io: store reference to thread information in the QIOTask struct
[qemu/ar7.git] / target / arm / sve_helper.c
blobbc847250dd1f7be0707c12dec78dcf8eb8724f34
1 /*
2 * ARM SVE Operations
4 * Copyright (c) 2018 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/helper-proto.h"
26 #include "tcg/tcg-gvec-desc.h"
27 #include "fpu/softfloat.h"
30 /* Note that vector data is stored in host-endian 64-bit chunks,
31 so addressing units smaller than that needs a host-endian fixup. */
32 #ifdef HOST_WORDS_BIGENDIAN
33 #define H1(x) ((x) ^ 7)
34 #define H1_2(x) ((x) ^ 6)
35 #define H1_4(x) ((x) ^ 4)
36 #define H2(x) ((x) ^ 3)
37 #define H4(x) ((x) ^ 1)
38 #else
39 #define H1(x) (x)
40 #define H1_2(x) (x)
41 #define H1_4(x) (x)
42 #define H2(x) (x)
43 #define H4(x) (x)
44 #endif
46 /* Return a value for NZCV as per the ARM PredTest pseudofunction.
48 * The return value has bit 31 set if N is set, bit 1 set if Z is clear,
49 * and bit 0 set if C is set. Compare the definitions of these variables
50 * within CPUARMState.
53 /* For no G bits set, NZCV = C. */
54 #define PREDTEST_INIT 1
56 /* This is an iterative function, called for each Pd and Pg word
57 * moving forward.
59 static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
61 if (likely(g)) {
62 /* Compute N from first D & G.
63 Use bit 2 to signal first G bit seen. */
64 if (!(flags & 4)) {
65 flags |= ((d & (g & -g)) != 0) << 31;
66 flags |= 4;
69 /* Accumulate Z from each D & G. */
70 flags |= ((d & g) != 0) << 1;
72 /* Compute C from last !(D & G). Replace previous. */
73 flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
75 return flags;
78 /* This is an iterative function, called for each Pd and Pg word
79 * moving backward.
81 static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags)
83 if (likely(g)) {
84 /* Compute C from first (i.e last) !(D & G).
85 Use bit 2 to signal first G bit seen. */
86 if (!(flags & 4)) {
87 flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */
88 flags |= (d & pow2floor(g)) == 0;
91 /* Accumulate Z from each D & G. */
92 flags |= ((d & g) != 0) << 1;
94 /* Compute N from last (i.e first) D & G. Replace previous. */
95 flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0);
97 return flags;
100 /* The same for a single word predicate. */
101 uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
103 return iter_predtest_fwd(d, g, PREDTEST_INIT);
106 /* The same for a multi-word predicate. */
107 uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
109 uint32_t flags = PREDTEST_INIT;
110 uint64_t *d = vd, *g = vg;
111 uintptr_t i = 0;
113 do {
114 flags = iter_predtest_fwd(d[i], g[i], flags);
115 } while (++i < words);
117 return flags;
120 /* Expand active predicate bits to bytes, for byte elements.
121 * for (i = 0; i < 256; ++i) {
122 * unsigned long m = 0;
123 * for (j = 0; j < 8; j++) {
124 * if ((i >> j) & 1) {
125 * m |= 0xfful << (j << 3);
128 * printf("0x%016lx,\n", m);
131 static inline uint64_t expand_pred_b(uint8_t byte)
133 static const uint64_t word[256] = {
134 0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00,
135 0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff,
136 0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000,
137 0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff,
138 0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00,
139 0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff,
140 0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000,
141 0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff,
142 0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00,
143 0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff,
144 0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000,
145 0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff,
146 0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00,
147 0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff,
148 0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000,
149 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff,
150 0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00,
151 0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff,
152 0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000,
153 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff,
154 0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00,
155 0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff,
156 0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000,
157 0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff,
158 0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00,
159 0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff,
160 0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000,
161 0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff,
162 0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00,
163 0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff,
164 0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000,
165 0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff,
166 0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00,
167 0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff,
168 0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000,
169 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff,
170 0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00,
171 0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff,
172 0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000,
173 0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff,
174 0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00,
175 0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff,
176 0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000,
177 0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff,
178 0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00,
179 0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff,
180 0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000,
181 0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff,
182 0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00,
183 0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff,
184 0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000,
185 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff,
186 0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00,
187 0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff,
188 0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000,
189 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff,
190 0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00,
191 0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff,
192 0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000,
193 0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff,
194 0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00,
195 0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff,
196 0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000,
197 0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff,
198 0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00,
199 0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff,
200 0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000,
201 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff,
202 0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00,
203 0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff,
204 0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000,
205 0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff,
206 0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00,
207 0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff,
208 0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000,
209 0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff,
210 0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00,
211 0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff,
212 0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000,
213 0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff,
214 0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00,
215 0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff,
216 0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000,
217 0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff,
218 0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00,
219 0xffffffffffffffff,
221 return word[byte];
224 /* Similarly for half-word elements.
225 * for (i = 0; i < 256; ++i) {
226 * unsigned long m = 0;
227 * if (i & 0xaa) {
228 * continue;
230 * for (j = 0; j < 8; j += 2) {
231 * if ((i >> j) & 1) {
232 * m |= 0xfffful << (j << 3);
235 * printf("[0x%x] = 0x%016lx,\n", i, m);
238 static inline uint64_t expand_pred_h(uint8_t byte)
240 static const uint64_t word[] = {
241 [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000,
242 [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000,
243 [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000,
244 [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000,
245 [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000,
246 [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000,
247 [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000,
248 [0x55] = 0xffffffffffffffff,
250 return word[byte & 0x55];
253 /* Similarly for single word elements. */
254 static inline uint64_t expand_pred_s(uint8_t byte)
256 static const uint64_t word[] = {
257 [0x01] = 0x00000000ffffffffull,
258 [0x10] = 0xffffffff00000000ull,
259 [0x11] = 0xffffffffffffffffull,
261 return word[byte & 0x11];
264 /* Swap 16-bit words within a 32-bit word. */
265 static inline uint32_t hswap32(uint32_t h)
267 return rol32(h, 16);
270 /* Swap 16-bit words within a 64-bit word. */
271 static inline uint64_t hswap64(uint64_t h)
273 uint64_t m = 0x0000ffff0000ffffull;
274 h = rol64(h, 32);
275 return ((h & m) << 16) | ((h >> 16) & m);
278 /* Swap 32-bit words within a 64-bit word. */
279 static inline uint64_t wswap64(uint64_t h)
281 return rol64(h, 32);
284 #define LOGICAL_PPPP(NAME, FUNC) \
285 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
287 uintptr_t opr_sz = simd_oprsz(desc); \
288 uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \
289 uintptr_t i; \
290 for (i = 0; i < opr_sz / 8; ++i) { \
291 d[i] = FUNC(n[i], m[i], g[i]); \
295 #define DO_AND(N, M, G) (((N) & (M)) & (G))
296 #define DO_BIC(N, M, G) (((N) & ~(M)) & (G))
297 #define DO_EOR(N, M, G) (((N) ^ (M)) & (G))
298 #define DO_ORR(N, M, G) (((N) | (M)) & (G))
299 #define DO_ORN(N, M, G) (((N) | ~(M)) & (G))
300 #define DO_NOR(N, M, G) (~((N) | (M)) & (G))
301 #define DO_NAND(N, M, G) (~((N) & (M)) & (G))
302 #define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G)))
304 LOGICAL_PPPP(sve_and_pppp, DO_AND)
305 LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
306 LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
307 LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
308 LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
309 LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
310 LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
311 LOGICAL_PPPP(sve_nand_pppp, DO_NAND)
313 #undef DO_AND
314 #undef DO_BIC
315 #undef DO_EOR
316 #undef DO_ORR
317 #undef DO_ORN
318 #undef DO_NOR
319 #undef DO_NAND
320 #undef DO_SEL
321 #undef LOGICAL_PPPP
323 /* Fully general three-operand expander, controlled by a predicate.
324 * This is complicated by the host-endian storage of the register file.
326 /* ??? I don't expect the compiler could ever vectorize this itself.
327 * With some tables we can convert bit masks to byte masks, and with
328 * extra care wrt byte/word ordering we could use gcc generic vectors
329 * and do 16 bytes at a time.
331 #define DO_ZPZZ(NAME, TYPE, H, OP) \
332 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
334 intptr_t i, opr_sz = simd_oprsz(desc); \
335 for (i = 0; i < opr_sz; ) { \
336 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
337 do { \
338 if (pg & 1) { \
339 TYPE nn = *(TYPE *)(vn + H(i)); \
340 TYPE mm = *(TYPE *)(vm + H(i)); \
341 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
343 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
344 } while (i & 15); \
348 /* Similarly, specialized for 64-bit operands. */
349 #define DO_ZPZZ_D(NAME, TYPE, OP) \
350 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
352 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
353 TYPE *d = vd, *n = vn, *m = vm; \
354 uint8_t *pg = vg; \
355 for (i = 0; i < opr_sz; i += 1) { \
356 if (pg[H1(i)] & 1) { \
357 TYPE nn = n[i], mm = m[i]; \
358 d[i] = OP(nn, mm); \
363 #define DO_AND(N, M) (N & M)
364 #define DO_EOR(N, M) (N ^ M)
365 #define DO_ORR(N, M) (N | M)
366 #define DO_BIC(N, M) (N & ~M)
367 #define DO_ADD(N, M) (N + M)
368 #define DO_SUB(N, M) (N - M)
369 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
370 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
371 #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
372 #define DO_MUL(N, M) (N * M)
376 * We must avoid the C undefined behaviour cases: division by
377 * zero and signed division of INT_MIN by -1. Both of these
378 * have architecturally defined required results for Arm.
379 * We special case all signed divisions by -1 to avoid having
380 * to deduce the minimum integer for the type involved.
382 #define DO_SDIV(N, M) (unlikely(M == 0) ? 0 : unlikely(M == -1) ? -N : N / M)
383 #define DO_UDIV(N, M) (unlikely(M == 0) ? 0 : N / M)
385 DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND)
386 DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND)
387 DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND)
388 DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND)
390 DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR)
391 DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR)
392 DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR)
393 DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR)
395 DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR)
396 DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR)
397 DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR)
398 DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR)
400 DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC)
401 DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC)
402 DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC)
403 DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC)
405 DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD)
406 DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD)
407 DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD)
408 DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD)
410 DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB)
411 DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB)
412 DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB)
413 DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB)
415 DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX)
416 DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX)
417 DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX)
418 DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX)
420 DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX)
421 DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX)
422 DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX)
423 DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX)
425 DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN)
426 DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN)
427 DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN)
428 DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN)
430 DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN)
431 DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN)
432 DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN)
433 DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN)
435 DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD)
436 DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD)
437 DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD)
438 DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD)
440 DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD)
441 DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD)
442 DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD)
443 DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD)
445 /* Because the computation type is at least twice as large as required,
446 these work for both signed and unsigned source types. */
447 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
449 return (n * m) >> 8;
452 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
454 return (n * m) >> 16;
457 static inline uint32_t do_mulh_s(int64_t n, int64_t m)
459 return (n * m) >> 32;
462 static inline uint64_t do_smulh_d(uint64_t n, uint64_t m)
464 uint64_t lo, hi;
465 muls64(&lo, &hi, n, m);
466 return hi;
469 static inline uint64_t do_umulh_d(uint64_t n, uint64_t m)
471 uint64_t lo, hi;
472 mulu64(&lo, &hi, n, m);
473 return hi;
476 DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL)
477 DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL)
478 DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL)
479 DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL)
481 DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b)
482 DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h)
483 DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s)
484 DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d)
486 DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b)
487 DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h)
488 DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s)
489 DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d)
491 DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_SDIV)
492 DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_SDIV)
494 DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_UDIV)
495 DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_UDIV)
497 /* Note that all bits of the shift are significant
498 and not modulo the element size. */
499 #define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1))
500 #define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0)
501 #define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0)
503 DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR)
504 DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR)
505 DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL)
507 DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR)
508 DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR)
509 DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL)
511 DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR)
512 DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR)
513 DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL)
515 DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR)
516 DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR)
517 DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL)
519 #undef DO_ZPZZ
520 #undef DO_ZPZZ_D
522 /* Three-operand expander, controlled by a predicate, in which the
523 * third operand is "wide". That is, for D = N op M, the same 64-bit
524 * value of M is used with all of the narrower values of N.
526 #define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \
527 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
529 intptr_t i, opr_sz = simd_oprsz(desc); \
530 for (i = 0; i < opr_sz; ) { \
531 uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \
532 TYPEW mm = *(TYPEW *)(vm + i); \
533 do { \
534 if (pg & 1) { \
535 TYPE nn = *(TYPE *)(vn + H(i)); \
536 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
538 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
539 } while (i & 7); \
543 DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR)
544 DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR)
545 DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL)
547 DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR)
548 DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
549 DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
551 DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR)
552 DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
553 DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
555 #undef DO_ZPZW
557 /* Fully general two-operand expander, controlled by a predicate.
559 #define DO_ZPZ(NAME, TYPE, H, OP) \
560 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
562 intptr_t i, opr_sz = simd_oprsz(desc); \
563 for (i = 0; i < opr_sz; ) { \
564 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
565 do { \
566 if (pg & 1) { \
567 TYPE nn = *(TYPE *)(vn + H(i)); \
568 *(TYPE *)(vd + H(i)) = OP(nn); \
570 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
571 } while (i & 15); \
575 /* Similarly, specialized for 64-bit operands. */
576 #define DO_ZPZ_D(NAME, TYPE, OP) \
577 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
579 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
580 TYPE *d = vd, *n = vn; \
581 uint8_t *pg = vg; \
582 for (i = 0; i < opr_sz; i += 1) { \
583 if (pg[H1(i)] & 1) { \
584 TYPE nn = n[i]; \
585 d[i] = OP(nn); \
590 #define DO_CLS_B(N) (clrsb32(N) - 24)
591 #define DO_CLS_H(N) (clrsb32(N) - 16)
593 DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B)
594 DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H)
595 DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32)
596 DO_ZPZ_D(sve_cls_d, int64_t, clrsb64)
598 #define DO_CLZ_B(N) (clz32(N) - 24)
599 #define DO_CLZ_H(N) (clz32(N) - 16)
601 DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B)
602 DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H)
603 DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32)
604 DO_ZPZ_D(sve_clz_d, uint64_t, clz64)
606 DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8)
607 DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16)
608 DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32)
609 DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64)
611 #define DO_CNOT(N) (N == 0)
613 DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT)
614 DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT)
615 DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT)
616 DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT)
618 #define DO_FABS(N) (N & ((__typeof(N))-1 >> 1))
620 DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS)
621 DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS)
622 DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS)
624 #define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1))
626 DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG)
627 DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG)
628 DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG)
630 #define DO_NOT(N) (~N)
632 DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT)
633 DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT)
634 DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT)
635 DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT)
637 #define DO_SXTB(N) ((int8_t)N)
638 #define DO_SXTH(N) ((int16_t)N)
639 #define DO_SXTS(N) ((int32_t)N)
640 #define DO_UXTB(N) ((uint8_t)N)
641 #define DO_UXTH(N) ((uint16_t)N)
642 #define DO_UXTS(N) ((uint32_t)N)
644 DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB)
645 DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB)
646 DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH)
647 DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB)
648 DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH)
649 DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS)
651 DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB)
652 DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB)
653 DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH)
654 DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB)
655 DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH)
656 DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS)
658 #define DO_ABS(N) (N < 0 ? -N : N)
660 DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS)
661 DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS)
662 DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS)
663 DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS)
665 #define DO_NEG(N) (-N)
667 DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG)
668 DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG)
669 DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG)
670 DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG)
672 DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16)
673 DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32)
674 DO_ZPZ_D(sve_revb_d, uint64_t, bswap64)
676 DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32)
677 DO_ZPZ_D(sve_revh_d, uint64_t, hswap64)
679 DO_ZPZ_D(sve_revw_d, uint64_t, wswap64)
681 DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8)
682 DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16)
683 DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32)
684 DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64)
686 /* Three-operand expander, unpredicated, in which the third operand is "wide".
688 #define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \
689 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
691 intptr_t i, opr_sz = simd_oprsz(desc); \
692 for (i = 0; i < opr_sz; ) { \
693 TYPEW mm = *(TYPEW *)(vm + i); \
694 do { \
695 TYPE nn = *(TYPE *)(vn + H(i)); \
696 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
697 i += sizeof(TYPE); \
698 } while (i & 7); \
702 DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR)
703 DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR)
704 DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL)
706 DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR)
707 DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
708 DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
710 DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR)
711 DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
712 DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
714 #undef DO_ZZW
716 #undef DO_CLS_B
717 #undef DO_CLS_H
718 #undef DO_CLZ_B
719 #undef DO_CLZ_H
720 #undef DO_CNOT
721 #undef DO_FABS
722 #undef DO_FNEG
723 #undef DO_ABS
724 #undef DO_NEG
725 #undef DO_ZPZ
726 #undef DO_ZPZ_D
728 /* Two-operand reduction expander, controlled by a predicate.
729 * The difference between TYPERED and TYPERET has to do with
730 * sign-extension. E.g. for SMAX, TYPERED must be signed,
731 * but TYPERET must be unsigned so that e.g. a 32-bit value
732 * is not sign-extended to the ABI uint64_t return type.
734 /* ??? If we were to vectorize this by hand the reduction ordering
735 * would change. For integer operands, this is perfectly fine.
737 #define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \
738 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
740 intptr_t i, opr_sz = simd_oprsz(desc); \
741 TYPERED ret = INIT; \
742 for (i = 0; i < opr_sz; ) { \
743 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
744 do { \
745 if (pg & 1) { \
746 TYPEELT nn = *(TYPEELT *)(vn + H(i)); \
747 ret = OP(ret, nn); \
749 i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \
750 } while (i & 15); \
752 return (TYPERET)ret; \
755 #define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \
756 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
758 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
759 TYPEE *n = vn; \
760 uint8_t *pg = vg; \
761 TYPER ret = INIT; \
762 for (i = 0; i < opr_sz; i += 1) { \
763 if (pg[H1(i)] & 1) { \
764 TYPEE nn = n[i]; \
765 ret = OP(ret, nn); \
768 return ret; \
771 DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR)
772 DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR)
773 DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR)
774 DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR)
776 DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR)
777 DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR)
778 DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR)
779 DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR)
781 DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND)
782 DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND)
783 DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND)
784 DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND)
786 DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
787 DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
788 DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
790 DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
791 DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
792 DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
793 DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD)
795 DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX)
796 DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX)
797 DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX)
798 DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX)
800 DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX)
801 DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX)
802 DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX)
803 DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX)
805 DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN)
806 DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN)
807 DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN)
808 DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN)
810 DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN)
811 DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN)
812 DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN)
813 DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN)
815 #undef DO_VPZ
816 #undef DO_VPZ_D
818 /* Two vector operand, one scalar operand, unpredicated. */
819 #define DO_ZZI(NAME, TYPE, OP) \
820 void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc) \
822 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \
823 TYPE s = s64, *d = vd, *n = vn; \
824 for (i = 0; i < opr_sz; ++i) { \
825 d[i] = OP(n[i], s); \
829 #define DO_SUBR(X, Y) (Y - X)
831 DO_ZZI(sve_subri_b, uint8_t, DO_SUBR)
832 DO_ZZI(sve_subri_h, uint16_t, DO_SUBR)
833 DO_ZZI(sve_subri_s, uint32_t, DO_SUBR)
834 DO_ZZI(sve_subri_d, uint64_t, DO_SUBR)
836 DO_ZZI(sve_smaxi_b, int8_t, DO_MAX)
837 DO_ZZI(sve_smaxi_h, int16_t, DO_MAX)
838 DO_ZZI(sve_smaxi_s, int32_t, DO_MAX)
839 DO_ZZI(sve_smaxi_d, int64_t, DO_MAX)
841 DO_ZZI(sve_smini_b, int8_t, DO_MIN)
842 DO_ZZI(sve_smini_h, int16_t, DO_MIN)
843 DO_ZZI(sve_smini_s, int32_t, DO_MIN)
844 DO_ZZI(sve_smini_d, int64_t, DO_MIN)
846 DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX)
847 DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX)
848 DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX)
849 DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX)
851 DO_ZZI(sve_umini_b, uint8_t, DO_MIN)
852 DO_ZZI(sve_umini_h, uint16_t, DO_MIN)
853 DO_ZZI(sve_umini_s, uint32_t, DO_MIN)
854 DO_ZZI(sve_umini_d, uint64_t, DO_MIN)
856 #undef DO_ZZI
858 #undef DO_AND
859 #undef DO_ORR
860 #undef DO_EOR
861 #undef DO_BIC
862 #undef DO_ADD
863 #undef DO_SUB
864 #undef DO_MAX
865 #undef DO_MIN
866 #undef DO_ABD
867 #undef DO_MUL
868 #undef DO_DIV
869 #undef DO_ASR
870 #undef DO_LSR
871 #undef DO_LSL
872 #undef DO_SUBR
874 /* Similar to the ARM LastActiveElement pseudocode function, except the
875 result is multiplied by the element size. This includes the not found
876 indication; e.g. not found for esz=3 is -8. */
877 static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
879 uint64_t mask = pred_esz_masks[esz];
880 intptr_t i = words;
882 do {
883 uint64_t this_g = g[--i] & mask;
884 if (this_g) {
885 return i * 64 + (63 - clz64(this_g));
887 } while (i > 0);
888 return (intptr_t)-1 << esz;
891 uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t words)
893 uint32_t flags = PREDTEST_INIT;
894 uint64_t *d = vd, *g = vg;
895 intptr_t i = 0;
897 do {
898 uint64_t this_d = d[i];
899 uint64_t this_g = g[i];
901 if (this_g) {
902 if (!(flags & 4)) {
903 /* Set in D the first bit of G. */
904 this_d |= this_g & -this_g;
905 d[i] = this_d;
907 flags = iter_predtest_fwd(this_d, this_g, flags);
909 } while (++i < words);
911 return flags;
914 uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
916 intptr_t words = extract32(pred_desc, 0, SIMD_OPRSZ_BITS);
917 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
918 uint32_t flags = PREDTEST_INIT;
919 uint64_t *d = vd, *g = vg, esz_mask;
920 intptr_t i, next;
922 next = last_active_element(vd, words, esz) + (1 << esz);
923 esz_mask = pred_esz_masks[esz];
925 /* Similar to the pseudocode for pnext, but scaled by ESZ
926 so that we find the correct bit. */
927 if (next < words * 64) {
928 uint64_t mask = -1;
930 if (next & 63) {
931 mask = ~((1ull << (next & 63)) - 1);
932 next &= -64;
934 do {
935 uint64_t this_g = g[next / 64] & esz_mask & mask;
936 if (this_g != 0) {
937 next = (next & -64) + ctz64(this_g);
938 break;
940 next += 64;
941 mask = -1;
942 } while (next < words * 64);
945 i = 0;
946 do {
947 uint64_t this_d = 0;
948 if (i == next / 64) {
949 this_d = 1ull << (next & 63);
951 d[i] = this_d;
952 flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
953 } while (++i < words);
955 return flags;
958 /* Store zero into every active element of Zd. We will use this for two
959 * and three-operand predicated instructions for which logic dictates a
960 * zero result. In particular, logical shift by element size, which is
961 * otherwise undefined on the host.
963 * For element sizes smaller than uint64_t, we use tables to expand
964 * the N bits of the controlling predicate to a byte mask, and clear
965 * those bytes.
967 void HELPER(sve_clr_b)(void *vd, void *vg, uint32_t desc)
969 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
970 uint64_t *d = vd;
971 uint8_t *pg = vg;
972 for (i = 0; i < opr_sz; i += 1) {
973 d[i] &= ~expand_pred_b(pg[H1(i)]);
977 void HELPER(sve_clr_h)(void *vd, void *vg, uint32_t desc)
979 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
980 uint64_t *d = vd;
981 uint8_t *pg = vg;
982 for (i = 0; i < opr_sz; i += 1) {
983 d[i] &= ~expand_pred_h(pg[H1(i)]);
987 void HELPER(sve_clr_s)(void *vd, void *vg, uint32_t desc)
989 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
990 uint64_t *d = vd;
991 uint8_t *pg = vg;
992 for (i = 0; i < opr_sz; i += 1) {
993 d[i] &= ~expand_pred_s(pg[H1(i)]);
997 void HELPER(sve_clr_d)(void *vd, void *vg, uint32_t desc)
999 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1000 uint64_t *d = vd;
1001 uint8_t *pg = vg;
1002 for (i = 0; i < opr_sz; i += 1) {
1003 if (pg[H1(i)] & 1) {
1004 d[i] = 0;
1009 /* Copy Zn into Zd, and store zero into inactive elements. */
1010 void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc)
1012 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1013 uint64_t *d = vd, *n = vn;
1014 uint8_t *pg = vg;
1015 for (i = 0; i < opr_sz; i += 1) {
1016 d[i] = n[i] & expand_pred_b(pg[H1(i)]);
1020 void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc)
1022 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1023 uint64_t *d = vd, *n = vn;
1024 uint8_t *pg = vg;
1025 for (i = 0; i < opr_sz; i += 1) {
1026 d[i] = n[i] & expand_pred_h(pg[H1(i)]);
1030 void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc)
1032 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1033 uint64_t *d = vd, *n = vn;
1034 uint8_t *pg = vg;
1035 for (i = 0; i < opr_sz; i += 1) {
1036 d[i] = n[i] & expand_pred_s(pg[H1(i)]);
1040 void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc)
1042 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1043 uint64_t *d = vd, *n = vn;
1044 uint8_t *pg = vg;
1045 for (i = 0; i < opr_sz; i += 1) {
1046 d[i] = n[i] & -(uint64_t)(pg[H1(i)] & 1);
1050 /* Three-operand expander, immediate operand, controlled by a predicate.
1052 #define DO_ZPZI(NAME, TYPE, H, OP) \
1053 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
1055 intptr_t i, opr_sz = simd_oprsz(desc); \
1056 TYPE imm = simd_data(desc); \
1057 for (i = 0; i < opr_sz; ) { \
1058 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
1059 do { \
1060 if (pg & 1) { \
1061 TYPE nn = *(TYPE *)(vn + H(i)); \
1062 *(TYPE *)(vd + H(i)) = OP(nn, imm); \
1064 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
1065 } while (i & 15); \
1069 /* Similarly, specialized for 64-bit operands. */
1070 #define DO_ZPZI_D(NAME, TYPE, OP) \
1071 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
1073 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
1074 TYPE *d = vd, *n = vn; \
1075 TYPE imm = simd_data(desc); \
1076 uint8_t *pg = vg; \
1077 for (i = 0; i < opr_sz; i += 1) { \
1078 if (pg[H1(i)] & 1) { \
1079 TYPE nn = n[i]; \
1080 d[i] = OP(nn, imm); \
1085 #define DO_SHR(N, M) (N >> M)
1086 #define DO_SHL(N, M) (N << M)
1088 /* Arithmetic shift right for division. This rounds negative numbers
1089 toward zero as per signed division. Therefore before shifting,
1090 when N is negative, add 2**M-1. */
1091 #define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M)
1093 DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR)
1094 DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR)
1095 DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR)
1096 DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR)
1098 DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR)
1099 DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR)
1100 DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR)
1101 DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR)
1103 DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL)
1104 DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL)
1105 DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL)
1106 DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL)
1108 DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD)
1109 DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD)
1110 DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD)
1111 DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD)
1113 #undef DO_SHR
1114 #undef DO_SHL
1115 #undef DO_ASRD
1116 #undef DO_ZPZI
1117 #undef DO_ZPZI_D
1119 /* Fully general four-operand expander, controlled by a predicate.
1121 #define DO_ZPZZZ(NAME, TYPE, H, OP) \
1122 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
1123 void *vg, uint32_t desc) \
1125 intptr_t i, opr_sz = simd_oprsz(desc); \
1126 for (i = 0; i < opr_sz; ) { \
1127 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
1128 do { \
1129 if (pg & 1) { \
1130 TYPE nn = *(TYPE *)(vn + H(i)); \
1131 TYPE mm = *(TYPE *)(vm + H(i)); \
1132 TYPE aa = *(TYPE *)(va + H(i)); \
1133 *(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \
1135 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
1136 } while (i & 15); \
1140 /* Similarly, specialized for 64-bit operands. */
1141 #define DO_ZPZZZ_D(NAME, TYPE, OP) \
1142 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
1143 void *vg, uint32_t desc) \
1145 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
1146 TYPE *d = vd, *a = va, *n = vn, *m = vm; \
1147 uint8_t *pg = vg; \
1148 for (i = 0; i < opr_sz; i += 1) { \
1149 if (pg[H1(i)] & 1) { \
1150 TYPE aa = a[i], nn = n[i], mm = m[i]; \
1151 d[i] = OP(aa, nn, mm); \
1156 #define DO_MLA(A, N, M) (A + N * M)
1157 #define DO_MLS(A, N, M) (A - N * M)
1159 DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA)
1160 DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS)
1162 DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA)
1163 DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS)
1165 DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA)
1166 DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS)
1168 DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA)
1169 DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS)
1171 #undef DO_MLA
1172 #undef DO_MLS
1173 #undef DO_ZPZZZ
1174 #undef DO_ZPZZZ_D
1176 void HELPER(sve_index_b)(void *vd, uint32_t start,
1177 uint32_t incr, uint32_t desc)
1179 intptr_t i, opr_sz = simd_oprsz(desc);
1180 uint8_t *d = vd;
1181 for (i = 0; i < opr_sz; i += 1) {
1182 d[H1(i)] = start + i * incr;
1186 void HELPER(sve_index_h)(void *vd, uint32_t start,
1187 uint32_t incr, uint32_t desc)
1189 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1190 uint16_t *d = vd;
1191 for (i = 0; i < opr_sz; i += 1) {
1192 d[H2(i)] = start + i * incr;
1196 void HELPER(sve_index_s)(void *vd, uint32_t start,
1197 uint32_t incr, uint32_t desc)
1199 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1200 uint32_t *d = vd;
1201 for (i = 0; i < opr_sz; i += 1) {
1202 d[H4(i)] = start + i * incr;
1206 void HELPER(sve_index_d)(void *vd, uint64_t start,
1207 uint64_t incr, uint32_t desc)
1209 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1210 uint64_t *d = vd;
1211 for (i = 0; i < opr_sz; i += 1) {
1212 d[i] = start + i * incr;
1216 void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc)
1218 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1219 uint32_t sh = simd_data(desc);
1220 uint32_t *d = vd, *n = vn, *m = vm;
1221 for (i = 0; i < opr_sz; i += 1) {
1222 d[i] = n[i] + (m[i] << sh);
1226 void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc)
1228 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1229 uint64_t sh = simd_data(desc);
1230 uint64_t *d = vd, *n = vn, *m = vm;
1231 for (i = 0; i < opr_sz; i += 1) {
1232 d[i] = n[i] + (m[i] << sh);
1236 void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc)
1238 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1239 uint64_t sh = simd_data(desc);
1240 uint64_t *d = vd, *n = vn, *m = vm;
1241 for (i = 0; i < opr_sz; i += 1) {
1242 d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh);
1246 void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc)
1248 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1249 uint64_t sh = simd_data(desc);
1250 uint64_t *d = vd, *n = vn, *m = vm;
1251 for (i = 0; i < opr_sz; i += 1) {
1252 d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh);
1256 void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc)
1258 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1259 static const uint16_t coeff[] = {
1260 0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8,
1261 0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189,
1262 0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295,
1263 0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4,
1265 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1266 uint16_t *d = vd, *n = vn;
1268 for (i = 0; i < opr_sz; i++) {
1269 uint16_t nn = n[i];
1270 intptr_t idx = extract32(nn, 0, 5);
1271 uint16_t exp = extract32(nn, 5, 5);
1272 d[i] = coeff[idx] | (exp << 10);
1276 void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc)
1278 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1279 static const uint32_t coeff[] = {
1280 0x000000, 0x0164d2, 0x02cd87, 0x043a29,
1281 0x05aac3, 0x071f62, 0x08980f, 0x0a14d5,
1282 0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc,
1283 0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d,
1284 0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda,
1285 0x1ef532, 0x20b051, 0x227043, 0x243516,
1286 0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a,
1287 0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4,
1288 0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b,
1289 0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd,
1290 0x45672a, 0x478d75, 0x49b9be, 0x4bec15,
1291 0x4e248c, 0x506334, 0x52a81e, 0x54f35b,
1292 0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5,
1293 0x60ccdf, 0x633f89, 0x65b907, 0x68396a,
1294 0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177,
1295 0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c,
1297 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1298 uint32_t *d = vd, *n = vn;
1300 for (i = 0; i < opr_sz; i++) {
1301 uint32_t nn = n[i];
1302 intptr_t idx = extract32(nn, 0, 6);
1303 uint32_t exp = extract32(nn, 6, 8);
1304 d[i] = coeff[idx] | (exp << 23);
1308 void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc)
1310 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1311 static const uint64_t coeff[] = {
1312 0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull,
1313 0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull,
1314 0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull,
1315 0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull,
1316 0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull,
1317 0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull,
1318 0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull,
1319 0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull,
1320 0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull,
1321 0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull,
1322 0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull,
1323 0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull,
1324 0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull,
1325 0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull,
1326 0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull,
1327 0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull,
1328 0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull,
1329 0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull,
1330 0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull,
1331 0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull,
1332 0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull,
1333 0xFA7C1819E90D8ull,
1335 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1336 uint64_t *d = vd, *n = vn;
1338 for (i = 0; i < opr_sz; i++) {
1339 uint64_t nn = n[i];
1340 intptr_t idx = extract32(nn, 0, 6);
1341 uint64_t exp = extract32(nn, 6, 11);
1342 d[i] = coeff[idx] | (exp << 52);
1346 void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc)
1348 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1349 uint16_t *d = vd, *n = vn, *m = vm;
1350 for (i = 0; i < opr_sz; i += 1) {
1351 uint16_t nn = n[i];
1352 uint16_t mm = m[i];
1353 if (mm & 1) {
1354 nn = float16_one;
1356 d[i] = nn ^ (mm & 2) << 14;
1360 void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc)
1362 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1363 uint32_t *d = vd, *n = vn, *m = vm;
1364 for (i = 0; i < opr_sz; i += 1) {
1365 uint32_t nn = n[i];
1366 uint32_t mm = m[i];
1367 if (mm & 1) {
1368 nn = float32_one;
1370 d[i] = nn ^ (mm & 2) << 30;
1374 void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc)
1376 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1377 uint64_t *d = vd, *n = vn, *m = vm;
1378 for (i = 0; i < opr_sz; i += 1) {
1379 uint64_t nn = n[i];
1380 uint64_t mm = m[i];
1381 if (mm & 1) {
1382 nn = float64_one;
1384 d[i] = nn ^ (mm & 2) << 62;
1389 * Signed saturating addition with scalar operand.
1392 void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
1394 intptr_t i, oprsz = simd_oprsz(desc);
1396 for (i = 0; i < oprsz; i += sizeof(int8_t)) {
1397 int r = *(int8_t *)(a + i) + b;
1398 if (r > INT8_MAX) {
1399 r = INT8_MAX;
1400 } else if (r < INT8_MIN) {
1401 r = INT8_MIN;
1403 *(int8_t *)(d + i) = r;
1407 void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
1409 intptr_t i, oprsz = simd_oprsz(desc);
1411 for (i = 0; i < oprsz; i += sizeof(int16_t)) {
1412 int r = *(int16_t *)(a + i) + b;
1413 if (r > INT16_MAX) {
1414 r = INT16_MAX;
1415 } else if (r < INT16_MIN) {
1416 r = INT16_MIN;
1418 *(int16_t *)(d + i) = r;
1422 void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
1424 intptr_t i, oprsz = simd_oprsz(desc);
1426 for (i = 0; i < oprsz; i += sizeof(int32_t)) {
1427 int64_t r = *(int32_t *)(a + i) + b;
1428 if (r > INT32_MAX) {
1429 r = INT32_MAX;
1430 } else if (r < INT32_MIN) {
1431 r = INT32_MIN;
1433 *(int32_t *)(d + i) = r;
1437 void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc)
1439 intptr_t i, oprsz = simd_oprsz(desc);
1441 for (i = 0; i < oprsz; i += sizeof(int64_t)) {
1442 int64_t ai = *(int64_t *)(a + i);
1443 int64_t r = ai + b;
1444 if (((r ^ ai) & ~(ai ^ b)) < 0) {
1445 /* Signed overflow. */
1446 r = (r < 0 ? INT64_MAX : INT64_MIN);
1448 *(int64_t *)(d + i) = r;
1453 * Unsigned saturating addition with scalar operand.
1456 void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
1458 intptr_t i, oprsz = simd_oprsz(desc);
1460 for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
1461 int r = *(uint8_t *)(a + i) + b;
1462 if (r > UINT8_MAX) {
1463 r = UINT8_MAX;
1464 } else if (r < 0) {
1465 r = 0;
1467 *(uint8_t *)(d + i) = r;
1471 void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
1473 intptr_t i, oprsz = simd_oprsz(desc);
1475 for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
1476 int r = *(uint16_t *)(a + i) + b;
1477 if (r > UINT16_MAX) {
1478 r = UINT16_MAX;
1479 } else if (r < 0) {
1480 r = 0;
1482 *(uint16_t *)(d + i) = r;
1486 void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
1488 intptr_t i, oprsz = simd_oprsz(desc);
1490 for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
1491 int64_t r = *(uint32_t *)(a + i) + b;
1492 if (r > UINT32_MAX) {
1493 r = UINT32_MAX;
1494 } else if (r < 0) {
1495 r = 0;
1497 *(uint32_t *)(d + i) = r;
1501 void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc)
1503 intptr_t i, oprsz = simd_oprsz(desc);
1505 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1506 uint64_t r = *(uint64_t *)(a + i) + b;
1507 if (r < b) {
1508 r = UINT64_MAX;
1510 *(uint64_t *)(d + i) = r;
1514 void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc)
1516 intptr_t i, oprsz = simd_oprsz(desc);
1518 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1519 uint64_t ai = *(uint64_t *)(a + i);
1520 *(uint64_t *)(d + i) = (ai < b ? 0 : ai - b);
1524 /* Two operand predicated copy immediate with merge. All valid immediates
1525 * can fit within 17 signed bits in the simd_data field.
1527 void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg,
1528 uint64_t mm, uint32_t desc)
1530 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1531 uint64_t *d = vd, *n = vn;
1532 uint8_t *pg = vg;
1534 mm = dup_const(MO_8, mm);
1535 for (i = 0; i < opr_sz; i += 1) {
1536 uint64_t nn = n[i];
1537 uint64_t pp = expand_pred_b(pg[H1(i)]);
1538 d[i] = (mm & pp) | (nn & ~pp);
1542 void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg,
1543 uint64_t mm, uint32_t desc)
1545 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1546 uint64_t *d = vd, *n = vn;
1547 uint8_t *pg = vg;
1549 mm = dup_const(MO_16, mm);
1550 for (i = 0; i < opr_sz; i += 1) {
1551 uint64_t nn = n[i];
1552 uint64_t pp = expand_pred_h(pg[H1(i)]);
1553 d[i] = (mm & pp) | (nn & ~pp);
1557 void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg,
1558 uint64_t mm, uint32_t desc)
1560 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1561 uint64_t *d = vd, *n = vn;
1562 uint8_t *pg = vg;
1564 mm = dup_const(MO_32, mm);
1565 for (i = 0; i < opr_sz; i += 1) {
1566 uint64_t nn = n[i];
1567 uint64_t pp = expand_pred_s(pg[H1(i)]);
1568 d[i] = (mm & pp) | (nn & ~pp);
1572 void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg,
1573 uint64_t mm, uint32_t desc)
1575 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1576 uint64_t *d = vd, *n = vn;
1577 uint8_t *pg = vg;
1579 for (i = 0; i < opr_sz; i += 1) {
1580 uint64_t nn = n[i];
1581 d[i] = (pg[H1(i)] & 1 ? mm : nn);
1585 void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc)
1587 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1588 uint64_t *d = vd;
1589 uint8_t *pg = vg;
1591 val = dup_const(MO_8, val);
1592 for (i = 0; i < opr_sz; i += 1) {
1593 d[i] = val & expand_pred_b(pg[H1(i)]);
1597 void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc)
1599 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1600 uint64_t *d = vd;
1601 uint8_t *pg = vg;
1603 val = dup_const(MO_16, val);
1604 for (i = 0; i < opr_sz; i += 1) {
1605 d[i] = val & expand_pred_h(pg[H1(i)]);
1609 void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc)
1611 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1612 uint64_t *d = vd;
1613 uint8_t *pg = vg;
1615 val = dup_const(MO_32, val);
1616 for (i = 0; i < opr_sz; i += 1) {
1617 d[i] = val & expand_pred_s(pg[H1(i)]);
1621 void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc)
1623 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1624 uint64_t *d = vd;
1625 uint8_t *pg = vg;
1627 for (i = 0; i < opr_sz; i += 1) {
1628 d[i] = (pg[H1(i)] & 1 ? val : 0);
1632 /* Big-endian hosts need to frob the byte indicies. If the copy
1633 * happens to be 8-byte aligned, then no frobbing necessary.
1635 static void swap_memmove(void *vd, void *vs, size_t n)
1637 uintptr_t d = (uintptr_t)vd;
1638 uintptr_t s = (uintptr_t)vs;
1639 uintptr_t o = (d | s | n) & 7;
1640 size_t i;
1642 #ifndef HOST_WORDS_BIGENDIAN
1643 o = 0;
1644 #endif
1645 switch (o) {
1646 case 0:
1647 memmove(vd, vs, n);
1648 break;
1650 case 4:
1651 if (d < s || d >= s + n) {
1652 for (i = 0; i < n; i += 4) {
1653 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
1655 } else {
1656 for (i = n; i > 0; ) {
1657 i -= 4;
1658 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
1661 break;
1663 case 2:
1664 case 6:
1665 if (d < s || d >= s + n) {
1666 for (i = 0; i < n; i += 2) {
1667 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
1669 } else {
1670 for (i = n; i > 0; ) {
1671 i -= 2;
1672 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
1675 break;
1677 default:
1678 if (d < s || d >= s + n) {
1679 for (i = 0; i < n; i++) {
1680 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
1682 } else {
1683 for (i = n; i > 0; ) {
1684 i -= 1;
1685 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
1688 break;
1692 /* Similarly for memset of 0. */
1693 static void swap_memzero(void *vd, size_t n)
1695 uintptr_t d = (uintptr_t)vd;
1696 uintptr_t o = (d | n) & 7;
1697 size_t i;
1699 /* Usually, the first bit of a predicate is set, so N is 0. */
1700 if (likely(n == 0)) {
1701 return;
1704 #ifndef HOST_WORDS_BIGENDIAN
1705 o = 0;
1706 #endif
1707 switch (o) {
1708 case 0:
1709 memset(vd, 0, n);
1710 break;
1712 case 4:
1713 for (i = 0; i < n; i += 4) {
1714 *(uint32_t *)H1_4(d + i) = 0;
1716 break;
1718 case 2:
1719 case 6:
1720 for (i = 0; i < n; i += 2) {
1721 *(uint16_t *)H1_2(d + i) = 0;
1723 break;
1725 default:
1726 for (i = 0; i < n; i++) {
1727 *(uint8_t *)H1(d + i) = 0;
1729 break;
1733 void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc)
1735 intptr_t opr_sz = simd_oprsz(desc);
1736 size_t n_ofs = simd_data(desc);
1737 size_t n_siz = opr_sz - n_ofs;
1739 if (vd != vm) {
1740 swap_memmove(vd, vn + n_ofs, n_siz);
1741 swap_memmove(vd + n_siz, vm, n_ofs);
1742 } else if (vd != vn) {
1743 swap_memmove(vd + n_siz, vd, n_ofs);
1744 swap_memmove(vd, vn + n_ofs, n_siz);
1745 } else {
1746 /* vd == vn == vm. Need temp space. */
1747 ARMVectorReg tmp;
1748 swap_memmove(&tmp, vm, n_ofs);
1749 swap_memmove(vd, vd + n_ofs, n_siz);
1750 memcpy(vd + n_siz, &tmp, n_ofs);
1754 #define DO_INSR(NAME, TYPE, H) \
1755 void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \
1757 intptr_t opr_sz = simd_oprsz(desc); \
1758 swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \
1759 *(TYPE *)(vd + H(0)) = val; \
1762 DO_INSR(sve_insr_b, uint8_t, H1)
1763 DO_INSR(sve_insr_h, uint16_t, H1_2)
1764 DO_INSR(sve_insr_s, uint32_t, H1_4)
1765 DO_INSR(sve_insr_d, uint64_t, )
1767 #undef DO_INSR
1769 void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc)
1771 intptr_t i, j, opr_sz = simd_oprsz(desc);
1772 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1773 uint64_t f = *(uint64_t *)(vn + i);
1774 uint64_t b = *(uint64_t *)(vn + j);
1775 *(uint64_t *)(vd + i) = bswap64(b);
1776 *(uint64_t *)(vd + j) = bswap64(f);
1780 void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc)
1782 intptr_t i, j, opr_sz = simd_oprsz(desc);
1783 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1784 uint64_t f = *(uint64_t *)(vn + i);
1785 uint64_t b = *(uint64_t *)(vn + j);
1786 *(uint64_t *)(vd + i) = hswap64(b);
1787 *(uint64_t *)(vd + j) = hswap64(f);
1791 void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc)
1793 intptr_t i, j, opr_sz = simd_oprsz(desc);
1794 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1795 uint64_t f = *(uint64_t *)(vn + i);
1796 uint64_t b = *(uint64_t *)(vn + j);
1797 *(uint64_t *)(vd + i) = rol64(b, 32);
1798 *(uint64_t *)(vd + j) = rol64(f, 32);
1802 void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc)
1804 intptr_t i, j, opr_sz = simd_oprsz(desc);
1805 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1806 uint64_t f = *(uint64_t *)(vn + i);
1807 uint64_t b = *(uint64_t *)(vn + j);
1808 *(uint64_t *)(vd + i) = b;
1809 *(uint64_t *)(vd + j) = f;
1813 #define DO_TBL(NAME, TYPE, H) \
1814 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1816 intptr_t i, opr_sz = simd_oprsz(desc); \
1817 uintptr_t elem = opr_sz / sizeof(TYPE); \
1818 TYPE *d = vd, *n = vn, *m = vm; \
1819 ARMVectorReg tmp; \
1820 if (unlikely(vd == vn)) { \
1821 n = memcpy(&tmp, vn, opr_sz); \
1823 for (i = 0; i < elem; i++) { \
1824 TYPE j = m[H(i)]; \
1825 d[H(i)] = j < elem ? n[H(j)] : 0; \
1829 DO_TBL(sve_tbl_b, uint8_t, H1)
1830 DO_TBL(sve_tbl_h, uint16_t, H2)
1831 DO_TBL(sve_tbl_s, uint32_t, H4)
1832 DO_TBL(sve_tbl_d, uint64_t, )
1834 #undef TBL
1836 #define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \
1837 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1839 intptr_t i, opr_sz = simd_oprsz(desc); \
1840 TYPED *d = vd; \
1841 TYPES *n = vn; \
1842 ARMVectorReg tmp; \
1843 if (unlikely(vn - vd < opr_sz)) { \
1844 n = memcpy(&tmp, n, opr_sz / 2); \
1846 for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \
1847 d[HD(i)] = n[HS(i)]; \
1851 DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1)
1852 DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2)
1853 DO_UNPK(sve_sunpk_d, int64_t, int32_t, , H4)
1855 DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1)
1856 DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2)
1857 DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, , H4)
1859 #undef DO_UNPK
1861 /* Mask of bits included in the even numbered predicates of width esz.
1862 * We also use this for expand_bits/compress_bits, and so extend the
1863 * same pattern out to 16-bit units.
1865 static const uint64_t even_bit_esz_masks[5] = {
1866 0x5555555555555555ull,
1867 0x3333333333333333ull,
1868 0x0f0f0f0f0f0f0f0full,
1869 0x00ff00ff00ff00ffull,
1870 0x0000ffff0000ffffull,
1873 /* Zero-extend units of 2**N bits to units of 2**(N+1) bits.
1874 * For N==0, this corresponds to the operation that in qemu/bitops.h
1875 * we call half_shuffle64; this algorithm is from Hacker's Delight,
1876 * section 7-2 Shuffling Bits.
1878 static uint64_t expand_bits(uint64_t x, int n)
1880 int i;
1882 x &= 0xffffffffu;
1883 for (i = 4; i >= n; i--) {
1884 int sh = 1 << i;
1885 x = ((x << sh) | x) & even_bit_esz_masks[i];
1887 return x;
1890 /* Compress units of 2**(N+1) bits to units of 2**N bits.
1891 * For N==0, this corresponds to the operation that in qemu/bitops.h
1892 * we call half_unshuffle64; this algorithm is from Hacker's Delight,
1893 * section 7-2 Shuffling Bits, where it is called an inverse half shuffle.
1895 static uint64_t compress_bits(uint64_t x, int n)
1897 int i;
1899 for (i = n; i <= 4; i++) {
1900 int sh = 1 << i;
1901 x &= even_bit_esz_masks[i];
1902 x = (x >> sh) | x;
1904 return x & 0xffffffffu;
1907 void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
1909 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
1910 int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
1911 intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
1912 uint64_t *d = vd;
1913 intptr_t i;
1915 if (oprsz <= 8) {
1916 uint64_t nn = *(uint64_t *)vn;
1917 uint64_t mm = *(uint64_t *)vm;
1918 int half = 4 * oprsz;
1920 nn = extract64(nn, high * half, half);
1921 mm = extract64(mm, high * half, half);
1922 nn = expand_bits(nn, esz);
1923 mm = expand_bits(mm, esz);
1924 d[0] = nn + (mm << (1 << esz));
1925 } else {
1926 ARMPredicateReg tmp_n, tmp_m;
1928 /* We produce output faster than we consume input.
1929 Therefore we must be mindful of possible overlap. */
1930 if ((vn - vd) < (uintptr_t)oprsz) {
1931 vn = memcpy(&tmp_n, vn, oprsz);
1933 if ((vm - vd) < (uintptr_t)oprsz) {
1934 vm = memcpy(&tmp_m, vm, oprsz);
1936 if (high) {
1937 high = oprsz >> 1;
1940 if ((high & 3) == 0) {
1941 uint32_t *n = vn, *m = vm;
1942 high >>= 2;
1944 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
1945 uint64_t nn = n[H4(high + i)];
1946 uint64_t mm = m[H4(high + i)];
1948 nn = expand_bits(nn, esz);
1949 mm = expand_bits(mm, esz);
1950 d[i] = nn + (mm << (1 << esz));
1952 } else {
1953 uint8_t *n = vn, *m = vm;
1954 uint16_t *d16 = vd;
1956 for (i = 0; i < oprsz / 2; i++) {
1957 uint16_t nn = n[H1(high + i)];
1958 uint16_t mm = m[H1(high + i)];
1960 nn = expand_bits(nn, esz);
1961 mm = expand_bits(mm, esz);
1962 d16[H2(i)] = nn + (mm << (1 << esz));
1968 void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
1970 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
1971 int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
1972 int odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1) << esz;
1973 uint64_t *d = vd, *n = vn, *m = vm;
1974 uint64_t l, h;
1975 intptr_t i;
1977 if (oprsz <= 8) {
1978 l = compress_bits(n[0] >> odd, esz);
1979 h = compress_bits(m[0] >> odd, esz);
1980 d[0] = extract64(l + (h << (4 * oprsz)), 0, 8 * oprsz);
1981 } else {
1982 ARMPredicateReg tmp_m;
1983 intptr_t oprsz_16 = oprsz / 16;
1985 if ((vm - vd) < (uintptr_t)oprsz) {
1986 m = memcpy(&tmp_m, vm, oprsz);
1989 for (i = 0; i < oprsz_16; i++) {
1990 l = n[2 * i + 0];
1991 h = n[2 * i + 1];
1992 l = compress_bits(l >> odd, esz);
1993 h = compress_bits(h >> odd, esz);
1994 d[i] = l + (h << 32);
1997 /* For VL which is not a power of 2, the results from M do not
1998 align nicely with the uint64_t for D. Put the aligned results
1999 from M into TMP_M and then copy it into place afterward. */
2000 if (oprsz & 15) {
2001 d[i] = compress_bits(n[2 * i] >> odd, esz);
2003 for (i = 0; i < oprsz_16; i++) {
2004 l = m[2 * i + 0];
2005 h = m[2 * i + 1];
2006 l = compress_bits(l >> odd, esz);
2007 h = compress_bits(h >> odd, esz);
2008 tmp_m.p[i] = l + (h << 32);
2010 tmp_m.p[i] = compress_bits(m[2 * i] >> odd, esz);
2012 swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2);
2013 } else {
2014 for (i = 0; i < oprsz_16; i++) {
2015 l = m[2 * i + 0];
2016 h = m[2 * i + 1];
2017 l = compress_bits(l >> odd, esz);
2018 h = compress_bits(h >> odd, esz);
2019 d[oprsz_16 + i] = l + (h << 32);
2025 void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
2027 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2028 uintptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2029 bool odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
2030 uint64_t *d = vd, *n = vn, *m = vm;
2031 uint64_t mask;
2032 int shr, shl;
2033 intptr_t i;
2035 shl = 1 << esz;
2036 shr = 0;
2037 mask = even_bit_esz_masks[esz];
2038 if (odd) {
2039 mask <<= shl;
2040 shr = shl;
2041 shl = 0;
2044 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
2045 uint64_t nn = (n[i] & mask) >> shr;
2046 uint64_t mm = (m[i] & mask) << shl;
2047 d[i] = nn + mm;
2051 /* Reverse units of 2**N bits. */
2052 static uint64_t reverse_bits_64(uint64_t x, int n)
2054 int i, sh;
2056 x = bswap64(x);
2057 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
2058 uint64_t mask = even_bit_esz_masks[i];
2059 x = ((x & mask) << sh) | ((x >> sh) & mask);
2061 return x;
2064 static uint8_t reverse_bits_8(uint8_t x, int n)
2066 static const uint8_t mask[3] = { 0x55, 0x33, 0x0f };
2067 int i, sh;
2069 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
2070 x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]);
2072 return x;
2075 void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc)
2077 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2078 int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2079 intptr_t i, oprsz_2 = oprsz / 2;
2081 if (oprsz <= 8) {
2082 uint64_t l = *(uint64_t *)vn;
2083 l = reverse_bits_64(l << (64 - 8 * oprsz), esz);
2084 *(uint64_t *)vd = l;
2085 } else if ((oprsz & 15) == 0) {
2086 for (i = 0; i < oprsz_2; i += 8) {
2087 intptr_t ih = oprsz - 8 - i;
2088 uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz);
2089 uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz);
2090 *(uint64_t *)(vd + i) = h;
2091 *(uint64_t *)(vd + ih) = l;
2093 } else {
2094 for (i = 0; i < oprsz_2; i += 1) {
2095 intptr_t il = H1(i);
2096 intptr_t ih = H1(oprsz - 1 - i);
2097 uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz);
2098 uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz);
2099 *(uint8_t *)(vd + il) = h;
2100 *(uint8_t *)(vd + ih) = l;
2105 void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc)
2107 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2108 intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
2109 uint64_t *d = vd;
2110 intptr_t i;
2112 if (oprsz <= 8) {
2113 uint64_t nn = *(uint64_t *)vn;
2114 int half = 4 * oprsz;
2116 nn = extract64(nn, high * half, half);
2117 nn = expand_bits(nn, 0);
2118 d[0] = nn;
2119 } else {
2120 ARMPredicateReg tmp_n;
2122 /* We produce output faster than we consume input.
2123 Therefore we must be mindful of possible overlap. */
2124 if ((vn - vd) < (uintptr_t)oprsz) {
2125 vn = memcpy(&tmp_n, vn, oprsz);
2127 if (high) {
2128 high = oprsz >> 1;
2131 if ((high & 3) == 0) {
2132 uint32_t *n = vn;
2133 high >>= 2;
2135 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
2136 uint64_t nn = n[H4(high + i)];
2137 d[i] = expand_bits(nn, 0);
2139 } else {
2140 uint16_t *d16 = vd;
2141 uint8_t *n = vn;
2143 for (i = 0; i < oprsz / 2; i++) {
2144 uint16_t nn = n[H1(high + i)];
2145 d16[H2(i)] = expand_bits(nn, 0);
2151 #define DO_ZIP(NAME, TYPE, H) \
2152 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2154 intptr_t oprsz = simd_oprsz(desc); \
2155 intptr_t i, oprsz_2 = oprsz / 2; \
2156 ARMVectorReg tmp_n, tmp_m; \
2157 /* We produce output faster than we consume input. \
2158 Therefore we must be mindful of possible overlap. */ \
2159 if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \
2160 vn = memcpy(&tmp_n, vn, oprsz_2); \
2162 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
2163 vm = memcpy(&tmp_m, vm, oprsz_2); \
2165 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2166 *(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + H(i)); \
2167 *(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = *(TYPE *)(vm + H(i)); \
2171 DO_ZIP(sve_zip_b, uint8_t, H1)
2172 DO_ZIP(sve_zip_h, uint16_t, H1_2)
2173 DO_ZIP(sve_zip_s, uint32_t, H1_4)
2174 DO_ZIP(sve_zip_d, uint64_t, )
2176 #define DO_UZP(NAME, TYPE, H) \
2177 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2179 intptr_t oprsz = simd_oprsz(desc); \
2180 intptr_t oprsz_2 = oprsz / 2; \
2181 intptr_t odd_ofs = simd_data(desc); \
2182 intptr_t i; \
2183 ARMVectorReg tmp_m; \
2184 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
2185 vm = memcpy(&tmp_m, vm, oprsz); \
2187 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2188 *(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(2 * i + odd_ofs)); \
2190 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2191 *(TYPE *)(vd + H(oprsz_2 + i)) = *(TYPE *)(vm + H(2 * i + odd_ofs)); \
2195 DO_UZP(sve_uzp_b, uint8_t, H1)
2196 DO_UZP(sve_uzp_h, uint16_t, H1_2)
2197 DO_UZP(sve_uzp_s, uint32_t, H1_4)
2198 DO_UZP(sve_uzp_d, uint64_t, )
2200 #define DO_TRN(NAME, TYPE, H) \
2201 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2203 intptr_t oprsz = simd_oprsz(desc); \
2204 intptr_t odd_ofs = simd_data(desc); \
2205 intptr_t i; \
2206 for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \
2207 TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \
2208 TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \
2209 *(TYPE *)(vd + H(i + 0)) = ae; \
2210 *(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \
2214 DO_TRN(sve_trn_b, uint8_t, H1)
2215 DO_TRN(sve_trn_h, uint16_t, H1_2)
2216 DO_TRN(sve_trn_s, uint32_t, H1_4)
2217 DO_TRN(sve_trn_d, uint64_t, )
2219 #undef DO_ZIP
2220 #undef DO_UZP
2221 #undef DO_TRN
2223 void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc)
2225 intptr_t i, j, opr_sz = simd_oprsz(desc) / 4;
2226 uint32_t *d = vd, *n = vn;
2227 uint8_t *pg = vg;
2229 for (i = j = 0; i < opr_sz; i++) {
2230 if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) {
2231 d[H4(j)] = n[H4(i)];
2232 j++;
2235 for (; j < opr_sz; j++) {
2236 d[H4(j)] = 0;
2240 void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc)
2242 intptr_t i, j, opr_sz = simd_oprsz(desc) / 8;
2243 uint64_t *d = vd, *n = vn;
2244 uint8_t *pg = vg;
2246 for (i = j = 0; i < opr_sz; i++) {
2247 if (pg[H1(i)] & 1) {
2248 d[j] = n[i];
2249 j++;
2252 for (; j < opr_sz; j++) {
2253 d[j] = 0;
2257 /* Similar to the ARM LastActiveElement pseudocode function, except the
2258 * result is multiplied by the element size. This includes the not found
2259 * indication; e.g. not found for esz=3 is -8.
2261 int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc)
2263 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2264 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2266 return last_active_element(vg, DIV_ROUND_UP(oprsz, 8), esz);
2269 void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)
2271 intptr_t opr_sz = simd_oprsz(desc) / 8;
2272 int esz = simd_data(desc);
2273 uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz];
2274 intptr_t i, first_i, last_i;
2275 ARMVectorReg tmp;
2277 first_i = last_i = 0;
2278 first_g = last_g = 0;
2280 /* Find the extent of the active elements within VG. */
2281 for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) {
2282 pg = *(uint64_t *)(vg + i) & mask;
2283 if (pg) {
2284 if (last_g == 0) {
2285 last_g = pg;
2286 last_i = i;
2288 first_g = pg;
2289 first_i = i;
2293 len = 0;
2294 if (first_g != 0) {
2295 first_i = first_i * 8 + ctz64(first_g);
2296 last_i = last_i * 8 + 63 - clz64(last_g);
2297 len = last_i - first_i + (1 << esz);
2298 if (vd == vm) {
2299 vm = memcpy(&tmp, vm, opr_sz * 8);
2301 swap_memmove(vd, vn + first_i, len);
2303 swap_memmove(vd + len, vm, opr_sz * 8 - len);
2306 void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm,
2307 void *vg, uint32_t desc)
2309 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2310 uint64_t *d = vd, *n = vn, *m = vm;
2311 uint8_t *pg = vg;
2313 for (i = 0; i < opr_sz; i += 1) {
2314 uint64_t nn = n[i], mm = m[i];
2315 uint64_t pp = expand_pred_b(pg[H1(i)]);
2316 d[i] = (nn & pp) | (mm & ~pp);
2320 void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm,
2321 void *vg, uint32_t desc)
2323 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2324 uint64_t *d = vd, *n = vn, *m = vm;
2325 uint8_t *pg = vg;
2327 for (i = 0; i < opr_sz; i += 1) {
2328 uint64_t nn = n[i], mm = m[i];
2329 uint64_t pp = expand_pred_h(pg[H1(i)]);
2330 d[i] = (nn & pp) | (mm & ~pp);
2334 void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm,
2335 void *vg, uint32_t desc)
2337 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2338 uint64_t *d = vd, *n = vn, *m = vm;
2339 uint8_t *pg = vg;
2341 for (i = 0; i < opr_sz; i += 1) {
2342 uint64_t nn = n[i], mm = m[i];
2343 uint64_t pp = expand_pred_s(pg[H1(i)]);
2344 d[i] = (nn & pp) | (mm & ~pp);
2348 void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm,
2349 void *vg, uint32_t desc)
2351 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2352 uint64_t *d = vd, *n = vn, *m = vm;
2353 uint8_t *pg = vg;
2355 for (i = 0; i < opr_sz; i += 1) {
2356 uint64_t nn = n[i], mm = m[i];
2357 d[i] = (pg[H1(i)] & 1 ? nn : mm);
2361 /* Two operand comparison controlled by a predicate.
2362 * ??? It is very tempting to want to be able to expand this inline
2363 * with x86 instructions, e.g.
2365 * vcmpeqw zm, zn, %ymm0
2366 * vpmovmskb %ymm0, %eax
2367 * and $0x5555, %eax
2368 * and pg, %eax
2370 * or even aarch64, e.g.
2372 * // mask = 4000 1000 0400 0100 0040 0010 0004 0001
2373 * cmeq v0.8h, zn, zm
2374 * and v0.8h, v0.8h, mask
2375 * addv h0, v0.8h
2376 * and v0.8b, pg
2378 * However, coming up with an abstraction that allows vector inputs and
2379 * a scalar output, and also handles the byte-ordering of sub-uint64_t
2380 * scalar outputs, is tricky.
2382 #define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK) \
2383 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
2385 intptr_t opr_sz = simd_oprsz(desc); \
2386 uint32_t flags = PREDTEST_INIT; \
2387 intptr_t i = opr_sz; \
2388 do { \
2389 uint64_t out = 0, pg; \
2390 do { \
2391 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2392 TYPE nn = *(TYPE *)(vn + H(i)); \
2393 TYPE mm = *(TYPE *)(vm + H(i)); \
2394 out |= nn OP mm; \
2395 } while (i & 63); \
2396 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2397 out &= pg; \
2398 *(uint64_t *)(vd + (i >> 3)) = out; \
2399 flags = iter_predtest_bwd(out, pg, flags); \
2400 } while (i > 0); \
2401 return flags; \
2404 #define DO_CMP_PPZZ_B(NAME, TYPE, OP) \
2405 DO_CMP_PPZZ(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
2406 #define DO_CMP_PPZZ_H(NAME, TYPE, OP) \
2407 DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
2408 #define DO_CMP_PPZZ_S(NAME, TYPE, OP) \
2409 DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
2410 #define DO_CMP_PPZZ_D(NAME, TYPE, OP) \
2411 DO_CMP_PPZZ(NAME, TYPE, OP, , 0x0101010101010101ull)
2413 DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t, ==)
2414 DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==)
2415 DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==)
2416 DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==)
2418 DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t, !=)
2419 DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=)
2420 DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=)
2421 DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=)
2423 DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t, >)
2424 DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >)
2425 DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >)
2426 DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >)
2428 DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t, >=)
2429 DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=)
2430 DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=)
2431 DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=)
2433 DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t, >)
2434 DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >)
2435 DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >)
2436 DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >)
2438 DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t, >=)
2439 DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=)
2440 DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=)
2441 DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=)
2443 #undef DO_CMP_PPZZ_B
2444 #undef DO_CMP_PPZZ_H
2445 #undef DO_CMP_PPZZ_S
2446 #undef DO_CMP_PPZZ_D
2447 #undef DO_CMP_PPZZ
2449 /* Similar, but the second source is "wide". */
2450 #define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK) \
2451 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
2453 intptr_t opr_sz = simd_oprsz(desc); \
2454 uint32_t flags = PREDTEST_INIT; \
2455 intptr_t i = opr_sz; \
2456 do { \
2457 uint64_t out = 0, pg; \
2458 do { \
2459 TYPEW mm = *(TYPEW *)(vm + i - 8); \
2460 do { \
2461 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2462 TYPE nn = *(TYPE *)(vn + H(i)); \
2463 out |= nn OP mm; \
2464 } while (i & 7); \
2465 } while (i & 63); \
2466 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2467 out &= pg; \
2468 *(uint64_t *)(vd + (i >> 3)) = out; \
2469 flags = iter_predtest_bwd(out, pg, flags); \
2470 } while (i > 0); \
2471 return flags; \
2474 #define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \
2475 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1, 0xffffffffffffffffull)
2476 #define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \
2477 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull)
2478 #define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \
2479 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull)
2481 DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, int8_t, uint64_t, ==)
2482 DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, int16_t, uint64_t, ==)
2483 DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, int32_t, uint64_t, ==)
2485 DO_CMP_PPZW_B(sve_cmpne_ppzw_b, int8_t, uint64_t, !=)
2486 DO_CMP_PPZW_H(sve_cmpne_ppzw_h, int16_t, uint64_t, !=)
2487 DO_CMP_PPZW_S(sve_cmpne_ppzw_s, int32_t, uint64_t, !=)
2489 DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >)
2490 DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >)
2491 DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t, int64_t, >)
2493 DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t, int64_t, >=)
2494 DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t, int64_t, >=)
2495 DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t, int64_t, >=)
2497 DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t, uint64_t, >)
2498 DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >)
2499 DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >)
2501 DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t, uint64_t, >=)
2502 DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=)
2503 DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=)
2505 DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t, int64_t, <)
2506 DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t, int64_t, <)
2507 DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t, int64_t, <)
2509 DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t, int64_t, <=)
2510 DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t, int64_t, <=)
2511 DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t, int64_t, <=)
2513 DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t, uint64_t, <)
2514 DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <)
2515 DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <)
2517 DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t, uint64_t, <=)
2518 DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=)
2519 DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=)
2521 #undef DO_CMP_PPZW_B
2522 #undef DO_CMP_PPZW_H
2523 #undef DO_CMP_PPZW_S
2524 #undef DO_CMP_PPZW
2526 /* Similar, but the second source is immediate. */
2527 #define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK) \
2528 uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
2530 intptr_t opr_sz = simd_oprsz(desc); \
2531 uint32_t flags = PREDTEST_INIT; \
2532 TYPE mm = simd_data(desc); \
2533 intptr_t i = opr_sz; \
2534 do { \
2535 uint64_t out = 0, pg; \
2536 do { \
2537 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2538 TYPE nn = *(TYPE *)(vn + H(i)); \
2539 out |= nn OP mm; \
2540 } while (i & 63); \
2541 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2542 out &= pg; \
2543 *(uint64_t *)(vd + (i >> 3)) = out; \
2544 flags = iter_predtest_bwd(out, pg, flags); \
2545 } while (i > 0); \
2546 return flags; \
2549 #define DO_CMP_PPZI_B(NAME, TYPE, OP) \
2550 DO_CMP_PPZI(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
2551 #define DO_CMP_PPZI_H(NAME, TYPE, OP) \
2552 DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
2553 #define DO_CMP_PPZI_S(NAME, TYPE, OP) \
2554 DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
2555 #define DO_CMP_PPZI_D(NAME, TYPE, OP) \
2556 DO_CMP_PPZI(NAME, TYPE, OP, , 0x0101010101010101ull)
2558 DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t, ==)
2559 DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==)
2560 DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==)
2561 DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==)
2563 DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t, !=)
2564 DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=)
2565 DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=)
2566 DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=)
2568 DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t, >)
2569 DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >)
2570 DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >)
2571 DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >)
2573 DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t, >=)
2574 DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=)
2575 DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=)
2576 DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=)
2578 DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t, >)
2579 DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >)
2580 DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >)
2581 DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >)
2583 DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t, >=)
2584 DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=)
2585 DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=)
2586 DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=)
2588 DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t, <)
2589 DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <)
2590 DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <)
2591 DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <)
2593 DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t, <=)
2594 DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=)
2595 DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=)
2596 DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=)
2598 DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t, <)
2599 DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <)
2600 DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <)
2601 DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <)
2603 DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t, <=)
2604 DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=)
2605 DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=)
2606 DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=)
2608 #undef DO_CMP_PPZI_B
2609 #undef DO_CMP_PPZI_H
2610 #undef DO_CMP_PPZI_S
2611 #undef DO_CMP_PPZI_D
2612 #undef DO_CMP_PPZI
2614 /* Similar to the ARM LastActive pseudocode function. */
2615 static bool last_active_pred(void *vd, void *vg, intptr_t oprsz)
2617 intptr_t i;
2619 for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) {
2620 uint64_t pg = *(uint64_t *)(vg + i);
2621 if (pg) {
2622 return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0;
2625 return 0;
2628 /* Compute a mask into RETB that is true for all G, up to and including
2629 * (if after) or excluding (if !after) the first G & N.
2630 * Return true if BRK found.
2632 static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g,
2633 bool brk, bool after)
2635 uint64_t b;
2637 if (brk) {
2638 b = 0;
2639 } else if ((g & n) == 0) {
2640 /* For all G, no N are set; break not found. */
2641 b = g;
2642 } else {
2643 /* Break somewhere in N. Locate it. */
2644 b = g & n; /* guard true, pred true */
2645 b = b & -b; /* first such */
2646 if (after) {
2647 b = b | (b - 1); /* break after same */
2648 } else {
2649 b = b - 1; /* break before same */
2651 brk = true;
2654 *retb = b;
2655 return brk;
2658 /* Compute a zeroing BRK. */
2659 static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g,
2660 intptr_t oprsz, bool after)
2662 bool brk = false;
2663 intptr_t i;
2665 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2666 uint64_t this_b, this_g = g[i];
2668 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2669 d[i] = this_b & this_g;
2673 /* Likewise, but also compute flags. */
2674 static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g,
2675 intptr_t oprsz, bool after)
2677 uint32_t flags = PREDTEST_INIT;
2678 bool brk = false;
2679 intptr_t i;
2681 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2682 uint64_t this_b, this_d, this_g = g[i];
2684 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2685 d[i] = this_d = this_b & this_g;
2686 flags = iter_predtest_fwd(this_d, this_g, flags);
2688 return flags;
2691 /* Compute a merging BRK. */
2692 static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g,
2693 intptr_t oprsz, bool after)
2695 bool brk = false;
2696 intptr_t i;
2698 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2699 uint64_t this_b, this_g = g[i];
2701 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2702 d[i] = (this_b & this_g) | (d[i] & ~this_g);
2706 /* Likewise, but also compute flags. */
2707 static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g,
2708 intptr_t oprsz, bool after)
2710 uint32_t flags = PREDTEST_INIT;
2711 bool brk = false;
2712 intptr_t i;
2714 for (i = 0; i < oprsz / 8; ++i) {
2715 uint64_t this_b, this_d = d[i], this_g = g[i];
2717 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2718 d[i] = this_d = (this_b & this_g) | (this_d & ~this_g);
2719 flags = iter_predtest_fwd(this_d, this_g, flags);
2721 return flags;
2724 static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz)
2726 /* It is quicker to zero the whole predicate than loop on OPRSZ.
2727 * The compiler should turn this into 4 64-bit integer stores.
2729 memset(d, 0, sizeof(ARMPredicateReg));
2730 return PREDTEST_INIT;
2733 void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg,
2734 uint32_t pred_desc)
2736 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2737 if (last_active_pred(vn, vg, oprsz)) {
2738 compute_brk_z(vd, vm, vg, oprsz, true);
2739 } else {
2740 do_zero(vd, oprsz);
2744 uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg,
2745 uint32_t pred_desc)
2747 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2748 if (last_active_pred(vn, vg, oprsz)) {
2749 return compute_brks_z(vd, vm, vg, oprsz, true);
2750 } else {
2751 return do_zero(vd, oprsz);
2755 void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg,
2756 uint32_t pred_desc)
2758 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2759 if (last_active_pred(vn, vg, oprsz)) {
2760 compute_brk_z(vd, vm, vg, oprsz, false);
2761 } else {
2762 do_zero(vd, oprsz);
2766 uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg,
2767 uint32_t pred_desc)
2769 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2770 if (last_active_pred(vn, vg, oprsz)) {
2771 return compute_brks_z(vd, vm, vg, oprsz, false);
2772 } else {
2773 return do_zero(vd, oprsz);
2777 void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2779 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2780 compute_brk_z(vd, vn, vg, oprsz, true);
2783 uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2785 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2786 return compute_brks_z(vd, vn, vg, oprsz, true);
2789 void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2791 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2792 compute_brk_z(vd, vn, vg, oprsz, false);
2795 uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2797 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2798 return compute_brks_z(vd, vn, vg, oprsz, false);
2801 void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2803 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2804 compute_brk_m(vd, vn, vg, oprsz, true);
2807 uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2809 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2810 return compute_brks_m(vd, vn, vg, oprsz, true);
2813 void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2815 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2816 compute_brk_m(vd, vn, vg, oprsz, false);
2819 uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2821 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2822 return compute_brks_m(vd, vn, vg, oprsz, false);
2825 void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2827 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2829 if (!last_active_pred(vn, vg, oprsz)) {
2830 do_zero(vd, oprsz);
2834 /* As if PredTest(Ones(PL), D, esz). */
2835 static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz,
2836 uint64_t esz_mask)
2838 uint32_t flags = PREDTEST_INIT;
2839 intptr_t i;
2841 for (i = 0; i < oprsz / 8; i++) {
2842 flags = iter_predtest_fwd(d->p[i], esz_mask, flags);
2844 if (oprsz & 7) {
2845 uint64_t mask = ~(-1ULL << (8 * (oprsz & 7)));
2846 flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags);
2848 return flags;
2851 uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2853 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2855 if (last_active_pred(vn, vg, oprsz)) {
2856 return predtest_ones(vd, oprsz, -1);
2857 } else {
2858 return do_zero(vd, oprsz);
2862 uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc)
2864 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2865 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2866 uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz];
2867 intptr_t i;
2869 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2870 uint64_t t = n[i] & g[i] & mask;
2871 sum += ctpop64(t);
2873 return sum;
2876 uint32_t HELPER(sve_while)(void *vd, uint32_t count, uint32_t pred_desc)
2878 uintptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2879 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2880 uint64_t esz_mask = pred_esz_masks[esz];
2881 ARMPredicateReg *d = vd;
2882 uint32_t flags;
2883 intptr_t i;
2885 /* Begin with a zero predicate register. */
2886 flags = do_zero(d, oprsz);
2887 if (count == 0) {
2888 return flags;
2891 /* Set all of the requested bits. */
2892 for (i = 0; i < count / 64; ++i) {
2893 d->p[i] = esz_mask;
2895 if (count & 63) {
2896 d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask;
2899 return predtest_ones(d, oprsz, esz_mask);
2902 /* Recursive reduction on a function;
2903 * C.f. the ARM ARM function ReducePredicated.
2905 * While it would be possible to write this without the DATA temporary,
2906 * it is much simpler to process the predicate register this way.
2907 * The recursion is bounded to depth 7 (128 fp16 elements), so there's
2908 * little to gain with a more complex non-recursive form.
2910 #define DO_REDUCE(NAME, TYPE, H, FUNC, IDENT) \
2911 static TYPE NAME##_reduce(TYPE *data, float_status *status, uintptr_t n) \
2913 if (n == 1) { \
2914 return *data; \
2915 } else { \
2916 uintptr_t half = n / 2; \
2917 TYPE lo = NAME##_reduce(data, status, half); \
2918 TYPE hi = NAME##_reduce(data + half, status, half); \
2919 return TYPE##_##FUNC(lo, hi, status); \
2922 uint64_t HELPER(NAME)(void *vn, void *vg, void *vs, uint32_t desc) \
2924 uintptr_t i, oprsz = simd_oprsz(desc), maxsz = simd_maxsz(desc); \
2925 TYPE data[sizeof(ARMVectorReg) / sizeof(TYPE)]; \
2926 for (i = 0; i < oprsz; ) { \
2927 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
2928 do { \
2929 TYPE nn = *(TYPE *)(vn + H(i)); \
2930 *(TYPE *)((void *)data + i) = (pg & 1 ? nn : IDENT); \
2931 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
2932 } while (i & 15); \
2934 for (; i < maxsz; i += sizeof(TYPE)) { \
2935 *(TYPE *)((void *)data + i) = IDENT; \
2937 return NAME##_reduce(data, vs, maxsz / sizeof(TYPE)); \
2940 DO_REDUCE(sve_faddv_h, float16, H1_2, add, float16_zero)
2941 DO_REDUCE(sve_faddv_s, float32, H1_4, add, float32_zero)
2942 DO_REDUCE(sve_faddv_d, float64, , add, float64_zero)
2944 /* Identity is floatN_default_nan, without the function call. */
2945 DO_REDUCE(sve_fminnmv_h, float16, H1_2, minnum, 0x7E00)
2946 DO_REDUCE(sve_fminnmv_s, float32, H1_4, minnum, 0x7FC00000)
2947 DO_REDUCE(sve_fminnmv_d, float64, , minnum, 0x7FF8000000000000ULL)
2949 DO_REDUCE(sve_fmaxnmv_h, float16, H1_2, maxnum, 0x7E00)
2950 DO_REDUCE(sve_fmaxnmv_s, float32, H1_4, maxnum, 0x7FC00000)
2951 DO_REDUCE(sve_fmaxnmv_d, float64, , maxnum, 0x7FF8000000000000ULL)
2953 DO_REDUCE(sve_fminv_h, float16, H1_2, min, float16_infinity)
2954 DO_REDUCE(sve_fminv_s, float32, H1_4, min, float32_infinity)
2955 DO_REDUCE(sve_fminv_d, float64, , min, float64_infinity)
2957 DO_REDUCE(sve_fmaxv_h, float16, H1_2, max, float16_chs(float16_infinity))
2958 DO_REDUCE(sve_fmaxv_s, float32, H1_4, max, float32_chs(float32_infinity))
2959 DO_REDUCE(sve_fmaxv_d, float64, , max, float64_chs(float64_infinity))
2961 #undef DO_REDUCE
2963 uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg,
2964 void *status, uint32_t desc)
2966 intptr_t i = 0, opr_sz = simd_oprsz(desc);
2967 float16 result = nn;
2969 do {
2970 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
2971 do {
2972 if (pg & 1) {
2973 float16 mm = *(float16 *)(vm + H1_2(i));
2974 result = float16_add(result, mm, status);
2976 i += sizeof(float16), pg >>= sizeof(float16);
2977 } while (i & 15);
2978 } while (i < opr_sz);
2980 return result;
2983 uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg,
2984 void *status, uint32_t desc)
2986 intptr_t i = 0, opr_sz = simd_oprsz(desc);
2987 float32 result = nn;
2989 do {
2990 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
2991 do {
2992 if (pg & 1) {
2993 float32 mm = *(float32 *)(vm + H1_2(i));
2994 result = float32_add(result, mm, status);
2996 i += sizeof(float32), pg >>= sizeof(float32);
2997 } while (i & 15);
2998 } while (i < opr_sz);
3000 return result;
3003 uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg,
3004 void *status, uint32_t desc)
3006 intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8;
3007 uint64_t *m = vm;
3008 uint8_t *pg = vg;
3010 for (i = 0; i < opr_sz; i++) {
3011 if (pg[H1(i)] & 1) {
3012 nn = float64_add(nn, m[i], status);
3016 return nn;
3019 /* Fully general three-operand expander, controlled by a predicate,
3020 * With the extra float_status parameter.
3022 #define DO_ZPZZ_FP(NAME, TYPE, H, OP) \
3023 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
3024 void *status, uint32_t desc) \
3026 intptr_t i = simd_oprsz(desc); \
3027 uint64_t *g = vg; \
3028 do { \
3029 uint64_t pg = g[(i - 1) >> 6]; \
3030 do { \
3031 i -= sizeof(TYPE); \
3032 if (likely((pg >> (i & 63)) & 1)) { \
3033 TYPE nn = *(TYPE *)(vn + H(i)); \
3034 TYPE mm = *(TYPE *)(vm + H(i)); \
3035 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
3037 } while (i & 63); \
3038 } while (i != 0); \
3041 DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add)
3042 DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add)
3043 DO_ZPZZ_FP(sve_fadd_d, uint64_t, , float64_add)
3045 DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub)
3046 DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub)
3047 DO_ZPZZ_FP(sve_fsub_d, uint64_t, , float64_sub)
3049 DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul)
3050 DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul)
3051 DO_ZPZZ_FP(sve_fmul_d, uint64_t, , float64_mul)
3053 DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div)
3054 DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div)
3055 DO_ZPZZ_FP(sve_fdiv_d, uint64_t, , float64_div)
3057 DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min)
3058 DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min)
3059 DO_ZPZZ_FP(sve_fmin_d, uint64_t, , float64_min)
3061 DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max)
3062 DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max)
3063 DO_ZPZZ_FP(sve_fmax_d, uint64_t, , float64_max)
3065 DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum)
3066 DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum)
3067 DO_ZPZZ_FP(sve_fminnum_d, uint64_t, , float64_minnum)
3069 DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum)
3070 DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum)
3071 DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, , float64_maxnum)
3073 static inline float16 abd_h(float16 a, float16 b, float_status *s)
3075 return float16_abs(float16_sub(a, b, s));
3078 static inline float32 abd_s(float32 a, float32 b, float_status *s)
3080 return float32_abs(float32_sub(a, b, s));
3083 static inline float64 abd_d(float64 a, float64 b, float_status *s)
3085 return float64_abs(float64_sub(a, b, s));
3088 DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h)
3089 DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s)
3090 DO_ZPZZ_FP(sve_fabd_d, uint64_t, , abd_d)
3092 static inline float64 scalbn_d(float64 a, int64_t b, float_status *s)
3094 int b_int = MIN(MAX(b, INT_MIN), INT_MAX);
3095 return float64_scalbn(a, b_int, s);
3098 DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn)
3099 DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn)
3100 DO_ZPZZ_FP(sve_fscalbn_d, int64_t, , scalbn_d)
3102 DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh)
3103 DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs)
3104 DO_ZPZZ_FP(sve_fmulx_d, uint64_t, , helper_vfp_mulxd)
3106 #undef DO_ZPZZ_FP
3108 /* Three-operand expander, with one scalar operand, controlled by
3109 * a predicate, with the extra float_status parameter.
3111 #define DO_ZPZS_FP(NAME, TYPE, H, OP) \
3112 void HELPER(NAME)(void *vd, void *vn, void *vg, uint64_t scalar, \
3113 void *status, uint32_t desc) \
3115 intptr_t i = simd_oprsz(desc); \
3116 uint64_t *g = vg; \
3117 TYPE mm = scalar; \
3118 do { \
3119 uint64_t pg = g[(i - 1) >> 6]; \
3120 do { \
3121 i -= sizeof(TYPE); \
3122 if (likely((pg >> (i & 63)) & 1)) { \
3123 TYPE nn = *(TYPE *)(vn + H(i)); \
3124 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
3126 } while (i & 63); \
3127 } while (i != 0); \
3130 DO_ZPZS_FP(sve_fadds_h, float16, H1_2, float16_add)
3131 DO_ZPZS_FP(sve_fadds_s, float32, H1_4, float32_add)
3132 DO_ZPZS_FP(sve_fadds_d, float64, , float64_add)
3134 DO_ZPZS_FP(sve_fsubs_h, float16, H1_2, float16_sub)
3135 DO_ZPZS_FP(sve_fsubs_s, float32, H1_4, float32_sub)
3136 DO_ZPZS_FP(sve_fsubs_d, float64, , float64_sub)
3138 DO_ZPZS_FP(sve_fmuls_h, float16, H1_2, float16_mul)
3139 DO_ZPZS_FP(sve_fmuls_s, float32, H1_4, float32_mul)
3140 DO_ZPZS_FP(sve_fmuls_d, float64, , float64_mul)
3142 static inline float16 subr_h(float16 a, float16 b, float_status *s)
3144 return float16_sub(b, a, s);
3147 static inline float32 subr_s(float32 a, float32 b, float_status *s)
3149 return float32_sub(b, a, s);
3152 static inline float64 subr_d(float64 a, float64 b, float_status *s)
3154 return float64_sub(b, a, s);
3157 DO_ZPZS_FP(sve_fsubrs_h, float16, H1_2, subr_h)
3158 DO_ZPZS_FP(sve_fsubrs_s, float32, H1_4, subr_s)
3159 DO_ZPZS_FP(sve_fsubrs_d, float64, , subr_d)
3161 DO_ZPZS_FP(sve_fmaxnms_h, float16, H1_2, float16_maxnum)
3162 DO_ZPZS_FP(sve_fmaxnms_s, float32, H1_4, float32_maxnum)
3163 DO_ZPZS_FP(sve_fmaxnms_d, float64, , float64_maxnum)
3165 DO_ZPZS_FP(sve_fminnms_h, float16, H1_2, float16_minnum)
3166 DO_ZPZS_FP(sve_fminnms_s, float32, H1_4, float32_minnum)
3167 DO_ZPZS_FP(sve_fminnms_d, float64, , float64_minnum)
3169 DO_ZPZS_FP(sve_fmaxs_h, float16, H1_2, float16_max)
3170 DO_ZPZS_FP(sve_fmaxs_s, float32, H1_4, float32_max)
3171 DO_ZPZS_FP(sve_fmaxs_d, float64, , float64_max)
3173 DO_ZPZS_FP(sve_fmins_h, float16, H1_2, float16_min)
3174 DO_ZPZS_FP(sve_fmins_s, float32, H1_4, float32_min)
3175 DO_ZPZS_FP(sve_fmins_d, float64, , float64_min)
3177 /* Fully general two-operand expander, controlled by a predicate,
3178 * With the extra float_status parameter.
3180 #define DO_ZPZ_FP(NAME, TYPE, H, OP) \
3181 void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \
3183 intptr_t i = simd_oprsz(desc); \
3184 uint64_t *g = vg; \
3185 do { \
3186 uint64_t pg = g[(i - 1) >> 6]; \
3187 do { \
3188 i -= sizeof(TYPE); \
3189 if (likely((pg >> (i & 63)) & 1)) { \
3190 TYPE nn = *(TYPE *)(vn + H(i)); \
3191 *(TYPE *)(vd + H(i)) = OP(nn, status); \
3193 } while (i & 63); \
3194 } while (i != 0); \
3197 /* SVE fp16 conversions always use IEEE mode. Like AdvSIMD, they ignore
3198 * FZ16. When converting from fp16, this affects flushing input denormals;
3199 * when converting to fp16, this affects flushing output denormals.
3201 static inline float32 sve_f16_to_f32(float16 f, float_status *fpst)
3203 flag save = get_flush_inputs_to_zero(fpst);
3204 float32 ret;
3206 set_flush_inputs_to_zero(false, fpst);
3207 ret = float16_to_float32(f, true, fpst);
3208 set_flush_inputs_to_zero(save, fpst);
3209 return ret;
3212 static inline float64 sve_f16_to_f64(float16 f, float_status *fpst)
3214 flag save = get_flush_inputs_to_zero(fpst);
3215 float64 ret;
3217 set_flush_inputs_to_zero(false, fpst);
3218 ret = float16_to_float64(f, true, fpst);
3219 set_flush_inputs_to_zero(save, fpst);
3220 return ret;
3223 static inline float16 sve_f32_to_f16(float32 f, float_status *fpst)
3225 flag save = get_flush_to_zero(fpst);
3226 float16 ret;
3228 set_flush_to_zero(false, fpst);
3229 ret = float32_to_float16(f, true, fpst);
3230 set_flush_to_zero(save, fpst);
3231 return ret;
3234 static inline float16 sve_f64_to_f16(float64 f, float_status *fpst)
3236 flag save = get_flush_to_zero(fpst);
3237 float16 ret;
3239 set_flush_to_zero(false, fpst);
3240 ret = float64_to_float16(f, true, fpst);
3241 set_flush_to_zero(save, fpst);
3242 return ret;
3245 static inline int16_t vfp_float16_to_int16_rtz(float16 f, float_status *s)
3247 if (float16_is_any_nan(f)) {
3248 float_raise(float_flag_invalid, s);
3249 return 0;
3251 return float16_to_int16_round_to_zero(f, s);
3254 static inline int64_t vfp_float16_to_int64_rtz(float16 f, float_status *s)
3256 if (float16_is_any_nan(f)) {
3257 float_raise(float_flag_invalid, s);
3258 return 0;
3260 return float16_to_int64_round_to_zero(f, s);
3263 static inline int64_t vfp_float32_to_int64_rtz(float32 f, float_status *s)
3265 if (float32_is_any_nan(f)) {
3266 float_raise(float_flag_invalid, s);
3267 return 0;
3269 return float32_to_int64_round_to_zero(f, s);
3272 static inline int64_t vfp_float64_to_int64_rtz(float64 f, float_status *s)
3274 if (float64_is_any_nan(f)) {
3275 float_raise(float_flag_invalid, s);
3276 return 0;
3278 return float64_to_int64_round_to_zero(f, s);
3281 static inline uint16_t vfp_float16_to_uint16_rtz(float16 f, float_status *s)
3283 if (float16_is_any_nan(f)) {
3284 float_raise(float_flag_invalid, s);
3285 return 0;
3287 return float16_to_uint16_round_to_zero(f, s);
3290 static inline uint64_t vfp_float16_to_uint64_rtz(float16 f, float_status *s)
3292 if (float16_is_any_nan(f)) {
3293 float_raise(float_flag_invalid, s);
3294 return 0;
3296 return float16_to_uint64_round_to_zero(f, s);
3299 static inline uint64_t vfp_float32_to_uint64_rtz(float32 f, float_status *s)
3301 if (float32_is_any_nan(f)) {
3302 float_raise(float_flag_invalid, s);
3303 return 0;
3305 return float32_to_uint64_round_to_zero(f, s);
3308 static inline uint64_t vfp_float64_to_uint64_rtz(float64 f, float_status *s)
3310 if (float64_is_any_nan(f)) {
3311 float_raise(float_flag_invalid, s);
3312 return 0;
3314 return float64_to_uint64_round_to_zero(f, s);
3317 DO_ZPZ_FP(sve_fcvt_sh, uint32_t, H1_4, sve_f32_to_f16)
3318 DO_ZPZ_FP(sve_fcvt_hs, uint32_t, H1_4, sve_f16_to_f32)
3319 DO_ZPZ_FP(sve_fcvt_dh, uint64_t, , sve_f64_to_f16)
3320 DO_ZPZ_FP(sve_fcvt_hd, uint64_t, , sve_f16_to_f64)
3321 DO_ZPZ_FP(sve_fcvt_ds, uint64_t, , float64_to_float32)
3322 DO_ZPZ_FP(sve_fcvt_sd, uint64_t, , float32_to_float64)
3324 DO_ZPZ_FP(sve_fcvtzs_hh, uint16_t, H1_2, vfp_float16_to_int16_rtz)
3325 DO_ZPZ_FP(sve_fcvtzs_hs, uint32_t, H1_4, helper_vfp_tosizh)
3326 DO_ZPZ_FP(sve_fcvtzs_ss, uint32_t, H1_4, helper_vfp_tosizs)
3327 DO_ZPZ_FP(sve_fcvtzs_hd, uint64_t, , vfp_float16_to_int64_rtz)
3328 DO_ZPZ_FP(sve_fcvtzs_sd, uint64_t, , vfp_float32_to_int64_rtz)
3329 DO_ZPZ_FP(sve_fcvtzs_ds, uint64_t, , helper_vfp_tosizd)
3330 DO_ZPZ_FP(sve_fcvtzs_dd, uint64_t, , vfp_float64_to_int64_rtz)
3332 DO_ZPZ_FP(sve_fcvtzu_hh, uint16_t, H1_2, vfp_float16_to_uint16_rtz)
3333 DO_ZPZ_FP(sve_fcvtzu_hs, uint32_t, H1_4, helper_vfp_touizh)
3334 DO_ZPZ_FP(sve_fcvtzu_ss, uint32_t, H1_4, helper_vfp_touizs)
3335 DO_ZPZ_FP(sve_fcvtzu_hd, uint64_t, , vfp_float16_to_uint64_rtz)
3336 DO_ZPZ_FP(sve_fcvtzu_sd, uint64_t, , vfp_float32_to_uint64_rtz)
3337 DO_ZPZ_FP(sve_fcvtzu_ds, uint64_t, , helper_vfp_touizd)
3338 DO_ZPZ_FP(sve_fcvtzu_dd, uint64_t, , vfp_float64_to_uint64_rtz)
3340 DO_ZPZ_FP(sve_frint_h, uint16_t, H1_2, helper_advsimd_rinth)
3341 DO_ZPZ_FP(sve_frint_s, uint32_t, H1_4, helper_rints)
3342 DO_ZPZ_FP(sve_frint_d, uint64_t, , helper_rintd)
3344 DO_ZPZ_FP(sve_frintx_h, uint16_t, H1_2, float16_round_to_int)
3345 DO_ZPZ_FP(sve_frintx_s, uint32_t, H1_4, float32_round_to_int)
3346 DO_ZPZ_FP(sve_frintx_d, uint64_t, , float64_round_to_int)
3348 DO_ZPZ_FP(sve_frecpx_h, uint16_t, H1_2, helper_frecpx_f16)
3349 DO_ZPZ_FP(sve_frecpx_s, uint32_t, H1_4, helper_frecpx_f32)
3350 DO_ZPZ_FP(sve_frecpx_d, uint64_t, , helper_frecpx_f64)
3352 DO_ZPZ_FP(sve_fsqrt_h, uint16_t, H1_2, float16_sqrt)
3353 DO_ZPZ_FP(sve_fsqrt_s, uint32_t, H1_4, float32_sqrt)
3354 DO_ZPZ_FP(sve_fsqrt_d, uint64_t, , float64_sqrt)
3356 DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16)
3357 DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16)
3358 DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32)
3359 DO_ZPZ_FP(sve_scvt_sd, uint64_t, , int32_to_float64)
3360 DO_ZPZ_FP(sve_scvt_dh, uint64_t, , int64_to_float16)
3361 DO_ZPZ_FP(sve_scvt_ds, uint64_t, , int64_to_float32)
3362 DO_ZPZ_FP(sve_scvt_dd, uint64_t, , int64_to_float64)
3364 DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16)
3365 DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16)
3366 DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32)
3367 DO_ZPZ_FP(sve_ucvt_sd, uint64_t, , uint32_to_float64)
3368 DO_ZPZ_FP(sve_ucvt_dh, uint64_t, , uint64_to_float16)
3369 DO_ZPZ_FP(sve_ucvt_ds, uint64_t, , uint64_to_float32)
3370 DO_ZPZ_FP(sve_ucvt_dd, uint64_t, , uint64_to_float64)
3372 #undef DO_ZPZ_FP
3374 /* 4-operand predicated multiply-add. This requires 7 operands to pass
3375 * "properly", so we need to encode some of the registers into DESC.
3377 QEMU_BUILD_BUG_ON(SIMD_DATA_SHIFT + 20 > 32);
3379 static void do_fmla_zpzzz_h(CPUARMState *env, void *vg, uint32_t desc,
3380 uint16_t neg1, uint16_t neg3)
3382 intptr_t i = simd_oprsz(desc);
3383 unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
3384 unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
3385 unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
3386 unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
3387 void *vd = &env->vfp.zregs[rd];
3388 void *vn = &env->vfp.zregs[rn];
3389 void *vm = &env->vfp.zregs[rm];
3390 void *va = &env->vfp.zregs[ra];
3391 uint64_t *g = vg;
3393 do {
3394 uint64_t pg = g[(i - 1) >> 6];
3395 do {
3396 i -= 2;
3397 if (likely((pg >> (i & 63)) & 1)) {
3398 float16 e1, e2, e3, r;
3400 e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1;
3401 e2 = *(uint16_t *)(vm + H1_2(i));
3402 e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3;
3403 r = float16_muladd(e1, e2, e3, 0, &env->vfp.fp_status_f16);
3404 *(uint16_t *)(vd + H1_2(i)) = r;
3406 } while (i & 63);
3407 } while (i != 0);
3410 void HELPER(sve_fmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
3412 do_fmla_zpzzz_h(env, vg, desc, 0, 0);
3415 void HELPER(sve_fmls_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
3417 do_fmla_zpzzz_h(env, vg, desc, 0x8000, 0);
3420 void HELPER(sve_fnmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
3422 do_fmla_zpzzz_h(env, vg, desc, 0x8000, 0x8000);
3425 void HELPER(sve_fnmls_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
3427 do_fmla_zpzzz_h(env, vg, desc, 0, 0x8000);
3430 static void do_fmla_zpzzz_s(CPUARMState *env, void *vg, uint32_t desc,
3431 uint32_t neg1, uint32_t neg3)
3433 intptr_t i = simd_oprsz(desc);
3434 unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
3435 unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
3436 unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
3437 unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
3438 void *vd = &env->vfp.zregs[rd];
3439 void *vn = &env->vfp.zregs[rn];
3440 void *vm = &env->vfp.zregs[rm];
3441 void *va = &env->vfp.zregs[ra];
3442 uint64_t *g = vg;
3444 do {
3445 uint64_t pg = g[(i - 1) >> 6];
3446 do {
3447 i -= 4;
3448 if (likely((pg >> (i & 63)) & 1)) {
3449 float32 e1, e2, e3, r;
3451 e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1;
3452 e2 = *(uint32_t *)(vm + H1_4(i));
3453 e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3;
3454 r = float32_muladd(e1, e2, e3, 0, &env->vfp.fp_status);
3455 *(uint32_t *)(vd + H1_4(i)) = r;
3457 } while (i & 63);
3458 } while (i != 0);
3461 void HELPER(sve_fmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
3463 do_fmla_zpzzz_s(env, vg, desc, 0, 0);
3466 void HELPER(sve_fmls_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
3468 do_fmla_zpzzz_s(env, vg, desc, 0x80000000, 0);
3471 void HELPER(sve_fnmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
3473 do_fmla_zpzzz_s(env, vg, desc, 0x80000000, 0x80000000);
3476 void HELPER(sve_fnmls_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
3478 do_fmla_zpzzz_s(env, vg, desc, 0, 0x80000000);
3481 static void do_fmla_zpzzz_d(CPUARMState *env, void *vg, uint32_t desc,
3482 uint64_t neg1, uint64_t neg3)
3484 intptr_t i = simd_oprsz(desc);
3485 unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
3486 unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
3487 unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
3488 unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
3489 void *vd = &env->vfp.zregs[rd];
3490 void *vn = &env->vfp.zregs[rn];
3491 void *vm = &env->vfp.zregs[rm];
3492 void *va = &env->vfp.zregs[ra];
3493 uint64_t *g = vg;
3495 do {
3496 uint64_t pg = g[(i - 1) >> 6];
3497 do {
3498 i -= 8;
3499 if (likely((pg >> (i & 63)) & 1)) {
3500 float64 e1, e2, e3, r;
3502 e1 = *(uint64_t *)(vn + i) ^ neg1;
3503 e2 = *(uint64_t *)(vm + i);
3504 e3 = *(uint64_t *)(va + i) ^ neg3;
3505 r = float64_muladd(e1, e2, e3, 0, &env->vfp.fp_status);
3506 *(uint64_t *)(vd + i) = r;
3508 } while (i & 63);
3509 } while (i != 0);
3512 void HELPER(sve_fmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
3514 do_fmla_zpzzz_d(env, vg, desc, 0, 0);
3517 void HELPER(sve_fmls_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
3519 do_fmla_zpzzz_d(env, vg, desc, INT64_MIN, 0);
3522 void HELPER(sve_fnmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
3524 do_fmla_zpzzz_d(env, vg, desc, INT64_MIN, INT64_MIN);
3527 void HELPER(sve_fnmls_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
3529 do_fmla_zpzzz_d(env, vg, desc, 0, INT64_MIN);
3532 /* Two operand floating-point comparison controlled by a predicate.
3533 * Unlike the integer version, we are not allowed to optimistically
3534 * compare operands, since the comparison may have side effects wrt
3535 * the FPSR.
3537 #define DO_FPCMP_PPZZ(NAME, TYPE, H, OP) \
3538 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
3539 void *status, uint32_t desc) \
3541 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
3542 uint64_t *d = vd, *g = vg; \
3543 do { \
3544 uint64_t out = 0, pg = g[j]; \
3545 do { \
3546 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
3547 if (likely((pg >> (i & 63)) & 1)) { \
3548 TYPE nn = *(TYPE *)(vn + H(i)); \
3549 TYPE mm = *(TYPE *)(vm + H(i)); \
3550 out |= OP(TYPE, nn, mm, status); \
3552 } while (i & 63); \
3553 d[j--] = out; \
3554 } while (i > 0); \
3557 #define DO_FPCMP_PPZZ_H(NAME, OP) \
3558 DO_FPCMP_PPZZ(NAME##_h, float16, H1_2, OP)
3559 #define DO_FPCMP_PPZZ_S(NAME, OP) \
3560 DO_FPCMP_PPZZ(NAME##_s, float32, H1_4, OP)
3561 #define DO_FPCMP_PPZZ_D(NAME, OP) \
3562 DO_FPCMP_PPZZ(NAME##_d, float64, , OP)
3564 #define DO_FPCMP_PPZZ_ALL(NAME, OP) \
3565 DO_FPCMP_PPZZ_H(NAME, OP) \
3566 DO_FPCMP_PPZZ_S(NAME, OP) \
3567 DO_FPCMP_PPZZ_D(NAME, OP)
3569 #define DO_FCMGE(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) <= 0
3570 #define DO_FCMGT(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) < 0
3571 #define DO_FCMLE(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) <= 0
3572 #define DO_FCMLT(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) < 0
3573 #define DO_FCMEQ(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) == 0
3574 #define DO_FCMNE(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) != 0
3575 #define DO_FCMUO(TYPE, X, Y, ST) \
3576 TYPE##_compare_quiet(X, Y, ST) == float_relation_unordered
3577 #define DO_FACGE(TYPE, X, Y, ST) \
3578 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) <= 0
3579 #define DO_FACGT(TYPE, X, Y, ST) \
3580 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) < 0
3582 DO_FPCMP_PPZZ_ALL(sve_fcmge, DO_FCMGE)
3583 DO_FPCMP_PPZZ_ALL(sve_fcmgt, DO_FCMGT)
3584 DO_FPCMP_PPZZ_ALL(sve_fcmeq, DO_FCMEQ)
3585 DO_FPCMP_PPZZ_ALL(sve_fcmne, DO_FCMNE)
3586 DO_FPCMP_PPZZ_ALL(sve_fcmuo, DO_FCMUO)
3587 DO_FPCMP_PPZZ_ALL(sve_facge, DO_FACGE)
3588 DO_FPCMP_PPZZ_ALL(sve_facgt, DO_FACGT)
3590 #undef DO_FPCMP_PPZZ_ALL
3591 #undef DO_FPCMP_PPZZ_D
3592 #undef DO_FPCMP_PPZZ_S
3593 #undef DO_FPCMP_PPZZ_H
3594 #undef DO_FPCMP_PPZZ
3596 /* One operand floating-point comparison against zero, controlled
3597 * by a predicate.
3599 #define DO_FPCMP_PPZ0(NAME, TYPE, H, OP) \
3600 void HELPER(NAME)(void *vd, void *vn, void *vg, \
3601 void *status, uint32_t desc) \
3603 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
3604 uint64_t *d = vd, *g = vg; \
3605 do { \
3606 uint64_t out = 0, pg = g[j]; \
3607 do { \
3608 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
3609 if ((pg >> (i & 63)) & 1) { \
3610 TYPE nn = *(TYPE *)(vn + H(i)); \
3611 out |= OP(TYPE, nn, 0, status); \
3613 } while (i & 63); \
3614 d[j--] = out; \
3615 } while (i > 0); \
3618 #define DO_FPCMP_PPZ0_H(NAME, OP) \
3619 DO_FPCMP_PPZ0(NAME##_h, float16, H1_2, OP)
3620 #define DO_FPCMP_PPZ0_S(NAME, OP) \
3621 DO_FPCMP_PPZ0(NAME##_s, float32, H1_4, OP)
3622 #define DO_FPCMP_PPZ0_D(NAME, OP) \
3623 DO_FPCMP_PPZ0(NAME##_d, float64, , OP)
3625 #define DO_FPCMP_PPZ0_ALL(NAME, OP) \
3626 DO_FPCMP_PPZ0_H(NAME, OP) \
3627 DO_FPCMP_PPZ0_S(NAME, OP) \
3628 DO_FPCMP_PPZ0_D(NAME, OP)
3630 DO_FPCMP_PPZ0_ALL(sve_fcmge0, DO_FCMGE)
3631 DO_FPCMP_PPZ0_ALL(sve_fcmgt0, DO_FCMGT)
3632 DO_FPCMP_PPZ0_ALL(sve_fcmle0, DO_FCMLE)
3633 DO_FPCMP_PPZ0_ALL(sve_fcmlt0, DO_FCMLT)
3634 DO_FPCMP_PPZ0_ALL(sve_fcmeq0, DO_FCMEQ)
3635 DO_FPCMP_PPZ0_ALL(sve_fcmne0, DO_FCMNE)
3637 /* FP Trig Multiply-Add. */
3639 void HELPER(sve_ftmad_h)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3641 static const float16 coeff[16] = {
3642 0x3c00, 0xb155, 0x2030, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
3643 0x3c00, 0xb800, 0x293a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
3645 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float16);
3646 intptr_t x = simd_data(desc);
3647 float16 *d = vd, *n = vn, *m = vm;
3648 for (i = 0; i < opr_sz; i++) {
3649 float16 mm = m[i];
3650 intptr_t xx = x;
3651 if (float16_is_neg(mm)) {
3652 mm = float16_abs(mm);
3653 xx += 8;
3655 d[i] = float16_muladd(n[i], mm, coeff[xx], 0, vs);
3659 void HELPER(sve_ftmad_s)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3661 static const float32 coeff[16] = {
3662 0x3f800000, 0xbe2aaaab, 0x3c088886, 0xb95008b9,
3663 0x36369d6d, 0x00000000, 0x00000000, 0x00000000,
3664 0x3f800000, 0xbf000000, 0x3d2aaaa6, 0xbab60705,
3665 0x37cd37cc, 0x00000000, 0x00000000, 0x00000000,
3667 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float32);
3668 intptr_t x = simd_data(desc);
3669 float32 *d = vd, *n = vn, *m = vm;
3670 for (i = 0; i < opr_sz; i++) {
3671 float32 mm = m[i];
3672 intptr_t xx = x;
3673 if (float32_is_neg(mm)) {
3674 mm = float32_abs(mm);
3675 xx += 8;
3677 d[i] = float32_muladd(n[i], mm, coeff[xx], 0, vs);
3681 void HELPER(sve_ftmad_d)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3683 static const float64 coeff[16] = {
3684 0x3ff0000000000000ull, 0xbfc5555555555543ull,
3685 0x3f8111111110f30cull, 0xbf2a01a019b92fc6ull,
3686 0x3ec71de351f3d22bull, 0xbe5ae5e2b60f7b91ull,
3687 0x3de5d8408868552full, 0x0000000000000000ull,
3688 0x3ff0000000000000ull, 0xbfe0000000000000ull,
3689 0x3fa5555555555536ull, 0xbf56c16c16c13a0bull,
3690 0x3efa01a019b1e8d8ull, 0xbe927e4f7282f468ull,
3691 0x3e21ee96d2641b13ull, 0xbda8f76380fbb401ull,
3693 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float64);
3694 intptr_t x = simd_data(desc);
3695 float64 *d = vd, *n = vn, *m = vm;
3696 for (i = 0; i < opr_sz; i++) {
3697 float64 mm = m[i];
3698 intptr_t xx = x;
3699 if (float64_is_neg(mm)) {
3700 mm = float64_abs(mm);
3701 xx += 8;
3703 d[i] = float64_muladd(n[i], mm, coeff[xx], 0, vs);
3708 * FP Complex Add
3711 void HELPER(sve_fcadd_h)(void *vd, void *vn, void *vm, void *vg,
3712 void *vs, uint32_t desc)
3714 intptr_t j, i = simd_oprsz(desc);
3715 uint64_t *g = vg;
3716 float16 neg_imag = float16_set_sign(0, simd_data(desc));
3717 float16 neg_real = float16_chs(neg_imag);
3719 do {
3720 uint64_t pg = g[(i - 1) >> 6];
3721 do {
3722 float16 e0, e1, e2, e3;
3724 /* I holds the real index; J holds the imag index. */
3725 j = i - sizeof(float16);
3726 i -= 2 * sizeof(float16);
3728 e0 = *(float16 *)(vn + H1_2(i));
3729 e1 = *(float16 *)(vm + H1_2(j)) ^ neg_real;
3730 e2 = *(float16 *)(vn + H1_2(j));
3731 e3 = *(float16 *)(vm + H1_2(i)) ^ neg_imag;
3733 if (likely((pg >> (i & 63)) & 1)) {
3734 *(float16 *)(vd + H1_2(i)) = float16_add(e0, e1, vs);
3736 if (likely((pg >> (j & 63)) & 1)) {
3737 *(float16 *)(vd + H1_2(j)) = float16_add(e2, e3, vs);
3739 } while (i & 63);
3740 } while (i != 0);
3743 void HELPER(sve_fcadd_s)(void *vd, void *vn, void *vm, void *vg,
3744 void *vs, uint32_t desc)
3746 intptr_t j, i = simd_oprsz(desc);
3747 uint64_t *g = vg;
3748 float32 neg_imag = float32_set_sign(0, simd_data(desc));
3749 float32 neg_real = float32_chs(neg_imag);
3751 do {
3752 uint64_t pg = g[(i - 1) >> 6];
3753 do {
3754 float32 e0, e1, e2, e3;
3756 /* I holds the real index; J holds the imag index. */
3757 j = i - sizeof(float32);
3758 i -= 2 * sizeof(float32);
3760 e0 = *(float32 *)(vn + H1_2(i));
3761 e1 = *(float32 *)(vm + H1_2(j)) ^ neg_real;
3762 e2 = *(float32 *)(vn + H1_2(j));
3763 e3 = *(float32 *)(vm + H1_2(i)) ^ neg_imag;
3765 if (likely((pg >> (i & 63)) & 1)) {
3766 *(float32 *)(vd + H1_2(i)) = float32_add(e0, e1, vs);
3768 if (likely((pg >> (j & 63)) & 1)) {
3769 *(float32 *)(vd + H1_2(j)) = float32_add(e2, e3, vs);
3771 } while (i & 63);
3772 } while (i != 0);
3775 void HELPER(sve_fcadd_d)(void *vd, void *vn, void *vm, void *vg,
3776 void *vs, uint32_t desc)
3778 intptr_t j, i = simd_oprsz(desc);
3779 uint64_t *g = vg;
3780 float64 neg_imag = float64_set_sign(0, simd_data(desc));
3781 float64 neg_real = float64_chs(neg_imag);
3783 do {
3784 uint64_t pg = g[(i - 1) >> 6];
3785 do {
3786 float64 e0, e1, e2, e3;
3788 /* I holds the real index; J holds the imag index. */
3789 j = i - sizeof(float64);
3790 i -= 2 * sizeof(float64);
3792 e0 = *(float64 *)(vn + H1_2(i));
3793 e1 = *(float64 *)(vm + H1_2(j)) ^ neg_real;
3794 e2 = *(float64 *)(vn + H1_2(j));
3795 e3 = *(float64 *)(vm + H1_2(i)) ^ neg_imag;
3797 if (likely((pg >> (i & 63)) & 1)) {
3798 *(float64 *)(vd + H1_2(i)) = float64_add(e0, e1, vs);
3800 if (likely((pg >> (j & 63)) & 1)) {
3801 *(float64 *)(vd + H1_2(j)) = float64_add(e2, e3, vs);
3803 } while (i & 63);
3804 } while (i != 0);
3808 * FP Complex Multiply
3811 QEMU_BUILD_BUG_ON(SIMD_DATA_SHIFT + 22 > 32);
3813 void HELPER(sve_fcmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
3815 intptr_t j, i = simd_oprsz(desc);
3816 unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
3817 unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
3818 unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
3819 unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
3820 unsigned rot = extract32(desc, SIMD_DATA_SHIFT + 20, 2);
3821 bool flip = rot & 1;
3822 float16 neg_imag, neg_real;
3823 void *vd = &env->vfp.zregs[rd];
3824 void *vn = &env->vfp.zregs[rn];
3825 void *vm = &env->vfp.zregs[rm];
3826 void *va = &env->vfp.zregs[ra];
3827 uint64_t *g = vg;
3829 neg_imag = float16_set_sign(0, (rot & 2) != 0);
3830 neg_real = float16_set_sign(0, rot == 1 || rot == 2);
3832 do {
3833 uint64_t pg = g[(i - 1) >> 6];
3834 do {
3835 float16 e1, e2, e3, e4, nr, ni, mr, mi, d;
3837 /* I holds the real index; J holds the imag index. */
3838 j = i - sizeof(float16);
3839 i -= 2 * sizeof(float16);
3841 nr = *(float16 *)(vn + H1_2(i));
3842 ni = *(float16 *)(vn + H1_2(j));
3843 mr = *(float16 *)(vm + H1_2(i));
3844 mi = *(float16 *)(vm + H1_2(j));
3846 e2 = (flip ? ni : nr);
3847 e1 = (flip ? mi : mr) ^ neg_real;
3848 e4 = e2;
3849 e3 = (flip ? mr : mi) ^ neg_imag;
3851 if (likely((pg >> (i & 63)) & 1)) {
3852 d = *(float16 *)(va + H1_2(i));
3853 d = float16_muladd(e2, e1, d, 0, &env->vfp.fp_status_f16);
3854 *(float16 *)(vd + H1_2(i)) = d;
3856 if (likely((pg >> (j & 63)) & 1)) {
3857 d = *(float16 *)(va + H1_2(j));
3858 d = float16_muladd(e4, e3, d, 0, &env->vfp.fp_status_f16);
3859 *(float16 *)(vd + H1_2(j)) = d;
3861 } while (i & 63);
3862 } while (i != 0);
3865 void HELPER(sve_fcmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
3867 intptr_t j, i = simd_oprsz(desc);
3868 unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
3869 unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
3870 unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
3871 unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
3872 unsigned rot = extract32(desc, SIMD_DATA_SHIFT + 20, 2);
3873 bool flip = rot & 1;
3874 float32 neg_imag, neg_real;
3875 void *vd = &env->vfp.zregs[rd];
3876 void *vn = &env->vfp.zregs[rn];
3877 void *vm = &env->vfp.zregs[rm];
3878 void *va = &env->vfp.zregs[ra];
3879 uint64_t *g = vg;
3881 neg_imag = float32_set_sign(0, (rot & 2) != 0);
3882 neg_real = float32_set_sign(0, rot == 1 || rot == 2);
3884 do {
3885 uint64_t pg = g[(i - 1) >> 6];
3886 do {
3887 float32 e1, e2, e3, e4, nr, ni, mr, mi, d;
3889 /* I holds the real index; J holds the imag index. */
3890 j = i - sizeof(float32);
3891 i -= 2 * sizeof(float32);
3893 nr = *(float32 *)(vn + H1_2(i));
3894 ni = *(float32 *)(vn + H1_2(j));
3895 mr = *(float32 *)(vm + H1_2(i));
3896 mi = *(float32 *)(vm + H1_2(j));
3898 e2 = (flip ? ni : nr);
3899 e1 = (flip ? mi : mr) ^ neg_real;
3900 e4 = e2;
3901 e3 = (flip ? mr : mi) ^ neg_imag;
3903 if (likely((pg >> (i & 63)) & 1)) {
3904 d = *(float32 *)(va + H1_2(i));
3905 d = float32_muladd(e2, e1, d, 0, &env->vfp.fp_status);
3906 *(float32 *)(vd + H1_2(i)) = d;
3908 if (likely((pg >> (j & 63)) & 1)) {
3909 d = *(float32 *)(va + H1_2(j));
3910 d = float32_muladd(e4, e3, d, 0, &env->vfp.fp_status);
3911 *(float32 *)(vd + H1_2(j)) = d;
3913 } while (i & 63);
3914 } while (i != 0);
3917 void HELPER(sve_fcmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
3919 intptr_t j, i = simd_oprsz(desc);
3920 unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
3921 unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
3922 unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
3923 unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
3924 unsigned rot = extract32(desc, SIMD_DATA_SHIFT + 20, 2);
3925 bool flip = rot & 1;
3926 float64 neg_imag, neg_real;
3927 void *vd = &env->vfp.zregs[rd];
3928 void *vn = &env->vfp.zregs[rn];
3929 void *vm = &env->vfp.zregs[rm];
3930 void *va = &env->vfp.zregs[ra];
3931 uint64_t *g = vg;
3933 neg_imag = float64_set_sign(0, (rot & 2) != 0);
3934 neg_real = float64_set_sign(0, rot == 1 || rot == 2);
3936 do {
3937 uint64_t pg = g[(i - 1) >> 6];
3938 do {
3939 float64 e1, e2, e3, e4, nr, ni, mr, mi, d;
3941 /* I holds the real index; J holds the imag index. */
3942 j = i - sizeof(float64);
3943 i -= 2 * sizeof(float64);
3945 nr = *(float64 *)(vn + H1_2(i));
3946 ni = *(float64 *)(vn + H1_2(j));
3947 mr = *(float64 *)(vm + H1_2(i));
3948 mi = *(float64 *)(vm + H1_2(j));
3950 e2 = (flip ? ni : nr);
3951 e1 = (flip ? mi : mr) ^ neg_real;
3952 e4 = e2;
3953 e3 = (flip ? mr : mi) ^ neg_imag;
3955 if (likely((pg >> (i & 63)) & 1)) {
3956 d = *(float64 *)(va + H1_2(i));
3957 d = float64_muladd(e2, e1, d, 0, &env->vfp.fp_status);
3958 *(float64 *)(vd + H1_2(i)) = d;
3960 if (likely((pg >> (j & 63)) & 1)) {
3961 d = *(float64 *)(va + H1_2(j));
3962 d = float64_muladd(e4, e3, d, 0, &env->vfp.fp_status);
3963 *(float64 *)(vd + H1_2(j)) = d;
3965 } while (i & 63);
3966 } while (i != 0);
3970 * Load contiguous data, protected by a governing predicate.
3974 * Load elements into @vd, controlled by @vg, from @host + @mem_ofs.
3975 * Memory is valid through @host + @mem_max. The register element
3976 * indicies are inferred from @mem_ofs, as modified by the types for
3977 * which the helper is built. Return the @mem_ofs of the first element
3978 * not loaded (which is @mem_max if they are all loaded).
3980 * For softmmu, we have fully validated the guest page. For user-only,
3981 * we cannot fully validate without taking the mmap lock, but since we
3982 * know the access is within one host page, if any access is valid they
3983 * all must be valid. However, when @vg is all false, it may be that
3984 * no access is valid.
3986 typedef intptr_t sve_ld1_host_fn(void *vd, void *vg, void *host,
3987 intptr_t mem_ofs, intptr_t mem_max);
3990 * Load one element into @vd + @reg_off from (@env, @vaddr, @ra).
3991 * The controlling predicate is known to be true.
3993 typedef void sve_ld1_tlb_fn(CPUARMState *env, void *vd, intptr_t reg_off,
3994 target_ulong vaddr, TCGMemOpIdx oi, uintptr_t ra);
3995 typedef sve_ld1_tlb_fn sve_st1_tlb_fn;
3998 * Generate the above primitives.
4001 #define DO_LD_HOST(NAME, H, TYPEE, TYPEM, HOST) \
4002 static intptr_t sve_##NAME##_host(void *vd, void *vg, void *host, \
4003 intptr_t mem_off, const intptr_t mem_max) \
4005 intptr_t reg_off = mem_off * (sizeof(TYPEE) / sizeof(TYPEM)); \
4006 uint64_t *pg = vg; \
4007 while (mem_off + sizeof(TYPEM) <= mem_max) { \
4008 TYPEM val = 0; \
4009 if (likely((pg[reg_off >> 6] >> (reg_off & 63)) & 1)) { \
4010 val = HOST(host + mem_off); \
4012 *(TYPEE *)(vd + H(reg_off)) = val; \
4013 mem_off += sizeof(TYPEM), reg_off += sizeof(TYPEE); \
4015 return mem_off; \
4018 #ifdef CONFIG_SOFTMMU
4019 #define DO_LD_TLB(NAME, H, TYPEE, TYPEM, HOST, MOEND, TLB) \
4020 static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
4021 target_ulong addr, TCGMemOpIdx oi, uintptr_t ra) \
4023 TYPEM val = TLB(env, addr, oi, ra); \
4024 *(TYPEE *)(vd + H(reg_off)) = val; \
4026 #else
4027 #define DO_LD_TLB(NAME, H, TYPEE, TYPEM, HOST, MOEND, TLB) \
4028 static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
4029 target_ulong addr, TCGMemOpIdx oi, uintptr_t ra) \
4031 TYPEM val = HOST(g2h(addr)); \
4032 *(TYPEE *)(vd + H(reg_off)) = val; \
4034 #endif
4036 #define DO_LD_PRIM_1(NAME, H, TE, TM) \
4037 DO_LD_HOST(NAME, H, TE, TM, ldub_p) \
4038 DO_LD_TLB(NAME, H, TE, TM, ldub_p, 0, helper_ret_ldub_mmu)
4040 DO_LD_PRIM_1(ld1bb, H1, uint8_t, uint8_t)
4041 DO_LD_PRIM_1(ld1bhu, H1_2, uint16_t, uint8_t)
4042 DO_LD_PRIM_1(ld1bhs, H1_2, uint16_t, int8_t)
4043 DO_LD_PRIM_1(ld1bsu, H1_4, uint32_t, uint8_t)
4044 DO_LD_PRIM_1(ld1bss, H1_4, uint32_t, int8_t)
4045 DO_LD_PRIM_1(ld1bdu, , uint64_t, uint8_t)
4046 DO_LD_PRIM_1(ld1bds, , uint64_t, int8_t)
4048 #define DO_LD_PRIM_2(NAME, end, MOEND, H, TE, TM, PH, PT) \
4049 DO_LD_HOST(NAME##_##end, H, TE, TM, PH##_##end##_p) \
4050 DO_LD_TLB(NAME##_##end, H, TE, TM, PH##_##end##_p, \
4051 MOEND, helper_##end##_##PT##_mmu)
4053 DO_LD_PRIM_2(ld1hh, le, MO_LE, H1_2, uint16_t, uint16_t, lduw, lduw)
4054 DO_LD_PRIM_2(ld1hsu, le, MO_LE, H1_4, uint32_t, uint16_t, lduw, lduw)
4055 DO_LD_PRIM_2(ld1hss, le, MO_LE, H1_4, uint32_t, int16_t, lduw, lduw)
4056 DO_LD_PRIM_2(ld1hdu, le, MO_LE, , uint64_t, uint16_t, lduw, lduw)
4057 DO_LD_PRIM_2(ld1hds, le, MO_LE, , uint64_t, int16_t, lduw, lduw)
4059 DO_LD_PRIM_2(ld1ss, le, MO_LE, H1_4, uint32_t, uint32_t, ldl, ldul)
4060 DO_LD_PRIM_2(ld1sdu, le, MO_LE, , uint64_t, uint32_t, ldl, ldul)
4061 DO_LD_PRIM_2(ld1sds, le, MO_LE, , uint64_t, int32_t, ldl, ldul)
4063 DO_LD_PRIM_2(ld1dd, le, MO_LE, , uint64_t, uint64_t, ldq, ldq)
4065 DO_LD_PRIM_2(ld1hh, be, MO_BE, H1_2, uint16_t, uint16_t, lduw, lduw)
4066 DO_LD_PRIM_2(ld1hsu, be, MO_BE, H1_4, uint32_t, uint16_t, lduw, lduw)
4067 DO_LD_PRIM_2(ld1hss, be, MO_BE, H1_4, uint32_t, int16_t, lduw, lduw)
4068 DO_LD_PRIM_2(ld1hdu, be, MO_BE, , uint64_t, uint16_t, lduw, lduw)
4069 DO_LD_PRIM_2(ld1hds, be, MO_BE, , uint64_t, int16_t, lduw, lduw)
4071 DO_LD_PRIM_2(ld1ss, be, MO_BE, H1_4, uint32_t, uint32_t, ldl, ldul)
4072 DO_LD_PRIM_2(ld1sdu, be, MO_BE, , uint64_t, uint32_t, ldl, ldul)
4073 DO_LD_PRIM_2(ld1sds, be, MO_BE, , uint64_t, int32_t, ldl, ldul)
4075 DO_LD_PRIM_2(ld1dd, be, MO_BE, , uint64_t, uint64_t, ldq, ldq)
4077 #undef DO_LD_TLB
4078 #undef DO_LD_HOST
4079 #undef DO_LD_PRIM_1
4080 #undef DO_LD_PRIM_2
4083 * Skip through a sequence of inactive elements in the guarding predicate @vg,
4084 * beginning at @reg_off bounded by @reg_max. Return the offset of the active
4085 * element >= @reg_off, or @reg_max if there were no active elements at all.
4087 static intptr_t find_next_active(uint64_t *vg, intptr_t reg_off,
4088 intptr_t reg_max, int esz)
4090 uint64_t pg_mask = pred_esz_masks[esz];
4091 uint64_t pg = (vg[reg_off >> 6] & pg_mask) >> (reg_off & 63);
4093 /* In normal usage, the first element is active. */
4094 if (likely(pg & 1)) {
4095 return reg_off;
4098 if (pg == 0) {
4099 reg_off &= -64;
4100 do {
4101 reg_off += 64;
4102 if (unlikely(reg_off >= reg_max)) {
4103 /* The entire predicate was false. */
4104 return reg_max;
4106 pg = vg[reg_off >> 6] & pg_mask;
4107 } while (pg == 0);
4109 reg_off += ctz64(pg);
4111 /* We should never see an out of range predicate bit set. */
4112 tcg_debug_assert(reg_off < reg_max);
4113 return reg_off;
4117 * Return the maximum offset <= @mem_max which is still within the page
4118 * referenced by @base + @mem_off.
4120 static intptr_t max_for_page(target_ulong base, intptr_t mem_off,
4121 intptr_t mem_max)
4123 target_ulong addr = base + mem_off;
4124 intptr_t split = -(intptr_t)(addr | TARGET_PAGE_MASK);
4125 return MIN(split, mem_max - mem_off) + mem_off;
4128 static inline void set_helper_retaddr(uintptr_t ra)
4130 #ifdef CONFIG_USER_ONLY
4131 helper_retaddr = ra;
4132 #endif
4136 * The result of tlb_vaddr_to_host for user-only is just g2h(x),
4137 * which is always non-null. Elide the useless test.
4139 static inline bool test_host_page(void *host)
4141 #ifdef CONFIG_USER_ONLY
4142 return true;
4143 #else
4144 return likely(host != NULL);
4145 #endif
4149 * Common helper for all contiguous one-register predicated loads.
4151 static void sve_ld1_r(CPUARMState *env, void *vg, const target_ulong addr,
4152 uint32_t desc, const uintptr_t retaddr,
4153 const int esz, const int msz,
4154 sve_ld1_host_fn *host_fn,
4155 sve_ld1_tlb_fn *tlb_fn)
4157 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4158 const int mmu_idx = get_mmuidx(oi);
4159 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4160 void *vd = &env->vfp.zregs[rd];
4161 const int diffsz = esz - msz;
4162 const intptr_t reg_max = simd_oprsz(desc);
4163 const intptr_t mem_max = reg_max >> diffsz;
4164 ARMVectorReg scratch;
4165 void *host;
4166 intptr_t split, reg_off, mem_off;
4168 /* Find the first active element. */
4169 reg_off = find_next_active(vg, 0, reg_max, esz);
4170 if (unlikely(reg_off == reg_max)) {
4171 /* The entire predicate was false; no load occurs. */
4172 memset(vd, 0, reg_max);
4173 return;
4175 mem_off = reg_off >> diffsz;
4176 set_helper_retaddr(retaddr);
4179 * If the (remaining) load is entirely within a single page, then:
4180 * For softmmu, and the tlb hits, then no faults will occur;
4181 * For user-only, either the first load will fault or none will.
4182 * We can thus perform the load directly to the destination and
4183 * Vd will be unmodified on any exception path.
4185 split = max_for_page(addr, mem_off, mem_max);
4186 if (likely(split == mem_max)) {
4187 host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx);
4188 if (test_host_page(host)) {
4189 mem_off = host_fn(vd, vg, host - mem_off, mem_off, mem_max);
4190 tcg_debug_assert(mem_off == mem_max);
4191 set_helper_retaddr(0);
4192 /* After having taken any fault, zero leading inactive elements. */
4193 swap_memzero(vd, reg_off);
4194 return;
4199 * Perform the predicated read into a temporary, thus ensuring
4200 * if the load of the last element faults, Vd is not modified.
4202 #ifdef CONFIG_USER_ONLY
4203 swap_memzero(&scratch, reg_off);
4204 host_fn(&scratch, vg, g2h(addr), mem_off, mem_max);
4205 #else
4206 memset(&scratch, 0, reg_max);
4207 goto start;
4208 while (1) {
4209 reg_off = find_next_active(vg, reg_off, reg_max, esz);
4210 if (reg_off >= reg_max) {
4211 break;
4213 mem_off = reg_off >> diffsz;
4214 split = max_for_page(addr, mem_off, mem_max);
4216 start:
4217 if (split - mem_off >= (1 << msz)) {
4218 /* At least one whole element on this page. */
4219 host = tlb_vaddr_to_host(env, addr + mem_off,
4220 MMU_DATA_LOAD, mmu_idx);
4221 if (host) {
4222 mem_off = host_fn(&scratch, vg, host - mem_off,
4223 mem_off, split);
4224 reg_off = mem_off << diffsz;
4225 continue;
4230 * Perform one normal read. This may fault, longjmping out to the
4231 * main loop in order to raise an exception. It may succeed, and
4232 * as a side-effect load the TLB entry for the next round. Finally,
4233 * in the extremely unlikely case we're performing this operation
4234 * on I/O memory, it may succeed but not bring in the TLB entry.
4235 * But even then we have still made forward progress.
4237 tlb_fn(env, &scratch, reg_off, addr + mem_off, oi, retaddr);
4238 reg_off += 1 << esz;
4240 #endif
4242 set_helper_retaddr(0);
4243 memcpy(vd, &scratch, reg_max);
4246 #define DO_LD1_1(NAME, ESZ) \
4247 void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg, \
4248 target_ulong addr, uint32_t desc) \
4250 sve_ld1_r(env, vg, addr, desc, GETPC(), ESZ, 0, \
4251 sve_##NAME##_host, sve_##NAME##_tlb); \
4254 #define DO_LD1_2(NAME, ESZ, MSZ) \
4255 void HELPER(sve_##NAME##_le_r)(CPUARMState *env, void *vg, \
4256 target_ulong addr, uint32_t desc) \
4258 sve_ld1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \
4259 sve_##NAME##_le_host, sve_##NAME##_le_tlb); \
4261 void HELPER(sve_##NAME##_be_r)(CPUARMState *env, void *vg, \
4262 target_ulong addr, uint32_t desc) \
4264 sve_ld1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \
4265 sve_##NAME##_be_host, sve_##NAME##_be_tlb); \
4268 DO_LD1_1(ld1bb, 0)
4269 DO_LD1_1(ld1bhu, 1)
4270 DO_LD1_1(ld1bhs, 1)
4271 DO_LD1_1(ld1bsu, 2)
4272 DO_LD1_1(ld1bss, 2)
4273 DO_LD1_1(ld1bdu, 3)
4274 DO_LD1_1(ld1bds, 3)
4276 DO_LD1_2(ld1hh, 1, 1)
4277 DO_LD1_2(ld1hsu, 2, 1)
4278 DO_LD1_2(ld1hss, 2, 1)
4279 DO_LD1_2(ld1hdu, 3, 1)
4280 DO_LD1_2(ld1hds, 3, 1)
4282 DO_LD1_2(ld1ss, 2, 2)
4283 DO_LD1_2(ld1sdu, 3, 2)
4284 DO_LD1_2(ld1sds, 3, 2)
4286 DO_LD1_2(ld1dd, 3, 3)
4288 #undef DO_LD1_1
4289 #undef DO_LD1_2
4292 * Common helpers for all contiguous 2,3,4-register predicated loads.
4294 static void sve_ld2_r(CPUARMState *env, void *vg, target_ulong addr,
4295 uint32_t desc, int size, uintptr_t ra,
4296 sve_ld1_tlb_fn *tlb_fn)
4298 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4299 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4300 intptr_t i, oprsz = simd_oprsz(desc);
4301 ARMVectorReg scratch[2] = { };
4303 set_helper_retaddr(ra);
4304 for (i = 0; i < oprsz; ) {
4305 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
4306 do {
4307 if (pg & 1) {
4308 tlb_fn(env, &scratch[0], i, addr, oi, ra);
4309 tlb_fn(env, &scratch[1], i, addr + size, oi, ra);
4311 i += size, pg >>= size;
4312 addr += 2 * size;
4313 } while (i & 15);
4315 set_helper_retaddr(0);
4317 /* Wait until all exceptions have been raised to write back. */
4318 memcpy(&env->vfp.zregs[rd], &scratch[0], oprsz);
4319 memcpy(&env->vfp.zregs[(rd + 1) & 31], &scratch[1], oprsz);
4322 static void sve_ld3_r(CPUARMState *env, void *vg, target_ulong addr,
4323 uint32_t desc, int size, uintptr_t ra,
4324 sve_ld1_tlb_fn *tlb_fn)
4326 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4327 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4328 intptr_t i, oprsz = simd_oprsz(desc);
4329 ARMVectorReg scratch[3] = { };
4331 set_helper_retaddr(ra);
4332 for (i = 0; i < oprsz; ) {
4333 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
4334 do {
4335 if (pg & 1) {
4336 tlb_fn(env, &scratch[0], i, addr, oi, ra);
4337 tlb_fn(env, &scratch[1], i, addr + size, oi, ra);
4338 tlb_fn(env, &scratch[2], i, addr + 2 * size, oi, ra);
4340 i += size, pg >>= size;
4341 addr += 3 * size;
4342 } while (i & 15);
4344 set_helper_retaddr(0);
4346 /* Wait until all exceptions have been raised to write back. */
4347 memcpy(&env->vfp.zregs[rd], &scratch[0], oprsz);
4348 memcpy(&env->vfp.zregs[(rd + 1) & 31], &scratch[1], oprsz);
4349 memcpy(&env->vfp.zregs[(rd + 2) & 31], &scratch[2], oprsz);
4352 static void sve_ld4_r(CPUARMState *env, void *vg, target_ulong addr,
4353 uint32_t desc, int size, uintptr_t ra,
4354 sve_ld1_tlb_fn *tlb_fn)
4356 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4357 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4358 intptr_t i, oprsz = simd_oprsz(desc);
4359 ARMVectorReg scratch[4] = { };
4361 set_helper_retaddr(ra);
4362 for (i = 0; i < oprsz; ) {
4363 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
4364 do {
4365 if (pg & 1) {
4366 tlb_fn(env, &scratch[0], i, addr, oi, ra);
4367 tlb_fn(env, &scratch[1], i, addr + size, oi, ra);
4368 tlb_fn(env, &scratch[2], i, addr + 2 * size, oi, ra);
4369 tlb_fn(env, &scratch[3], i, addr + 3 * size, oi, ra);
4371 i += size, pg >>= size;
4372 addr += 4 * size;
4373 } while (i & 15);
4375 set_helper_retaddr(0);
4377 /* Wait until all exceptions have been raised to write back. */
4378 memcpy(&env->vfp.zregs[rd], &scratch[0], oprsz);
4379 memcpy(&env->vfp.zregs[(rd + 1) & 31], &scratch[1], oprsz);
4380 memcpy(&env->vfp.zregs[(rd + 2) & 31], &scratch[2], oprsz);
4381 memcpy(&env->vfp.zregs[(rd + 3) & 31], &scratch[3], oprsz);
4384 #define DO_LDN_1(N) \
4385 void QEMU_FLATTEN HELPER(sve_ld##N##bb_r) \
4386 (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \
4388 sve_ld##N##_r(env, vg, addr, desc, 1, GETPC(), sve_ld1bb_tlb); \
4391 #define DO_LDN_2(N, SUFF, SIZE) \
4392 void QEMU_FLATTEN HELPER(sve_ld##N##SUFF##_le_r) \
4393 (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \
4395 sve_ld##N##_r(env, vg, addr, desc, SIZE, GETPC(), \
4396 sve_ld1##SUFF##_le_tlb); \
4398 void QEMU_FLATTEN HELPER(sve_ld##N##SUFF##_be_r) \
4399 (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \
4401 sve_ld##N##_r(env, vg, addr, desc, SIZE, GETPC(), \
4402 sve_ld1##SUFF##_be_tlb); \
4405 DO_LDN_1(2)
4406 DO_LDN_1(3)
4407 DO_LDN_1(4)
4409 DO_LDN_2(2, hh, 2)
4410 DO_LDN_2(3, hh, 2)
4411 DO_LDN_2(4, hh, 2)
4413 DO_LDN_2(2, ss, 4)
4414 DO_LDN_2(3, ss, 4)
4415 DO_LDN_2(4, ss, 4)
4417 DO_LDN_2(2, dd, 8)
4418 DO_LDN_2(3, dd, 8)
4419 DO_LDN_2(4, dd, 8)
4421 #undef DO_LDN_1
4422 #undef DO_LDN_2
4425 * Load contiguous data, first-fault and no-fault.
4427 * For user-only, one could argue that we should hold the mmap_lock during
4428 * the operation so that there is no race between page_check_range and the
4429 * load operation. However, unmapping pages out from under a running thread
4430 * is extraordinarily unlikely. This theoretical race condition also affects
4431 * linux-user/ in its get_user/put_user macros.
4433 * TODO: Construct some helpers, written in assembly, that interact with
4434 * handle_cpu_signal to produce memory ops which can properly report errors
4435 * without racing.
4438 /* Fault on byte I. All bits in FFR from I are cleared. The vector
4439 * result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE
4440 * option, which leaves subsequent data unchanged.
4442 static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz)
4444 uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p;
4446 if (i & 63) {
4447 ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63);
4448 i = ROUND_UP(i, 64);
4450 for (; i < oprsz; i += 64) {
4451 ffr[i / 64] = 0;
4456 * Common helper for all contiguous first-fault loads.
4458 static void sve_ldff1_r(CPUARMState *env, void *vg, const target_ulong addr,
4459 uint32_t desc, const uintptr_t retaddr,
4460 const int esz, const int msz,
4461 sve_ld1_host_fn *host_fn,
4462 sve_ld1_tlb_fn *tlb_fn)
4464 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4465 const int mmu_idx = get_mmuidx(oi);
4466 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4467 void *vd = &env->vfp.zregs[rd];
4468 const int diffsz = esz - msz;
4469 const intptr_t reg_max = simd_oprsz(desc);
4470 const intptr_t mem_max = reg_max >> diffsz;
4471 intptr_t split, reg_off, mem_off;
4472 void *host;
4474 /* Skip to the first active element. */
4475 reg_off = find_next_active(vg, 0, reg_max, esz);
4476 if (unlikely(reg_off == reg_max)) {
4477 /* The entire predicate was false; no load occurs. */
4478 memset(vd, 0, reg_max);
4479 return;
4481 mem_off = reg_off >> diffsz;
4482 set_helper_retaddr(retaddr);
4485 * If the (remaining) load is entirely within a single page, then:
4486 * For softmmu, and the tlb hits, then no faults will occur;
4487 * For user-only, either the first load will fault or none will.
4488 * We can thus perform the load directly to the destination and
4489 * Vd will be unmodified on any exception path.
4491 split = max_for_page(addr, mem_off, mem_max);
4492 if (likely(split == mem_max)) {
4493 host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx);
4494 if (test_host_page(host)) {
4495 mem_off = host_fn(vd, vg, host - mem_off, mem_off, mem_max);
4496 tcg_debug_assert(mem_off == mem_max);
4497 set_helper_retaddr(0);
4498 /* After any fault, zero any leading inactive elements. */
4499 swap_memzero(vd, reg_off);
4500 return;
4504 #ifdef CONFIG_USER_ONLY
4506 * The page(s) containing this first element at ADDR+MEM_OFF must
4507 * be valid. Considering that this first element may be misaligned
4508 * and cross a page boundary itself, take the rest of the page from
4509 * the last byte of the element.
4511 split = max_for_page(addr, mem_off + (1 << msz) - 1, mem_max);
4512 mem_off = host_fn(vd, vg, g2h(addr), mem_off, split);
4514 /* After any fault, zero any leading inactive elements. */
4515 swap_memzero(vd, reg_off);
4516 reg_off = mem_off << diffsz;
4517 #else
4519 * Perform one normal read, which will fault or not.
4520 * But it is likely to bring the page into the tlb.
4522 tlb_fn(env, vd, reg_off, addr + mem_off, oi, retaddr);
4524 /* After any fault, zero any leading predicated false elts. */
4525 swap_memzero(vd, reg_off);
4526 mem_off += 1 << msz;
4527 reg_off += 1 << esz;
4529 /* Try again to read the balance of the page. */
4530 split = max_for_page(addr, mem_off - 1, mem_max);
4531 if (split >= (1 << msz)) {
4532 host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx);
4533 if (host) {
4534 mem_off = host_fn(vd, vg, host - mem_off, mem_off, split);
4535 reg_off = mem_off << diffsz;
4538 #endif
4540 set_helper_retaddr(0);
4541 record_fault(env, reg_off, reg_max);
4545 * Common helper for all contiguous no-fault loads.
4547 static void sve_ldnf1_r(CPUARMState *env, void *vg, const target_ulong addr,
4548 uint32_t desc, const int esz, const int msz,
4549 sve_ld1_host_fn *host_fn)
4551 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4552 void *vd = &env->vfp.zregs[rd];
4553 const int diffsz = esz - msz;
4554 const intptr_t reg_max = simd_oprsz(desc);
4555 const intptr_t mem_max = reg_max >> diffsz;
4556 const int mmu_idx = cpu_mmu_index(env, false);
4557 intptr_t split, reg_off, mem_off;
4558 void *host;
4560 #ifdef CONFIG_USER_ONLY
4561 host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD, mmu_idx);
4562 if (likely(page_check_range(addr, mem_max, PAGE_READ) == 0)) {
4563 /* The entire operation is valid and will not fault. */
4564 host_fn(vd, vg, host, 0, mem_max);
4565 return;
4567 #endif
4569 /* There will be no fault, so we may modify in advance. */
4570 memset(vd, 0, reg_max);
4572 /* Skip to the first active element. */
4573 reg_off = find_next_active(vg, 0, reg_max, esz);
4574 if (unlikely(reg_off == reg_max)) {
4575 /* The entire predicate was false; no load occurs. */
4576 return;
4578 mem_off = reg_off >> diffsz;
4580 #ifdef CONFIG_USER_ONLY
4581 if (page_check_range(addr + mem_off, 1 << msz, PAGE_READ) == 0) {
4582 /* At least one load is valid; take the rest of the page. */
4583 split = max_for_page(addr, mem_off + (1 << msz) - 1, mem_max);
4584 mem_off = host_fn(vd, vg, host, mem_off, split);
4585 reg_off = mem_off << diffsz;
4587 #else
4589 * If the address is not in the TLB, we have no way to bring the
4590 * entry into the TLB without also risking a fault. Note that
4591 * the corollary is that we never load from an address not in RAM.
4593 * This last is out of spec, in a weird corner case.
4594 * Per the MemNF/MemSingleNF pseudocode, a NF load from Device memory
4595 * must not actually hit the bus -- it returns UNKNOWN data instead.
4596 * But if you map non-RAM with Normal memory attributes and do a NF
4597 * load then it should access the bus. (Nobody ought actually do this
4598 * in the real world, obviously.)
4600 * Then there are the annoying special cases with watchpoints...
4602 * TODO: Add a form of tlb_fill that does not raise an exception,
4603 * with a form of tlb_vaddr_to_host and a set of loads to match.
4604 * The non_fault_vaddr_to_host would handle everything, usually,
4605 * and the loads would handle the iomem path for watchpoints.
4607 host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx);
4608 split = max_for_page(addr, mem_off, mem_max);
4609 if (host && split >= (1 << msz)) {
4610 mem_off = host_fn(vd, vg, host - mem_off, mem_off, split);
4611 reg_off = mem_off << diffsz;
4613 #endif
4615 record_fault(env, reg_off, reg_max);
4618 #define DO_LDFF1_LDNF1_1(PART, ESZ) \
4619 void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg, \
4620 target_ulong addr, uint32_t desc) \
4622 sve_ldff1_r(env, vg, addr, desc, GETPC(), ESZ, 0, \
4623 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
4625 void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg, \
4626 target_ulong addr, uint32_t desc) \
4628 sve_ldnf1_r(env, vg, addr, desc, ESZ, 0, sve_ld1##PART##_host); \
4631 #define DO_LDFF1_LDNF1_2(PART, ESZ, MSZ) \
4632 void HELPER(sve_ldff1##PART##_le_r)(CPUARMState *env, void *vg, \
4633 target_ulong addr, uint32_t desc) \
4635 sve_ldff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \
4636 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
4638 void HELPER(sve_ldnf1##PART##_le_r)(CPUARMState *env, void *vg, \
4639 target_ulong addr, uint32_t desc) \
4641 sve_ldnf1_r(env, vg, addr, desc, ESZ, MSZ, sve_ld1##PART##_le_host); \
4643 void HELPER(sve_ldff1##PART##_be_r)(CPUARMState *env, void *vg, \
4644 target_ulong addr, uint32_t desc) \
4646 sve_ldff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \
4647 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
4649 void HELPER(sve_ldnf1##PART##_be_r)(CPUARMState *env, void *vg, \
4650 target_ulong addr, uint32_t desc) \
4652 sve_ldnf1_r(env, vg, addr, desc, ESZ, MSZ, sve_ld1##PART##_be_host); \
4655 DO_LDFF1_LDNF1_1(bb, 0)
4656 DO_LDFF1_LDNF1_1(bhu, 1)
4657 DO_LDFF1_LDNF1_1(bhs, 1)
4658 DO_LDFF1_LDNF1_1(bsu, 2)
4659 DO_LDFF1_LDNF1_1(bss, 2)
4660 DO_LDFF1_LDNF1_1(bdu, 3)
4661 DO_LDFF1_LDNF1_1(bds, 3)
4663 DO_LDFF1_LDNF1_2(hh, 1, 1)
4664 DO_LDFF1_LDNF1_2(hsu, 2, 1)
4665 DO_LDFF1_LDNF1_2(hss, 2, 1)
4666 DO_LDFF1_LDNF1_2(hdu, 3, 1)
4667 DO_LDFF1_LDNF1_2(hds, 3, 1)
4669 DO_LDFF1_LDNF1_2(ss, 2, 2)
4670 DO_LDFF1_LDNF1_2(sdu, 3, 2)
4671 DO_LDFF1_LDNF1_2(sds, 3, 2)
4673 DO_LDFF1_LDNF1_2(dd, 3, 3)
4675 #undef DO_LDFF1_LDNF1_1
4676 #undef DO_LDFF1_LDNF1_2
4679 * Store contiguous data, protected by a governing predicate.
4682 #ifdef CONFIG_SOFTMMU
4683 #define DO_ST_TLB(NAME, H, TYPEM, HOST, MOEND, TLB) \
4684 static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
4685 target_ulong addr, TCGMemOpIdx oi, uintptr_t ra) \
4687 TLB(env, addr, *(TYPEM *)(vd + H(reg_off)), oi, ra); \
4689 #else
4690 #define DO_ST_TLB(NAME, H, TYPEM, HOST, MOEND, TLB) \
4691 static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
4692 target_ulong addr, TCGMemOpIdx oi, uintptr_t ra) \
4694 HOST(g2h(addr), *(TYPEM *)(vd + H(reg_off))); \
4696 #endif
4698 DO_ST_TLB(st1bb, H1, uint8_t, stb_p, 0, helper_ret_stb_mmu)
4699 DO_ST_TLB(st1bh, H1_2, uint16_t, stb_p, 0, helper_ret_stb_mmu)
4700 DO_ST_TLB(st1bs, H1_4, uint32_t, stb_p, 0, helper_ret_stb_mmu)
4701 DO_ST_TLB(st1bd, , uint64_t, stb_p, 0, helper_ret_stb_mmu)
4703 DO_ST_TLB(st1hh_le, H1_2, uint16_t, stw_le_p, MO_LE, helper_le_stw_mmu)
4704 DO_ST_TLB(st1hs_le, H1_4, uint32_t, stw_le_p, MO_LE, helper_le_stw_mmu)
4705 DO_ST_TLB(st1hd_le, , uint64_t, stw_le_p, MO_LE, helper_le_stw_mmu)
4707 DO_ST_TLB(st1ss_le, H1_4, uint32_t, stl_le_p, MO_LE, helper_le_stl_mmu)
4708 DO_ST_TLB(st1sd_le, , uint64_t, stl_le_p, MO_LE, helper_le_stl_mmu)
4710 DO_ST_TLB(st1dd_le, , uint64_t, stq_le_p, MO_LE, helper_le_stq_mmu)
4712 DO_ST_TLB(st1hh_be, H1_2, uint16_t, stw_be_p, MO_BE, helper_be_stw_mmu)
4713 DO_ST_TLB(st1hs_be, H1_4, uint32_t, stw_be_p, MO_BE, helper_be_stw_mmu)
4714 DO_ST_TLB(st1hd_be, , uint64_t, stw_be_p, MO_BE, helper_be_stw_mmu)
4716 DO_ST_TLB(st1ss_be, H1_4, uint32_t, stl_be_p, MO_BE, helper_be_stl_mmu)
4717 DO_ST_TLB(st1sd_be, , uint64_t, stl_be_p, MO_BE, helper_be_stl_mmu)
4719 DO_ST_TLB(st1dd_be, , uint64_t, stq_be_p, MO_BE, helper_be_stq_mmu)
4721 #undef DO_ST_TLB
4724 * Common helpers for all contiguous 1,2,3,4-register predicated stores.
4726 static void sve_st1_r(CPUARMState *env, void *vg, target_ulong addr,
4727 uint32_t desc, const uintptr_t ra,
4728 const int esize, const int msize,
4729 sve_st1_tlb_fn *tlb_fn)
4731 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4732 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4733 intptr_t i, oprsz = simd_oprsz(desc);
4734 void *vd = &env->vfp.zregs[rd];
4736 set_helper_retaddr(ra);
4737 for (i = 0; i < oprsz; ) {
4738 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
4739 do {
4740 if (pg & 1) {
4741 tlb_fn(env, vd, i, addr, oi, ra);
4743 i += esize, pg >>= esize;
4744 addr += msize;
4745 } while (i & 15);
4747 set_helper_retaddr(0);
4750 static void sve_st2_r(CPUARMState *env, void *vg, target_ulong addr,
4751 uint32_t desc, const uintptr_t ra,
4752 const int esize, const int msize,
4753 sve_st1_tlb_fn *tlb_fn)
4755 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4756 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4757 intptr_t i, oprsz = simd_oprsz(desc);
4758 void *d1 = &env->vfp.zregs[rd];
4759 void *d2 = &env->vfp.zregs[(rd + 1) & 31];
4761 set_helper_retaddr(ra);
4762 for (i = 0; i < oprsz; ) {
4763 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
4764 do {
4765 if (pg & 1) {
4766 tlb_fn(env, d1, i, addr, oi, ra);
4767 tlb_fn(env, d2, i, addr + msize, oi, ra);
4769 i += esize, pg >>= esize;
4770 addr += 2 * msize;
4771 } while (i & 15);
4773 set_helper_retaddr(0);
4776 static void sve_st3_r(CPUARMState *env, void *vg, target_ulong addr,
4777 uint32_t desc, const uintptr_t ra,
4778 const int esize, const int msize,
4779 sve_st1_tlb_fn *tlb_fn)
4781 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4782 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4783 intptr_t i, oprsz = simd_oprsz(desc);
4784 void *d1 = &env->vfp.zregs[rd];
4785 void *d2 = &env->vfp.zregs[(rd + 1) & 31];
4786 void *d3 = &env->vfp.zregs[(rd + 2) & 31];
4788 set_helper_retaddr(ra);
4789 for (i = 0; i < oprsz; ) {
4790 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
4791 do {
4792 if (pg & 1) {
4793 tlb_fn(env, d1, i, addr, oi, ra);
4794 tlb_fn(env, d2, i, addr + msize, oi, ra);
4795 tlb_fn(env, d3, i, addr + 2 * msize, oi, ra);
4797 i += esize, pg >>= esize;
4798 addr += 3 * msize;
4799 } while (i & 15);
4801 set_helper_retaddr(0);
4804 static void sve_st4_r(CPUARMState *env, void *vg, target_ulong addr,
4805 uint32_t desc, const uintptr_t ra,
4806 const int esize, const int msize,
4807 sve_st1_tlb_fn *tlb_fn)
4809 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4810 const unsigned rd = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 5);
4811 intptr_t i, oprsz = simd_oprsz(desc);
4812 void *d1 = &env->vfp.zregs[rd];
4813 void *d2 = &env->vfp.zregs[(rd + 1) & 31];
4814 void *d3 = &env->vfp.zregs[(rd + 2) & 31];
4815 void *d4 = &env->vfp.zregs[(rd + 3) & 31];
4817 set_helper_retaddr(ra);
4818 for (i = 0; i < oprsz; ) {
4819 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
4820 do {
4821 if (pg & 1) {
4822 tlb_fn(env, d1, i, addr, oi, ra);
4823 tlb_fn(env, d2, i, addr + msize, oi, ra);
4824 tlb_fn(env, d3, i, addr + 2 * msize, oi, ra);
4825 tlb_fn(env, d4, i, addr + 3 * msize, oi, ra);
4827 i += esize, pg >>= esize;
4828 addr += 4 * msize;
4829 } while (i & 15);
4831 set_helper_retaddr(0);
4834 #define DO_STN_1(N, NAME, ESIZE) \
4835 void QEMU_FLATTEN HELPER(sve_st##N##NAME##_r) \
4836 (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \
4838 sve_st##N##_r(env, vg, addr, desc, GETPC(), ESIZE, 1, \
4839 sve_st1##NAME##_tlb); \
4842 #define DO_STN_2(N, NAME, ESIZE, MSIZE) \
4843 void QEMU_FLATTEN HELPER(sve_st##N##NAME##_le_r) \
4844 (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \
4846 sve_st##N##_r(env, vg, addr, desc, GETPC(), ESIZE, MSIZE, \
4847 sve_st1##NAME##_le_tlb); \
4849 void QEMU_FLATTEN HELPER(sve_st##N##NAME##_be_r) \
4850 (CPUARMState *env, void *vg, target_ulong addr, uint32_t desc) \
4852 sve_st##N##_r(env, vg, addr, desc, GETPC(), ESIZE, MSIZE, \
4853 sve_st1##NAME##_be_tlb); \
4856 DO_STN_1(1, bb, 1)
4857 DO_STN_1(1, bh, 2)
4858 DO_STN_1(1, bs, 4)
4859 DO_STN_1(1, bd, 8)
4860 DO_STN_1(2, bb, 1)
4861 DO_STN_1(3, bb, 1)
4862 DO_STN_1(4, bb, 1)
4864 DO_STN_2(1, hh, 2, 2)
4865 DO_STN_2(1, hs, 4, 2)
4866 DO_STN_2(1, hd, 8, 2)
4867 DO_STN_2(2, hh, 2, 2)
4868 DO_STN_2(3, hh, 2, 2)
4869 DO_STN_2(4, hh, 2, 2)
4871 DO_STN_2(1, ss, 4, 4)
4872 DO_STN_2(1, sd, 8, 4)
4873 DO_STN_2(2, ss, 4, 4)
4874 DO_STN_2(3, ss, 4, 4)
4875 DO_STN_2(4, ss, 4, 4)
4877 DO_STN_2(1, dd, 8, 8)
4878 DO_STN_2(2, dd, 8, 8)
4879 DO_STN_2(3, dd, 8, 8)
4880 DO_STN_2(4, dd, 8, 8)
4882 #undef DO_STN_1
4883 #undef DO_STN_2
4886 * Loads with a vector index.
4890 * Load the element at @reg + @reg_ofs, sign or zero-extend as needed.
4892 typedef target_ulong zreg_off_fn(void *reg, intptr_t reg_ofs);
4894 static target_ulong off_zsu_s(void *reg, intptr_t reg_ofs)
4896 return *(uint32_t *)(reg + H1_4(reg_ofs));
4899 static target_ulong off_zss_s(void *reg, intptr_t reg_ofs)
4901 return *(int32_t *)(reg + H1_4(reg_ofs));
4904 static target_ulong off_zsu_d(void *reg, intptr_t reg_ofs)
4906 return (uint32_t)*(uint64_t *)(reg + reg_ofs);
4909 static target_ulong off_zss_d(void *reg, intptr_t reg_ofs)
4911 return (int32_t)*(uint64_t *)(reg + reg_ofs);
4914 static target_ulong off_zd_d(void *reg, intptr_t reg_ofs)
4916 return *(uint64_t *)(reg + reg_ofs);
4919 static void sve_ld1_zs(CPUARMState *env, void *vd, void *vg, void *vm,
4920 target_ulong base, uint32_t desc, uintptr_t ra,
4921 zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn)
4923 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4924 const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2);
4925 intptr_t i, oprsz = simd_oprsz(desc);
4926 ARMVectorReg scratch = { };
4928 set_helper_retaddr(ra);
4929 for (i = 0; i < oprsz; ) {
4930 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
4931 do {
4932 if (likely(pg & 1)) {
4933 target_ulong off = off_fn(vm, i);
4934 tlb_fn(env, &scratch, i, base + (off << scale), oi, ra);
4936 i += 4, pg >>= 4;
4937 } while (i & 15);
4939 set_helper_retaddr(0);
4941 /* Wait until all exceptions have been raised to write back. */
4942 memcpy(vd, &scratch, oprsz);
4945 static void sve_ld1_zd(CPUARMState *env, void *vd, void *vg, void *vm,
4946 target_ulong base, uint32_t desc, uintptr_t ra,
4947 zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn)
4949 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
4950 const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2);
4951 intptr_t i, oprsz = simd_oprsz(desc) / 8;
4952 ARMVectorReg scratch = { };
4954 set_helper_retaddr(ra);
4955 for (i = 0; i < oprsz; i++) {
4956 uint8_t pg = *(uint8_t *)(vg + H1(i));
4957 if (likely(pg & 1)) {
4958 target_ulong off = off_fn(vm, i * 8);
4959 tlb_fn(env, &scratch, i * 8, base + (off << scale), oi, ra);
4962 set_helper_retaddr(0);
4964 /* Wait until all exceptions have been raised to write back. */
4965 memcpy(vd, &scratch, oprsz * 8);
4968 #define DO_LD1_ZPZ_S(MEM, OFS) \
4969 void QEMU_FLATTEN HELPER(sve_ld##MEM##_##OFS) \
4970 (CPUARMState *env, void *vd, void *vg, void *vm, \
4971 target_ulong base, uint32_t desc) \
4973 sve_ld1_zs(env, vd, vg, vm, base, desc, GETPC(), \
4974 off_##OFS##_s, sve_ld1##MEM##_tlb); \
4977 #define DO_LD1_ZPZ_D(MEM, OFS) \
4978 void QEMU_FLATTEN HELPER(sve_ld##MEM##_##OFS) \
4979 (CPUARMState *env, void *vd, void *vg, void *vm, \
4980 target_ulong base, uint32_t desc) \
4982 sve_ld1_zd(env, vd, vg, vm, base, desc, GETPC(), \
4983 off_##OFS##_d, sve_ld1##MEM##_tlb); \
4986 DO_LD1_ZPZ_S(bsu, zsu)
4987 DO_LD1_ZPZ_S(bsu, zss)
4988 DO_LD1_ZPZ_D(bdu, zsu)
4989 DO_LD1_ZPZ_D(bdu, zss)
4990 DO_LD1_ZPZ_D(bdu, zd)
4992 DO_LD1_ZPZ_S(bss, zsu)
4993 DO_LD1_ZPZ_S(bss, zss)
4994 DO_LD1_ZPZ_D(bds, zsu)
4995 DO_LD1_ZPZ_D(bds, zss)
4996 DO_LD1_ZPZ_D(bds, zd)
4998 DO_LD1_ZPZ_S(hsu_le, zsu)
4999 DO_LD1_ZPZ_S(hsu_le, zss)
5000 DO_LD1_ZPZ_D(hdu_le, zsu)
5001 DO_LD1_ZPZ_D(hdu_le, zss)
5002 DO_LD1_ZPZ_D(hdu_le, zd)
5004 DO_LD1_ZPZ_S(hsu_be, zsu)
5005 DO_LD1_ZPZ_S(hsu_be, zss)
5006 DO_LD1_ZPZ_D(hdu_be, zsu)
5007 DO_LD1_ZPZ_D(hdu_be, zss)
5008 DO_LD1_ZPZ_D(hdu_be, zd)
5010 DO_LD1_ZPZ_S(hss_le, zsu)
5011 DO_LD1_ZPZ_S(hss_le, zss)
5012 DO_LD1_ZPZ_D(hds_le, zsu)
5013 DO_LD1_ZPZ_D(hds_le, zss)
5014 DO_LD1_ZPZ_D(hds_le, zd)
5016 DO_LD1_ZPZ_S(hss_be, zsu)
5017 DO_LD1_ZPZ_S(hss_be, zss)
5018 DO_LD1_ZPZ_D(hds_be, zsu)
5019 DO_LD1_ZPZ_D(hds_be, zss)
5020 DO_LD1_ZPZ_D(hds_be, zd)
5022 DO_LD1_ZPZ_S(ss_le, zsu)
5023 DO_LD1_ZPZ_S(ss_le, zss)
5024 DO_LD1_ZPZ_D(sdu_le, zsu)
5025 DO_LD1_ZPZ_D(sdu_le, zss)
5026 DO_LD1_ZPZ_D(sdu_le, zd)
5028 DO_LD1_ZPZ_S(ss_be, zsu)
5029 DO_LD1_ZPZ_S(ss_be, zss)
5030 DO_LD1_ZPZ_D(sdu_be, zsu)
5031 DO_LD1_ZPZ_D(sdu_be, zss)
5032 DO_LD1_ZPZ_D(sdu_be, zd)
5034 DO_LD1_ZPZ_D(sds_le, zsu)
5035 DO_LD1_ZPZ_D(sds_le, zss)
5036 DO_LD1_ZPZ_D(sds_le, zd)
5038 DO_LD1_ZPZ_D(sds_be, zsu)
5039 DO_LD1_ZPZ_D(sds_be, zss)
5040 DO_LD1_ZPZ_D(sds_be, zd)
5042 DO_LD1_ZPZ_D(dd_le, zsu)
5043 DO_LD1_ZPZ_D(dd_le, zss)
5044 DO_LD1_ZPZ_D(dd_le, zd)
5046 DO_LD1_ZPZ_D(dd_be, zsu)
5047 DO_LD1_ZPZ_D(dd_be, zss)
5048 DO_LD1_ZPZ_D(dd_be, zd)
5050 #undef DO_LD1_ZPZ_S
5051 #undef DO_LD1_ZPZ_D
5053 /* First fault loads with a vector index. */
5055 /* Load one element into VD+REG_OFF from (ENV,VADDR) without faulting.
5056 * The controlling predicate is known to be true. Return true if the
5057 * load was successful.
5059 typedef bool sve_ld1_nf_fn(CPUARMState *env, void *vd, intptr_t reg_off,
5060 target_ulong vaddr, int mmu_idx);
5062 #ifdef CONFIG_SOFTMMU
5063 #define DO_LD_NF(NAME, H, TYPEE, TYPEM, HOST) \
5064 static bool sve_ld##NAME##_nf(CPUARMState *env, void *vd, intptr_t reg_off, \
5065 target_ulong addr, int mmu_idx) \
5067 target_ulong next_page = -(addr | TARGET_PAGE_MASK); \
5068 if (likely(next_page - addr >= sizeof(TYPEM))) { \
5069 void *host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD, mmu_idx); \
5070 if (likely(host)) { \
5071 TYPEM val = HOST(host); \
5072 *(TYPEE *)(vd + H(reg_off)) = val; \
5073 return true; \
5076 return false; \
5078 #else
5079 #define DO_LD_NF(NAME, H, TYPEE, TYPEM, HOST) \
5080 static bool sve_ld##NAME##_nf(CPUARMState *env, void *vd, intptr_t reg_off, \
5081 target_ulong addr, int mmu_idx) \
5083 if (likely(page_check_range(addr, sizeof(TYPEM), PAGE_READ))) { \
5084 TYPEM val = HOST(g2h(addr)); \
5085 *(TYPEE *)(vd + H(reg_off)) = val; \
5086 return true; \
5088 return false; \
5090 #endif
5092 DO_LD_NF(bsu, H1_4, uint32_t, uint8_t, ldub_p)
5093 DO_LD_NF(bss, H1_4, uint32_t, int8_t, ldsb_p)
5094 DO_LD_NF(bdu, , uint64_t, uint8_t, ldub_p)
5095 DO_LD_NF(bds, , uint64_t, int8_t, ldsb_p)
5097 DO_LD_NF(hsu_le, H1_4, uint32_t, uint16_t, lduw_le_p)
5098 DO_LD_NF(hss_le, H1_4, uint32_t, int16_t, ldsw_le_p)
5099 DO_LD_NF(hsu_be, H1_4, uint32_t, uint16_t, lduw_be_p)
5100 DO_LD_NF(hss_be, H1_4, uint32_t, int16_t, ldsw_be_p)
5101 DO_LD_NF(hdu_le, , uint64_t, uint16_t, lduw_le_p)
5102 DO_LD_NF(hds_le, , uint64_t, int16_t, ldsw_le_p)
5103 DO_LD_NF(hdu_be, , uint64_t, uint16_t, lduw_be_p)
5104 DO_LD_NF(hds_be, , uint64_t, int16_t, ldsw_be_p)
5106 DO_LD_NF(ss_le, H1_4, uint32_t, uint32_t, ldl_le_p)
5107 DO_LD_NF(ss_be, H1_4, uint32_t, uint32_t, ldl_be_p)
5108 DO_LD_NF(sdu_le, , uint64_t, uint32_t, ldl_le_p)
5109 DO_LD_NF(sds_le, , uint64_t, int32_t, ldl_le_p)
5110 DO_LD_NF(sdu_be, , uint64_t, uint32_t, ldl_be_p)
5111 DO_LD_NF(sds_be, , uint64_t, int32_t, ldl_be_p)
5113 DO_LD_NF(dd_le, , uint64_t, uint64_t, ldq_le_p)
5114 DO_LD_NF(dd_be, , uint64_t, uint64_t, ldq_be_p)
5117 * Common helper for all gather first-faulting loads.
5119 static inline void sve_ldff1_zs(CPUARMState *env, void *vd, void *vg, void *vm,
5120 target_ulong base, uint32_t desc, uintptr_t ra,
5121 zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn,
5122 sve_ld1_nf_fn *nonfault_fn)
5124 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
5125 const int mmu_idx = get_mmuidx(oi);
5126 const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2);
5127 intptr_t reg_off, reg_max = simd_oprsz(desc);
5128 target_ulong addr;
5130 /* Skip to the first true predicate. */
5131 reg_off = find_next_active(vg, 0, reg_max, MO_32);
5132 if (likely(reg_off < reg_max)) {
5133 /* Perform one normal read, which will fault or not. */
5134 set_helper_retaddr(ra);
5135 addr = off_fn(vm, reg_off);
5136 addr = base + (addr << scale);
5137 tlb_fn(env, vd, reg_off, addr, oi, ra);
5139 /* The rest of the reads will be non-faulting. */
5140 set_helper_retaddr(0);
5143 /* After any fault, zero the leading predicated false elements. */
5144 swap_memzero(vd, reg_off);
5146 while (likely((reg_off += 4) < reg_max)) {
5147 uint64_t pg = *(uint64_t *)(vg + (reg_off >> 6) * 8);
5148 if (likely((pg >> (reg_off & 63)) & 1)) {
5149 addr = off_fn(vm, reg_off);
5150 addr = base + (addr << scale);
5151 if (!nonfault_fn(env, vd, reg_off, addr, mmu_idx)) {
5152 record_fault(env, reg_off, reg_max);
5153 break;
5155 } else {
5156 *(uint32_t *)(vd + H1_4(reg_off)) = 0;
5161 static inline void sve_ldff1_zd(CPUARMState *env, void *vd, void *vg, void *vm,
5162 target_ulong base, uint32_t desc, uintptr_t ra,
5163 zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn,
5164 sve_ld1_nf_fn *nonfault_fn)
5166 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
5167 const int mmu_idx = get_mmuidx(oi);
5168 const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2);
5169 intptr_t reg_off, reg_max = simd_oprsz(desc);
5170 target_ulong addr;
5172 /* Skip to the first true predicate. */
5173 reg_off = find_next_active(vg, 0, reg_max, MO_64);
5174 if (likely(reg_off < reg_max)) {
5175 /* Perform one normal read, which will fault or not. */
5176 set_helper_retaddr(ra);
5177 addr = off_fn(vm, reg_off);
5178 addr = base + (addr << scale);
5179 tlb_fn(env, vd, reg_off, addr, oi, ra);
5181 /* The rest of the reads will be non-faulting. */
5182 set_helper_retaddr(0);
5185 /* After any fault, zero the leading predicated false elements. */
5186 swap_memzero(vd, reg_off);
5188 while (likely((reg_off += 8) < reg_max)) {
5189 uint8_t pg = *(uint8_t *)(vg + H1(reg_off >> 3));
5190 if (likely(pg & 1)) {
5191 addr = off_fn(vm, reg_off);
5192 addr = base + (addr << scale);
5193 if (!nonfault_fn(env, vd, reg_off, addr, mmu_idx)) {
5194 record_fault(env, reg_off, reg_max);
5195 break;
5197 } else {
5198 *(uint64_t *)(vd + reg_off) = 0;
5203 #define DO_LDFF1_ZPZ_S(MEM, OFS) \
5204 void HELPER(sve_ldff##MEM##_##OFS) \
5205 (CPUARMState *env, void *vd, void *vg, void *vm, \
5206 target_ulong base, uint32_t desc) \
5208 sve_ldff1_zs(env, vd, vg, vm, base, desc, GETPC(), \
5209 off_##OFS##_s, sve_ld1##MEM##_tlb, sve_ld##MEM##_nf); \
5212 #define DO_LDFF1_ZPZ_D(MEM, OFS) \
5213 void HELPER(sve_ldff##MEM##_##OFS) \
5214 (CPUARMState *env, void *vd, void *vg, void *vm, \
5215 target_ulong base, uint32_t desc) \
5217 sve_ldff1_zd(env, vd, vg, vm, base, desc, GETPC(), \
5218 off_##OFS##_d, sve_ld1##MEM##_tlb, sve_ld##MEM##_nf); \
5221 DO_LDFF1_ZPZ_S(bsu, zsu)
5222 DO_LDFF1_ZPZ_S(bsu, zss)
5223 DO_LDFF1_ZPZ_D(bdu, zsu)
5224 DO_LDFF1_ZPZ_D(bdu, zss)
5225 DO_LDFF1_ZPZ_D(bdu, zd)
5227 DO_LDFF1_ZPZ_S(bss, zsu)
5228 DO_LDFF1_ZPZ_S(bss, zss)
5229 DO_LDFF1_ZPZ_D(bds, zsu)
5230 DO_LDFF1_ZPZ_D(bds, zss)
5231 DO_LDFF1_ZPZ_D(bds, zd)
5233 DO_LDFF1_ZPZ_S(hsu_le, zsu)
5234 DO_LDFF1_ZPZ_S(hsu_le, zss)
5235 DO_LDFF1_ZPZ_D(hdu_le, zsu)
5236 DO_LDFF1_ZPZ_D(hdu_le, zss)
5237 DO_LDFF1_ZPZ_D(hdu_le, zd)
5239 DO_LDFF1_ZPZ_S(hsu_be, zsu)
5240 DO_LDFF1_ZPZ_S(hsu_be, zss)
5241 DO_LDFF1_ZPZ_D(hdu_be, zsu)
5242 DO_LDFF1_ZPZ_D(hdu_be, zss)
5243 DO_LDFF1_ZPZ_D(hdu_be, zd)
5245 DO_LDFF1_ZPZ_S(hss_le, zsu)
5246 DO_LDFF1_ZPZ_S(hss_le, zss)
5247 DO_LDFF1_ZPZ_D(hds_le, zsu)
5248 DO_LDFF1_ZPZ_D(hds_le, zss)
5249 DO_LDFF1_ZPZ_D(hds_le, zd)
5251 DO_LDFF1_ZPZ_S(hss_be, zsu)
5252 DO_LDFF1_ZPZ_S(hss_be, zss)
5253 DO_LDFF1_ZPZ_D(hds_be, zsu)
5254 DO_LDFF1_ZPZ_D(hds_be, zss)
5255 DO_LDFF1_ZPZ_D(hds_be, zd)
5257 DO_LDFF1_ZPZ_S(ss_le, zsu)
5258 DO_LDFF1_ZPZ_S(ss_le, zss)
5259 DO_LDFF1_ZPZ_D(sdu_le, zsu)
5260 DO_LDFF1_ZPZ_D(sdu_le, zss)
5261 DO_LDFF1_ZPZ_D(sdu_le, zd)
5263 DO_LDFF1_ZPZ_S(ss_be, zsu)
5264 DO_LDFF1_ZPZ_S(ss_be, zss)
5265 DO_LDFF1_ZPZ_D(sdu_be, zsu)
5266 DO_LDFF1_ZPZ_D(sdu_be, zss)
5267 DO_LDFF1_ZPZ_D(sdu_be, zd)
5269 DO_LDFF1_ZPZ_D(sds_le, zsu)
5270 DO_LDFF1_ZPZ_D(sds_le, zss)
5271 DO_LDFF1_ZPZ_D(sds_le, zd)
5273 DO_LDFF1_ZPZ_D(sds_be, zsu)
5274 DO_LDFF1_ZPZ_D(sds_be, zss)
5275 DO_LDFF1_ZPZ_D(sds_be, zd)
5277 DO_LDFF1_ZPZ_D(dd_le, zsu)
5278 DO_LDFF1_ZPZ_D(dd_le, zss)
5279 DO_LDFF1_ZPZ_D(dd_le, zd)
5281 DO_LDFF1_ZPZ_D(dd_be, zsu)
5282 DO_LDFF1_ZPZ_D(dd_be, zss)
5283 DO_LDFF1_ZPZ_D(dd_be, zd)
5285 /* Stores with a vector index. */
5287 static void sve_st1_zs(CPUARMState *env, void *vd, void *vg, void *vm,
5288 target_ulong base, uint32_t desc, uintptr_t ra,
5289 zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn)
5291 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
5292 const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2);
5293 intptr_t i, oprsz = simd_oprsz(desc);
5295 set_helper_retaddr(ra);
5296 for (i = 0; i < oprsz; ) {
5297 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
5298 do {
5299 if (likely(pg & 1)) {
5300 target_ulong off = off_fn(vm, i);
5301 tlb_fn(env, vd, i, base + (off << scale), oi, ra);
5303 i += 4, pg >>= 4;
5304 } while (i & 15);
5306 set_helper_retaddr(0);
5309 static void sve_st1_zd(CPUARMState *env, void *vd, void *vg, void *vm,
5310 target_ulong base, uint32_t desc, uintptr_t ra,
5311 zreg_off_fn *off_fn, sve_ld1_tlb_fn *tlb_fn)
5313 const TCGMemOpIdx oi = extract32(desc, SIMD_DATA_SHIFT, MEMOPIDX_SHIFT);
5314 const int scale = extract32(desc, SIMD_DATA_SHIFT + MEMOPIDX_SHIFT, 2);
5315 intptr_t i, oprsz = simd_oprsz(desc) / 8;
5317 set_helper_retaddr(ra);
5318 for (i = 0; i < oprsz; i++) {
5319 uint8_t pg = *(uint8_t *)(vg + H1(i));
5320 if (likely(pg & 1)) {
5321 target_ulong off = off_fn(vm, i * 8);
5322 tlb_fn(env, vd, i * 8, base + (off << scale), oi, ra);
5325 set_helper_retaddr(0);
5328 #define DO_ST1_ZPZ_S(MEM, OFS) \
5329 void QEMU_FLATTEN HELPER(sve_st##MEM##_##OFS) \
5330 (CPUARMState *env, void *vd, void *vg, void *vm, \
5331 target_ulong base, uint32_t desc) \
5333 sve_st1_zs(env, vd, vg, vm, base, desc, GETPC(), \
5334 off_##OFS##_s, sve_st1##MEM##_tlb); \
5337 #define DO_ST1_ZPZ_D(MEM, OFS) \
5338 void QEMU_FLATTEN HELPER(sve_st##MEM##_##OFS) \
5339 (CPUARMState *env, void *vd, void *vg, void *vm, \
5340 target_ulong base, uint32_t desc) \
5342 sve_st1_zd(env, vd, vg, vm, base, desc, GETPC(), \
5343 off_##OFS##_d, sve_st1##MEM##_tlb); \
5346 DO_ST1_ZPZ_S(bs, zsu)
5347 DO_ST1_ZPZ_S(hs_le, zsu)
5348 DO_ST1_ZPZ_S(hs_be, zsu)
5349 DO_ST1_ZPZ_S(ss_le, zsu)
5350 DO_ST1_ZPZ_S(ss_be, zsu)
5352 DO_ST1_ZPZ_S(bs, zss)
5353 DO_ST1_ZPZ_S(hs_le, zss)
5354 DO_ST1_ZPZ_S(hs_be, zss)
5355 DO_ST1_ZPZ_S(ss_le, zss)
5356 DO_ST1_ZPZ_S(ss_be, zss)
5358 DO_ST1_ZPZ_D(bd, zsu)
5359 DO_ST1_ZPZ_D(hd_le, zsu)
5360 DO_ST1_ZPZ_D(hd_be, zsu)
5361 DO_ST1_ZPZ_D(sd_le, zsu)
5362 DO_ST1_ZPZ_D(sd_be, zsu)
5363 DO_ST1_ZPZ_D(dd_le, zsu)
5364 DO_ST1_ZPZ_D(dd_be, zsu)
5366 DO_ST1_ZPZ_D(bd, zss)
5367 DO_ST1_ZPZ_D(hd_le, zss)
5368 DO_ST1_ZPZ_D(hd_be, zss)
5369 DO_ST1_ZPZ_D(sd_le, zss)
5370 DO_ST1_ZPZ_D(sd_be, zss)
5371 DO_ST1_ZPZ_D(dd_le, zss)
5372 DO_ST1_ZPZ_D(dd_be, zss)
5374 DO_ST1_ZPZ_D(bd, zd)
5375 DO_ST1_ZPZ_D(hd_le, zd)
5376 DO_ST1_ZPZ_D(hd_be, zd)
5377 DO_ST1_ZPZ_D(sd_le, zd)
5378 DO_ST1_ZPZ_D(sd_be, zd)
5379 DO_ST1_ZPZ_D(dd_le, zd)
5380 DO_ST1_ZPZ_D(dd_be, zd)
5382 #undef DO_ST1_ZPZ_S
5383 #undef DO_ST1_ZPZ_D