hw/intc/i8259: Refactor pic_read_irq() to avoid uninitialized variable
[qemu/ar7.git] / docs / specs / ppc-spapr-numa.rst
blobffa687dc89da79e2e01ecad6f3beb85b2266db67
2 NUMA mechanics for sPAPR (pseries machines)
3 ============================================
5 NUMA in sPAPR works different than the System Locality Distance
6 Information Table (SLIT) in ACPI. The logic is explained in the LOPAPR
7 1.1 chapter 15, "Non Uniform Memory Access (NUMA) Option". This
8 document aims to complement this specification, providing details
9 of the elements that impacts how QEMU views NUMA in pseries.
11 Associativity and ibm,associativity property
12 --------------------------------------------
14 Associativity is defined as a group of platform resources that has
15 similar mean performance (or in our context here, distance) relative to
16 everyone else outside of the group.
18 The format of the ibm,associativity property varies with the value of
19 bit 0 of byte 5 of the ibm,architecture-vec-5 property. The format with
20 bit 0 equal to zero is deprecated. The current format, with the bit 0
21 with the value of one, makes ibm,associativity property represent the
22 physical hierarchy of the platform, as one or more lists that starts
23 with the highest level grouping up to the smallest. Considering the
24 following topology:
28     Mem M1 ---- Proc P1    |
29     -----------------      | Socket S1  ---|
30           chip C1          |               |
31                                            | HW module 1 (MOD1)
32     Mem M2 ---- Proc P2    |               |
33     -----------------      | Socket S2  ---|
34           chip C2          |
36 The ibm,associativity property for the processors would be:
38 * P1: {MOD1, S1, C1, P1}
39 * P2: {MOD1, S2, C2, P2}
41 Each allocable resource has an ibm,associativity property. The LOPAPR
42 specification allows multiple lists to be present in this property,
43 considering that the same resource can have multiple connections to the
44 platform.
46 Relative Performance Distance and ibm,associativity-reference-points
47 --------------------------------------------------------------------
49 The ibm,associativity-reference-points property is an array that is used
50 to define the relevant performance/distance  related boundaries, defining
51 the NUMA levels for the platform.
53 The definition of its elements also varies with the value of bit 0 of byte 5
54 of the ibm,architecture-vec-5 property. The format with bit 0 equal to zero
55 is also deprecated. With the current format, each integer of the
56 ibm,associativity-reference-points represents an 1 based ordinal index (i.e.
57 the first element is 1) of the ibm,associativity array. The first
58 boundary is the most significant to application performance, followed by
59 less significant boundaries. Allocated resources that belongs to the
60 same performance boundaries are expected to have relative NUMA distance
61 that matches the relevancy of the boundary itself. Resources that belongs
62 to the same first boundary will have the shortest distance from each
63 other. Subsequent boundaries represents greater distances and degraded
64 performance.
66 Using the previous example, the following setting reference points defines
67 three NUMA levels:
69 * ibm,associativity-reference-points = {0x3, 0x2, 0x1}
71 The first NUMA level (0x3) is interpreted as the third element of each
72 ibm,associativity array, the second level is the second element and
73 the third level is the first element. Let's also consider that elements
74 belonging to the first NUMA level have distance equal to 10 from each
75 other, and each NUMA level doubles the distance from the previous. This
76 means that the second would be 20 and the third level 40. For the P1 and
77 P2 processors, we would have the following NUMA levels:
81   * ibm,associativity-reference-points = {0x3, 0x2, 0x1}
83   * P1: associativity{MOD1, S1, C1, P1}
85   First NUMA level (0x3) => associativity[2] = C1
86   Second NUMA level (0x2) => associativity[1] = S1
87   Third NUMA level (0x1) => associativity[0] = MOD1
89   * P2: associativity{MOD1, S2, C2, P2}
91   First NUMA level (0x3) => associativity[2] = C2
92   Second NUMA level (0x2) => associativity[1] = S2
93   Third NUMA level (0x1) => associativity[0] = MOD1
95   P1 and P2 have the same third NUMA level, MOD1: Distance between them = 40
97 Changing the ibm,associativity-reference-points array changes the performance
98 distance attributes for the same associativity arrays, as the following
99 example illustrates:
103   * ibm,associativity-reference-points = {0x2}
105   * P1: associativity{MOD1, S1, C1, P1}
107   First NUMA level (0x2) => associativity[1] = S1
109   * P2: associativity{MOD1, S2, C2, P2}
111   First NUMA level (0x2) => associativity[1] = S2
113   P1 and P2 does not have a common performance boundary. Since this is a one level
114   NUMA configuration, distance between them is one boundary above the first
115   level, 20.
118 In a hypothetical platform where all resources inside the same hardware module
119 is considered to be on the same performance boundary:
123   * ibm,associativity-reference-points = {0x1}
125   * P1: associativity{MOD1, S1, C1, P1}
127   First NUMA level (0x1) => associativity[0] = MOD0
129   * P2: associativity{MOD1, S2, C2, P2}
131   First NUMA level (0x1) => associativity[0] = MOD0
133   P1 and P2 belongs to the same first order boundary. The distance between then
134   is 10.
137 How the pseries Linux guest calculates NUMA distances
138 =====================================================
140 Another key difference between ACPI SLIT and the LOPAPR regarding NUMA is
141 how the distances are expressed. The SLIT table provides the NUMA distance
142 value between the relevant resources. LOPAPR does not provide a standard
143 way to calculate it. We have the ibm,associativity for each resource, which
144 provides a common-performance hierarchy,  and the ibm,associativity-reference-points
145 array that tells which level of associativity is considered to be relevant
146 or not.
148 The result is that each OS is free to implement and to interpret the distance
149 as it sees fit. For the pseries Linux guest, each level of NUMA duplicates
150 the distance of the previous level, and the maximum amount of levels is
151 limited to MAX_DISTANCE_REF_POINTS = 4 (from arch/powerpc/mm/numa.c in the
152 kernel tree). This results in the following distances:
154 * both resources in the first NUMA level: 10
155 * resources one NUMA level apart: 20
156 * resources two NUMA levels apart: 40
157 * resources three NUMA levels apart: 80
158 * resources four NUMA levels apart: 160
161 pseries NUMA mechanics
162 ======================
164 Starting in QEMU 5.2, the pseries machine considers user input when setting NUMA
165 topology of the guest. The overall design is:
167 * ibm,associativity-reference-points is set to {0x4, 0x3, 0x2, 0x1}, allowing
168   for 4 distinct NUMA distance values based on the NUMA levels
170 * ibm,max-associativity-domains supports multiple associativity domains in all
171   NUMA levels, granting user flexibility
173 * ibm,associativity for all resources varies with user input
175 These changes are only effective for pseries-5.2 and newer machines that are
176 created with more than one NUMA node (disconsidering NUMA nodes created by
177 the machine itself, e.g. NVLink 2 GPUs). The now legacy support has been
178 around for such a long time, with users seeing NUMA distances 10 and 40
179 (and 80 if using NVLink2 GPUs), and there is no need to disrupt the
180 existing experience of those guests.
182 To bring the user experience x86 users have when tuning up NUMA, we had
183 to operate under the current pseries Linux kernel logic described in
184 `How the pseries Linux guest calculates NUMA distances`_. The result
185 is that we needed to translate NUMA distance user input to pseries
186 Linux kernel input.
188 Translating user distance to kernel distance
189 --------------------------------------------
191 User input for NUMA distance can vary from 10 to 254. We need to translate
192 that to the values that the Linux kernel operates on (10, 20, 40, 80, 160).
193 This is how it is being done:
195 * user distance 11 to 30 will be interpreted as 20
196 * user distance 31 to 60 will be interpreted as 40
197 * user distance 61 to 120 will be interpreted as 80
198 * user distance 121 and beyond will be interpreted as 160
199 * user distance 10 stays 10
201 The reasoning behind this approximation is to avoid any round up to the local
202 distance (10), keeping it exclusive to the 4th NUMA level (which is still
203 exclusive to the node_id). All other ranges were chosen under the developer
204 discretion of what would be (somewhat) sensible considering the user input.
205 Any other strategy can be used here, but in the end the reality is that we'll
206 have to accept that a large array of values will be translated to the same
207 NUMA topology in the guest, e.g. this user input:
211       0   1   2
212   0  10  31 120
213   1  31  10  30
214   2 120  30  10
216 And this other user input:
220       0   1   2
221   0  10  60  61
222   1  60  10  11
223   2  61  11  10
225 Will both be translated to the same values internally:
229       0   1   2
230   0  10  40  80
231   1  40  10  20
232   2  80  20  10
234 Users are encouraged to use only the kernel values in the NUMA definition to
235 avoid being taken by surprise with that the guest is actually seeing in the
236 topology. There are enough potential surprises that are inherent to the
237 associativity domain assignment process, discussed below.
240 How associativity domains are assigned
241 --------------------------------------
243 LOPAPR allows more than one associativity array (or 'string') per allocated
244 resource. This would be used to represent that the resource has multiple
245 connections with the board, and then the operational system, when deciding
246 NUMA distancing, should consider the associativity information that provides
247 the shortest distance.
249 The spapr implementation does not support multiple associativity arrays per
250 resource, neither does the pseries Linux kernel. We'll have to represent the
251 NUMA topology using one associativity per resource, which means that choices
252 and compromises are going to be made.
254 Consider the following NUMA topology entered by user input:
258       0   1   2   3
259   0  10  40  20  40
260   1  40  10  80  40
261   2  20  80  10  20
262   3  40  40  20  10
264 All the associativity arrays are initialized with NUMA id in all associativity
265 domains:
267 * node 0: 0 0 0 0
268 * node 1: 1 1 1 1
269 * node 2: 2 2 2 2
270 * node 3: 3 3 3 3
273 Honoring just the relative distances of node 0 to every other node, we find the
274 NUMA level matches (considering the reference points {0x4, 0x3, 0x2, 0x1}) for
275 each distance:
277 * distance from 0 to 1 is 40 (no match at 0x4 and 0x3, will match
278   at 0x2)
279 * distance from 0 to 2 is 20 (no match at 0x4, will match at 0x3)
280 * distance from 0 to 3 is 40 (no match at 0x4 and 0x3, will match
281   at 0x2)
283 We'll copy the associativity domains of node 0 to all other nodes, based on
284 the NUMA level matches. Between 0 and 1, a match in 0x2, we'll also copy
285 the domains 0x2 and 0x1 from 0 to 1 as well. This will give us:
287 * node 0: 0 0 0 0
288 * node 1: 0 0 1 1
290 Doing the same to node 2 and node 3, these are the associativity arrays
291 after considering all matches with node 0:
293 * node 0: 0 0 0 0
294 * node 1: 0 0 1 1
295 * node 2: 0 0 0 2
296 * node 3: 0 0 3 3
298 The distances related to node 0 are accounted for. For node 1, and keeping
299 in mind that we don't need to revisit node 0 again, the distance from
300 node 1 to 2 is 80, matching at 0x1, and distance from 1 to 3 is 40,
301 match in 0x2. Repeating the same logic of copying all domains up to
302 the NUMA level match:
304 * node 0: 0 0 0 0
305 * node 1: 1 0 1 1
306 * node 2: 1 0 0 2
307 * node 3: 1 0 3 3
309 In the last step we will analyze just nodes 2 and 3. The desired distance
310 between 2 and 3 is 20, i.e. a match in 0x3:
312 * node 0: 0 0 0 0
313 * node 1: 1 0 1 1
314 * node 2: 1 0 0 2
315 * node 3: 1 0 0 3
318 The kernel will read these arrays and will calculate the following NUMA topology for
319 the guest:
323       0   1   2   3
324   0  10  40  20  20
325   1  40  10  40  40
326   2  20  40  10  20
327   3  20  40  20  10
329 Note that this is not what the user wanted - the desired distance between
330 0 and 3 is 40, we calculated it as 20. This is what the current logic and
331 implementation constraints of the kernel and QEMU will provide inside the
332 LOPAPR specification.
334 Users are welcome to use this knowledge and experiment with the input to get
335 the NUMA topology they want, or as closer as they want. The important thing
336 is to keep expectations up to par with what we are capable of provide at this
337 moment: an approximation.
339 Limitations of the implementation
340 ---------------------------------
342 As mentioned above, the pSeries NUMA distance logic is, in fact, a way to approximate
343 user choice. The Linux kernel, and PAPR itself, does not provide QEMU with the ways
344 to fully map user input to actual NUMA distance the guest will use. These limitations
345 creates two notable limitations in our support:
347 * Asymmetrical topologies aren't supported. We only support NUMA topologies where
348   the distance from node A to B is always the same as B to A. We do not support
349   any A-B pair where the distance back and forth is asymmetric. For example, the
350   following topology isn't supported and the pSeries guest will not boot with this
351   user input:
355       0   1
356   0  10  40
357   1  20  10
360 * 'non-transitive' topologies will be poorly translated to the guest. This is the
361   kind of topology where the distance from a node A to B is X, B to C is X, but
362   the distance A to C is not X. E.g.:
366       0   1   2   3
367   0  10  20  20  40
368   1  20  10  80  40
369   2  20  80  10  20
370   3  40  40  20  10
372   In the example above, distance 0 to 2 is 20, 2 to 3 is 20, but 0 to 3 is 40.
373   The kernel will always match with the shortest associativity domain possible,
374   and we're attempting to retain the previous established relations between the
375   nodes. This means that a distance equal to 20 between nodes 0 and 2 and the
376   same distance 20 between nodes 2 and 3 will cause the distance between 0 and 3
377   to also be 20.
380 Legacy (5.1 and older) pseries NUMA mechanics
381 =============================================
383 In short, we can summarize the NUMA distances seem in pseries Linux guests, using
384 QEMU up to 5.1, as follows:
386 * local distance, i.e. the distance of the resource to its own NUMA node: 10
387 * if it's a NVLink GPU device, distance: 80
388 * every other resource, distance: 40
390 The way the pseries Linux guest calculates NUMA distances has a direct effect
391 on what QEMU users can expect when doing NUMA tuning. As of QEMU 5.1, this is
392 the default ibm,associativity-reference-points being used in the pseries
393 machine:
395 ibm,associativity-reference-points = {0x4, 0x4, 0x2}
397 The first and second level are equal, 0x4, and a third one was added in
398 commit a6030d7e0b35 exclusively for NVLink GPUs support. This means that
399 regardless of how the ibm,associativity properties are being created in
400 the device tree, the pseries Linux guest will only recognize three scenarios
401 as far as NUMA distance goes:
403 * if the resources belongs to the same first NUMA level = 10
404 * second level is skipped since it's equal to the first
405 * all resources that aren't a NVLink GPU, it is guaranteed that they will belong
406   to the same third NUMA level, having distance = 40
407 * for NVLink GPUs, distance = 80 from everything else
409 This also means that user input in QEMU command line does not change the
410 NUMA distancing inside the guest for the pseries machine.