,
3307 .writefn = tlbi_aa64_alle1is_write },
3308 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3309 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3310 .access = PL2_W, .type = ARM_CP_NO_RAW,
3311 .writefn = tlbi_aa64_alle1is_write },
3312 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3313 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3314 .access = PL2_W, .type = ARM_CP_NO_RAW,
3315 .writefn = tlbi_aa64_ipas2e1_write },
3316 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3317 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3318 .access = PL2_W, .type = ARM_CP_NO_RAW,
3319 .writefn = tlbi_aa64_ipas2e1_write },
3320 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3321 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3322 .access = PL2_W, .type = ARM_CP_NO_RAW,
3323 .writefn = tlbi_aa64_alle1_write },
3324 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3326 .access = PL2_W, .type = ARM_CP_NO_RAW,
3327 .writefn = tlbi_aa64_alle1is_write },
3328 #ifndef CONFIG_USER_ONLY
3329 /* 64 bit address translation operations */
3330 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3331 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3332 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3333 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3334 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3335 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3336 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3338 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3339 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3341 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3342 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3343 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3344 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3345 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3347 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3348 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3350 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3351 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3353 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3354 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3355 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3356 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3357 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3358 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3359 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3360 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3361 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3362 .type = ARM_CP_ALIAS,
3363 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3364 .access = PL1_RW, .resetvalue = 0,
3365 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3366 .writefn = par_write },
3367 #endif
3368 /* TLB invalidate last level of translation table walk */
3369 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3370 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3371 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3372 .type = ARM_CP_NO_RAW, .access = PL1_W,
3373 .writefn = tlbimvaa_is_write },
3374 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3375 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3376 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3377 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3378 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3379 .type = ARM_CP_NO_RAW, .access = PL2_W,
3380 .writefn = tlbimva_hyp_write },
3381 { .name = "TLBIMVALHIS",
3382 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3383 .type = ARM_CP_NO_RAW, .access = PL2_W,
3384 .writefn = tlbimva_hyp_is_write },
3385 { .name = "TLBIIPAS2",
3386 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3387 .type = ARM_CP_NO_RAW, .access = PL2_W,
3388 .writefn = tlbiipas2_write },
3389 { .name = "TLBIIPAS2IS",
3390 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3391 .type = ARM_CP_NO_RAW, .access = PL2_W,
3392 .writefn = tlbiipas2_is_write },
3393 { .name = "TLBIIPAS2L",
3394 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3395 .type = ARM_CP_NO_RAW, .access = PL2_W,
3396 .writefn = tlbiipas2_write },
3397 { .name = "TLBIIPAS2LIS",
3398 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3399 .type = ARM_CP_NO_RAW, .access = PL2_W,
3400 .writefn = tlbiipas2_is_write },
3401 /* 32 bit cache operations */
3402 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3403 .type = ARM_CP_NOP, .access = PL1_W },
3404 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3405 .type = ARM_CP_NOP, .access = PL1_W },
3406 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3407 .type = ARM_CP_NOP, .access = PL1_W },
3408 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3409 .type = ARM_CP_NOP, .access = PL1_W },
3410 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3411 .type = ARM_CP_NOP, .access = PL1_W },
3412 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3413 .type = ARM_CP_NOP, .access = PL1_W },
3414 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3415 .type = ARM_CP_NOP, .access = PL1_W },
3416 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3417 .type = ARM_CP_NOP, .access = PL1_W },
3418 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3419 .type = ARM_CP_NOP, .access = PL1_W },
3420 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3421 .type = ARM_CP_NOP, .access = PL1_W },
3422 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3423 .type = ARM_CP_NOP, .access = PL1_W },
3424 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3425 .type = ARM_CP_NOP, .access = PL1_W },
3426 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3427 .type = ARM_CP_NOP, .access = PL1_W },
3428 /* MMU Domain access control / MPU write buffer control */
3429 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3430 .access = PL1_RW, .resetvalue = 0,
3431 .writefn = dacr_write, .raw_writefn = raw_write,
3432 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3433 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3434 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3435 .type = ARM_CP_ALIAS,
3436 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3437 .access = PL1_RW,
3438 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3439 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3440 .type = ARM_CP_ALIAS,
3441 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3442 .access = PL1_RW,
3443 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3444 /* We rely on the access checks not allowing the guest to write to the
3445 * state field when SPSel indicates that it's being used as the stack
3446 * pointer.
3448 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3449 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3450 .access = PL1_RW, .accessfn = sp_el0_access,
3451 .type = ARM_CP_ALIAS,
3452 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3453 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3454 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3455 .access = PL2_RW, .type = ARM_CP_ALIAS,
3456 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3457 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3459 .type = ARM_CP_NO_RAW,
3460 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3461 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3462 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3463 .type = ARM_CP_ALIAS,
3464 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3465 .access = PL2_RW, .accessfn = fpexc32_access },
3466 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3468 .access = PL2_RW, .resetvalue = 0,
3469 .writefn = dacr_write, .raw_writefn = raw_write,
3470 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3471 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3472 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3473 .access = PL2_RW, .resetvalue = 0,
3474 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3475 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3476 .type = ARM_CP_ALIAS,
3477 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3478 .access = PL2_RW,
3479 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3480 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3481 .type = ARM_CP_ALIAS,
3482 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3483 .access = PL2_RW,
3484 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3485 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3486 .type = ARM_CP_ALIAS,
3487 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3488 .access = PL2_RW,
3489 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3490 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3491 .type = ARM_CP_ALIAS,
3492 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3493 .access = PL2_RW,
3494 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3495 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3496 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3497 .resetvalue = 0,
3498 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3499 { .name = "SDCR", .type = ARM_CP_ALIAS,
3500 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3501 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3502 .writefn = sdcr_write,
3503 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3504 REGINFO_SENTINEL
3507 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3508 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3509 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3510 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3511 .access = PL2_RW,
3512 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3513 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3514 .type = ARM_CP_NO_RAW,
3515 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3516 .access = PL2_RW,
3517 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3518 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3519 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3520 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3521 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3522 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3523 .access = PL2_RW, .type = ARM_CP_CONST,
3524 .resetvalue = 0 },
3525 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3526 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3527 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3528 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3529 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3530 .access = PL2_RW, .type = ARM_CP_CONST,
3531 .resetvalue = 0 },
3532 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3533 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3534 .access = PL2_RW, .type = ARM_CP_CONST,
3535 .resetvalue = 0 },
3536 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3537 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3538 .access = PL2_RW, .type = ARM_CP_CONST,
3539 .resetvalue = 0 },
3540 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3541 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3542 .access = PL2_RW, .type = ARM_CP_CONST,
3543 .resetvalue = 0 },
3544 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3545 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3546 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3547 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3548 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3549 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3550 .type = ARM_CP_CONST, .resetvalue = 0 },
3551 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3552 .cp = 15, .opc1 = 6, .crm = 2,
3553 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3554 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3555 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3556 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3557 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3558 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3559 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3560 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3561 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3562 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3563 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3564 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3565 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3566 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3567 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3568 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3569 .resetvalue = 0 },
3570 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3571 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3572 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3573 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3575 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3576 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3577 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3578 .resetvalue = 0 },
3579 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3580 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3581 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3582 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3583 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3584 .resetvalue = 0 },
3585 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3586 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3587 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3588 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3589 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3590 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3591 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3592 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3593 .access = PL2_RW, .accessfn = access_tda,
3594 .type = ARM_CP_CONST, .resetvalue = 0 },
3595 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3596 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3597 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3598 .type = ARM_CP_CONST, .resetvalue = 0 },
3599 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3600 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3601 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3602 REGINFO_SENTINEL
3605 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3607 ARMCPU *cpu = arm_env_get_cpu(env);
3608 uint64_t valid_mask = HCR_MASK;
3610 if (arm_feature(env, ARM_FEATURE_EL3)) {
3611 valid_mask &= ~HCR_HCD;
3612 } else {
3613 valid_mask &= ~HCR_TSC;
3616 /* Clear RES0 bits. */
3617 value &= valid_mask;
3619 /* These bits change the MMU setup:
3620 * HCR_VM enables stage 2 translation
3621 * HCR_PTW forbids certain page-table setups
3622 * HCR_DC Disables stage1 and enables stage2 translation
3624 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3625 tlb_flush(CPU(cpu));
3627 raw_write(env, ri, value);
3630 static const ARMCPRegInfo el2_cp_reginfo[] = {
3631 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3632 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3633 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3634 .writefn = hcr_write },
3635 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3636 .type = ARM_CP_ALIAS,
3637 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3638 .access = PL2_RW,
3639 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3640 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3641 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3642 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3643 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3644 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3645 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3646 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3647 .type = ARM_CP_ALIAS,
3648 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3649 .access = PL2_RW,
3650 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3651 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3652 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3653 .access = PL2_RW, .writefn = vbar_write,
3654 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3655 .resetvalue = 0 },
3656 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3657 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3658 .access = PL3_RW, .type = ARM_CP_ALIAS,
3659 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3660 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3661 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3662 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3663 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3664 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3665 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3666 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3667 .resetvalue = 0 },
3668 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3669 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3670 .access = PL2_RW, .type = ARM_CP_ALIAS,
3671 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3672 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3673 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3674 .access = PL2_RW, .type = ARM_CP_CONST,
3675 .resetvalue = 0 },
3676 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3677 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3678 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3679 .access = PL2_RW, .type = ARM_CP_CONST,
3680 .resetvalue = 0 },
3681 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3682 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3683 .access = PL2_RW, .type = ARM_CP_CONST,
3684 .resetvalue = 0 },
3685 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3686 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3687 .access = PL2_RW, .type = ARM_CP_CONST,
3688 .resetvalue = 0 },
3689 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3690 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3691 .access = PL2_RW,
3692 /* no .writefn needed as this can't cause an ASID change;
3693 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3695 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3696 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3697 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3698 .type = ARM_CP_ALIAS,
3699 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3700 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3701 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3702 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3703 .access = PL2_RW,
3704 /* no .writefn needed as this can't cause an ASID change;
3705 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3707 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3708 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3709 .cp = 15, .opc1 = 6, .crm = 2,
3710 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3711 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3712 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3713 .writefn = vttbr_write },
3714 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3715 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3716 .access = PL2_RW, .writefn = vttbr_write,
3717 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3718 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3719 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3720 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3721 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3722 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3723 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3724 .access = PL2_RW, .resetvalue = 0,
3725 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3726 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3727 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3728 .access = PL2_RW, .resetvalue = 0,
3729 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3730 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3731 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3732 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3733 { .name = "TLBIALLNSNH",
3734 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3735 .type = ARM_CP_NO_RAW, .access = PL2_W,
3736 .writefn = tlbiall_nsnh_write },
3737 { .name = "TLBIALLNSNHIS",
3738 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3739 .type = ARM_CP_NO_RAW, .access = PL2_W,
3740 .writefn = tlbiall_nsnh_is_write },
3741 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3742 .type = ARM_CP_NO_RAW, .access = PL2_W,
3743 .writefn = tlbiall_hyp_write },
3744 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3745 .type = ARM_CP_NO_RAW, .access = PL2_W,
3746 .writefn = tlbiall_hyp_is_write },
3747 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3748 .type = ARM_CP_NO_RAW, .access = PL2_W,
3749 .writefn = tlbimva_hyp_write },
3750 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3751 .type = ARM_CP_NO_RAW, .access = PL2_W,
3752 .writefn = tlbimva_hyp_is_write },
3753 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3754 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3755 .type = ARM_CP_NO_RAW, .access = PL2_W,
3756 .writefn = tlbi_aa64_alle2_write },
3757 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3758 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3759 .type = ARM_CP_NO_RAW, .access = PL2_W,
3760 .writefn = tlbi_aa64_vae2_write },
3761 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3762 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3763 .access = PL2_W, .type = ARM_CP_NO_RAW,
3764 .writefn = tlbi_aa64_vae2_write },
3765 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3766 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3767 .access = PL2_W, .type = ARM_CP_NO_RAW,
3768 .writefn = tlbi_aa64_alle2is_write },
3769 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3770 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3771 .type = ARM_CP_NO_RAW, .access = PL2_W,
3772 .writefn = tlbi_aa64_vae2is_write },
3773 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3774 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3775 .access = PL2_W, .type = ARM_CP_NO_RAW,
3776 .writefn = tlbi_aa64_vae2is_write },
3777 #ifndef CONFIG_USER_ONLY
3778 /* Unlike the other EL2-related AT operations, these must
3779 * UNDEF from EL3 if EL2 is not implemented, which is why we
3780 * define them here rather than with the rest of the AT ops.
3782 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3783 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3784 .access = PL2_W, .accessfn = at_s1e2_access,
3785 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3786 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3787 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3788 .access = PL2_W, .accessfn = at_s1e2_access,
3789 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3790 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3791 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3792 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3793 * to behave as if SCR.NS was 1.
3795 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3796 .access = PL2_W,
3797 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3798 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3799 .access = PL2_W,
3800 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3801 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3802 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3803 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3804 * reset values as IMPDEF. We choose to reset to 3 to comply with
3805 * both ARMv7 and ARMv8.
3807 .access = PL2_RW, .resetvalue = 3,
3808 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3809 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3810 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3811 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3812 .writefn = gt_cntvoff_write,
3813 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3814 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3815 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3816 .writefn = gt_cntvoff_write,
3817 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3818 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3819 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3820 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3821 .type = ARM_CP_IO, .access = PL2_RW,
3822 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3823 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3824 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3825 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3826 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3827 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3828 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3829 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3830 .resetfn = gt_hyp_timer_reset,
3831 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3832 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3833 .type = ARM_CP_IO,
3834 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3835 .access = PL2_RW,
3836 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3837 .resetvalue = 0,
3838 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3839 #endif
3840 /* The only field of MDCR_EL2 that has a defined architectural reset value
3841 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3842 * don't impelment any PMU event counters, so using zero as a reset
3843 * value for MDCR_EL2 is okay
3845 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3846 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3847 .access = PL2_RW, .resetvalue = 0,
3848 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3849 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3850 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3851 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3852 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3853 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3854 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3855 .access = PL2_RW,
3856 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3857 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3858 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3859 .access = PL2_RW,
3860 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3861 REGINFO_SENTINEL
3864 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3865 bool isread)
3867 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3868 * At Secure EL1 it traps to EL3.
3870 if (arm_current_el(env) == 3) {
3871 return CP_ACCESS_OK;
3873 if (arm_is_secure_below_el3(env)) {
3874 return CP_ACCESS_TRAP_EL3;
3876 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3877 if (isread) {
3878 return CP_ACCESS_OK;
3880 return CP_ACCESS_TRAP_UNCATEGORIZED;
3883 static const ARMCPRegInfo el3_cp_reginfo[] = {
3884 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3885 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3886 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3887 .resetvalue = 0, .writefn = scr_write },
3888 { .name = "SCR", .type = ARM_CP_ALIAS,
3889 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3890 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3891 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3892 .writefn = scr_write },
3893 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3894 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3895 .access = PL3_RW, .resetvalue = 0,
3896 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3897 { .name = "SDER",
3898 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3899 .access = PL3_RW, .resetvalue = 0,
3900 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3901 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3902 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3903 .writefn = vbar_write, .resetvalue = 0,
3904 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3905 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3906 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3907 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3908 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3909 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3910 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3911 .access = PL3_RW,
3912 /* no .writefn needed as this can't cause an ASID change;
3913 * we must provide a .raw_writefn and .resetfn because we handle
3914 * reset and migration for the AArch32 TTBCR(S), which might be
3915 * using mask and base_mask.
3917 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
3918 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3919 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3920 .type = ARM_CP_ALIAS,
3921 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3922 .access = PL3_RW,
3923 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3924 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3925 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3926 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3927 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3928 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3929 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3930 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3931 .type = ARM_CP_ALIAS,
3932 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3933 .access = PL3_RW,
3934 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3935 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3936 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3937 .access = PL3_RW, .writefn = vbar_write,
3938 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3939 .resetvalue = 0 },
3940 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3941 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3942 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3943 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3944 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3945 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3946 .access = PL3_RW, .resetvalue = 0,
3947 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3948 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3949 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3950 .access = PL3_RW, .type = ARM_CP_CONST,
3951 .resetvalue = 0 },
3952 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3953 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3954 .access = PL3_RW, .type = ARM_CP_CONST,
3955 .resetvalue = 0 },
3956 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3957 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3958 .access = PL3_RW, .type = ARM_CP_CONST,
3959 .resetvalue = 0 },
3960 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3961 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3962 .access = PL3_W, .type = ARM_CP_NO_RAW,
3963 .writefn = tlbi_aa64_alle3is_write },
3964 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3965 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3966 .access = PL3_W, .type = ARM_CP_NO_RAW,
3967 .writefn = tlbi_aa64_vae3is_write },
3968 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3969 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3970 .access = PL3_W, .type = ARM_CP_NO_RAW,
3971 .writefn = tlbi_aa64_vae3is_write },
3972 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3973 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3974 .access = PL3_W, .type = ARM_CP_NO_RAW,
3975 .writefn = tlbi_aa64_alle3_write },
3976 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3977 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3978 .access = PL3_W, .type = ARM_CP_NO_RAW,
3979 .writefn = tlbi_aa64_vae3_write },
3980 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3981 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3982 .access = PL3_W, .type = ARM_CP_NO_RAW,
3983 .writefn = tlbi_aa64_vae3_write },
3984 REGINFO_SENTINEL
3987 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3988 bool isread)
3990 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3991 * but the AArch32 CTR has its own reginfo struct)
3993 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3994 return CP_ACCESS_TRAP;
3996 return CP_ACCESS_OK;
3999 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4000 uint64_t value)
4002 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4003 * read via a bit in OSLSR_EL1.
4005 int oslock;
4007 if (ri->state == ARM_CP_STATE_AA32) {
4008 oslock = (value == 0xC5ACCE55);
4009 } else {
4010 oslock = value & 1;
4013 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4016 static const ARMCPRegInfo debug_cp_reginfo[] = {
4017 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4018 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4019 * unlike DBGDRAR it is never accessible from EL0.
4020 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4021 * accessor.
4023 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4024 .access = PL0_R, .accessfn = access_tdra,
4025 .type = ARM_CP_CONST, .resetvalue = 0 },
4026 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4027 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4028 .access = PL1_R, .accessfn = access_tdra,
4029 .type = ARM_CP_CONST, .resetvalue = 0 },
4030 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4031 .access = PL0_R, .accessfn = access_tdra,
4032 .type = ARM_CP_CONST, .resetvalue = 0 },
4033 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4034 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4035 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4036 .access = PL1_RW, .accessfn = access_tda,
4037 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4038 .resetvalue = 0 },
4039 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4040 * We don't implement the configurable EL0 access.
4042 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4043 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4044 .type = ARM_CP_ALIAS,
4045 .access = PL1_R, .accessfn = access_tda,
4046 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4047 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4048 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4049 .access = PL1_W, .type = ARM_CP_NO_RAW,
4050 .accessfn = access_tdosa,
4051 .writefn = oslar_write },
4052 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4053 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4054 .access = PL1_R, .resetvalue = 10,
4055 .accessfn = access_tdosa,
4056 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4057 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4058 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4059 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4060 .access = PL1_RW, .accessfn = access_tdosa,
4061 .type = ARM_CP_NOP },
4062 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4063 * implement vector catch debug events yet.
4065 { .name = "DBGVCR",
4066 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4067 .access = PL1_RW, .accessfn = access_tda,
4068 .type = ARM_CP_NOP },
4069 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4070 * to save and restore a 32-bit guest's DBGVCR)
4072 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4074 .access = PL2_RW, .accessfn = access_tda,
4075 .type = ARM_CP_NOP },
4076 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4077 * Channel but Linux may try to access this register. The 32-bit
4078 * alias is DBGDCCINT.
4080 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4081 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4082 .access = PL1_RW, .accessfn = access_tda,
4083 .type = ARM_CP_NOP },
4084 REGINFO_SENTINEL
4087 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4088 /* 64 bit access versions of the (dummy) debug registers */
4089 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4090 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4091 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4092 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4093 REGINFO_SENTINEL
4096 void hw_watchpoint_update(ARMCPU *cpu, int n)
4098 CPUARMState *env = &cpu->env;
4099 vaddr len = 0;
4100 vaddr wvr = env->cp15.dbgwvr[n];
4101 uint64_t wcr = env->cp15.dbgwcr[n];
4102 int mask;
4103 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4105 if (env->cpu_watchpoint[n]) {
4106 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4107 env->cpu_watchpoint[n] = NULL;
4110 if (!extract64(wcr, 0, 1)) {
4111 /* E bit clear : watchpoint disabled */
4112 return;
4115 switch (extract64(wcr, 3, 2)) {
4116 case 0:
4117 /* LSC 00 is reserved and must behave as if the wp is disabled */
4118 return;
4119 case 1:
4120 flags |= BP_MEM_READ;
4121 break;
4122 case 2:
4123 flags |= BP_MEM_WRITE;
4124 break;
4125 case 3:
4126 flags |= BP_MEM_ACCESS;
4127 break;
4130 /* Attempts to use both MASK and BAS fields simultaneously are
4131 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4132 * thus generating a watchpoint for every byte in the masked region.
4134 mask = extract64(wcr, 24, 4);
4135 if (mask == 1 || mask == 2) {
4136 /* Reserved values of MASK; we must act as if the mask value was
4137 * some non-reserved value, or as if the watchpoint were disabled.
4138 * We choose the latter.
4140 return;
4141 } else if (mask) {
4142 /* Watchpoint covers an aligned area up to 2GB in size */
4143 len = 1ULL << mask;
4144 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4145 * whether the watchpoint fires when the unmasked bits match; we opt
4146 * to generate the exceptions.
4148 wvr &= ~(len - 1);
4149 } else {
4150 /* Watchpoint covers bytes defined by the byte address select bits */
4151 int bas = extract64(wcr, 5, 8);
4152 int basstart;
4154 if (bas == 0) {
4155 /* This must act as if the watchpoint is disabled */
4156 return;
4159 if (extract64(wvr, 2, 1)) {
4160 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4161 * ignored, and BAS[3:0] define which bytes to watch.
4163 bas &= 0xf;
4165 /* The BAS bits are supposed to be programmed to indicate a contiguous
4166 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4167 * we fire for each byte in the word/doubleword addressed by the WVR.
4168 * We choose to ignore any non-zero bits after the first range of 1s.
4170 basstart = ctz32(bas);
4171 len = cto32(bas >> basstart);
4172 wvr += basstart;
4175 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4176 &env->cpu_watchpoint[n]);
4179 void hw_watchpoint_update_all(ARMCPU *cpu)
4181 int i;
4182 CPUARMState *env = &cpu->env;
4184 /* Completely clear out existing QEMU watchpoints and our array, to
4185 * avoid possible stale entries following migration load.
4187 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4188 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4190 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4191 hw_watchpoint_update(cpu, i);
4195 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4196 uint64_t value)
4198 ARMCPU *cpu = arm_env_get_cpu(env);
4199 int i = ri->crm;
4201 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4202 * register reads and behaves as if values written are sign extended.
4203 * Bits [1:0] are RES0.
4205 value = sextract64(value, 0, 49) & ~3ULL;
4207 raw_write(env, ri, value);
4208 hw_watchpoint_update(cpu, i);
4211 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4212 uint64_t value)
4214 ARMCPU *cpu = arm_env_get_cpu(env);
4215 int i = ri->crm;
4217 raw_write(env, ri, value);
4218 hw_watchpoint_update(cpu, i);
4221 void hw_breakpoint_update(ARMCPU *cpu, int n)
4223 CPUARMState *env = &cpu->env;
4224 uint64_t bvr = env->cp15.dbgbvr[n];
4225 uint64_t bcr = env->cp15.dbgbcr[n];
4226 vaddr addr;
4227 int bt;
4228 int flags = BP_CPU;
4230 if (env->cpu_breakpoint[n]) {
4231 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4232 env->cpu_breakpoint[n] = NULL;
4235 if (!extract64(bcr, 0, 1)) {
4236 /* E bit clear : watchpoint disabled */
4237 return;
4240 bt = extract64(bcr, 20, 4);
4242 switch (bt) {
4243 case 4: /* unlinked address mismatch (reserved if AArch64) */
4244 case 5: /* linked address mismatch (reserved if AArch64) */
4245 qemu_log_mask(LOG_UNIMP,
4246 "arm: address mismatch breakpoint types not implemented");
4247 return;
4248 case 0: /* unlinked address match */
4249 case 1: /* linked address match */
4251 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4252 * we behave as if the register was sign extended. Bits [1:0] are
4253 * RES0. The BAS field is used to allow setting breakpoints on 16
4254 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4255 * a bp will fire if the addresses covered by the bp and the addresses
4256 * covered by the insn overlap but the insn doesn't start at the
4257 * start of the bp address range. We choose to require the insn and
4258 * the bp to have the same address. The constraints on writing to
4259 * BAS enforced in dbgbcr_write mean we have only four cases:
4260 * 0b0000 => no breakpoint
4261 * 0b0011 => breakpoint on addr
4262 * 0b1100 => breakpoint on addr + 2
4263 * 0b1111 => breakpoint on addr
4264 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4266 int bas = extract64(bcr, 5, 4);
4267 addr = sextract64(bvr, 0, 49) & ~3ULL;
4268 if (bas == 0) {
4269 return;
4271 if (bas == 0xc) {
4272 addr += 2;
4274 break;
4276 case 2: /* unlinked context ID match */
4277 case 8: /* unlinked VMID match (reserved if no EL2) */
4278 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4279 qemu_log_mask(LOG_UNIMP,
4280 "arm: unlinked context breakpoint types not implemented");
4281 return;
4282 case 9: /* linked VMID match (reserved if no EL2) */
4283 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4284 case 3: /* linked context ID match */
4285 default:
4286 /* We must generate no events for Linked context matches (unless
4287 * they are linked to by some other bp/wp, which is handled in
4288 * updates for the linking bp/wp). We choose to also generate no events
4289 * for reserved values.
4291 return;
4294 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4297 void hw_breakpoint_update_all(ARMCPU *cpu)
4299 int i;
4300 CPUARMState *env = &cpu->env;
4302 /* Completely clear out existing QEMU breakpoints and our array, to
4303 * avoid possible stale entries following migration load.
4305 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4306 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4308 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4309 hw_breakpoint_update(cpu, i);
4313 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4314 uint64_t value)
4316 ARMCPU *cpu = arm_env_get_cpu(env);
4317 int i = ri->crm;
4319 raw_write(env, ri, value);
4320 hw_breakpoint_update(cpu, i);
4323 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4324 uint64_t value)
4326 ARMCPU *cpu = arm_env_get_cpu(env);
4327 int i = ri->crm;
4329 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4330 * copy of BAS[0].
4332 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4333 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4335 raw_write(env, ri, value);
4336 hw_breakpoint_update(cpu, i);
4339 static void define_debug_regs(ARMCPU *cpu)
4341 /* Define v7 and v8 architectural debug registers.
4342 * These are just dummy implementations for now.
4344 int i;
4345 int wrps, brps, ctx_cmps;
4346 ARMCPRegInfo dbgdidr = {
4347 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4348 .access = PL0_R, .accessfn = access_tda,
4349 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4352 /* Note that all these register fields hold "number of Xs minus 1". */
4353 brps = extract32(cpu->dbgdidr, 24, 4);
4354 wrps = extract32(cpu->dbgdidr, 28, 4);
4355 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4357 assert(ctx_cmps <= brps);
4359 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4360 * of the debug registers such as number of breakpoints;
4361 * check that if they both exist then they agree.
4363 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4364 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4365 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4366 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4369 define_one_arm_cp_reg(cpu, &dbgdidr);
4370 define_arm_cp_regs(cpu, debug_cp_reginfo);
4372 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4373 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4376 for (i = 0; i < brps + 1; i++) {
4377 ARMCPRegInfo dbgregs[] = {
4378 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4379 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4380 .access = PL1_RW, .accessfn = access_tda,
4381 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4382 .writefn = dbgbvr_write, .raw_writefn = raw_write
4384 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4385 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4386 .access = PL1_RW, .accessfn = access_tda,
4387 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4388 .writefn = dbgbcr_write, .raw_writefn = raw_write
4390 REGINFO_SENTINEL
4392 define_arm_cp_regs(cpu, dbgregs);
4395 for (i = 0; i < wrps + 1; i++) {
4396 ARMCPRegInfo dbgregs[] = {
4397 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4398 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4399 .access = PL1_RW, .accessfn = access_tda,
4400 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4401 .writefn = dbgwvr_write, .raw_writefn = raw_write
4403 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4404 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4405 .access = PL1_RW, .accessfn = access_tda,
4406 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4407 .writefn = dbgwcr_write, .raw_writefn = raw_write
4409 REGINFO_SENTINEL
4411 define_arm_cp_regs(cpu, dbgregs);
4415 void register_cp_regs_for_features(ARMCPU *cpu)
4417 /* Register all the coprocessor registers based on feature bits */
4418 CPUARMState *env = &cpu->env;
4419 if (arm_feature(env, ARM_FEATURE_M)) {
4420 /* M profile has no coprocessor registers */
4421 return;
4424 define_arm_cp_regs(cpu, cp_reginfo);
4425 if (!arm_feature(env, ARM_FEATURE_V8)) {
4426 /* Must go early as it is full of wildcards that may be
4427 * overridden by later definitions.
4429 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4432 if (arm_feature(env, ARM_FEATURE_V6)) {
4433 /* The ID registers all have impdef reset values */
4434 ARMCPRegInfo v6_idregs[] = {
4435 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4437 .access = PL1_R, .type = ARM_CP_CONST,
4438 .resetvalue = cpu->id_pfr0 },
4439 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4441 .access = PL1_R, .type = ARM_CP_CONST,
4442 .resetvalue = cpu->id_pfr1 },
4443 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4445 .access = PL1_R, .type = ARM_CP_CONST,
4446 .resetvalue = cpu->id_dfr0 },
4447 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4449 .access = PL1_R, .type = ARM_CP_CONST,
4450 .resetvalue = cpu->id_afr0 },
4451 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4453 .access = PL1_R, .type = ARM_CP_CONST,
4454 .resetvalue = cpu->id_mmfr0 },
4455 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4457 .access = PL1_R, .type = ARM_CP_CONST,
4458 .resetvalue = cpu->id_mmfr1 },
4459 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4461 .access = PL1_R, .type = ARM_CP_CONST,
4462 .resetvalue = cpu->id_mmfr2 },
4463 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4465 .access = PL1_R, .type = ARM_CP_CONST,
4466 .resetvalue = cpu->id_mmfr3 },
4467 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4469 .access = PL1_R, .type = ARM_CP_CONST,
4470 .resetvalue = cpu->id_isar0 },
4471 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4473 .access = PL1_R, .type = ARM_CP_CONST,
4474 .resetvalue = cpu->id_isar1 },
4475 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4477 .access = PL1_R, .type = ARM_CP_CONST,
4478 .resetvalue = cpu->id_isar2 },
4479 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4481 .access = PL1_R, .type = ARM_CP_CONST,
4482 .resetvalue = cpu->id_isar3 },
4483 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4485 .access = PL1_R, .type = ARM_CP_CONST,
4486 .resetvalue = cpu->id_isar4 },
4487 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4489 .access = PL1_R, .type = ARM_CP_CONST,
4490 .resetvalue = cpu->id_isar5 },
4491 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4493 .access = PL1_R, .type = ARM_CP_CONST,
4494 .resetvalue = cpu->id_mmfr4 },
4495 /* 7 is as yet unallocated and must RAZ */
4496 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4497 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4498 .access = PL1_R, .type = ARM_CP_CONST,
4499 .resetvalue = 0 },
4500 REGINFO_SENTINEL
4502 define_arm_cp_regs(cpu, v6_idregs);
4503 define_arm_cp_regs(cpu, v6_cp_reginfo);
4504 } else {
4505 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4507 if (arm_feature(env, ARM_FEATURE_V6K)) {
4508 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4510 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4511 !arm_feature(env, ARM_FEATURE_MPU)) {
4512 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4514 if (arm_feature(env, ARM_FEATURE_V7)) {
4515 /* v7 performance monitor control register: same implementor
4516 * field as main ID register, and we implement only the cycle
4517 * count register.
4519 #ifndef CONFIG_USER_ONLY
4520 ARMCPRegInfo pmcr = {
4521 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4522 .access = PL0_RW,
4523 .type = ARM_CP_IO | ARM_CP_ALIAS,
4524 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4525 .accessfn = pmreg_access, .writefn = pmcr_write,
4526 .raw_writefn = raw_write,
4528 ARMCPRegInfo pmcr64 = {
4529 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4530 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4531 .access = PL0_RW, .accessfn = pmreg_access,
4532 .type = ARM_CP_IO,
4533 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4534 .resetvalue = cpu->midr & 0xff000000,
4535 .writefn = pmcr_write, .raw_writefn = raw_write,
4537 define_one_arm_cp_reg(cpu, &pmcr);
4538 define_one_arm_cp_reg(cpu, &pmcr64);
4539 #endif
4540 ARMCPRegInfo clidr = {
4541 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4542 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4543 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4545 define_one_arm_cp_reg(cpu, &clidr);
4546 define_arm_cp_regs(cpu, v7_cp_reginfo);
4547 define_debug_regs(cpu);
4548 } else {
4549 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4551 if (arm_feature(env, ARM_FEATURE_V8)) {
4552 /* AArch64 ID registers, which all have impdef reset values.
4553 * Note that within the ID register ranges the unused slots
4554 * must all RAZ, not UNDEF; future architecture versions may
4555 * define new registers here.
4557 ARMCPRegInfo v8_idregs[] = {
4558 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4560 .access = PL1_R, .type = ARM_CP_CONST,
4561 .resetvalue = cpu->id_aa64pfr0 },
4562 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4564 .access = PL1_R, .type = ARM_CP_CONST,
4565 .resetvalue = cpu->id_aa64pfr1},
4566 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4568 .access = PL1_R, .type = ARM_CP_CONST,
4569 .resetvalue = 0 },
4570 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4572 .access = PL1_R, .type = ARM_CP_CONST,
4573 .resetvalue = 0 },
4574 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4576 .access = PL1_R, .type = ARM_CP_CONST,
4577 .resetvalue = 0 },
4578 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4580 .access = PL1_R, .type = ARM_CP_CONST,
4581 .resetvalue = 0 },
4582 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4584 .access = PL1_R, .type = ARM_CP_CONST,
4585 .resetvalue = 0 },
4586 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4588 .access = PL1_R, .type = ARM_CP_CONST,
4589 .resetvalue = 0 },
4590 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4592 .access = PL1_R, .type = ARM_CP_CONST,
4593 /* We mask out the PMUVer field, because we don't currently
4594 * implement the PMU. Not advertising it prevents the guest
4595 * from trying to use it and getting UNDEFs on registers we
4596 * don't implement.
4598 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4599 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4601 .access = PL1_R, .type = ARM_CP_CONST,
4602 .resetvalue = cpu->id_aa64dfr1 },
4603 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4605 .access = PL1_R, .type = ARM_CP_CONST,
4606 .resetvalue = 0 },
4607 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4609 .access = PL1_R, .type = ARM_CP_CONST,
4610 .resetvalue = 0 },
4611 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4613 .access = PL1_R, .type = ARM_CP_CONST,
4614 .resetvalue = cpu->id_aa64afr0 },
4615 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4617 .access = PL1_R, .type = ARM_CP_CONST,
4618 .resetvalue = cpu->id_aa64afr1 },
4619 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4621 .access = PL1_R, .type = ARM_CP_CONST,
4622 .resetvalue = 0 },
4623 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4625 .access = PL1_R, .type = ARM_CP_CONST,
4626 .resetvalue = 0 },
4627 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4629 .access = PL1_R, .type = ARM_CP_CONST,
4630 .resetvalue = cpu->id_aa64isar0 },
4631 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4633 .access = PL1_R, .type = ARM_CP_CONST,
4634 .resetvalue = cpu->id_aa64isar1 },
4635 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4637 .access = PL1_R, .type = ARM_CP_CONST,
4638 .resetvalue = 0 },
4639 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4641 .access = PL1_R, .type = ARM_CP_CONST,
4642 .resetvalue = 0 },
4643 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4645 .access = PL1_R, .type = ARM_CP_CONST,
4646 .resetvalue = 0 },
4647 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4649 .access = PL1_R, .type = ARM_CP_CONST,
4650 .resetvalue = 0 },
4651 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4653 .access = PL1_R, .type = ARM_CP_CONST,
4654 .resetvalue = 0 },
4655 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4657 .access = PL1_R, .type = ARM_CP_CONST,
4658 .resetvalue = 0 },
4659 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4661 .access = PL1_R, .type = ARM_CP_CONST,
4662 .resetvalue = cpu->id_aa64mmfr0 },
4663 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4665 .access = PL1_R, .type = ARM_CP_CONST,
4666 .resetvalue = cpu->id_aa64mmfr1 },
4667 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4668 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4669 .access = PL1_R, .type = ARM_CP_CONST,
4670 .resetvalue = 0 },
4671 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4673 .access = PL1_R, .type = ARM_CP_CONST,
4674 .resetvalue = 0 },
4675 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4677 .access = PL1_R, .type = ARM_CP_CONST,
4678 .resetvalue = 0 },
4679 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4681 .access = PL1_R, .type = ARM_CP_CONST,
4682 .resetvalue = 0 },
4683 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4685 .access = PL1_R, .type = ARM_CP_CONST,
4686 .resetvalue = 0 },
4687 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4689 .access = PL1_R, .type = ARM_CP_CONST,
4690 .resetvalue = 0 },
4691 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4693 .access = PL1_R, .type = ARM_CP_CONST,
4694 .resetvalue = cpu->mvfr0 },
4695 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4697 .access = PL1_R, .type = ARM_CP_CONST,
4698 .resetvalue = cpu->mvfr1 },
4699 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4701 .access = PL1_R, .type = ARM_CP_CONST,
4702 .resetvalue = cpu->mvfr2 },
4703 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4705 .access = PL1_R, .type = ARM_CP_CONST,
4706 .resetvalue = 0 },
4707 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4708 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4709 .access = PL1_R, .type = ARM_CP_CONST,
4710 .resetvalue = 0 },
4711 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4713 .access = PL1_R, .type = ARM_CP_CONST,
4714 .resetvalue = 0 },
4715 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4717 .access = PL1_R, .type = ARM_CP_CONST,
4718 .resetvalue = 0 },
4719 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4721 .access = PL1_R, .type = ARM_CP_CONST,
4722 .resetvalue = 0 },
4723 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4724 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4725 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4726 .resetvalue = cpu->pmceid0 },
4727 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4728 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4729 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4730 .resetvalue = cpu->pmceid0 },
4731 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4732 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4733 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4734 .resetvalue = cpu->pmceid1 },
4735 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4736 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4737 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4738 .resetvalue = cpu->pmceid1 },
4739 REGINFO_SENTINEL
4741 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4742 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4743 !arm_feature(env, ARM_FEATURE_EL2)) {
4744 ARMCPRegInfo rvbar = {
4745 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4746 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4747 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4749 define_one_arm_cp_reg(cpu, &rvbar);
4751 define_arm_cp_regs(cpu, v8_idregs);
4752 define_arm_cp_regs(cpu, v8_cp_reginfo);
4754 if (arm_feature(env, ARM_FEATURE_EL2)) {
4755 uint64_t vmpidr_def = mpidr_read_val(env);
4756 ARMCPRegInfo vpidr_regs[] = {
4757 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4758 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4759 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4760 .resetvalue = cpu->midr,
4761 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4762 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4763 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4764 .access = PL2_RW, .resetvalue = cpu->midr,
4765 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4766 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4767 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4768 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4769 .resetvalue = vmpidr_def,
4770 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4771 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4772 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4773 .access = PL2_RW,
4774 .resetvalue = vmpidr_def,
4775 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4776 REGINFO_SENTINEL
4778 define_arm_cp_regs(cpu, vpidr_regs);
4779 define_arm_cp_regs(cpu, el2_cp_reginfo);
4780 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4781 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4782 ARMCPRegInfo rvbar = {
4783 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4785 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4787 define_one_arm_cp_reg(cpu, &rvbar);
4789 } else {
4790 /* If EL2 is missing but higher ELs are enabled, we need to
4791 * register the no_el2 reginfos.
4793 if (arm_feature(env, ARM_FEATURE_EL3)) {
4794 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4795 * of MIDR_EL1 and MPIDR_EL1.
4797 ARMCPRegInfo vpidr_regs[] = {
4798 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4799 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4800 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4801 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4802 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4803 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4804 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4805 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4806 .type = ARM_CP_NO_RAW,
4807 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4808 REGINFO_SENTINEL
4810 define_arm_cp_regs(cpu, vpidr_regs);
4811 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4814 if (arm_feature(env, ARM_FEATURE_EL3)) {
4815 define_arm_cp_regs(cpu, el3_cp_reginfo);
4816 ARMCPRegInfo el3_regs[] = {
4817 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4818 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4819 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4820 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4821 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4822 .access = PL3_RW,
4823 .raw_writefn = raw_write, .writefn = sctlr_write,
4824 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4825 .resetvalue = cpu->reset_sctlr },
4826 REGINFO_SENTINEL
4829 define_arm_cp_regs(cpu, el3_regs);
4831 /* The behaviour of NSACR is sufficiently various that we don't
4832 * try to describe it in a single reginfo:
4833 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4834 * reads as constant 0xc00 from NS EL1 and NS EL2
4835 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4836 * if v7 without EL3, register doesn't exist
4837 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4839 if (arm_feature(env, ARM_FEATURE_EL3)) {
4840 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4841 ARMCPRegInfo nsacr = {
4842 .name = "NSACR", .type = ARM_CP_CONST,
4843 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4844 .access = PL1_RW, .accessfn = nsacr_access,
4845 .resetvalue = 0xc00
4847 define_one_arm_cp_reg(cpu, &nsacr);
4848 } else {
4849 ARMCPRegInfo nsacr = {
4850 .name = "NSACR",
4851 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4852 .access = PL3_RW | PL1_R,
4853 .resetvalue = 0,
4854 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4856 define_one_arm_cp_reg(cpu, &nsacr);
4858 } else {
4859 if (arm_feature(env, ARM_FEATURE_V8)) {
4860 ARMCPRegInfo nsacr = {
4861 .name = "NSACR", .type = ARM_CP_CONST,
4862 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4863 .access = PL1_R,
4864 .resetvalue = 0xc00
4866 define_one_arm_cp_reg(cpu, &nsacr);
4870 if (arm_feature(env, ARM_FEATURE_MPU)) {
4871 if (arm_feature(env, ARM_FEATURE_V6)) {
4872 /* PMSAv6 not implemented */
4873 assert(arm_feature(env, ARM_FEATURE_V7));
4874 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4875 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4876 } else {
4877 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4879 } else {
4880 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4881 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4883 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4884 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4886 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4887 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4889 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4890 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4892 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4893 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4895 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4896 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4898 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4899 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4901 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4902 define_arm_cp_regs(cpu, omap_cp_reginfo);
4904 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4905 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4907 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4908 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4910 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4911 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4913 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4914 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4916 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4917 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4918 * be read-only (ie write causes UNDEF exception).
4921 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4922 /* Pre-v8 MIDR space.
4923 * Note that the MIDR isn't a simple constant register because
4924 * of the TI925 behaviour where writes to another register can
4925 * cause the MIDR value to change.
4927 * Unimplemented registers in the c15 0 0 0 space default to
4928 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4929 * and friends override accordingly.
4931 { .name = "MIDR",
4932 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4933 .access = PL1_R, .resetvalue = cpu->midr,
4934 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4935 .readfn = midr_read,
4936 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4937 .type = ARM_CP_OVERRIDE },
4938 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4939 { .name = "DUMMY",
4940 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4941 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4942 { .name = "DUMMY",
4943 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4944 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4945 { .name = "DUMMY",
4946 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4947 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4948 { .name = "DUMMY",
4949 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4950 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4951 { .name = "DUMMY",
4952 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4953 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4954 REGINFO_SENTINEL
4956 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4957 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4959 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4960 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4961 .readfn = midr_read },
4962 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4963 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4964 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4965 .access = PL1_R, .resetvalue = cpu->midr },
4966 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4967 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4968 .access = PL1_R, .resetvalue = cpu->midr },
4969 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4971 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4972 REGINFO_SENTINEL
4974 ARMCPRegInfo id_cp_reginfo[] = {
4975 /* These are common to v8 and pre-v8 */
4976 { .name = "CTR",
4977 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4978 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4979 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4980 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4981 .access = PL0_R, .accessfn = ctr_el0_access,
4982 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4983 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4984 { .name = "TCMTR",
4985 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4986 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4987 REGINFO_SENTINEL
4989 /* TLBTR is specific to VMSA */
4990 ARMCPRegInfo id_tlbtr_reginfo = {
4991 .name = "TLBTR",
4992 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4993 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4995 /* MPUIR is specific to PMSA V6+ */
4996 ARMCPRegInfo id_mpuir_reginfo = {
4997 .name = "MPUIR",
4998 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4999 .access = PL1_R, .type = ARM_CP_CONST,
5000 .resetvalue = cpu->pmsav7_dregion << 8
5002 ARMCPRegInfo crn0_wi_reginfo = {
5003 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5004 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5005 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5007 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5008 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5009 ARMCPRegInfo *r;
5010 /* Register the blanket "writes ignored" value first to cover the
5011 * whole space. Then update the specific ID registers to allow write
5012 * access, so that they ignore writes rather than causing them to
5013 * UNDEF.
5015 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5016 for (r = id_pre_v8_midr_cp_reginfo;
5017 r->type != ARM_CP_SENTINEL; r++) {
5018 r->access = PL1_RW;
5020 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5021 r->access = PL1_RW;
5023 id_tlbtr_reginfo.access = PL1_RW;
5024 id_tlbtr_reginfo.access = PL1_RW;
5026 if (arm_feature(env, ARM_FEATURE_V8)) {
5027 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5028 } else {
5029 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5031 define_arm_cp_regs(cpu, id_cp_reginfo);
5032 if (!arm_feature(env, ARM_FEATURE_MPU)) {
5033 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5034 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5035 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5039 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5040 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5043 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5044 ARMCPRegInfo auxcr_reginfo[] = {
5045 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5046 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5047 .access = PL1_RW, .type = ARM_CP_CONST,
5048 .resetvalue = cpu->reset_auxcr },
5049 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5050 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5051 .access = PL2_RW, .type = ARM_CP_CONST,
5052 .resetvalue = 0 },
5053 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5054 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5055 .access = PL3_RW, .type = ARM_CP_CONST,
5056 .resetvalue = 0 },
5057 REGINFO_SENTINEL
5059 define_arm_cp_regs(cpu, auxcr_reginfo);
5062 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5063 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5064 /* 32 bit view is [31:18] 0...0 [43:32]. */
5065 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5066 | extract64(cpu->reset_cbar, 32, 12);
5067 ARMCPRegInfo cbar_reginfo[] = {
5068 { .name = "CBAR",
5069 .type = ARM_CP_CONST,
5070 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5071 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5072 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5073 .type = ARM_CP_CONST,
5074 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5075 .access = PL1_R, .resetvalue = cbar32 },
5076 REGINFO_SENTINEL
5078 /* We don't implement a r/w 64 bit CBAR currently */
5079 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5080 define_arm_cp_regs(cpu, cbar_reginfo);
5081 } else {
5082 ARMCPRegInfo cbar = {
5083 .name = "CBAR",
5084 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5085 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5086 .fieldoffset = offsetof(CPUARMState,
5087 cp15.c15_config_base_address)
5089 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5090 cbar.access = PL1_R;
5091 cbar.fieldoffset = 0;
5092 cbar.type = ARM_CP_CONST;
5094 define_one_arm_cp_reg(cpu, &cbar);
5098 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5099 ARMCPRegInfo vbar_cp_reginfo[] = {
5100 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5101 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5102 .access = PL1_RW, .writefn = vbar_write,
5103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5104 offsetof(CPUARMState, cp15.vbar_ns) },
5105 .resetvalue = 0 },
5106 REGINFO_SENTINEL
5108 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5111 /* Generic registers whose values depend on the implementation */
5113 ARMCPRegInfo sctlr = {
5114 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5115 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5116 .access = PL1_RW,
5117 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5118 offsetof(CPUARMState, cp15.sctlr_ns) },
5119 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5120 .raw_writefn = raw_write,
5122 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5123 /* Normally we would always end the TB on an SCTLR write, but Linux
5124 * arch/arm/mach-pxa/sleep.S expects two instructions following
5125 * an MMU enable to execute from cache. Imitate this behaviour.
5127 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5129 define_one_arm_cp_reg(cpu, &sctlr);
5133 ARMCPU *cpu_arm_init(const char *cpu_model)
5135 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5138 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5140 CPUState *cs = CPU(cpu);
5141 CPUARMState *env = &cpu->env;
5143 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5144 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5145 aarch64_fpu_gdb_set_reg,
5146 34, "aarch64-fpu.xml", 0);
5147 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5148 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5149 51, "arm-neon.xml", 0);
5150 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5151 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5152 35, "arm-vfp3.xml", 0);
5153 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5154 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5155 19, "arm-vfp.xml", 0);
5159 /* Sort alphabetically by type name, except for "any". */
5160 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5162 ObjectClass *class_a = (ObjectClass *)a;
5163 ObjectClass *class_b = (ObjectClass *)b;
5164 const char *name_a, *name_b;
5166 name_a = object_class_get_name(class_a);
5167 name_b = object_class_get_name(class_b);
5168 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5169 return 1;
5170 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5171 return -1;
5172 } else {
5173 return strcmp(name_a, name_b);
5177 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5179 ObjectClass *oc = data;
5180 CPUListState *s = user_data;
5181 const char *typename;
5182 char *name;
5184 typename = object_class_get_name(oc);
5185 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5186 (*s->cpu_fprintf)(s->file, " %s\n",
5187 name);
5188 g_free(name);
5191 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5193 CPUListState s = {
5194 .file = f,
5195 .cpu_fprintf = cpu_fprintf,
5197 GSList *list;
5199 list = object_class_get_list(TYPE_ARM_CPU, false);
5200 list = g_slist_sort(list, arm_cpu_list_compare);
5201 (*cpu_fprintf)(f, "Available CPUs:\n");
5202 g_slist_foreach(list, arm_cpu_list_entry, &s);
5203 g_slist_free(list);
5204 #ifdef CONFIG_KVM
5205 /* The 'host' CPU type is dynamically registered only if KVM is
5206 * enabled, so we have to special-case it here:
5208 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5209 #endif
5212 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5214 ObjectClass *oc = data;
5215 CpuDefinitionInfoList **cpu_list = user_data;
5216 CpuDefinitionInfoList *entry;
5217 CpuDefinitionInfo *info;
5218 const char *typename;
5220 typename = object_class_get_name(oc);
5221 info = g_malloc0(sizeof(*info));
5222 info->name = g_strndup(typename,
5223 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5224 info->q_typename = g_strdup(typename);
5226 entry = g_malloc0(sizeof(*entry));
5227 entry->value = info;
5228 entry->next = *cpu_list;
5229 *cpu_list = entry;
5232 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5234 CpuDefinitionInfoList *cpu_list = NULL;
5235 GSList *list;
5237 list = object_class_get_list(TYPE_ARM_CPU, false);
5238 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5239 g_slist_free(list);
5241 return cpu_list;
5244 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5245 void *opaque, int state, int secstate,
5246 int crm, int opc1, int opc2)
5248 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5249 * add a single reginfo struct to the hash table.
5251 uint32_t *key = g_new(uint32_t, 1);
5252 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5253 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5254 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5256 /* Reset the secure state to the specific incoming state. This is
5257 * necessary as the register may have been defined with both states.
5259 r2->secure = secstate;
5261 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5262 /* Register is banked (using both entries in array).
5263 * Overwriting fieldoffset as the array is only used to define
5264 * banked registers but later only fieldoffset is used.
5266 r2->fieldoffset = r->bank_fieldoffsets[ns];
5269 if (state == ARM_CP_STATE_AA32) {
5270 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5271 /* If the register is banked then we don't need to migrate or
5272 * reset the 32-bit instance in certain cases:
5274 * 1) If the register has both 32-bit and 64-bit instances then we
5275 * can count on the 64-bit instance taking care of the
5276 * non-secure bank.
5277 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5278 * taking care of the secure bank. This requires that separate
5279 * 32 and 64-bit definitions are provided.
5281 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5282 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5283 r2->type |= ARM_CP_ALIAS;
5285 } else if ((secstate != r->secure) && !ns) {
5286 /* The register is not banked so we only want to allow migration of
5287 * the non-secure instance.
5289 r2->type |= ARM_CP_ALIAS;
5292 if (r->state == ARM_CP_STATE_BOTH) {
5293 /* We assume it is a cp15 register if the .cp field is left unset.
5295 if (r2->cp == 0) {
5296 r2->cp = 15;
5299 #ifdef HOST_WORDS_BIGENDIAN
5300 if (r2->fieldoffset) {
5301 r2->fieldoffset += sizeof(uint32_t);
5303 #endif
5306 if (state == ARM_CP_STATE_AA64) {
5307 /* To allow abbreviation of ARMCPRegInfo
5308 * definitions, we treat cp == 0 as equivalent to
5309 * the value for "standard guest-visible sysreg".
5310 * STATE_BOTH definitions are also always "standard
5311 * sysreg" in their AArch64 view (the .cp value may
5312 * be non-zero for the benefit of the AArch32 view).
5314 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5315 r2->cp = CP_REG_ARM64_SYSREG_CP;
5317 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5318 r2->opc0, opc1, opc2);
5319 } else {
5320 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5322 if (opaque) {
5323 r2->opaque = opaque;
5325 /* reginfo passed to helpers is correct for the actual access,
5326 * and is never ARM_CP_STATE_BOTH:
5328 r2->state = state;
5329 /* Make sure reginfo passed to helpers for wildcarded regs
5330 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5332 r2->crm = crm;
5333 r2->opc1 = opc1;
5334 r2->opc2 = opc2;
5335 /* By convention, for wildcarded registers only the first
5336 * entry is used for migration; the others are marked as
5337 * ALIAS so we don't try to transfer the register
5338 * multiple times. Special registers (ie NOP/WFI) are
5339 * never migratable and not even raw-accessible.
5341 if ((r->type & ARM_CP_SPECIAL)) {
5342 r2->type |= ARM_CP_NO_RAW;
5344 if (((r->crm == CP_ANY) && crm != 0) ||
5345 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5346 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5347 r2->type |= ARM_CP_ALIAS;
5350 /* Check that raw accesses are either forbidden or handled. Note that
5351 * we can't assert this earlier because the setup of fieldoffset for
5352 * banked registers has to be done first.
5354 if (!(r2->type & ARM_CP_NO_RAW)) {
5355 assert(!raw_accessors_invalid(r2));
5358 /* Overriding of an existing definition must be explicitly
5359 * requested.
5361 if (!(r->type & ARM_CP_OVERRIDE)) {
5362 ARMCPRegInfo *oldreg;
5363 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5364 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5365 fprintf(stderr, "Register redefined: cp=%d %d bit "
5366 "crn=%d crm=%d opc1=%d opc2=%d, "
5367 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5368 r2->crn, r2->crm, r2->opc1, r2->opc2,
5369 oldreg->name, r2->name);
5370 g_assert_not_reached();
5373 g_hash_table_insert(cpu->cp_regs, key, r2);
5377 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5378 const ARMCPRegInfo *r, void *opaque)
5380 /* Define implementations of coprocessor registers.
5381 * We store these in a hashtable because typically
5382 * there are less than 150 registers in a space which
5383 * is 16*16*16*8*8 = 262144 in size.
5384 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5385 * If a register is defined twice then the second definition is
5386 * used, so this can be used to define some generic registers and
5387 * then override them with implementation specific variations.
5388 * At least one of the original and the second definition should
5389 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5390 * against accidental use.
5392 * The state field defines whether the register is to be
5393 * visible in the AArch32 or AArch64 execution state. If the
5394 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5395 * reginfo structure for the AArch32 view, which sees the lower
5396 * 32 bits of the 64 bit register.
5398 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5399 * be wildcarded. AArch64 registers are always considered to be 64
5400 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5401 * the register, if any.
5403 int crm, opc1, opc2, state;
5404 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5405 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5406 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5407 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5408 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5409 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5410 /* 64 bit registers have only CRm and Opc1 fields */
5411 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5412 /* op0 only exists in the AArch64 encodings */
5413 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5414 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5415 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5416 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5417 * encodes a minimum access level for the register. We roll this
5418 * runtime check into our general permission check code, so check
5419 * here that the reginfo's specified permissions are strict enough
5420 * to encompass the generic architectural permission check.
5422 if (r->state != ARM_CP_STATE_AA32) {
5423 int mask = 0;
5424 switch (r->opc1) {
5425 case 0: case 1: case 2:
5426 /* min_EL EL1 */
5427 mask = PL1_RW;
5428 break;
5429 case 3:
5430 /* min_EL EL0 */
5431 mask = PL0_RW;
5432 break;
5433 case 4:
5434 /* min_EL EL2 */
5435 mask = PL2_RW;
5436 break;
5437 case 5:
5438 /* unallocated encoding, so not possible */
5439 assert(false);
5440 break;
5441 case 6:
5442 /* min_EL EL3 */
5443 mask = PL3_RW;
5444 break;
5445 case 7:
5446 /* min_EL EL1, secure mode only (we don't check the latter) */
5447 mask = PL1_RW;
5448 break;
5449 default:
5450 /* broken reginfo with out-of-range opc1 */
5451 assert(false);
5452 break;
5454 /* assert our permissions are not too lax (stricter is fine) */
5455 assert((r->access & ~mask) == 0);
5458 /* Check that the register definition has enough info to handle
5459 * reads and writes if they are permitted.
5461 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5462 if (r->access & PL3_R) {
5463 assert((r->fieldoffset ||
5464 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5465 r->readfn);
5467 if (r->access & PL3_W) {
5468 assert((r->fieldoffset ||
5469 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5470 r->writefn);
5473 /* Bad type field probably means missing sentinel at end of reg list */
5474 assert(cptype_valid(r->type));
5475 for (crm = crmmin; crm <= crmmax; crm++) {
5476 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5477 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5478 for (state = ARM_CP_STATE_AA32;
5479 state <= ARM_CP_STATE_AA64; state++) {
5480 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5481 continue;
5483 if (state == ARM_CP_STATE_AA32) {
5484 /* Under AArch32 CP registers can be common
5485 * (same for secure and non-secure world) or banked.
5487 switch (r->secure) {
5488 case ARM_CP_SECSTATE_S:
5489 case ARM_CP_SECSTATE_NS:
5490 add_cpreg_to_hashtable(cpu, r, opaque, state,
5491 r->secure, crm, opc1, opc2);
5492 break;
5493 default:
5494 add_cpreg_to_hashtable(cpu, r, opaque, state,
5495 ARM_CP_SECSTATE_S,
5496 crm, opc1, opc2);
5497 add_cpreg_to_hashtable(cpu, r, opaque, state,
5498 ARM_CP_SECSTATE_NS,
5499 crm, opc1, opc2);
5500 break;
5502 } else {
5503 /* AArch64 registers get mapped to non-secure instance
5504 * of AArch32 */
5505 add_cpreg_to_hashtable(cpu, r, opaque, state,
5506 ARM_CP_SECSTATE_NS,
5507 crm, opc1, opc2);
5515 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5516 const ARMCPRegInfo *regs, void *opaque)
5518 /* Define a whole list of registers */
5519 const ARMCPRegInfo *r;
5520 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5521 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5525 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5527 return g_hash_table_lookup(cpregs, &encoded_cp);
5530 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5531 uint64_t value)
5533 /* Helper coprocessor write function for write-ignore registers */
5536 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5538 /* Helper coprocessor write function for read-as-zero registers */
5539 return 0;
5542 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5544 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5547 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5549 /* Return true if it is not valid for us to switch to
5550 * this CPU mode (ie all the UNPREDICTABLE cases in
5551 * the ARM ARM CPSRWriteByInstr pseudocode).
5554 /* Changes to or from Hyp via MSR and CPS are illegal. */
5555 if (write_type == CPSRWriteByInstr &&
5556 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5557 mode == ARM_CPU_MODE_HYP)) {
5558 return 1;
5561 switch (mode) {
5562 case ARM_CPU_MODE_USR:
5563 return 0;
5564 case ARM_CPU_MODE_SYS:
5565 case ARM_CPU_MODE_SVC:
5566 case ARM_CPU_MODE_ABT:
5567 case ARM_CPU_MODE_UND:
5568 case ARM_CPU_MODE_IRQ:
5569 case ARM_CPU_MODE_FIQ:
5570 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5571 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5573 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5574 * and CPS are treated as illegal mode changes.
5576 if (write_type == CPSRWriteByInstr &&
5577 (env->cp15.hcr_el2 & HCR_TGE) &&
5578 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5579 !arm_is_secure_below_el3(env)) {
5580 return 1;
5582 return 0;
5583 case ARM_CPU_MODE_HYP:
5584 return !arm_feature(env, ARM_FEATURE_EL2)
5585 || arm_current_el(env) < 2 || arm_is_secure(env);
5586 case ARM_CPU_MODE_MON:
5587 return arm_current_el(env) < 3;
5588 default:
5589 return 1;
5593 uint32_t cpsr_read(CPUARMState *env)
5595 int ZF;
5596 ZF = (env->ZF == 0);
5597 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5598 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5599 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5600 | ((env->condexec_bits & 0xfc) << 8)
5601 | (env->GE << 16) | (env->daif & CPSR_AIF);
5604 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5605 CPSRWriteType write_type)
5607 uint32_t changed_daif;
5609 if (mask & CPSR_NZCV) {
5610 env->ZF = (~val) & CPSR_Z;
5611 env->NF = val;
5612 env->CF = (val >> 29) & 1;
5613 env->VF = (val << 3) & 0x80000000;
5615 if (mask & CPSR_Q)
5616 env->QF = ((val & CPSR_Q) != 0);
5617 if (mask & CPSR_T)
5618 env->thumb = ((val & CPSR_T) != 0);
5619 if (mask & CPSR_IT_0_1) {
5620 env->condexec_bits &= ~3;
5621 env->condexec_bits |= (val >> 25) & 3;
5623 if (mask & CPSR_IT_2_7) {
5624 env->condexec_bits &= 3;
5625 env->condexec_bits |= (val >> 8) & 0xfc;
5627 if (mask & CPSR_GE) {
5628 env->GE = (val >> 16) & 0xf;
5631 /* In a V7 implementation that includes the security extensions but does
5632 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5633 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5634 * bits respectively.
5636 * In a V8 implementation, it is permitted for privileged software to
5637 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5639 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5640 arm_feature(env, ARM_FEATURE_EL3) &&
5641 !arm_feature(env, ARM_FEATURE_EL2) &&
5642 !arm_is_secure(env)) {
5644 changed_daif = (env->daif ^ val) & mask;
5646 if (changed_daif & CPSR_A) {
5647 /* Check to see if we are allowed to change the masking of async
5648 * abort exceptions from a non-secure state.
5650 if (!(env->cp15.scr_el3 & SCR_AW)) {
5651 qemu_log_mask(LOG_GUEST_ERROR,
5652 "Ignoring attempt to switch CPSR_A flag from "
5653 "non-secure world with SCR.AW bit clear\n");
5654 mask &= ~CPSR_A;
5658 if (changed_daif & CPSR_F) {
5659 /* Check to see if we are allowed to change the masking of FIQ
5660 * exceptions from a non-secure state.
5662 if (!(env->cp15.scr_el3 & SCR_FW)) {
5663 qemu_log_mask(LOG_GUEST_ERROR,
5664 "Ignoring attempt to switch CPSR_F flag from "
5665 "non-secure world with SCR.FW bit clear\n");
5666 mask &= ~CPSR_F;
5669 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5670 * If this bit is set software is not allowed to mask
5671 * FIQs, but is allowed to set CPSR_F to 0.
5673 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5674 (val & CPSR_F)) {
5675 qemu_log_mask(LOG_GUEST_ERROR,
5676 "Ignoring attempt to enable CPSR_F flag "
5677 "(non-maskable FIQ [NMFI] support enabled)\n");
5678 mask &= ~CPSR_F;
5683 env->daif &= ~(CPSR_AIF & mask);
5684 env->daif |= val & CPSR_AIF & mask;
5686 if (write_type != CPSRWriteRaw &&
5687 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5688 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5689 /* Note that we can only get here in USR mode if this is a
5690 * gdb stub write; for this case we follow the architectural
5691 * behaviour for guest writes in USR mode of ignoring an attempt
5692 * to switch mode. (Those are caught by translate.c for writes
5693 * triggered by guest instructions.)
5695 mask &= ~CPSR_M;
5696 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5697 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5698 * v7, and has defined behaviour in v8:
5699 * + leave CPSR.M untouched
5700 * + allow changes to the other CPSR fields
5701 * + set PSTATE.IL
5702 * For user changes via the GDB stub, we don't set PSTATE.IL,
5703 * as this would be unnecessarily harsh for a user error.
5705 mask &= ~CPSR_M;
5706 if (write_type != CPSRWriteByGDBStub &&
5707 arm_feature(env, ARM_FEATURE_V8)) {
5708 mask |= CPSR_IL;
5709 val |= CPSR_IL;
5711 } else {
5712 switch_mode(env, val & CPSR_M);
5715 mask &= ~CACHED_CPSR_BITS;
5716 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5719 /* Sign/zero extend */
5720 uint32_t HELPER(sxtb16)(uint32_t x)
5722 uint32_t res;
5723 res = (uint16_t)(int8_t)x;
5724 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5725 return res;
5728 uint32_t HELPER(uxtb16)(uint32_t x)
5730 uint32_t res;
5731 res = (uint16_t)(uint8_t)x;
5732 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5733 return res;
5736 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5738 if (den == 0)
5739 return 0;
5740 if (num == INT_MIN && den == -1)
5741 return INT_MIN;
5742 return num / den;
5745 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5747 if (den == 0)
5748 return 0;
5749 return num / den;
5752 uint32_t HELPER(rbit)(uint32_t x)
5754 return revbit32(x);
5757 #if defined(CONFIG_USER_ONLY)
5759 /* These should probably raise undefined insn exceptions. */
5760 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5762 ARMCPU *cpu = arm_env_get_cpu(env);
5764 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5767 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5769 ARMCPU *cpu = arm_env_get_cpu(env);
5771 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5772 return 0;
5775 void switch_mode(CPUARMState *env, int mode)
5777 ARMCPU *cpu = arm_env_get_cpu(env);
5779 if (mode != ARM_CPU_MODE_USR) {
5780 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5784 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5785 uint32_t cur_el, bool secure)
5787 return 1;
5790 void aarch64_sync_64_to_32(CPUARMState *env)
5792 g_assert_not_reached();
5795 #else
5797 void switch_mode(CPUARMState *env, int mode)
5799 int old_mode;
5800 int i;
5802 old_mode = env->uncached_cpsr & CPSR_M;
5803 if (mode == old_mode)
5804 return;
5806 if (old_mode == ARM_CPU_MODE_FIQ) {
5807 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5808 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5809 } else if (mode == ARM_CPU_MODE_FIQ) {
5810 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5811 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5814 i = bank_number(old_mode);
5815 env->banked_r13[i] = env->regs[13];
5816 env->banked_r14[i] = env->regs[14];
5817 env->banked_spsr[i] = env->spsr;
5819 i = bank_number(mode);
5820 env->regs[13] = env->banked_r13[i];
5821 env->regs[14] = env->banked_r14[i];
5822 env->spsr = env->banked_spsr[i];
5825 /* Physical Interrupt Target EL Lookup Table
5827 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5829 * The below multi-dimensional table is used for looking up the target
5830 * exception level given numerous condition criteria. Specifically, the
5831 * target EL is based on SCR and HCR routing controls as well as the
5832 * currently executing EL and secure state.
5834 * Dimensions:
5835 * target_el_table[2][2][2][2][2][4]
5836 * | | | | | +--- Current EL
5837 * | | | | +------ Non-secure(0)/Secure(1)
5838 * | | | +--------- HCR mask override
5839 * | | +------------ SCR exec state control
5840 * | +--------------- SCR mask override
5841 * +------------------ 32-bit(0)/64-bit(1) EL3
5843 * The table values are as such:
5844 * 0-3 = EL0-EL3
5845 * -1 = Cannot occur
5847 * The ARM ARM target EL table includes entries indicating that an "exception
5848 * is not taken". The two cases where this is applicable are:
5849 * 1) An exception is taken from EL3 but the SCR does not have the exception
5850 * routed to EL3.
5851 * 2) An exception is taken from EL2 but the HCR does not have the exception
5852 * routed to EL2.
5853 * In these two cases, the below table contain a target of EL1. This value is
5854 * returned as it is expected that the consumer of the table data will check
5855 * for "target EL >= current EL" to ensure the exception is not taken.
5857 * SCR HCR
5858 * 64 EA AMO From
5859 * BIT IRQ IMO Non-secure Secure
5860 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5862 static const int8_t target_el_table[2][2][2][2][2][4] = {
5863 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5864 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5865 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5866 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5867 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5868 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5869 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5870 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5871 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5872 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5873 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5874 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5875 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5876 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5877 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5878 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5882 * Determine the target EL for physical exceptions
5884 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5885 uint32_t cur_el, bool secure)
5887 CPUARMState *env = cs->env_ptr;
5888 int rw;
5889 int scr;
5890 int hcr;
5891 int target_el;
5892 /* Is the highest EL AArch64? */
5893 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5895 if (arm_feature(env, ARM_FEATURE_EL3)) {
5896 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5897 } else {
5898 /* Either EL2 is the highest EL (and so the EL2 register width
5899 * is given by is64); or there is no EL2 or EL3, in which case
5900 * the value of 'rw' does not affect the table lookup anyway.
5902 rw = is64;
5905 switch (excp_idx) {
5906 case EXCP_IRQ:
5907 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5908 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5909 break;
5910 case EXCP_FIQ:
5911 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5912 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5913 break;
5914 default:
5915 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5916 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5917 break;
5920 /* If HCR.TGE is set then HCR is treated as being 1 */
5921 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5923 /* Perform a table-lookup for the target EL given the current state */
5924 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5926 assert(target_el > 0);
5928 return target_el;
5931 static void v7m_push(CPUARMState *env, uint32_t val)
5933 CPUState *cs = CPU(arm_env_get_cpu(env));
5935 env->regs[13] -= 4;
5936 stl_phys(cs->as, env->regs[13], val);
5939 static uint32_t v7m_pop(CPUARMState *env)
5941 CPUState *cs = CPU(arm_env_get_cpu(env));
5942 uint32_t val;
5944 val = ldl_phys(cs->as, env->regs[13]);
5945 env->regs[13] += 4;
5946 return val;
5949 /* Switch to V7M main or process stack pointer. */
5950 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
5952 uint32_t tmp;
5953 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
5955 if (old_spsel != new_spsel) {
5956 tmp = env->v7m.other_sp;
5957 env->v7m.other_sp = env->regs[13];
5958 env->regs[13] = tmp;
5960 env->v7m.control = deposit32(env->v7m.control,
5961 R_V7M_CONTROL_SPSEL_SHIFT,
5962 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
5966 static void do_v7m_exception_exit(CPUARMState *env)
5968 uint32_t type;
5969 uint32_t xpsr;
5971 type = env->regs[15];
5972 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
5973 /* Auto-clear FAULTMASK on return from other than NMI */
5974 env->daif &= ~PSTATE_F;
5976 if (env->v7m.exception != 0) {
5977 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5980 /* Switch to the target stack. */
5981 switch_v7m_sp(env, (type & 4) != 0);
5982 /* Pop registers. */
5983 env->regs[0] = v7m_pop(env);
5984 env->regs[1] = v7m_pop(env);
5985 env->regs[2] = v7m_pop(env);
5986 env->regs[3] = v7m_pop(env);
5987 env->regs[12] = v7m_pop(env);
5988 env->regs[14] = v7m_pop(env);
5989 env->regs[15] = v7m_pop(env);
5990 if (env->regs[15] & 1) {
5991 qemu_log_mask(LOG_GUEST_ERROR,
5992 "M profile return from interrupt with misaligned "
5993 "PC is UNPREDICTABLE\n");
5994 /* Actual hardware seems to ignore the lsbit, and there are several
5995 * RTOSes out there which incorrectly assume the r15 in the stack
5996 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5998 env->regs[15] &= ~1U;
6000 xpsr = v7m_pop(env);
6001 xpsr_write(env, xpsr, 0xfffffdff);
6002 /* Undo stack alignment. */
6003 if (xpsr & 0x200)
6004 env->regs[13] |= 4;
6005 /* ??? The exception return type specifies Thread/Handler mode. However
6006 this is also implied by the xPSR value. Not sure what to do
6007 if there is a mismatch. */
6008 /* ??? Likewise for mismatches between the CONTROL register and the stack
6009 pointer. */
6012 static void arm_log_exception(int idx)
6014 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6015 const char *exc = NULL;
6017 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6018 exc = excnames[idx];
6020 if (!exc) {
6021 exc = "unknown";
6023 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6027 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6030 CPUState *cs = CPU(cpu);
6031 CPUARMState *env = &cpu->env;
6032 MemTxResult result;
6033 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
6034 uint32_t addr;
6036 addr = address_space_ldl(cs->as, vec,
6037 MEMTXATTRS_UNSPECIFIED, &result);
6038 if (result != MEMTX_OK) {
6039 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6040 * which would then be immediately followed by our failing to load
6041 * the entry vector for that HardFault, which is a Lockup case.
6042 * Since we don't model Lockup, we just report this guest error
6043 * via cpu_abort().
6045 cpu_abort(cs, "Failed to read from exception vector table "
6046 "entry %08x\n", (unsigned)vec);
6048 return addr;
6051 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6053 ARMCPU *cpu = ARM_CPU(cs);
6054 CPUARMState *env = &cpu->env;
6055 uint32_t xpsr = xpsr_read(env);
6056 uint32_t lr;
6057 uint32_t addr;
6059 arm_log_exception(cs->exception_index);
6061 lr = 0xfffffff1;
6062 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
6063 lr |= 4;
6065 if (env->v7m.exception == 0)
6066 lr |= 8;
6068 /* For exceptions we just mark as pending on the NVIC, and let that
6069 handle it. */
6070 /* TODO: Need to escalate if the current priority is higher than the
6071 one we're raising. */
6072 switch (cs->exception_index) {
6073 case EXCP_UDEF:
6074 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6075 return;
6076 case EXCP_SWI:
6077 /* The PC already points to the next instruction. */
6078 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6079 return;
6080 case EXCP_PREFETCH_ABORT:
6081 case EXCP_DATA_ABORT:
6082 /* TODO: if we implemented the MPU registers, this is where we
6083 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6085 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6086 return;
6087 case EXCP_BKPT:
6088 if (semihosting_enabled()) {
6089 int nr;
6090 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6091 if (nr == 0xab) {
6092 env->regs[15] += 2;
6093 qemu_log_mask(CPU_LOG_INT,
6094 "...handling as semihosting call 0x%x\n",
6095 env->regs[0]);
6096 env->regs[0] = do_arm_semihosting(env);
6097 return;
6100 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6101 return;
6102 case EXCP_IRQ:
6103 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
6104 break;
6105 case EXCP_EXCEPTION_EXIT:
6106 do_v7m_exception_exit(env);
6107 return;
6108 default:
6109 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6110 return; /* Never happens. Keep compiler happy. */
6113 /* Align stack pointer. */
6114 /* ??? Should only do this if Configuration Control Register
6115 STACKALIGN bit is set. */
6116 if (env->regs[13] & 4) {
6117 env->regs[13] -= 4;
6118 xpsr |= 0x200;
6120 /* Switch to the handler mode. */
6121 v7m_push(env, xpsr);
6122 v7m_push(env, env->regs[15]);
6123 v7m_push(env, env->regs[14]);
6124 v7m_push(env, env->regs[12]);
6125 v7m_push(env, env->regs[3]);
6126 v7m_push(env, env->regs[2]);
6127 v7m_push(env, env->regs[1]);
6128 v7m_push(env, env->regs[0]);
6129 switch_v7m_sp(env, 0);
6130 /* Clear IT bits */
6131 env->condexec_bits = 0;
6132 env->regs[14] = lr;
6133 addr = arm_v7m_load_vector(cpu);
6134 env->regs[15] = addr & 0xfffffffe;
6135 env->thumb = addr & 1;
6138 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6139 * register set. This is necessary when switching between AArch32 and AArch64
6140 * execution state.
6142 void aarch64_sync_32_to_64(CPUARMState *env)
6144 int i;
6145 uint32_t mode = env->uncached_cpsr & CPSR_M;
6147 /* We can blanket copy R[0:7] to X[0:7] */
6148 for (i = 0; i < 8; i++) {
6149 env->xregs[i] = env->regs[i];
6152 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6153 * Otherwise, they come from the banked user regs.
6155 if (mode == ARM_CPU_MODE_FIQ) {
6156 for (i = 8; i < 13; i++) {
6157 env->xregs[i] = env->usr_regs[i - 8];
6159 } else {
6160 for (i = 8; i < 13; i++) {
6161 env->xregs[i] = env->regs[i];
6165 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6166 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6167 * from the mode banked register.
6169 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6170 env->xregs[13] = env->regs[13];
6171 env->xregs[14] = env->regs[14];
6172 } else {
6173 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6174 /* HYP is an exception in that it is copied from r14 */
6175 if (mode == ARM_CPU_MODE_HYP) {
6176 env->xregs[14] = env->regs[14];
6177 } else {
6178 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6182 if (mode == ARM_CPU_MODE_HYP) {
6183 env->xregs[15] = env->regs[13];
6184 } else {
6185 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6188 if (mode == ARM_CPU_MODE_IRQ) {
6189 env->xregs[16] = env->regs[14];
6190 env->xregs[17] = env->regs[13];
6191 } else {
6192 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6193 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6196 if (mode == ARM_CPU_MODE_SVC) {
6197 env->xregs[18] = env->regs[14];
6198 env->xregs[19] = env->regs[13];
6199 } else {
6200 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6201 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6204 if (mode == ARM_CPU_MODE_ABT) {
6205 env->xregs[20] = env->regs[14];
6206 env->xregs[21] = env->regs[13];
6207 } else {
6208 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6209 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6212 if (mode == ARM_CPU_MODE_UND) {
6213 env->xregs[22] = env->regs[14];
6214 env->xregs[23] = env->regs[13];
6215 } else {
6216 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6217 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6220 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6221 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6222 * FIQ bank for r8-r14.
6224 if (mode == ARM_CPU_MODE_FIQ) {
6225 for (i = 24; i < 31; i++) {
6226 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6228 } else {
6229 for (i = 24; i < 29; i++) {
6230 env->xregs[i] = env->fiq_regs[i - 24];
6232 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6233 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6236 env->pc = env->regs[15];
6239 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6240 * register set. This is necessary when switching between AArch32 and AArch64
6241 * execution state.
6243 void aarch64_sync_64_to_32(CPUARMState *env)
6245 int i;
6246 uint32_t mode = env->uncached_cpsr & CPSR_M;
6248 /* We can blanket copy X[0:7] to R[0:7] */
6249 for (i = 0; i < 8; i++) {
6250 env->regs[i] = env->xregs[i];
6253 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6254 * Otherwise, we copy x8-x12 into the banked user regs.
6256 if (mode == ARM_CPU_MODE_FIQ) {
6257 for (i = 8; i < 13; i++) {
6258 env->usr_regs[i - 8] = env->xregs[i];
6260 } else {
6261 for (i = 8; i < 13; i++) {
6262 env->regs[i] = env->xregs[i];
6266 /* Registers r13 & r14 depend on the current mode.
6267 * If we are in a given mode, we copy the corresponding x registers to r13
6268 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6269 * for the mode.
6271 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6272 env->regs[13] = env->xregs[13];
6273 env->regs[14] = env->xregs[14];
6274 } else {
6275 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6277 /* HYP is an exception in that it does not have its own banked r14 but
6278 * shares the USR r14
6280 if (mode == ARM_CPU_MODE_HYP) {
6281 env->regs[14] = env->xregs[14];
6282 } else {
6283 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6287 if (mode == ARM_CPU_MODE_HYP) {
6288 env->regs[13] = env->xregs[15];
6289 } else {
6290 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6293 if (mode == ARM_CPU_MODE_IRQ) {
6294 env->regs[14] = env->xregs[16];
6295 env->regs[13] = env->xregs[17];
6296 } else {
6297 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6298 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6301 if (mode == ARM_CPU_MODE_SVC) {
6302 env->regs[14] = env->xregs[18];
6303 env->regs[13] = env->xregs[19];
6304 } else {
6305 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6306 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6309 if (mode == ARM_CPU_MODE_ABT) {
6310 env->regs[14] = env->xregs[20];
6311 env->regs[13] = env->xregs[21];
6312 } else {
6313 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6314 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6317 if (mode == ARM_CPU_MODE_UND) {
6318 env->regs[14] = env->xregs[22];
6319 env->regs[13] = env->xregs[23];
6320 } else {
6321 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6322 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6325 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6326 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6327 * FIQ bank for r8-r14.
6329 if (mode == ARM_CPU_MODE_FIQ) {
6330 for (i = 24; i < 31; i++) {
6331 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6333 } else {
6334 for (i = 24; i < 29; i++) {
6335 env->fiq_regs[i - 24] = env->xregs[i];
6337 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6338 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6341 env->regs[15] = env->pc;
6344 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6346 ARMCPU *cpu = ARM_CPU(cs);
6347 CPUARMState *env = &cpu->env;
6348 uint32_t addr;
6349 uint32_t mask;
6350 int new_mode;
6351 uint32_t offset;
6352 uint32_t moe;
6354 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6355 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6356 case EC_BREAKPOINT:
6357 case EC_BREAKPOINT_SAME_EL:
6358 moe = 1;
6359 break;
6360 case EC_WATCHPOINT:
6361 case EC_WATCHPOINT_SAME_EL:
6362 moe = 10;
6363 break;
6364 case EC_AA32_BKPT:
6365 moe = 3;
6366 break;
6367 case EC_VECTORCATCH:
6368 moe = 5;
6369 break;
6370 default:
6371 moe = 0;
6372 break;
6375 if (moe) {
6376 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6379 /* TODO: Vectored interrupt controller. */
6380 switch (cs->exception_index) {
6381 case EXCP_UDEF:
6382 new_mode = ARM_CPU_MODE_UND;
6383 addr = 0x04;
6384 mask = CPSR_I;
6385 if (env->thumb)
6386 offset = 2;
6387 else
6388 offset = 4;
6389 break;
6390 case EXCP_SWI:
6391 new_mode = ARM_CPU_MODE_SVC;
6392 addr = 0x08;
6393 mask = CPSR_I;
6394 /* The PC already points to the next instruction. */
6395 offset = 0;
6396 break;
6397 case EXCP_BKPT:
6398 env->exception.fsr = 2;
6399 /* Fall through to prefetch abort. */
6400 case EXCP_PREFETCH_ABORT:
6401 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6402 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6403 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6404 env->exception.fsr, (uint32_t)env->exception.vaddress);
6405 new_mode = ARM_CPU_MODE_ABT;
6406 addr = 0x0c;
6407 mask = CPSR_A | CPSR_I;
6408 offset = 4;
6409 break;
6410 case EXCP_DATA_ABORT:
6411 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6412 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6413 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6414 env->exception.fsr,
6415 (uint32_t)env->exception.vaddress);
6416 new_mode = ARM_CPU_MODE_ABT;
6417 addr = 0x10;
6418 mask = CPSR_A | CPSR_I;
6419 offset = 8;
6420 break;
6421 case EXCP_IRQ:
6422 new_mode = ARM_CPU_MODE_IRQ;
6423 addr = 0x18;
6424 /* Disable IRQ and imprecise data aborts. */
6425 mask = CPSR_A | CPSR_I;
6426 offset = 4;
6427 if (env->cp15.scr_el3 & SCR_IRQ) {
6428 /* IRQ routed to monitor mode */
6429 new_mode = ARM_CPU_MODE_MON;
6430 mask |= CPSR_F;
6432 break;
6433 case EXCP_FIQ:
6434 new_mode = ARM_CPU_MODE_FIQ;
6435 addr = 0x1c;
6436 /* Disable FIQ, IRQ and imprecise data aborts. */
6437 mask = CPSR_A | CPSR_I | CPSR_F;
6438 if (env->cp15.scr_el3 & SCR_FIQ) {
6439 /* FIQ routed to monitor mode */
6440 new_mode = ARM_CPU_MODE_MON;
6442 offset = 4;
6443 break;
6444 case EXCP_VIRQ:
6445 new_mode = ARM_CPU_MODE_IRQ;
6446 addr = 0x18;
6447 /* Disable IRQ and imprecise data aborts. */
6448 mask = CPSR_A | CPSR_I;
6449 offset = 4;
6450 break;
6451 case EXCP_VFIQ:
6452 new_mode = ARM_CPU_MODE_FIQ;
6453 addr = 0x1c;
6454 /* Disable FIQ, IRQ and imprecise data aborts. */
6455 mask = CPSR_A | CPSR_I | CPSR_F;
6456 offset = 4;
6457 break;
6458 case EXCP_SMC:
6459 new_mode = ARM_CPU_MODE_MON;
6460 addr = 0x08;
6461 mask = CPSR_A | CPSR_I | CPSR_F;
6462 offset = 0;
6463 break;
6464 default:
6465 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6466 return; /* Never happens. Keep compiler happy. */
6469 if (new_mode == ARM_CPU_MODE_MON) {
6470 addr += env->cp15.mvbar;
6471 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6472 /* High vectors. When enabled, base address cannot be remapped. */
6473 addr += 0xffff0000;
6474 } else {
6475 /* ARM v7 architectures provide a vector base address register to remap
6476 * the interrupt vector table.
6477 * This register is only followed in non-monitor mode, and is banked.
6478 * Note: only bits 31:5 are valid.
6480 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6483 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6484 env->cp15.scr_el3 &= ~SCR_NS;
6487 switch_mode (env, new_mode);
6488 /* For exceptions taken to AArch32 we must clear the SS bit in both
6489 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6491 env->uncached_cpsr &= ~PSTATE_SS;
6492 env->spsr = cpsr_read(env);
6493 /* Clear IT bits. */
6494 env->condexec_bits = 0;
6495 /* Switch to the new mode, and to the correct instruction set. */
6496 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6497 /* Set new mode endianness */
6498 env->uncached_cpsr &= ~CPSR_E;
6499 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6500 env->uncached_cpsr |= CPSR_E;
6502 env->daif |= mask;
6503 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6504 * and we should just guard the thumb mode on V4 */
6505 if (arm_feature(env, ARM_FEATURE_V4T)) {
6506 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6508 env->regs[14] = env->regs[15] + offset;
6509 env->regs[15] = addr;
6512 /* Handle exception entry to a target EL which is using AArch64 */
6513 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6515 ARMCPU *cpu = ARM_CPU(cs);
6516 CPUARMState *env = &cpu->env;
6517 unsigned int new_el = env->exception.target_el;
6518 target_ulong addr = env->cp15.vbar_el[new_el];
6519 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6521 if (arm_current_el(env) < new_el) {
6522 /* Entry vector offset depends on whether the implemented EL
6523 * immediately lower than the target level is using AArch32 or AArch64
6525 bool is_aa64;
6527 switch (new_el) {
6528 case 3:
6529 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6530 break;
6531 case 2:
6532 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6533 break;
6534 case 1:
6535 is_aa64 = is_a64(env);
6536 break;
6537 default:
6538 g_assert_not_reached();
6541 if (is_aa64) {
6542 addr += 0x400;
6543 } else {
6544 addr += 0x600;
6546 } else if (pstate_read(env) & PSTATE_SP) {
6547 addr += 0x200;
6550 switch (cs->exception_index) {
6551 case EXCP_PREFETCH_ABORT:
6552 case EXCP_DATA_ABORT:
6553 env->cp15.far_el[new_el] = env->exception.vaddress;
6554 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6555 env->cp15.far_el[new_el]);
6556 /* fall through */
6557 case EXCP_BKPT:
6558 case EXCP_UDEF:
6559 case EXCP_SWI:
6560 case EXCP_HVC:
6561 case EXCP_HYP_TRAP:
6562 case EXCP_SMC:
6563 env->cp15.esr_el[new_el] = env->exception.syndrome;
6564 break;
6565 case EXCP_IRQ:
6566 case EXCP_VIRQ:
6567 addr += 0x80;
6568 break;
6569 case EXCP_FIQ:
6570 case EXCP_VFIQ:
6571 addr += 0x100;
6572 break;
6573 case EXCP_SEMIHOST:
6574 qemu_log_mask(CPU_LOG_INT,
6575 "...handling as semihosting call 0x%" PRIx64 "\n",
6576 env->xregs[0]);
6577 env->xregs[0] = do_arm_semihosting(env);
6578 return;
6579 default:
6580 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6583 if (is_a64(env)) {
6584 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6585 aarch64_save_sp(env, arm_current_el(env));
6586 env->elr_el[new_el] = env->pc;
6587 } else {
6588 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6589 env->elr_el[new_el] = env->regs[15];
6591 aarch64_sync_32_to_64(env);
6593 env->condexec_bits = 0;
6595 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6596 env->elr_el[new_el]);
6598 pstate_write(env, PSTATE_DAIF | new_mode);
6599 env->aarch64 = 1;
6600 aarch64_restore_sp(env, new_el);
6602 env->pc = addr;
6604 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6605 new_el, env->pc, pstate_read(env));
6608 static inline bool check_for_semihosting(CPUState *cs)
6610 /* Check whether this exception is a semihosting call; if so
6611 * then handle it and return true; otherwise return false.
6613 ARMCPU *cpu = ARM_CPU(cs);
6614 CPUARMState *env = &cpu->env;
6616 if (is_a64(env)) {
6617 if (cs->exception_index == EXCP_SEMIHOST) {
6618 /* This is always the 64-bit semihosting exception.
6619 * The "is this usermode" and "is semihosting enabled"
6620 * checks have been done at translate time.
6622 qemu_log_mask(CPU_LOG_INT,
6623 "...handling as semihosting call 0x%" PRIx64 "\n",
6624 env->xregs[0]);
6625 env->xregs[0] = do_arm_semihosting(env);
6626 return true;
6628 return false;
6629 } else {
6630 uint32_t imm;
6632 /* Only intercept calls from privileged modes, to provide some
6633 * semblance of security.
6635 if (cs->exception_index != EXCP_SEMIHOST &&
6636 (!semihosting_enabled() ||
6637 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6638 return false;
6641 switch (cs->exception_index) {
6642 case EXCP_SEMIHOST:
6643 /* This is always a semihosting call; the "is this usermode"
6644 * and "is semihosting enabled" checks have been done at
6645 * translate time.
6647 break;
6648 case EXCP_SWI:
6649 /* Check for semihosting interrupt. */
6650 if (env->thumb) {
6651 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6652 & 0xff;
6653 if (imm == 0xab) {
6654 break;
6656 } else {
6657 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6658 & 0xffffff;
6659 if (imm == 0x123456) {
6660 break;
6663 return false;
6664 case EXCP_BKPT:
6665 /* See if this is a semihosting syscall. */
6666 if (env->thumb) {
6667 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6668 & 0xff;
6669 if (imm == 0xab) {
6670 env->regs[15] += 2;
6671 break;
6674 return false;
6675 default:
6676 return false;
6679 qemu_log_mask(CPU_LOG_INT,
6680 "...handling as semihosting call 0x%x\n",
6681 env->regs[0]);
6682 env->regs[0] = do_arm_semihosting(env);
6683 return true;
6687 /* Handle a CPU exception for A and R profile CPUs.
6688 * Do any appropriate logging, handle PSCI calls, and then hand off
6689 * to the AArch64-entry or AArch32-entry function depending on the
6690 * target exception level's register width.
6692 void arm_cpu_do_interrupt(CPUState *cs)
6694 ARMCPU *cpu = ARM_CPU(cs);
6695 CPUARMState *env = &cpu->env;
6696 unsigned int new_el = env->exception.target_el;
6698 assert(!arm_feature(env, ARM_FEATURE_M));
6700 arm_log_exception(cs->exception_index);
6701 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6702 new_el);
6703 if (qemu_loglevel_mask(CPU_LOG_INT)
6704 && !excp_is_internal(cs->exception_index)) {
6705 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6706 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6707 env->exception.syndrome);
6710 if (arm_is_psci_call(cpu, cs->exception_index)) {
6711 arm_handle_psci_call(cpu);
6712 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6713 return;
6716 /* Semihosting semantics depend on the register width of the
6717 * code that caused the exception, not the target exception level,
6718 * so must be handled here.
6720 if (check_for_semihosting(cs)) {
6721 return;
6724 assert(!excp_is_internal(cs->exception_index));
6725 if (arm_el_is_aa64(env, new_el)) {
6726 arm_cpu_do_interrupt_aarch64(cs);
6727 } else {
6728 arm_cpu_do_interrupt_aarch32(cs);
6731 arm_call_el_change_hook(cpu);
6733 if (!kvm_enabled()) {
6734 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6738 /* Return the exception level which controls this address translation regime */
6739 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6741 switch (mmu_idx) {
6742 case ARMMMUIdx_S2NS:
6743 case ARMMMUIdx_S1E2:
6744 return 2;
6745 case ARMMMUIdx_S1E3:
6746 return 3;
6747 case ARMMMUIdx_S1SE0:
6748 return arm_el_is_aa64(env, 3) ? 1 : 3;
6749 case ARMMMUIdx_S1SE1:
6750 case ARMMMUIdx_S1NSE0:
6751 case ARMMMUIdx_S1NSE1:
6752 return 1;
6753 default:
6754 g_assert_not_reached();
6758 /* Return true if this address translation regime is secure */
6759 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6761 switch (mmu_idx) {
6762 case ARMMMUIdx_S12NSE0:
6763 case ARMMMUIdx_S12NSE1:
6764 case ARMMMUIdx_S1NSE0:
6765 case ARMMMUIdx_S1NSE1:
6766 case ARMMMUIdx_S1E2:
6767 case ARMMMUIdx_S2NS:
6768 return false;
6769 case ARMMMUIdx_S1E3:
6770 case ARMMMUIdx_S1SE0:
6771 case ARMMMUIdx_S1SE1:
6772 return true;
6773 default:
6774 g_assert_not_reached();
6778 /* Return the SCTLR value which controls this address translation regime */
6779 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6781 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6784 /* Return true if the specified stage of address translation is disabled */
6785 static inline bool regime_translation_disabled(CPUARMState *env,
6786 ARMMMUIdx mmu_idx)
6788 if (mmu_idx == ARMMMUIdx_S2NS) {
6789 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6791 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6794 static inline bool regime_translation_big_endian(CPUARMState *env,
6795 ARMMMUIdx mmu_idx)
6797 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6800 /* Return the TCR controlling this translation regime */
6801 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6803 if (mmu_idx == ARMMMUIdx_S2NS) {
6804 return &env->cp15.vtcr_el2;
6806 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6809 /* Returns TBI0 value for current regime el */
6810 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
6812 TCR *tcr;
6813 uint32_t el;
6815 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6816 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6818 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6819 mmu_idx += ARMMMUIdx_S1NSE0;
6822 tcr = regime_tcr(env, mmu_idx);
6823 el = regime_el(env, mmu_idx);
6825 if (el > 1) {
6826 return extract64(tcr->raw_tcr, 20, 1);
6827 } else {
6828 return extract64(tcr->raw_tcr, 37, 1);
6832 /* Returns TBI1 value for current regime el */
6833 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
6835 TCR *tcr;
6836 uint32_t el;
6838 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6839 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6841 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6842 mmu_idx += ARMMMUIdx_S1NSE0;
6845 tcr = regime_tcr(env, mmu_idx);
6846 el = regime_el(env, mmu_idx);
6848 if (el > 1) {
6849 return 0;
6850 } else {
6851 return extract64(tcr->raw_tcr, 38, 1);
6855 /* Return the TTBR associated with this translation regime */
6856 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6857 int ttbrn)
6859 if (mmu_idx == ARMMMUIdx_S2NS) {
6860 return env->cp15.vttbr_el2;
6862 if (ttbrn == 0) {
6863 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6864 } else {
6865 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6869 /* Return true if the translation regime is using LPAE format page tables */
6870 static inline bool regime_using_lpae_format(CPUARMState *env,
6871 ARMMMUIdx mmu_idx)
6873 int el = regime_el(env, mmu_idx);
6874 if (el == 2 || arm_el_is_aa64(env, el)) {
6875 return true;
6877 if (arm_feature(env, ARM_FEATURE_LPAE)
6878 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6879 return true;
6881 return false;
6884 /* Returns true if the stage 1 translation regime is using LPAE format page
6885 * tables. Used when raising alignment exceptions, whose FSR changes depending
6886 * on whether the long or short descriptor format is in use. */
6887 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6889 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6890 mmu_idx += ARMMMUIdx_S1NSE0;
6893 return regime_using_lpae_format(env, mmu_idx);
6896 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6898 switch (mmu_idx) {
6899 case ARMMMUIdx_S1SE0:
6900 case ARMMMUIdx_S1NSE0:
6901 return true;
6902 default:
6903 return false;
6904 case ARMMMUIdx_S12NSE0:
6905 case ARMMMUIdx_S12NSE1:
6906 g_assert_not_reached();
6910 /* Translate section/page access permissions to page
6911 * R/W protection flags
6913 * @env: CPUARMState
6914 * @mmu_idx: MMU index indicating required translation regime
6915 * @ap: The 3-bit access permissions (AP[2:0])
6916 * @domain_prot: The 2-bit domain access permissions
6918 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6919 int ap, int domain_prot)
6921 bool is_user = regime_is_user(env, mmu_idx);
6923 if (domain_prot == 3) {
6924 return PAGE_READ | PAGE_WRITE;
6927 switch (ap) {
6928 case 0:
6929 if (arm_feature(env, ARM_FEATURE_V7)) {
6930 return 0;
6932 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6933 case SCTLR_S:
6934 return is_user ? 0 : PAGE_READ;
6935 case SCTLR_R:
6936 return PAGE_READ;
6937 default:
6938 return 0;
6940 case 1:
6941 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6942 case 2:
6943 if (is_user) {
6944 return PAGE_READ;
6945 } else {
6946 return PAGE_READ | PAGE_WRITE;
6948 case 3:
6949 return PAGE_READ | PAGE_WRITE;
6950 case 4: /* Reserved. */
6951 return 0;
6952 case 5:
6953 return is_user ? 0 : PAGE_READ;
6954 case 6:
6955 return PAGE_READ;
6956 case 7:
6957 if (!arm_feature(env, ARM_FEATURE_V6K)) {
6958 return 0;
6960 return PAGE_READ;
6961 default:
6962 g_assert_not_reached();
6966 /* Translate section/page access permissions to page
6967 * R/W protection flags.
6969 * @ap: The 2-bit simple AP (AP[2:1])
6970 * @is_user: TRUE if accessing from PL0
6972 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6974 switch (ap) {
6975 case 0:
6976 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6977 case 1:
6978 return PAGE_READ | PAGE_WRITE;
6979 case 2:
6980 return is_user ? 0 : PAGE_READ;
6981 case 3:
6982 return PAGE_READ;
6983 default:
6984 g_assert_not_reached();
6988 static inline int
6989 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6991 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6994 /* Translate S2 section/page access permissions to protection flags
6996 * @env: CPUARMState
6997 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6998 * @xn: XN (execute-never) bit
7000 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7002 int prot = 0;
7004 if (s2ap & 1) {
7005 prot |= PAGE_READ;
7007 if (s2ap & 2) {
7008 prot |= PAGE_WRITE;
7010 if (!xn) {
7011 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7012 prot |= PAGE_EXEC;
7015 return prot;
7018 /* Translate section/page access permissions to protection flags
7020 * @env: CPUARMState
7021 * @mmu_idx: MMU index indicating required translation regime
7022 * @is_aa64: TRUE if AArch64
7023 * @ap: The 2-bit simple AP (AP[2:1])
7024 * @ns: NS (non-secure) bit
7025 * @xn: XN (execute-never) bit
7026 * @pxn: PXN (privileged execute-never) bit
7028 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7029 int ap, int ns, int xn, int pxn)
7031 bool is_user = regime_is_user(env, mmu_idx);
7032 int prot_rw, user_rw;
7033 bool have_wxn;
7034 int wxn = 0;
7036 assert(mmu_idx != ARMMMUIdx_S2NS);
7038 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7039 if (is_user) {
7040 prot_rw = user_rw;
7041 } else {
7042 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7045 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7046 return prot_rw;
7049 /* TODO have_wxn should be replaced with
7050 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7051 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7052 * compatible processors have EL2, which is required for [U]WXN.
7054 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7056 if (have_wxn) {
7057 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7060 if (is_aa64) {
7061 switch (regime_el(env, mmu_idx)) {
7062 case 1:
7063 if (!is_user) {
7064 xn = pxn || (user_rw & PAGE_WRITE);
7066 break;
7067 case 2:
7068 case 3:
7069 break;
7071 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7072 switch (regime_el(env, mmu_idx)) {
7073 case 1:
7074 case 3:
7075 if (is_user) {
7076 xn = xn || !(user_rw & PAGE_READ);
7077 } else {
7078 int uwxn = 0;
7079 if (have_wxn) {
7080 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7082 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7083 (uwxn && (user_rw & PAGE_WRITE));
7085 break;
7086 case 2:
7087 break;
7089 } else {
7090 xn = wxn = 0;
7093 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7094 return prot_rw;
7096 return prot_rw | PAGE_EXEC;
7099 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7100 uint32_t *table, uint32_t address)
7102 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7103 TCR *tcr = regime_tcr(env, mmu_idx);
7105 if (address & tcr->mask) {
7106 if (tcr->raw_tcr & TTBCR_PD1) {
7107 /* Translation table walk disabled for TTBR1 */
7108 return false;
7110 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7111 } else {
7112 if (tcr->raw_tcr & TTBCR_PD0) {
7113 /* Translation table walk disabled for TTBR0 */
7114 return false;
7116 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7118 *table |= (address >> 18) & 0x3ffc;
7119 return true;
7122 /* Translate a S1 pagetable walk through S2 if needed. */
7123 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7124 hwaddr addr, MemTxAttrs txattrs,
7125 uint32_t *fsr,
7126 ARMMMUFaultInfo *fi)
7128 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7129 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7130 target_ulong s2size;
7131 hwaddr s2pa;
7132 int s2prot;
7133 int ret;
7135 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7136 &txattrs, &s2prot, &s2size, fsr, fi);
7137 if (ret) {
7138 fi->s2addr = addr;
7139 fi->stage2 = true;
7140 fi->s1ptw = true;
7141 return ~0;
7143 addr = s2pa;
7145 return addr;
7148 /* All loads done in the course of a page table walk go through here.
7149 * TODO: rather than ignoring errors from physical memory reads (which
7150 * are external aborts in ARM terminology) we should propagate this
7151 * error out so that we can turn it into a Data Abort if this walk
7152 * was being done for a CPU load/store or an address translation instruction
7153 * (but not if it was for a debug access).
7155 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7156 ARMMMUIdx mmu_idx, uint32_t *fsr,
7157 ARMMMUFaultInfo *fi)
7159 ARMCPU *cpu = ARM_CPU(cs);
7160 CPUARMState *env = &cpu->env;
7161 MemTxAttrs attrs = {};
7162 AddressSpace *as;
7164 attrs.secure = is_secure;
7165 as = arm_addressspace(cs, attrs);
7166 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7167 if (fi->s1ptw) {
7168 return 0;
7170 if (regime_translation_big_endian(env, mmu_idx)) {
7171 return address_space_ldl_be(as, addr, attrs, NULL);
7172 } else {
7173 return address_space_ldl_le(as, addr, attrs, NULL);
7177 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7178 ARMMMUIdx mmu_idx, uint32_t *fsr,
7179 ARMMMUFaultInfo *fi)
7181 ARMCPU *cpu = ARM_CPU(cs);
7182 CPUARMState *env = &cpu->env;
7183 MemTxAttrs attrs = {};
7184 AddressSpace *as;
7186 attrs.secure = is_secure;
7187 as = arm_addressspace(cs, attrs);
7188 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7189 if (fi->s1ptw) {
7190 return 0;
7192 if (regime_translation_big_endian(env, mmu_idx)) {
7193 return address_space_ldq_be(as, addr, attrs, NULL);
7194 } else {
7195 return address_space_ldq_le(as, addr, attrs, NULL);
7199 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7200 int access_type, ARMMMUIdx mmu_idx,
7201 hwaddr *phys_ptr, int *prot,
7202 target_ulong *page_size, uint32_t *fsr,
7203 ARMMMUFaultInfo *fi)
7205 CPUState *cs = CPU(arm_env_get_cpu(env));
7206 int code;
7207 uint32_t table;
7208 uint32_t desc;
7209 int type;
7210 int ap;
7211 int domain = 0;
7212 int domain_prot;
7213 hwaddr phys_addr;
7214 uint32_t dacr;
7216 /* Pagetable walk. */
7217 /* Lookup l1 descriptor. */
7218 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7219 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7220 code = 5;
7221 goto do_fault;
7223 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7224 mmu_idx, fsr, fi);
7225 type = (desc & 3);
7226 domain = (desc >> 5) & 0x0f;
7227 if (regime_el(env, mmu_idx) == 1) {
7228 dacr = env->cp15.dacr_ns;
7229 } else {
7230 dacr = env->cp15.dacr_s;
7232 domain_prot = (dacr >> (domain * 2)) & 3;
7233 if (type == 0) {
7234 /* Section translation fault. */
7235 code = 5;
7236 goto do_fault;
7238 if (domain_prot == 0 || domain_prot == 2) {
7239 if (type == 2)
7240 code = 9; /* Section domain fault. */
7241 else
7242 code = 11; /* Page domain fault. */
7243 goto do_fault;
7245 if (type == 2) {
7246 /* 1Mb section. */
7247 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7248 ap = (desc >> 10) & 3;
7249 code = 13;
7250 *page_size = 1024 * 1024;
7251 } else {
7252 /* Lookup l2 entry. */
7253 if (type == 1) {
7254 /* Coarse pagetable. */
7255 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7256 } else {
7257 /* Fine pagetable. */
7258 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7260 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7261 mmu_idx, fsr, fi);
7262 switch (desc & 3) {
7263 case 0: /* Page translation fault. */
7264 code = 7;
7265 goto do_fault;
7266 case 1: /* 64k page. */
7267 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7268 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7269 *page_size = 0x10000;
7270 break;
7271 case 2: /* 4k page. */
7272 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7273 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7274 *page_size = 0x1000;
7275 break;
7276 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7277 if (type == 1) {
7278 /* ARMv6/XScale extended small page format */
7279 if (arm_feature(env, ARM_FEATURE_XSCALE)
7280 || arm_feature(env, ARM_FEATURE_V6)) {
7281 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7282 *page_size = 0x1000;
7283 } else {
7284 /* UNPREDICTABLE in ARMv5; we choose to take a
7285 * page translation fault.
7287 code = 7;
7288 goto do_fault;
7290 } else {
7291 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7292 *page_size = 0x400;
7294 ap = (desc >> 4) & 3;
7295 break;
7296 default:
7297 /* Never happens, but compiler isn't smart enough to tell. */
7298 abort();
7300 code = 15;
7302 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7303 *prot |= *prot ? PAGE_EXEC : 0;
7304 if (!(*prot & (1 << access_type))) {
7305 /* Access permission fault. */
7306 goto do_fault;
7308 *phys_ptr = phys_addr;
7309 return false;
7310 do_fault:
7311 *fsr = code | (domain << 4);
7312 return true;
7315 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7316 int access_type, ARMMMUIdx mmu_idx,
7317 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7318 target_ulong *page_size, uint32_t *fsr,
7319 ARMMMUFaultInfo *fi)
7321 CPUState *cs = CPU(arm_env_get_cpu(env));
7322 int code;
7323 uint32_t table;
7324 uint32_t desc;
7325 uint32_t xn;
7326 uint32_t pxn = 0;
7327 int type;
7328 int ap;
7329 int domain = 0;
7330 int domain_prot;
7331 hwaddr phys_addr;
7332 uint32_t dacr;
7333 bool ns;
7335 /* Pagetable walk. */
7336 /* Lookup l1 descriptor. */
7337 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7338 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7339 code = 5;
7340 goto do_fault;
7342 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7343 mmu_idx, fsr, fi);
7344 type = (desc & 3);
7345 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7346 /* Section translation fault, or attempt to use the encoding
7347 * which is Reserved on implementations without PXN.
7349 code = 5;
7350 goto do_fault;
7352 if ((type == 1) || !(desc & (1 << 18))) {
7353 /* Page or Section. */
7354 domain = (desc >> 5) & 0x0f;
7356 if (regime_el(env, mmu_idx) == 1) {
7357 dacr = env->cp15.dacr_ns;
7358 } else {
7359 dacr = env->cp15.dacr_s;
7361 domain_prot = (dacr >> (domain * 2)) & 3;
7362 if (domain_prot == 0 || domain_prot == 2) {
7363 if (type != 1) {
7364 code = 9; /* Section domain fault. */
7365 } else {
7366 code = 11; /* Page domain fault. */
7368 goto do_fault;
7370 if (type != 1) {
7371 if (desc & (1 << 18)) {
7372 /* Supersection. */
7373 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7374 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7375 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7376 *page_size = 0x1000000;
7377 } else {
7378 /* Section. */
7379 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7380 *page_size = 0x100000;
7382 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7383 xn = desc & (1 << 4);
7384 pxn = desc & 1;
7385 code = 13;
7386 ns = extract32(desc, 19, 1);
7387 } else {
7388 if (arm_feature(env, ARM_FEATURE_PXN)) {
7389 pxn = (desc >> 2) & 1;
7391 ns = extract32(desc, 3, 1);
7392 /* Lookup l2 entry. */
7393 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7394 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7395 mmu_idx, fsr, fi);
7396 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7397 switch (desc & 3) {
7398 case 0: /* Page translation fault. */
7399 code = 7;
7400 goto do_fault;
7401 case 1: /* 64k page. */
7402 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7403 xn = desc & (1 << 15);
7404 *page_size = 0x10000;
7405 break;
7406 case 2: case 3: /* 4k page. */
7407 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7408 xn = desc & 1;
7409 *page_size = 0x1000;
7410 break;
7411 default:
7412 /* Never happens, but compiler isn't smart enough to tell. */
7413 abort();
7415 code = 15;
7417 if (domain_prot == 3) {
7418 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7419 } else {
7420 if (pxn && !regime_is_user(env, mmu_idx)) {
7421 xn = 1;
7423 if (xn && access_type == 2)
7424 goto do_fault;
7426 if (arm_feature(env, ARM_FEATURE_V6K) &&
7427 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7428 /* The simplified model uses AP[0] as an access control bit. */
7429 if ((ap & 1) == 0) {
7430 /* Access flag fault. */
7431 code = (code == 15) ? 6 : 3;
7432 goto do_fault;
7434 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7435 } else {
7436 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7438 if (*prot && !xn) {
7439 *prot |= PAGE_EXEC;
7441 if (!(*prot & (1 << access_type))) {
7442 /* Access permission fault. */
7443 goto do_fault;
7446 if (ns) {
7447 /* The NS bit will (as required by the architecture) have no effect if
7448 * the CPU doesn't support TZ or this is a non-secure translation
7449 * regime, because the attribute will already be non-secure.
7451 attrs->secure = false;
7453 *phys_ptr = phys_addr;
7454 return false;
7455 do_fault:
7456 *fsr = code | (domain << 4);
7457 return true;
7460 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7461 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7463 typedef enum {
7464 translation_fault = 1,
7465 access_fault = 2,
7466 permission_fault = 3,
7467 } MMUFaultType;
7470 * check_s2_mmu_setup
7471 * @cpu: ARMCPU
7472 * @is_aa64: True if the translation regime is in AArch64 state
7473 * @startlevel: Suggested starting level
7474 * @inputsize: Bitsize of IPAs
7475 * @stride: Page-table stride (See the ARM ARM)
7477 * Returns true if the suggested S2 translation parameters are OK and
7478 * false otherwise.
7480 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7481 int inputsize, int stride)
7483 const int grainsize = stride + 3;
7484 int startsizecheck;
7486 /* Negative levels are never allowed. */
7487 if (level < 0) {
7488 return false;
7491 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7492 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7493 return false;
7496 if (is_aa64) {
7497 CPUARMState *env = &cpu->env;
7498 unsigned int pamax = arm_pamax(cpu);
7500 switch (stride) {
7501 case 13: /* 64KB Pages. */
7502 if (level == 0 || (level == 1 && pamax <= 42)) {
7503 return false;
7505 break;
7506 case 11: /* 16KB Pages. */
7507 if (level == 0 || (level == 1 && pamax <= 40)) {
7508 return false;
7510 break;
7511 case 9: /* 4KB Pages. */
7512 if (level == 0 && pamax <= 42) {
7513 return false;
7515 break;
7516 default:
7517 g_assert_not_reached();
7520 /* Inputsize checks. */
7521 if (inputsize > pamax &&
7522 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7523 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7524 return false;
7526 } else {
7527 /* AArch32 only supports 4KB pages. Assert on that. */
7528 assert(stride == 9);
7530 if (level == 0) {
7531 return false;
7534 return true;
7537 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7538 int access_type, ARMMMUIdx mmu_idx,
7539 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7540 target_ulong *page_size_ptr, uint32_t *fsr,
7541 ARMMMUFaultInfo *fi)
7543 ARMCPU *cpu = arm_env_get_cpu(env);
7544 CPUState *cs = CPU(cpu);
7545 /* Read an LPAE long-descriptor translation table. */
7546 MMUFaultType fault_type = translation_fault;
7547 uint32_t level;
7548 uint32_t epd = 0;
7549 int32_t t0sz, t1sz;
7550 uint32_t tg;
7551 uint64_t ttbr;
7552 int ttbr_select;
7553 hwaddr descaddr, indexmask, indexmask_grainsize;
7554 uint32_t tableattrs;
7555 target_ulong page_size;
7556 uint32_t attrs;
7557 int32_t stride = 9;
7558 int32_t addrsize;
7559 int inputsize;
7560 int32_t tbi = 0;
7561 TCR *tcr = regime_tcr(env, mmu_idx);
7562 int ap, ns, xn, pxn;
7563 uint32_t el = regime_el(env, mmu_idx);
7564 bool ttbr1_valid = true;
7565 uint64_t descaddrmask;
7566 bool aarch64 = arm_el_is_aa64(env, el);
7568 /* TODO:
7569 * This code does not handle the different format TCR for VTCR_EL2.
7570 * This code also does not support shareability levels.
7571 * Attribute and permission bit handling should also be checked when adding
7572 * support for those page table walks.
7574 if (aarch64) {
7575 level = 0;
7576 addrsize = 64;
7577 if (el > 1) {
7578 if (mmu_idx != ARMMMUIdx_S2NS) {
7579 tbi = extract64(tcr->raw_tcr, 20, 1);
7581 } else {
7582 if (extract64(address, 55, 1)) {
7583 tbi = extract64(tcr->raw_tcr, 38, 1);
7584 } else {
7585 tbi = extract64(tcr->raw_tcr, 37, 1);
7588 tbi *= 8;
7590 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7591 * invalid.
7593 if (el > 1) {
7594 ttbr1_valid = false;
7596 } else {
7597 level = 1;
7598 addrsize = 32;
7599 /* There is no TTBR1 for EL2 */
7600 if (el == 2) {
7601 ttbr1_valid = false;
7605 /* Determine whether this address is in the region controlled by
7606 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7607 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7608 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7610 if (aarch64) {
7611 /* AArch64 translation. */
7612 t0sz = extract32(tcr->raw_tcr, 0, 6);
7613 t0sz = MIN(t0sz, 39);
7614 t0sz = MAX(t0sz, 16);
7615 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7616 /* AArch32 stage 1 translation. */
7617 t0sz = extract32(tcr->raw_tcr, 0, 3);
7618 } else {
7619 /* AArch32 stage 2 translation. */
7620 bool sext = extract32(tcr->raw_tcr, 4, 1);
7621 bool sign = extract32(tcr->raw_tcr, 3, 1);
7622 /* Address size is 40-bit for a stage 2 translation,
7623 * and t0sz can be negative (from -8 to 7),
7624 * so we need to adjust it to use the TTBR selecting logic below.
7626 addrsize = 40;
7627 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7629 /* If the sign-extend bit is not the same as t0sz[3], the result
7630 * is unpredictable. Flag this as a guest error. */
7631 if (sign != sext) {
7632 qemu_log_mask(LOG_GUEST_ERROR,
7633 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7636 t1sz = extract32(tcr->raw_tcr, 16, 6);
7637 if (aarch64) {
7638 t1sz = MIN(t1sz, 39);
7639 t1sz = MAX(t1sz, 16);
7641 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7642 /* there is a ttbr0 region and we are in it (high bits all zero) */
7643 ttbr_select = 0;
7644 } else if (ttbr1_valid && t1sz &&
7645 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7646 /* there is a ttbr1 region and we are in it (high bits all one) */
7647 ttbr_select = 1;
7648 } else if (!t0sz) {
7649 /* ttbr0 region is "everything not in the ttbr1 region" */
7650 ttbr_select = 0;
7651 } else if (!t1sz && ttbr1_valid) {
7652 /* ttbr1 region is "everything not in the ttbr0 region" */
7653 ttbr_select = 1;
7654 } else {
7655 /* in the gap between the two regions, this is a Translation fault */
7656 fault_type = translation_fault;
7657 goto do_fault;
7660 /* Note that QEMU ignores shareability and cacheability attributes,
7661 * so we don't need to do anything with the SH, ORGN, IRGN fields
7662 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7663 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7664 * implement any ASID-like capability so we can ignore it (instead
7665 * we will always flush the TLB any time the ASID is changed).
7667 if (ttbr_select == 0) {
7668 ttbr = regime_ttbr(env, mmu_idx, 0);
7669 if (el < 2) {
7670 epd = extract32(tcr->raw_tcr, 7, 1);
7672 inputsize = addrsize - t0sz;
7674 tg = extract32(tcr->raw_tcr, 14, 2);
7675 if (tg == 1) { /* 64KB pages */
7676 stride = 13;
7678 if (tg == 2) { /* 16KB pages */
7679 stride = 11;
7681 } else {
7682 /* We should only be here if TTBR1 is valid */
7683 assert(ttbr1_valid);
7685 ttbr = regime_ttbr(env, mmu_idx, 1);
7686 epd = extract32(tcr->raw_tcr, 23, 1);
7687 inputsize = addrsize - t1sz;
7689 tg = extract32(tcr->raw_tcr, 30, 2);
7690 if (tg == 3) { /* 64KB pages */
7691 stride = 13;
7693 if (tg == 1) { /* 16KB pages */
7694 stride = 11;
7698 /* Here we should have set up all the parameters for the translation:
7699 * inputsize, ttbr, epd, stride, tbi
7702 if (epd) {
7703 /* Translation table walk disabled => Translation fault on TLB miss
7704 * Note: This is always 0 on 64-bit EL2 and EL3.
7706 goto do_fault;
7709 if (mmu_idx != ARMMMUIdx_S2NS) {
7710 /* The starting level depends on the virtual address size (which can
7711 * be up to 48 bits) and the translation granule size. It indicates
7712 * the number of strides (stride bits at a time) needed to
7713 * consume the bits of the input address. In the pseudocode this is:
7714 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7715 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7716 * our 'stride + 3' and 'stride' is our 'stride'.
7717 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7718 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7719 * = 4 - (inputsize - 4) / stride;
7721 level = 4 - (inputsize - 4) / stride;
7722 } else {
7723 /* For stage 2 translations the starting level is specified by the
7724 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7726 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7727 uint32_t startlevel;
7728 bool ok;
7730 if (!aarch64 || stride == 9) {
7731 /* AArch32 or 4KB pages */
7732 startlevel = 2 - sl0;
7733 } else {
7734 /* 16KB or 64KB pages */
7735 startlevel = 3 - sl0;
7738 /* Check that the starting level is valid. */
7739 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7740 inputsize, stride);
7741 if (!ok) {
7742 fault_type = translation_fault;
7743 goto do_fault;
7745 level = startlevel;
7748 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
7749 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7751 /* Now we can extract the actual base address from the TTBR */
7752 descaddr = extract64(ttbr, 0, 48);
7753 descaddr &= ~indexmask;
7755 /* The address field in the descriptor goes up to bit 39 for ARMv7
7756 * but up to bit 47 for ARMv8, but we use the descaddrmask
7757 * up to bit 39 for AArch32, because we don't need other bits in that case
7758 * to construct next descriptor address (anyway they should be all zeroes).
7760 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7761 ~indexmask_grainsize;
7763 /* Secure accesses start with the page table in secure memory and
7764 * can be downgraded to non-secure at any step. Non-secure accesses
7765 * remain non-secure. We implement this by just ORing in the NSTable/NS
7766 * bits at each step.
7768 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7769 for (;;) {
7770 uint64_t descriptor;
7771 bool nstable;
7773 descaddr |= (address >> (stride * (4 - level))) & indexmask;
7774 descaddr &= ~7ULL;
7775 nstable = extract32(tableattrs, 4, 1);
7776 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7777 if (fi->s1ptw) {
7778 goto do_fault;
7781 if (!(descriptor & 1) ||
7782 (!(descriptor & 2) && (level == 3))) {
7783 /* Invalid, or the Reserved level 3 encoding */
7784 goto do_fault;
7786 descaddr = descriptor & descaddrmask;
7788 if ((descriptor & 2) && (level < 3)) {
7789 /* Table entry. The top five bits are attributes which may
7790 * propagate down through lower levels of the table (and
7791 * which are all arranged so that 0 means "no effect", so
7792 * we can gather them up by ORing in the bits at each level).
7794 tableattrs |= extract64(descriptor, 59, 5);
7795 level++;
7796 indexmask = indexmask_grainsize;
7797 continue;
7799 /* Block entry at level 1 or 2, or page entry at level 3.
7800 * These are basically the same thing, although the number
7801 * of bits we pull in from the vaddr varies.
7803 page_size = (1ULL << ((stride * (4 - level)) + 3));
7804 descaddr |= (address & (page_size - 1));
7805 /* Extract attributes from the descriptor */
7806 attrs = extract64(descriptor, 2, 10)
7807 | (extract64(descriptor, 52, 12) << 10);
7809 if (mmu_idx == ARMMMUIdx_S2NS) {
7810 /* Stage 2 table descriptors do not include any attribute fields */
7811 break;
7813 /* Merge in attributes from table descriptors */
7814 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7815 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7816 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7817 * means "force PL1 access only", which means forcing AP[1] to 0.
7819 if (extract32(tableattrs, 2, 1)) {
7820 attrs &= ~(1 << 4);
7822 attrs |= nstable << 3; /* NS */
7823 break;
7825 /* Here descaddr is the final physical address, and attributes
7826 * are all in attrs.
7828 fault_type = access_fault;
7829 if ((attrs & (1 << 8)) == 0) {
7830 /* Access flag */
7831 goto do_fault;
7834 ap = extract32(attrs, 4, 2);
7835 xn = extract32(attrs, 12, 1);
7837 if (mmu_idx == ARMMMUIdx_S2NS) {
7838 ns = true;
7839 *prot = get_S2prot(env, ap, xn);
7840 } else {
7841 ns = extract32(attrs, 3, 1);
7842 pxn = extract32(attrs, 11, 1);
7843 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
7846 fault_type = permission_fault;
7847 if (!(*prot & (1 << access_type))) {
7848 goto do_fault;
7851 if (ns) {
7852 /* The NS bit will (as required by the architecture) have no effect if
7853 * the CPU doesn't support TZ or this is a non-secure translation
7854 * regime, because the attribute will already be non-secure.
7856 txattrs->secure = false;
7858 *phys_ptr = descaddr;
7859 *page_size_ptr = page_size;
7860 return false;
7862 do_fault:
7863 /* Long-descriptor format IFSR/DFSR value */
7864 *fsr = (1 << 9) | (fault_type << 2) | level;
7865 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7866 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7867 return true;
7870 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7871 ARMMMUIdx mmu_idx,
7872 int32_t address, int *prot)
7874 *prot = PAGE_READ | PAGE_WRITE;
7875 switch (address) {
7876 case 0xF0000000 ... 0xFFFFFFFF:
7877 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7878 *prot |= PAGE_EXEC;
7880 break;
7881 case 0x00000000 ... 0x7FFFFFFF:
7882 *prot |= PAGE_EXEC;
7883 break;
7888 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7889 int access_type, ARMMMUIdx mmu_idx,
7890 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7892 ARMCPU *cpu = arm_env_get_cpu(env);
7893 int n;
7894 bool is_user = regime_is_user(env, mmu_idx);
7896 *phys_ptr = address;
7897 *prot = 0;
7899 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7900 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7901 } else { /* MPU enabled */
7902 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7903 /* region search */
7904 uint32_t base = env->pmsav7.drbar[n];
7905 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7906 uint32_t rmask;
7907 bool srdis = false;
7909 if (!(env->pmsav7.drsr[n] & 0x1)) {
7910 continue;
7913 if (!rsize) {
7914 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7915 continue;
7917 rsize++;
7918 rmask = (1ull << rsize) - 1;
7920 if (base & rmask) {
7921 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7922 "to DRSR region size, mask = %" PRIx32,
7923 base, rmask);
7924 continue;
7927 if (address < base || address > base + rmask) {
7928 continue;
7931 /* Region matched */
7933 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7934 int i, snd;
7935 uint32_t srdis_mask;
7937 rsize -= 3; /* sub region size (power of 2) */
7938 snd = ((address - base) >> rsize) & 0x7;
7939 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7941 srdis_mask = srdis ? 0x3 : 0x0;
7942 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7943 /* This will check in groups of 2, 4 and then 8, whether
7944 * the subregion bits are consistent. rsize is incremented
7945 * back up to give the region size, considering consistent
7946 * adjacent subregions as one region. Stop testing if rsize
7947 * is already big enough for an entire QEMU page.
7949 int snd_rounded = snd & ~(i - 1);
7950 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7951 snd_rounded + 8, i);
7952 if (srdis_mask ^ srdis_multi) {
7953 break;
7955 srdis_mask = (srdis_mask << i) | srdis_mask;
7956 rsize++;
7959 if (rsize < TARGET_PAGE_BITS) {
7960 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7961 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7962 rsize, TARGET_PAGE_BITS);
7963 continue;
7965 if (srdis) {
7966 continue;
7968 break;
7971 if (n == -1) { /* no hits */
7972 if (cpu->pmsav7_dregion &&
7973 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7974 /* background fault */
7975 *fsr = 0;
7976 return true;
7978 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7979 } else { /* a MPU hit! */
7980 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7982 if (is_user) { /* User mode AP bit decoding */
7983 switch (ap) {
7984 case 0:
7985 case 1:
7986 case 5:
7987 break; /* no access */
7988 case 3:
7989 *prot |= PAGE_WRITE;
7990 /* fall through */
7991 case 2:
7992 case 6:
7993 *prot |= PAGE_READ | PAGE_EXEC;
7994 break;
7995 default:
7996 qemu_log_mask(LOG_GUEST_ERROR,
7997 "Bad value for AP bits in DRACR %"
7998 PRIx32 "\n", ap);
8000 } else { /* Priv. mode AP bits decoding */
8001 switch (ap) {
8002 case 0:
8003 break; /* no access */
8004 case 1:
8005 case 2:
8006 case 3:
8007 *prot |= PAGE_WRITE;
8008 /* fall through */
8009 case 5:
8010 case 6:
8011 *prot |= PAGE_READ | PAGE_EXEC;
8012 break;
8013 default:
8014 qemu_log_mask(LOG_GUEST_ERROR,
8015 "Bad value for AP bits in DRACR %"
8016 PRIx32 "\n", ap);
8020 /* execute never */
8021 if (env->pmsav7.dracr[n] & (1 << 12)) {
8022 *prot &= ~PAGE_EXEC;
8027 *fsr = 0x00d; /* Permission fault */
8028 return !(*prot & (1 << access_type));
8031 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8032 int access_type, ARMMMUIdx mmu_idx,
8033 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8035 int n;
8036 uint32_t mask;
8037 uint32_t base;
8038 bool is_user = regime_is_user(env, mmu_idx);
8040 *phys_ptr = address;
8041 for (n = 7; n >= 0; n--) {
8042 base = env->cp15.c6_region[n];
8043 if ((base & 1) == 0) {
8044 continue;
8046 mask = 1 << ((base >> 1) & 0x1f);
8047 /* Keep this shift separate from the above to avoid an
8048 (undefined) << 32. */
8049 mask = (mask << 1) - 1;
8050 if (((base ^ address) & ~mask) == 0) {
8051 break;
8054 if (n < 0) {
8055 *fsr = 2;
8056 return true;
8059 if (access_type == 2) {
8060 mask = env->cp15.pmsav5_insn_ap;
8061 } else {
8062 mask = env->cp15.pmsav5_data_ap;
8064 mask = (mask >> (n * 4)) & 0xf;
8065 switch (mask) {
8066 case 0:
8067 *fsr = 1;
8068 return true;
8069 case 1:
8070 if (is_user) {
8071 *fsr = 1;
8072 return true;
8074 *prot = PAGE_READ | PAGE_WRITE;
8075 break;
8076 case 2:
8077 *prot = PAGE_READ;
8078 if (!is_user) {
8079 *prot |= PAGE_WRITE;
8081 break;
8082 case 3:
8083 *prot = PAGE_READ | PAGE_WRITE;
8084 break;
8085 case 5:
8086 if (is_user) {
8087 *fsr = 1;
8088 return true;
8090 *prot = PAGE_READ;
8091 break;
8092 case 6:
8093 *prot = PAGE_READ;
8094 break;
8095 default:
8096 /* Bad permission. */
8097 *fsr = 1;
8098 return true;
8100 *prot |= PAGE_EXEC;
8101 return false;
8104 /* get_phys_addr - get the physical address for this virtual address
8106 * Find the physical address corresponding to the given virtual address,
8107 * by doing a translation table walk on MMU based systems or using the
8108 * MPU state on MPU based systems.
8110 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8111 * prot and page_size may not be filled in, and the populated fsr value provides
8112 * information on why the translation aborted, in the format of a
8113 * DFSR/IFSR fault register, with the following caveats:
8114 * * we honour the short vs long DFSR format differences.
8115 * * the WnR bit is never set (the caller must do this).
8116 * * for PSMAv5 based systems we don't bother to return a full FSR format
8117 * value.
8119 * @env: CPUARMState
8120 * @address: virtual address to get physical address for
8121 * @access_type: 0 for read, 1 for write, 2 for execute
8122 * @mmu_idx: MMU index indicating required translation regime
8123 * @phys_ptr: set to the physical address corresponding to the virtual address
8124 * @attrs: set to the memory transaction attributes to use
8125 * @prot: set to the permissions for the page containing phys_ptr
8126 * @page_size: set to the size of the page containing phys_ptr
8127 * @fsr: set to the DFSR/IFSR value on failure
8129 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8130 int access_type, ARMMMUIdx mmu_idx,
8131 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8132 target_ulong *page_size, uint32_t *fsr,
8133 ARMMMUFaultInfo *fi)
8135 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8136 /* Call ourselves recursively to do the stage 1 and then stage 2
8137 * translations.
8139 if (arm_feature(env, ARM_FEATURE_EL2)) {
8140 hwaddr ipa;
8141 int s2_prot;
8142 int ret;
8144 ret = get_phys_addr(env, address, access_type,
8145 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
8146 prot, page_size, fsr, fi);
8148 /* If S1 fails or S2 is disabled, return early. */
8149 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8150 *phys_ptr = ipa;
8151 return ret;
8154 /* S1 is done. Now do S2 translation. */
8155 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8156 phys_ptr, attrs, &s2_prot,
8157 page_size, fsr, fi);
8158 fi->s2addr = ipa;
8159 /* Combine the S1 and S2 perms. */
8160 *prot &= s2_prot;
8161 return ret;
8162 } else {
8164 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8166 mmu_idx += ARMMMUIdx_S1NSE0;
8170 /* The page table entries may downgrade secure to non-secure, but
8171 * cannot upgrade an non-secure translation regime's attributes
8172 * to secure.
8174 attrs->secure = regime_is_secure(env, mmu_idx);
8175 attrs->user = regime_is_user(env, mmu_idx);
8177 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8178 * In v7 and earlier it affects all stage 1 translations.
8180 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8181 && !arm_feature(env, ARM_FEATURE_V8)) {
8182 if (regime_el(env, mmu_idx) == 3) {
8183 address += env->cp15.fcseidr_s;
8184 } else {
8185 address += env->cp15.fcseidr_ns;
8189 /* pmsav7 has special handling for when MPU is disabled so call it before
8190 * the common MMU/MPU disabled check below.
8192 if (arm_feature(env, ARM_FEATURE_MPU) &&
8193 arm_feature(env, ARM_FEATURE_V7)) {
8194 *page_size = TARGET_PAGE_SIZE;
8195 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8196 phys_ptr, prot, fsr);
8199 if (regime_translation_disabled(env, mmu_idx)) {
8200 /* MMU/MPU disabled. */
8201 *phys_ptr = address;
8202 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8203 *page_size = TARGET_PAGE_SIZE;
8204 return 0;
8207 if (arm_feature(env, ARM_FEATURE_MPU)) {
8208 /* Pre-v7 MPU */
8209 *page_size = TARGET_PAGE_SIZE;
8210 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8211 phys_ptr, prot, fsr);
8214 if (regime_using_lpae_format(env, mmu_idx)) {
8215 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8216 attrs, prot, page_size, fsr, fi);
8217 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8218 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8219 attrs, prot, page_size, fsr, fi);
8220 } else {
8221 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8222 prot, page_size, fsr, fi);
8226 /* Walk the page table and (if the mapping exists) add the page
8227 * to the TLB. Return false on success, or true on failure. Populate
8228 * fsr with ARM DFSR/IFSR fault register format value on failure.
8230 bool arm_tlb_fill(CPUState *cs, vaddr address,
8231 int access_type, int mmu_idx, uint32_t *fsr,
8232 ARMMMUFaultInfo *fi)
8234 ARMCPU *cpu = ARM_CPU(cs);
8235 CPUARMState *env = &cpu->env;
8236 hwaddr phys_addr;
8237 target_ulong page_size;
8238 int prot;
8239 int ret;
8240 MemTxAttrs attrs = {};
8242 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8243 &attrs, &prot, &page_size, fsr, fi);
8244 if (!ret) {
8245 /* Map a single [sub]page. */
8246 phys_addr &= TARGET_PAGE_MASK;
8247 address &= TARGET_PAGE_MASK;
8248 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8249 prot, mmu_idx, page_size);
8250 return 0;
8253 return ret;
8256 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8257 MemTxAttrs *attrs)
8259 ARMCPU *cpu = ARM_CPU(cs);
8260 CPUARMState *env = &cpu->env;
8261 hwaddr phys_addr;
8262 target_ulong page_size;
8263 int prot;
8264 bool ret;
8265 uint32_t fsr;
8266 ARMMMUFaultInfo fi = {};
8268 *attrs = (MemTxAttrs) {};
8270 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8271 attrs, &prot, &page_size, &fsr, &fi);
8273 if (ret) {
8274 return -1;
8276 return phys_addr;
8279 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8281 uint32_t mask;
8282 unsigned el = arm_current_el(env);
8284 /* First handle registers which unprivileged can read */
8286 switch (reg) {
8287 case 0 ... 7: /* xPSR sub-fields */
8288 mask = 0;
8289 if ((reg & 1) && el) {
8290 mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
8292 if (!(reg & 4)) {
8293 mask |= 0xf8000000; /* APSR */
8295 /* EPSR reads as zero */
8296 return xpsr_read(env) & mask;
8297 break;
8298 case 20: /* CONTROL */
8299 return env->v7m.control;
8302 if (el == 0) {
8303 return 0; /* unprivileged reads others as zero */
8306 switch (reg) {
8307 case 8: /* MSP */
8308 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8309 env->v7m.other_sp : env->regs[13];
8310 case 9: /* PSP */
8311 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8312 env->regs[13] : env->v7m.other_sp;
8313 case 16: /* PRIMASK */
8314 return (env->daif & PSTATE_I) != 0;
8315 case 17: /* BASEPRI */
8316 case 18: /* BASEPRI_MAX */
8317 return env->v7m.basepri;
8318 case 19: /* FAULTMASK */
8319 return (env->daif & PSTATE_F) != 0;
8320 default:
8321 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8322 " register %d\n", reg);
8323 return 0;
8327 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
8329 if (arm_current_el(env) == 0 && reg > 7) {
8330 /* only xPSR sub-fields may be written by unprivileged */
8331 return;
8334 switch (reg) {
8335 case 0 ... 7: /* xPSR sub-fields */
8336 /* only APSR is actually writable */
8337 if (reg & 4) {
8338 xpsr_write(env, val, 0xf8000000); /* APSR */
8340 break;
8341 case 8: /* MSP */
8342 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8343 env->v7m.other_sp = val;
8344 } else {
8345 env->regs[13] = val;
8347 break;
8348 case 9: /* PSP */
8349 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8350 env->regs[13] = val;
8351 } else {
8352 env->v7m.other_sp = val;
8354 break;
8355 case 16: /* PRIMASK */
8356 if (val & 1) {
8357 env->daif |= PSTATE_I;
8358 } else {
8359 env->daif &= ~PSTATE_I;
8361 break;
8362 case 17: /* BASEPRI */
8363 env->v7m.basepri = val & 0xff;
8364 break;
8365 case 18: /* BASEPRI_MAX */
8366 val &= 0xff;
8367 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8368 env->v7m.basepri = val;
8369 break;
8370 case 19: /* FAULTMASK */
8371 if (val & 1) {
8372 env->daif |= PSTATE_F;
8373 } else {
8374 env->daif &= ~PSTATE_F;
8376 break;
8377 case 20: /* CONTROL */
8378 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8379 env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK |
8380 R_V7M_CONTROL_NPRIV_MASK);
8381 break;
8382 default:
8383 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8384 " register %d\n", reg);
8385 return;
8389 #endif
8391 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8393 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8394 * Note that we do not implement the (architecturally mandated)
8395 * alignment fault for attempts to use this on Device memory
8396 * (which matches the usual QEMU behaviour of not implementing either
8397 * alignment faults or any memory attribute handling).
8400 ARMCPU *cpu = arm_env_get_cpu(env);
8401 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8402 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8404 #ifndef CONFIG_USER_ONLY
8406 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8407 * the block size so we might have to do more than one TLB lookup.
8408 * We know that in fact for any v8 CPU the page size is at least 4K
8409 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8410 * 1K as an artefact of legacy v5 subpage support being present in the
8411 * same QEMU executable.
8413 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8414 void *hostaddr[maxidx];
8415 int try, i;
8416 unsigned mmu_idx = cpu_mmu_index(env, false);
8417 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8419 for (try = 0; try < 2; try++) {
8421 for (i = 0; i < maxidx; i++) {
8422 hostaddr[i] = tlb_vaddr_to_host(env,
8423 vaddr + TARGET_PAGE_SIZE * i,
8424 1, mmu_idx);
8425 if (!hostaddr[i]) {
8426 break;
8429 if (i == maxidx) {
8430 /* If it's all in the TLB it's fair game for just writing to;
8431 * we know we don't need to update dirty status, etc.
8433 for (i = 0; i < maxidx - 1; i++) {
8434 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8436 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8437 return;
8439 /* OK, try a store and see if we can populate the tlb. This
8440 * might cause an exception if the memory isn't writable,
8441 * in which case we will longjmp out of here. We must for
8442 * this purpose use the actual register value passed to us
8443 * so that we get the fault address right.
8445 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8446 /* Now we can populate the other TLB entries, if any */
8447 for (i = 0; i < maxidx; i++) {
8448 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8449 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8450 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8455 /* Slow path (probably attempt to do this to an I/O device or
8456 * similar, or clearing of a block of code we have translations
8457 * cached for). Just do a series of byte writes as the architecture
8458 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8459 * memset(), unmap() sequence here because:
8460 * + we'd need to account for the blocksize being larger than a page
8461 * + the direct-RAM access case is almost always going to be dealt
8462 * with in the fastpath code above, so there's no speed benefit
8463 * + we would have to deal with the map returning NULL because the
8464 * bounce buffer was in use
8466 for (i = 0; i < blocklen; i++) {
8467 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8470 #else
8471 memset(g2h(vaddr), 0, blocklen);
8472 #endif
8475 /* Note that signed overflow is undefined in C. The following routines are
8476 careful to use unsigned types where modulo arithmetic is required.
8477 Failure to do so _will_ break on newer gcc. */
8479 /* Signed saturating arithmetic. */
8481 /* Perform 16-bit signed saturating addition. */
8482 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8484 uint16_t res;
8486 res = a + b;
8487 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8488 if (a & 0x8000)
8489 res = 0x8000;
8490 else
8491 res = 0x7fff;
8493 return res;
8496 /* Perform 8-bit signed saturating addition. */
8497 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8499 uint8_t res;
8501 res = a + b;
8502 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8503 if (a & 0x80)
8504 res = 0x80;
8505 else
8506 res = 0x7f;
8508 return res;
8511 /* Perform 16-bit signed saturating subtraction. */
8512 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8514 uint16_t res;
8516 res = a - b;
8517 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8518 if (a & 0x8000)
8519 res = 0x8000;
8520 else
8521 res = 0x7fff;
8523 return res;
8526 /* Perform 8-bit signed saturating subtraction. */
8527 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8529 uint8_t res;
8531 res = a - b;
8532 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8533 if (a & 0x80)
8534 res = 0x80;
8535 else
8536 res = 0x7f;
8538 return res;
8541 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8542 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8543 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8544 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8545 #define PFX q
8547 #include "op_addsub.h"
8549 /* Unsigned saturating arithmetic. */
8550 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8552 uint16_t res;
8553 res = a + b;
8554 if (res < a)
8555 res = 0xffff;
8556 return res;
8559 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8561 if (a > b)
8562 return a - b;
8563 else
8564 return 0;
8567 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8569 uint8_t res;
8570 res = a + b;
8571 if (res < a)
8572 res = 0xff;
8573 return res;
8576 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8578 if (a > b)
8579 return a - b;
8580 else
8581 return 0;
8584 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8585 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8586 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8587 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8588 #define PFX uq
8590 #include "op_addsub.h"
8592 /* Signed modulo arithmetic. */
8593 #define SARITH16(a, b, n, op) do { \
8594 int32_t sum; \
8595 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8596 RESULT(sum, n, 16); \
8597 if (sum >= 0) \
8598 ge |= 3 << (n * 2); \
8599 } while(0)
8601 #define SARITH8(a, b, n, op) do { \
8602 int32_t sum; \
8603 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8604 RESULT(sum, n, 8); \
8605 if (sum >= 0) \
8606 ge |= 1 << n; \
8607 } while(0)
8610 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8611 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8612 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8613 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8614 #define PFX s
8615 #define ARITH_GE
8617 #include "op_addsub.h"
8619 /* Unsigned modulo arithmetic. */
8620 #define ADD16(a, b, n) do { \
8621 uint32_t sum; \
8622 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8623 RESULT(sum, n, 16); \
8624 if ((sum >> 16) == 1) \
8625 ge |= 3 << (n * 2); \
8626 } while(0)
8628 #define ADD8(a, b, n) do { \
8629 uint32_t sum; \
8630 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8631 RESULT(sum, n, 8); \
8632 if ((sum >> 8) == 1) \
8633 ge |= 1 << n; \
8634 } while(0)
8636 #define SUB16(a, b, n) do { \
8637 uint32_t sum; \
8638 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8639 RESULT(sum, n, 16); \
8640 if ((sum >> 16) == 0) \
8641 ge |= 3 << (n * 2); \
8642 } while(0)
8644 #define SUB8(a, b, n) do { \
8645 uint32_t sum; \
8646 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8647 RESULT(sum, n, 8); \
8648 if ((sum >> 8) == 0) \
8649 ge |= 1 << n; \
8650 } while(0)
8652 #define PFX u
8653 #define ARITH_GE
8655 #include "op_addsub.h"
8657 /* Halved signed arithmetic. */
8658 #define ADD16(a, b, n) \
8659 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8660 #define SUB16(a, b, n) \
8661 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8662 #define ADD8(a, b, n) \
8663 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8664 #define SUB8(a, b, n) \
8665 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8666 #define PFX sh
8668 #include "op_addsub.h"
8670 /* Halved unsigned arithmetic. */
8671 #define ADD16(a, b, n) \
8672 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8673 #define SUB16(a, b, n) \
8674 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8675 #define ADD8(a, b, n) \
8676 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8677 #define SUB8(a, b, n) \
8678 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8679 #define PFX uh
8681 #include "op_addsub.h"
8683 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8685 if (a > b)
8686 return a - b;
8687 else
8688 return b - a;
8691 /* Unsigned sum of absolute byte differences. */
8692 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8694 uint32_t sum;
8695 sum = do_usad(a, b);
8696 sum += do_usad(a >> 8, b >> 8);
8697 sum += do_usad(a >> 16, b >>16);
8698 sum += do_usad(a >> 24, b >> 24);
8699 return sum;
8702 /* For ARMv6 SEL instruction. */
8703 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8705 uint32_t mask;
8707 mask = 0;
8708 if (flags & 1)
8709 mask |= 0xff;
8710 if (flags & 2)
8711 mask |= 0xff00;
8712 if (flags & 4)
8713 mask |= 0xff0000;
8714 if (flags & 8)
8715 mask |= 0xff000000;
8716 return (a & mask) | (b & ~mask);
8719 /* VFP support. We follow the convention used for VFP instructions:
8720 Single precision routines have a "s" suffix, double precision a
8721 "d" suffix. */
8723 /* Convert host exception flags to vfp form. */
8724 static inline int vfp_exceptbits_from_host(int host_bits)
8726 int target_bits = 0;
8728 if (host_bits & float_flag_invalid)
8729 target_bits |= 1;
8730 if (host_bits & float_flag_divbyzero)
8731 target_bits |= 2;
8732 if (host_bits & float_flag_overflow)
8733 target_bits |= 4;
8734 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8735 target_bits |= 8;
8736 if (host_bits & float_flag_inexact)
8737 target_bits |= 0x10;
8738 if (host_bits & float_flag_input_denormal)
8739 target_bits |= 0x80;
8740 return target_bits;
8743 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8745 int i;
8746 uint32_t fpscr;
8748 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8749 | (env->vfp.vec_len << 16)
8750 | (env->vfp.vec_stride << 20);
8751 i = get_float_exception_flags(&env->vfp.fp_status);
8752 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8753 fpscr |= vfp_exceptbits_from_host(i);
8754 return fpscr;
8757 uint32_t vfp_get_fpscr(CPUARMState *env)
8759 return HELPER(vfp_get_fpscr)(env);
8762 /* Convert vfp exception flags to target form. */
8763 static inline int vfp_exceptbits_to_host(int target_bits)
8765 int host_bits = 0;
8767 if (target_bits & 1)
8768 host_bits |= float_flag_invalid;
8769 if (target_bits & 2)
8770 host_bits |= float_flag_divbyzero;
8771 if (target_bits & 4)
8772 host_bits |= float_flag_overflow;
8773 if (target_bits & 8)
8774 host_bits |= float_flag_underflow;
8775 if (target_bits & 0x10)
8776 host_bits |= float_flag_inexact;
8777 if (target_bits & 0x80)
8778 host_bits |= float_flag_input_denormal;
8779 return host_bits;
8782 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8784 int i;
8785 uint32_t changed;
8787 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8788 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8789 env->vfp.vec_len = (val >> 16) & 7;
8790 env->vfp.vec_stride = (val >> 20) & 3;
8792 changed ^= val;
8793 if (changed & (3 << 22)) {
8794 i = (val >> 22) & 3;
8795 switch (i) {
8796 case FPROUNDING_TIEEVEN:
8797 i = float_round_nearest_even;
8798 break;
8799 case FPROUNDING_POSINF:
8800 i = float_round_up;
8801 break;
8802 case FPROUNDING_NEGINF:
8803 i = float_round_down;
8804 break;
8805 case FPROUNDING_ZERO:
8806 i = float_round_to_zero;
8807 break;
8809 set_float_rounding_mode(i, &env->vfp.fp_status);
8811 if (changed & (1 << 24)) {
8812 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8813 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8815 if (changed & (1 << 25))
8816 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8818 i = vfp_exceptbits_to_host(val);
8819 set_float_exception_flags(i, &env->vfp.fp_status);
8820 set_float_exception_flags(0, &env->vfp.standard_fp_status);
8823 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8825 HELPER(vfp_set_fpscr)(env, val);
8828 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8830 #define VFP_BINOP(name) \
8831 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8833 float_status *fpst = fpstp; \
8834 return float32_ ## name(a, b, fpst); \
8836 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8838 float_status *fpst = fpstp; \
8839 return float64_ ## name(a, b, fpst); \
8841 VFP_BINOP(add)
8842 VFP_BINOP(sub)
8843 VFP_BINOP(mul)
8844 VFP_BINOP(div)
8845 VFP_BINOP(min)
8846 VFP_BINOP(max)
8847 VFP_BINOP(minnum)
8848 VFP_BINOP(maxnum)
8849 #undef VFP_BINOP
8851 float32 VFP_HELPER(neg, s)(float32 a)
8853 return float32_chs(a);
8856 float64 VFP_HELPER(neg, d)(float64 a)
8858 return float64_chs(a);
8861 float32 VFP_HELPER(abs, s)(float32 a)
8863 return float32_abs(a);
8866 float64 VFP_HELPER(abs, d)(float64 a)
8868 return float64_abs(a);
8871 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
8873 return float32_sqrt(a, &env->vfp.fp_status);
8876 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
8878 return float64_sqrt(a, &env->vfp.fp_status);
8881 /* XXX: check quiet/signaling case */
8882 #define DO_VFP_cmp(p, type) \
8883 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8885 uint32_t flags; \
8886 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8887 case 0: flags = 0x6; break; \
8888 case -1: flags = 0x8; break; \
8889 case 1: flags = 0x2; break; \
8890 default: case 2: flags = 0x3; break; \
8892 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8893 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8895 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8897 uint32_t flags; \
8898 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8899 case 0: flags = 0x6; break; \
8900 case -1: flags = 0x8; break; \
8901 case 1: flags = 0x2; break; \
8902 default: case 2: flags = 0x3; break; \
8904 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8905 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8907 DO_VFP_cmp(s, float32)
8908 DO_VFP_cmp(d, float64)
8909 #undef DO_VFP_cmp
8911 /* Integer to float and float to integer conversions */
8913 #define CONV_ITOF(name, fsz, sign) \
8914 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8916 float_status *fpst = fpstp; \
8917 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8920 #define CONV_FTOI(name, fsz, sign, round) \
8921 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8923 float_status *fpst = fpstp; \
8924 if (float##fsz##_is_any_nan(x)) { \
8925 float_raise(float_flag_invalid, fpst); \
8926 return 0; \
8928 return float##fsz##_to_##sign##int32##round(x, fpst); \
8931 #define FLOAT_CONVS(name, p, fsz, sign) \
8932 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8933 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8934 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8936 FLOAT_CONVS(si, s, 32, )
8937 FLOAT_CONVS(si, d, 64, )
8938 FLOAT_CONVS(ui, s, 32, u)
8939 FLOAT_CONVS(ui, d, 64, u)
8941 #undef CONV_ITOF
8942 #undef CONV_FTOI
8943 #undef FLOAT_CONVS
8945 /* floating point conversion */
8946 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8948 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8949 /* ARM requires that S<->D conversion of any kind of NaN generates
8950 * a quiet NaN by forcing the most significant frac bit to 1.
8952 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8955 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
8957 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8958 /* ARM requires that S<->D conversion of any kind of NaN generates
8959 * a quiet NaN by forcing the most significant frac bit to 1.
8961 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
8964 /* VFP3 fixed point conversion. */
8965 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8966 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8967 void *fpstp) \
8969 float_status *fpst = fpstp; \
8970 float##fsz tmp; \
8971 tmp = itype##_to_##float##fsz(x, fpst); \
8972 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8975 /* Notice that we want only input-denormal exception flags from the
8976 * scalbn operation: the other possible flags (overflow+inexact if
8977 * we overflow to infinity, output-denormal) aren't correct for the
8978 * complete scale-and-convert operation.
8980 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8981 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8982 uint32_t shift, \
8983 void *fpstp) \
8985 float_status *fpst = fpstp; \
8986 int old_exc_flags = get_float_exception_flags(fpst); \
8987 float##fsz tmp; \
8988 if (float##fsz##_is_any_nan(x)) { \
8989 float_raise(float_flag_invalid, fpst); \
8990 return 0; \
8992 tmp = float##fsz##_scalbn(x, shift, fpst); \
8993 old_exc_flags |= get_float_exception_flags(fpst) \
8994 & float_flag_input_denormal; \
8995 set_float_exception_flags(old_exc_flags, fpst); \
8996 return float##fsz##_to_##itype##round(tmp, fpst); \
8999 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9000 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9001 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9002 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9004 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9005 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9006 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9008 VFP_CONV_FIX(sh, d, 64, 64, int16)
9009 VFP_CONV_FIX(sl, d, 64, 64, int32)
9010 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9011 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9012 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9013 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9014 VFP_CONV_FIX(sh, s, 32, 32, int16)
9015 VFP_CONV_FIX(sl, s, 32, 32, int32)
9016 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9017 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9018 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9019 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9020 #undef VFP_CONV_FIX
9021 #undef VFP_CONV_FIX_FLOAT
9022 #undef VFP_CONV_FLOAT_FIX_ROUND
9024 /* Set the current fp rounding mode and return the old one.
9025 * The argument is a softfloat float_round_ value.
9027 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9029 float_status *fp_status = &env->vfp.fp_status;
9031 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9032 set_float_rounding_mode(rmode, fp_status);
9034 return prev_rmode;
9037 /* Set the current fp rounding mode in the standard fp status and return
9038 * the old one. This is for NEON instructions that need to change the
9039 * rounding mode but wish to use the standard FPSCR values for everything
9040 * else. Always set the rounding mode back to the correct value after
9041 * modifying it.
9042 * The argument is a softfloat float_round_ value.
9044 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9046 float_status *fp_status = &env->vfp.standard_fp_status;
9048 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9049 set_float_rounding_mode(rmode, fp_status);
9051 return prev_rmode;
9054 /* Half precision conversions. */
9055 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9057 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9058 float32 r = float16_to_float32(make_float16(a), ieee, s);
9059 if (ieee) {
9060 return float32_maybe_silence_nan(r, s);
9062 return r;
9065 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9067 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9068 float16 r = float32_to_float16(a, ieee, s);
9069 if (ieee) {
9070 r = float16_maybe_silence_nan(r, s);
9072 return float16_val(r);
9075 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9077 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9080 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9082 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9085 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9087 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9090 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9092 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9095 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9097 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9098 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9099 if (ieee) {
9100 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9102 return r;
9105 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9107 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9108 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9109 if (ieee) {
9110 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9112 return float16_val(r);
9115 #define float32_two make_float32(0x40000000)
9116 #define float32_three make_float32(0x40400000)
9117 #define float32_one_point_five make_float32(0x3fc00000)
9119 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9121 float_status *s = &env->vfp.standard_fp_status;
9122 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9123 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9124 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9125 float_raise(float_flag_input_denormal, s);
9127 return float32_two;
9129 return float32_sub(float32_two, float32_mul(a, b, s), s);
9132 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9134 float_status *s = &env->vfp.standard_fp_status;
9135 float32 product;
9136 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9137 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9138 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9139 float_raise(float_flag_input_denormal, s);
9141 return float32_one_point_five;
9143 product = float32_mul(a, b, s);
9144 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9147 /* NEON helpers. */
9149 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9150 * int->float conversions at run-time. */
9151 #define float64_256 make_float64(0x4070000000000000LL)
9152 #define float64_512 make_float64(0x4080000000000000LL)
9153 #define float32_maxnorm make_float32(0x7f7fffff)
9154 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9156 /* Reciprocal functions
9158 * The algorithm that must be used to calculate the estimate
9159 * is specified by the ARM ARM, see FPRecipEstimate()
9162 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9164 /* These calculations mustn't set any fp exception flags,
9165 * so we use a local copy of the fp_status.
9167 float_status dummy_status = *real_fp_status;
9168 float_status *s = &dummy_status;
9169 /* q = (int)(a * 512.0) */
9170 float64 q = float64_mul(float64_512, a, s);
9171 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9173 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9174 q = int64_to_float64(q_int, s);
9175 q = float64_add(q, float64_half, s);
9176 q = float64_div(q, float64_512, s);
9177 q = float64_div(float64_one, q, s);
9179 /* s = (int)(256.0 * r + 0.5) */
9180 q = float64_mul(q, float64_256, s);
9181 q = float64_add(q, float64_half, s);
9182 q_int = float64_to_int64_round_to_zero(q, s);
9184 /* return (double)s / 256.0 */
9185 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9188 /* Common wrapper to call recip_estimate */
9189 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9191 uint64_t val64 = float64_val(num);
9192 uint64_t frac = extract64(val64, 0, 52);
9193 int64_t exp = extract64(val64, 52, 11);
9194 uint64_t sbit;
9195 float64 scaled, estimate;
9197 /* Generate the scaled number for the estimate function */
9198 if (exp == 0) {
9199 if (extract64(frac, 51, 1) == 0) {
9200 exp = -1;
9201 frac = extract64(frac, 0, 50) << 2;
9202 } else {
9203 frac = extract64(frac, 0, 51) << 1;
9207 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9208 scaled = make_float64((0x3feULL << 52)
9209 | extract64(frac, 44, 8) << 44);
9211 estimate = recip_estimate(scaled, fpst);
9213 /* Build new result */
9214 val64 = float64_val(estimate);
9215 sbit = 0x8000000000000000ULL & val64;
9216 exp = off - exp;
9217 frac = extract64(val64, 0, 52);
9219 if (exp == 0) {
9220 frac = 1ULL << 51 | extract64(frac, 1, 51);
9221 } else if (exp == -1) {
9222 frac = 1ULL << 50 | extract64(frac, 2, 50);
9223 exp = 0;
9226 return make_float64(sbit | (exp << 52) | frac);
9229 static bool round_to_inf(float_status *fpst, bool sign_bit)
9231 switch (fpst->float_rounding_mode) {
9232 case float_round_nearest_even: /* Round to Nearest */
9233 return true;
9234 case float_round_up: /* Round to +Inf */
9235 return !sign_bit;
9236 case float_round_down: /* Round to -Inf */
9237 return sign_bit;
9238 case float_round_to_zero: /* Round to Zero */
9239 return false;
9242 g_assert_not_reached();
9245 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9247 float_status *fpst = fpstp;
9248 float32 f32 = float32_squash_input_denormal(input, fpst);
9249 uint32_t f32_val = float32_val(f32);
9250 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9251 int32_t f32_exp = extract32(f32_val, 23, 8);
9252 uint32_t f32_frac = extract32(f32_val, 0, 23);
9253 float64 f64, r64;
9254 uint64_t r64_val;
9255 int64_t r64_exp;
9256 uint64_t r64_frac;
9258 if (float32_is_any_nan(f32)) {
9259 float32 nan = f32;
9260 if (float32_is_signaling_nan(f32, fpst)) {
9261 float_raise(float_flag_invalid, fpst);
9262 nan = float32_maybe_silence_nan(f32, fpst);
9264 if (fpst->default_nan_mode) {
9265 nan = float32_default_nan(fpst);
9267 return nan;
9268 } else if (float32_is_infinity(f32)) {
9269 return float32_set_sign(float32_zero, float32_is_neg(f32));
9270 } else if (float32_is_zero(f32)) {
9271 float_raise(float_flag_divbyzero, fpst);
9272 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9273 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9274 /* Abs(value) < 2.0^-128 */
9275 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9276 if (round_to_inf(fpst, f32_sbit)) {
9277 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9278 } else {
9279 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9281 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9282 float_raise(float_flag_underflow, fpst);
9283 return float32_set_sign(float32_zero, float32_is_neg(f32));
9287 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9288 r64 = call_recip_estimate(f64, 253, fpst);
9289 r64_val = float64_val(r64);
9290 r64_exp = extract64(r64_val, 52, 11);
9291 r64_frac = extract64(r64_val, 0, 52);
9293 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9294 return make_float32(f32_sbit |
9295 (r64_exp & 0xff) << 23 |
9296 extract64(r64_frac, 29, 24));
9299 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9301 float_status *fpst = fpstp;
9302 float64 f64 = float64_squash_input_denormal(input, fpst);
9303 uint64_t f64_val = float64_val(f64);
9304 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9305 int64_t f64_exp = extract64(f64_val, 52, 11);
9306 float64 r64;
9307 uint64_t r64_val;
9308 int64_t r64_exp;
9309 uint64_t r64_frac;
9311 /* Deal with any special cases */
9312 if (float64_is_any_nan(f64)) {
9313 float64 nan = f64;
9314 if (float64_is_signaling_nan(f64, fpst)) {
9315 float_raise(float_flag_invalid, fpst);
9316 nan = float64_maybe_silence_nan(f64, fpst);
9318 if (fpst->default_nan_mode) {
9319 nan = float64_default_nan(fpst);
9321 return nan;
9322 } else if (float64_is_infinity(f64)) {
9323 return float64_set_sign(float64_zero, float64_is_neg(f64));
9324 } else if (float64_is_zero(f64)) {
9325 float_raise(float_flag_divbyzero, fpst);
9326 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9327 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9328 /* Abs(value) < 2.0^-1024 */
9329 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9330 if (round_to_inf(fpst, f64_sbit)) {
9331 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9332 } else {
9333 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9335 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9336 float_raise(float_flag_underflow, fpst);
9337 return float64_set_sign(float64_zero, float64_is_neg(f64));
9340 r64 = call_recip_estimate(f64, 2045, fpst);
9341 r64_val = float64_val(r64);
9342 r64_exp = extract64(r64_val, 52, 11);
9343 r64_frac = extract64(r64_val, 0, 52);
9345 /* result = sign : result_exp<10:0> : fraction<51:0> */
9346 return make_float64(f64_sbit |
9347 ((r64_exp & 0x7ff) << 52) |
9348 r64_frac);
9351 /* The algorithm that must be used to calculate the estimate
9352 * is specified by the ARM ARM.
9354 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9356 /* These calculations mustn't set any fp exception flags,
9357 * so we use a local copy of the fp_status.
9359 float_status dummy_status = *real_fp_status;
9360 float_status *s = &dummy_status;
9361 float64 q;
9362 int64_t q_int;
9364 if (float64_lt(a, float64_half, s)) {
9365 /* range 0.25 <= a < 0.5 */
9367 /* a in units of 1/512 rounded down */
9368 /* q0 = (int)(a * 512.0); */
9369 q = float64_mul(float64_512, a, s);
9370 q_int = float64_to_int64_round_to_zero(q, s);
9372 /* reciprocal root r */
9373 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9374 q = int64_to_float64(q_int, s);
9375 q = float64_add(q, float64_half, s);
9376 q = float64_div(q, float64_512, s);
9377 q = float64_sqrt(q, s);
9378 q = float64_div(float64_one, q, s);
9379 } else {
9380 /* range 0.5 <= a < 1.0 */
9382 /* a in units of 1/256 rounded down */
9383 /* q1 = (int)(a * 256.0); */
9384 q = float64_mul(float64_256, a, s);
9385 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9387 /* reciprocal root r */
9388 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9389 q = int64_to_float64(q_int, s);
9390 q = float64_add(q, float64_half, s);
9391 q = float64_div(q, float64_256, s);
9392 q = float64_sqrt(q, s);
9393 q = float64_div(float64_one, q, s);
9395 /* r in units of 1/256 rounded to nearest */
9396 /* s = (int)(256.0 * r + 0.5); */
9398 q = float64_mul(q, float64_256,s );
9399 q = float64_add(q, float64_half, s);
9400 q_int = float64_to_int64_round_to_zero(q, s);
9402 /* return (double)s / 256.0;*/
9403 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9406 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9408 float_status *s = fpstp;
9409 float32 f32 = float32_squash_input_denormal(input, s);
9410 uint32_t val = float32_val(f32);
9411 uint32_t f32_sbit = 0x80000000 & val;
9412 int32_t f32_exp = extract32(val, 23, 8);
9413 uint32_t f32_frac = extract32(val, 0, 23);
9414 uint64_t f64_frac;
9415 uint64_t val64;
9416 int result_exp;
9417 float64 f64;
9419 if (float32_is_any_nan(f32)) {
9420 float32 nan = f32;
9421 if (float32_is_signaling_nan(f32, s)) {
9422 float_raise(float_flag_invalid, s);
9423 nan = float32_maybe_silence_nan(f32, s);
9425 if (s->default_nan_mode) {
9426 nan = float32_default_nan(s);
9428 return nan;
9429 } else if (float32_is_zero(f32)) {
9430 float_raise(float_flag_divbyzero, s);
9431 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9432 } else if (float32_is_neg(f32)) {
9433 float_raise(float_flag_invalid, s);
9434 return float32_default_nan(s);
9435 } else if (float32_is_infinity(f32)) {
9436 return float32_zero;
9439 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9440 * preserving the parity of the exponent. */
9442 f64_frac = ((uint64_t) f32_frac) << 29;
9443 if (f32_exp == 0) {
9444 while (extract64(f64_frac, 51, 1) == 0) {
9445 f64_frac = f64_frac << 1;
9446 f32_exp = f32_exp-1;
9448 f64_frac = extract64(f64_frac, 0, 51) << 1;
9451 if (extract64(f32_exp, 0, 1) == 0) {
9452 f64 = make_float64(((uint64_t) f32_sbit) << 32
9453 | (0x3feULL << 52)
9454 | f64_frac);
9455 } else {
9456 f64 = make_float64(((uint64_t) f32_sbit) << 32
9457 | (0x3fdULL << 52)
9458 | f64_frac);
9461 result_exp = (380 - f32_exp) / 2;
9463 f64 = recip_sqrt_estimate(f64, s);
9465 val64 = float64_val(f64);
9467 val = ((result_exp & 0xff) << 23)
9468 | ((val64 >> 29) & 0x7fffff);
9469 return make_float32(val);
9472 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9474 float_status *s = fpstp;
9475 float64 f64 = float64_squash_input_denormal(input, s);
9476 uint64_t val = float64_val(f64);
9477 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9478 int64_t f64_exp = extract64(val, 52, 11);
9479 uint64_t f64_frac = extract64(val, 0, 52);
9480 int64_t result_exp;
9481 uint64_t result_frac;
9483 if (float64_is_any_nan(f64)) {
9484 float64 nan = f64;
9485 if (float64_is_signaling_nan(f64, s)) {
9486 float_raise(float_flag_invalid, s);
9487 nan = float64_maybe_silence_nan(f64, s);
9489 if (s->default_nan_mode) {
9490 nan = float64_default_nan(s);
9492 return nan;
9493 } else if (float64_is_zero(f64)) {
9494 float_raise(float_flag_divbyzero, s);
9495 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9496 } else if (float64_is_neg(f64)) {
9497 float_raise(float_flag_invalid, s);
9498 return float64_default_nan(s);
9499 } else if (float64_is_infinity(f64)) {
9500 return float64_zero;
9503 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9504 * preserving the parity of the exponent. */
9506 if (f64_exp == 0) {
9507 while (extract64(f64_frac, 51, 1) == 0) {
9508 f64_frac = f64_frac << 1;
9509 f64_exp = f64_exp - 1;
9511 f64_frac = extract64(f64_frac, 0, 51) << 1;
9514 if (extract64(f64_exp, 0, 1) == 0) {
9515 f64 = make_float64(f64_sbit
9516 | (0x3feULL << 52)
9517 | f64_frac);
9518 } else {
9519 f64 = make_float64(f64_sbit
9520 | (0x3fdULL << 52)
9521 | f64_frac);
9524 result_exp = (3068 - f64_exp) / 2;
9526 f64 = recip_sqrt_estimate(f64, s);
9528 result_frac = extract64(float64_val(f64), 0, 52);
9530 return make_float64(f64_sbit |
9531 ((result_exp & 0x7ff) << 52) |
9532 result_frac);
9535 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9537 float_status *s = fpstp;
9538 float64 f64;
9540 if ((a & 0x80000000) == 0) {
9541 return 0xffffffff;
9544 f64 = make_float64((0x3feULL << 52)
9545 | ((int64_t)(a & 0x7fffffff) << 21));
9547 f64 = recip_estimate(f64, s);
9549 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9552 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9554 float_status *fpst = fpstp;
9555 float64 f64;
9557 if ((a & 0xc0000000) == 0) {
9558 return 0xffffffff;
9561 if (a & 0x80000000) {
9562 f64 = make_float64((0x3feULL << 52)
9563 | ((uint64_t)(a & 0x7fffffff) << 21));
9564 } else { /* bits 31-30 == '01' */
9565 f64 = make_float64((0x3fdULL << 52)
9566 | ((uint64_t)(a & 0x3fffffff) << 22));
9569 f64 = recip_sqrt_estimate(f64, fpst);
9571 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9574 /* VFPv4 fused multiply-accumulate */
9575 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9577 float_status *fpst = fpstp;
9578 return float32_muladd(a, b, c, 0, fpst);
9581 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9583 float_status *fpst = fpstp;
9584 return float64_muladd(a, b, c, 0, fpst);
9587 /* ARMv8 round to integral */
9588 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9590 return float32_round_to_int(x, fp_status);
9593 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9595 return float64_round_to_int(x, fp_status);
9598 float32 HELPER(rints)(float32 x, void *fp_status)
9600 int old_flags = get_float_exception_flags(fp_status), new_flags;
9601 float32 ret;
9603 ret = float32_round_to_int(x, fp_status);
9605 /* Suppress any inexact exceptions the conversion produced */
9606 if (!(old_flags & float_flag_inexact)) {
9607 new_flags = get_float_exception_flags(fp_status);
9608 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9611 return ret;
9614 float64 HELPER(rintd)(float64 x, void *fp_status)
9616 int old_flags = get_float_exception_flags(fp_status), new_flags;
9617 float64 ret;
9619 ret = float64_round_to_int(x, fp_status);
9621 new_flags = get_float_exception_flags(fp_status);
9623 /* Suppress any inexact exceptions the conversion produced */
9624 if (!(old_flags & float_flag_inexact)) {
9625 new_flags = get_float_exception_flags(fp_status);
9626 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9629 return ret;
9632 /* Convert ARM rounding mode to softfloat */
9633 int arm_rmode_to_sf(int rmode)
9635 switch (rmode) {
9636 case FPROUNDING_TIEAWAY:
9637 rmode = float_round_ties_away;
9638 break;
9639 case FPROUNDING_ODD:
9640 /* FIXME: add support for TIEAWAY and ODD */
9641 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9642 rmode);
9643 case FPROUNDING_TIEEVEN:
9644 default:
9645 rmode = float_round_nearest_even;
9646 break;
9647 case FPROUNDING_POSINF:
9648 rmode = float_round_up;
9649 break;
9650 case FPROUNDING_NEGINF:
9651 rmode = float_round_down;
9652 break;
9653 case FPROUNDING_ZERO:
9654 rmode = float_round_to_zero;
9655 break;
9657 return rmode;
9660 /* CRC helpers.
9661 * The upper bytes of val (above the number specified by 'bytes') must have
9662 * been zeroed out by the caller.
9664 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9666 uint8_t buf[4];
9668 stl_le_p(buf, val);
9670 /* zlib crc32 converts the accumulator and output to one's complement. */
9671 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9674 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9676 uint8_t buf[4];
9678 stl_le_p(buf, val);
9680 /* Linux crc32c converts the output to one's complement. */
9681 return crc32c(acc, buf, bytes) ^ 0xffffffff;