2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #ifndef CONFIG_USER_ONLY
29 static void cpu_x86_version(CPUX86State
*env
, int *family
, int *model
)
31 int cpuver
= env
->cpuid_version
;
33 if (family
== NULL
|| model
== NULL
) {
37 *family
= (cpuver
>> 8) & 0x0f;
38 *model
= ((cpuver
>> 12) & 0xf0) + ((cpuver
>> 4) & 0x0f);
41 /* Broadcast MCA signal for processor version 06H_EH and above */
42 int cpu_x86_support_mca_broadcast(CPUX86State
*env
)
47 cpu_x86_version(env
, &family
, &model
);
48 if ((family
== 6 && model
>= 14) || family
> 6) {
55 /***********************************************************/
58 static const char *cc_op_str
[] = {
114 cpu_x86_dump_seg_cache(CPUX86State
*env
, FILE *f
, fprintf_function cpu_fprintf
,
115 const char *name
, struct SegmentCache
*sc
)
118 if (env
->hflags
& HF_CS64_MASK
) {
119 cpu_fprintf(f
, "%-3s=%04x %016" PRIx64
" %08x %08x", name
,
120 sc
->selector
, sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
124 cpu_fprintf(f
, "%-3s=%04x %08x %08x %08x", name
, sc
->selector
,
125 (uint32_t)sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
128 if (!(env
->hflags
& HF_PE_MASK
) || !(sc
->flags
& DESC_P_MASK
))
131 cpu_fprintf(f
, " DPL=%d ", (sc
->flags
& DESC_DPL_MASK
) >> DESC_DPL_SHIFT
);
132 if (sc
->flags
& DESC_S_MASK
) {
133 if (sc
->flags
& DESC_CS_MASK
) {
134 cpu_fprintf(f
, (sc
->flags
& DESC_L_MASK
) ? "CS64" :
135 ((sc
->flags
& DESC_B_MASK
) ? "CS32" : "CS16"));
136 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_C_MASK
) ? 'C' : '-',
137 (sc
->flags
& DESC_R_MASK
) ? 'R' : '-');
139 cpu_fprintf(f
, (sc
->flags
& DESC_B_MASK
) ? "DS " : "DS16");
140 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_E_MASK
) ? 'E' : '-',
141 (sc
->flags
& DESC_W_MASK
) ? 'W' : '-');
143 cpu_fprintf(f
, "%c]", (sc
->flags
& DESC_A_MASK
) ? 'A' : '-');
145 static const char *sys_type_name
[2][16] = {
147 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
148 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
149 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
150 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
153 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
154 "Reserved", "Reserved", "Reserved", "Reserved",
155 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
156 "Reserved", "IntGate64", "TrapGate64"
160 sys_type_name
[(env
->hflags
& HF_LMA_MASK
) ? 1 : 0]
161 [(sc
->flags
& DESC_TYPE_MASK
)
162 >> DESC_TYPE_SHIFT
]);
165 cpu_fprintf(f
, "\n");
168 #define DUMP_CODE_BYTES_TOTAL 50
169 #define DUMP_CODE_BYTES_BACKWARD 20
171 void cpu_dump_state(CPUX86State
*env
, FILE *f
, fprintf_function cpu_fprintf
,
176 static const char *seg_name
[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
178 cpu_synchronize_state(env
);
180 eflags
= env
->eflags
;
182 if (env
->hflags
& HF_CS64_MASK
) {
184 "RAX=%016" PRIx64
" RBX=%016" PRIx64
" RCX=%016" PRIx64
" RDX=%016" PRIx64
"\n"
185 "RSI=%016" PRIx64
" RDI=%016" PRIx64
" RBP=%016" PRIx64
" RSP=%016" PRIx64
"\n"
186 "R8 =%016" PRIx64
" R9 =%016" PRIx64
" R10=%016" PRIx64
" R11=%016" PRIx64
"\n"
187 "R12=%016" PRIx64
" R13=%016" PRIx64
" R14=%016" PRIx64
" R15=%016" PRIx64
"\n"
188 "RIP=%016" PRIx64
" RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
206 eflags
& DF_MASK
? 'D' : '-',
207 eflags
& CC_O
? 'O' : '-',
208 eflags
& CC_S
? 'S' : '-',
209 eflags
& CC_Z
? 'Z' : '-',
210 eflags
& CC_A
? 'A' : '-',
211 eflags
& CC_P
? 'P' : '-',
212 eflags
& CC_C
? 'C' : '-',
213 env
->hflags
& HF_CPL_MASK
,
214 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
215 (env
->a20_mask
>> 20) & 1,
216 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
221 cpu_fprintf(f
, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
222 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
223 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
224 (uint32_t)env
->regs
[R_EAX
],
225 (uint32_t)env
->regs
[R_EBX
],
226 (uint32_t)env
->regs
[R_ECX
],
227 (uint32_t)env
->regs
[R_EDX
],
228 (uint32_t)env
->regs
[R_ESI
],
229 (uint32_t)env
->regs
[R_EDI
],
230 (uint32_t)env
->regs
[R_EBP
],
231 (uint32_t)env
->regs
[R_ESP
],
232 (uint32_t)env
->eip
, eflags
,
233 eflags
& DF_MASK
? 'D' : '-',
234 eflags
& CC_O
? 'O' : '-',
235 eflags
& CC_S
? 'S' : '-',
236 eflags
& CC_Z
? 'Z' : '-',
237 eflags
& CC_A
? 'A' : '-',
238 eflags
& CC_P
? 'P' : '-',
239 eflags
& CC_C
? 'C' : '-',
240 env
->hflags
& HF_CPL_MASK
,
241 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
242 (env
->a20_mask
>> 20) & 1,
243 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
247 for(i
= 0; i
< 6; i
++) {
248 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, seg_name
[i
],
251 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "LDT", &env
->ldt
);
252 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "TR", &env
->tr
);
255 if (env
->hflags
& HF_LMA_MASK
) {
256 cpu_fprintf(f
, "GDT= %016" PRIx64
" %08x\n",
257 env
->gdt
.base
, env
->gdt
.limit
);
258 cpu_fprintf(f
, "IDT= %016" PRIx64
" %08x\n",
259 env
->idt
.base
, env
->idt
.limit
);
260 cpu_fprintf(f
, "CR0=%08x CR2=%016" PRIx64
" CR3=%016" PRIx64
" CR4=%08x\n",
261 (uint32_t)env
->cr
[0],
264 (uint32_t)env
->cr
[4]);
265 for(i
= 0; i
< 4; i
++)
266 cpu_fprintf(f
, "DR%d=%016" PRIx64
" ", i
, env
->dr
[i
]);
267 cpu_fprintf(f
, "\nDR6=%016" PRIx64
" DR7=%016" PRIx64
"\n",
268 env
->dr
[6], env
->dr
[7]);
272 cpu_fprintf(f
, "GDT= %08x %08x\n",
273 (uint32_t)env
->gdt
.base
, env
->gdt
.limit
);
274 cpu_fprintf(f
, "IDT= %08x %08x\n",
275 (uint32_t)env
->idt
.base
, env
->idt
.limit
);
276 cpu_fprintf(f
, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
277 (uint32_t)env
->cr
[0],
278 (uint32_t)env
->cr
[2],
279 (uint32_t)env
->cr
[3],
280 (uint32_t)env
->cr
[4]);
281 for(i
= 0; i
< 4; i
++) {
282 cpu_fprintf(f
, "DR%d=" TARGET_FMT_lx
" ", i
, env
->dr
[i
]);
284 cpu_fprintf(f
, "\nDR6=" TARGET_FMT_lx
" DR7=" TARGET_FMT_lx
"\n",
285 env
->dr
[6], env
->dr
[7]);
287 if (flags
& X86_DUMP_CCOP
) {
288 if ((unsigned)env
->cc_op
< CC_OP_NB
)
289 snprintf(cc_op_name
, sizeof(cc_op_name
), "%s", cc_op_str
[env
->cc_op
]);
291 snprintf(cc_op_name
, sizeof(cc_op_name
), "[%d]", env
->cc_op
);
293 if (env
->hflags
& HF_CS64_MASK
) {
294 cpu_fprintf(f
, "CCS=%016" PRIx64
" CCD=%016" PRIx64
" CCO=%-8s\n",
295 env
->cc_src
, env
->cc_dst
,
300 cpu_fprintf(f
, "CCS=%08x CCD=%08x CCO=%-8s\n",
301 (uint32_t)env
->cc_src
, (uint32_t)env
->cc_dst
,
305 cpu_fprintf(f
, "EFER=%016" PRIx64
"\n", env
->efer
);
306 if (flags
& X86_DUMP_FPU
) {
309 for(i
= 0; i
< 8; i
++) {
310 fptag
|= ((!env
->fptags
[i
]) << i
);
312 cpu_fprintf(f
, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
314 (env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11,
320 u
.d
= env
->fpregs
[i
].d
;
321 cpu_fprintf(f
, "FPR%d=%016" PRIx64
" %04x",
322 i
, u
.l
.lower
, u
.l
.upper
);
324 cpu_fprintf(f
, "\n");
328 if (env
->hflags
& HF_CS64_MASK
)
333 cpu_fprintf(f
, "XMM%02d=%08x%08x%08x%08x",
335 env
->xmm_regs
[i
].XMM_L(3),
336 env
->xmm_regs
[i
].XMM_L(2),
337 env
->xmm_regs
[i
].XMM_L(1),
338 env
->xmm_regs
[i
].XMM_L(0));
340 cpu_fprintf(f
, "\n");
345 if (flags
& CPU_DUMP_CODE
) {
346 target_ulong base
= env
->segs
[R_CS
].base
+ env
->eip
;
347 target_ulong offs
= MIN(env
->eip
, DUMP_CODE_BYTES_BACKWARD
);
351 cpu_fprintf(f
, "Code=");
352 for (i
= 0; i
< DUMP_CODE_BYTES_TOTAL
; i
++) {
353 if (cpu_memory_rw_debug(env
, base
- offs
+ i
, &code
, 1, 0) == 0) {
354 snprintf(codestr
, sizeof(codestr
), "%02x", code
);
356 snprintf(codestr
, sizeof(codestr
), "??");
358 cpu_fprintf(f
, "%s%s%s%s", i
> 0 ? " " : "",
359 i
== offs
? "<" : "", codestr
, i
== offs
? ">" : "");
361 cpu_fprintf(f
, "\n");
365 /***********************************************************/
367 /* XXX: add PGE support */
369 void cpu_x86_set_a20(CPUX86State
*env
, int a20_state
)
371 a20_state
= (a20_state
!= 0);
372 if (a20_state
!= ((env
->a20_mask
>> 20) & 1)) {
373 #if defined(DEBUG_MMU)
374 printf("A20 update: a20=%d\n", a20_state
);
376 /* if the cpu is currently executing code, we must unlink it and
377 all the potentially executing TB */
378 cpu_interrupt(env
, CPU_INTERRUPT_EXITTB
);
380 /* when a20 is changed, all the MMU mappings are invalid, so
381 we must flush everything */
383 env
->a20_mask
= ~(1 << 20) | (a20_state
<< 20);
387 void cpu_x86_update_cr0(CPUX86State
*env
, uint32_t new_cr0
)
391 #if defined(DEBUG_MMU)
392 printf("CR0 update: CR0=0x%08x\n", new_cr0
);
394 if ((new_cr0
& (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
)) !=
395 (env
->cr
[0] & (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
))) {
400 if (!(env
->cr
[0] & CR0_PG_MASK
) && (new_cr0
& CR0_PG_MASK
) &&
401 (env
->efer
& MSR_EFER_LME
)) {
402 /* enter in long mode */
403 /* XXX: generate an exception */
404 if (!(env
->cr
[4] & CR4_PAE_MASK
))
406 env
->efer
|= MSR_EFER_LMA
;
407 env
->hflags
|= HF_LMA_MASK
;
408 } else if ((env
->cr
[0] & CR0_PG_MASK
) && !(new_cr0
& CR0_PG_MASK
) &&
409 (env
->efer
& MSR_EFER_LMA
)) {
411 env
->efer
&= ~MSR_EFER_LMA
;
412 env
->hflags
&= ~(HF_LMA_MASK
| HF_CS64_MASK
);
413 env
->eip
&= 0xffffffff;
416 env
->cr
[0] = new_cr0
| CR0_ET_MASK
;
418 /* update PE flag in hidden flags */
419 pe_state
= (env
->cr
[0] & CR0_PE_MASK
);
420 env
->hflags
= (env
->hflags
& ~HF_PE_MASK
) | (pe_state
<< HF_PE_SHIFT
);
421 /* ensure that ADDSEG is always set in real mode */
422 env
->hflags
|= ((pe_state
^ 1) << HF_ADDSEG_SHIFT
);
423 /* update FPU flags */
424 env
->hflags
= (env
->hflags
& ~(HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
)) |
425 ((new_cr0
<< (HF_MP_SHIFT
- 1)) & (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
));
428 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
430 void cpu_x86_update_cr3(CPUX86State
*env
, target_ulong new_cr3
)
432 env
->cr
[3] = new_cr3
;
433 if (env
->cr
[0] & CR0_PG_MASK
) {
434 #if defined(DEBUG_MMU)
435 printf("CR3 update: CR3=" TARGET_FMT_lx
"\n", new_cr3
);
441 void cpu_x86_update_cr4(CPUX86State
*env
, uint32_t new_cr4
)
443 #if defined(DEBUG_MMU)
444 printf("CR4 update: CR4=%08x\n", (uint32_t)env
->cr
[4]);
446 if ((new_cr4
& (CR4_PGE_MASK
| CR4_PAE_MASK
| CR4_PSE_MASK
)) !=
447 (env
->cr
[4] & (CR4_PGE_MASK
| CR4_PAE_MASK
| CR4_PSE_MASK
))) {
451 if (!(env
->cpuid_features
& CPUID_SSE
))
452 new_cr4
&= ~CR4_OSFXSR_MASK
;
453 if (new_cr4
& CR4_OSFXSR_MASK
)
454 env
->hflags
|= HF_OSFXSR_MASK
;
456 env
->hflags
&= ~HF_OSFXSR_MASK
;
458 env
->cr
[4] = new_cr4
;
461 #if defined(CONFIG_USER_ONLY)
463 int cpu_x86_handle_mmu_fault(CPUX86State
*env
, target_ulong addr
,
464 int is_write
, int mmu_idx
)
466 /* user mode only emulation */
469 env
->error_code
= (is_write
<< PG_ERROR_W_BIT
);
470 env
->error_code
|= PG_ERROR_U_MASK
;
471 env
->exception_index
= EXCP0E_PAGE
;
477 /* XXX: This value should match the one returned by CPUID
479 # if defined(TARGET_X86_64)
480 # define PHYS_ADDR_MASK 0xfffffff000LL
482 # define PHYS_ADDR_MASK 0xffffff000LL
486 -1 = cannot handle fault
487 0 = nothing more to do
488 1 = generate PF fault
490 int cpu_x86_handle_mmu_fault(CPUX86State
*env
, target_ulong addr
,
491 int is_write1
, int mmu_idx
)
494 target_ulong pde_addr
, pte_addr
;
495 int error_code
, is_dirty
, prot
, page_size
, is_write
, is_user
;
496 target_phys_addr_t paddr
;
497 uint32_t page_offset
;
498 target_ulong vaddr
, virt_addr
;
500 is_user
= mmu_idx
== MMU_USER_IDX
;
501 #if defined(DEBUG_MMU)
502 printf("MMU fault: addr=" TARGET_FMT_lx
" w=%d u=%d eip=" TARGET_FMT_lx
"\n",
503 addr
, is_write1
, is_user
, env
->eip
);
505 is_write
= is_write1
& 1;
507 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
509 virt_addr
= addr
& TARGET_PAGE_MASK
;
510 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
515 if (env
->cr
[4] & CR4_PAE_MASK
) {
517 target_ulong pdpe_addr
;
520 if (env
->hflags
& HF_LMA_MASK
) {
521 uint64_t pml4e_addr
, pml4e
;
524 /* test virtual address sign extension */
525 sext
= (int64_t)addr
>> 47;
526 if (sext
!= 0 && sext
!= -1) {
528 env
->exception_index
= EXCP0D_GPF
;
532 pml4e_addr
= ((env
->cr
[3] & ~0xfff) + (((addr
>> 39) & 0x1ff) << 3)) &
534 pml4e
= ldq_phys(pml4e_addr
);
535 if (!(pml4e
& PG_PRESENT_MASK
)) {
539 if (!(env
->efer
& MSR_EFER_NXE
) && (pml4e
& PG_NX_MASK
)) {
540 error_code
= PG_ERROR_RSVD_MASK
;
543 if (!(pml4e
& PG_ACCESSED_MASK
)) {
544 pml4e
|= PG_ACCESSED_MASK
;
545 stl_phys_notdirty(pml4e_addr
, pml4e
);
547 ptep
= pml4e
^ PG_NX_MASK
;
548 pdpe_addr
= ((pml4e
& PHYS_ADDR_MASK
) + (((addr
>> 30) & 0x1ff) << 3)) &
550 pdpe
= ldq_phys(pdpe_addr
);
551 if (!(pdpe
& PG_PRESENT_MASK
)) {
555 if (!(env
->efer
& MSR_EFER_NXE
) && (pdpe
& PG_NX_MASK
)) {
556 error_code
= PG_ERROR_RSVD_MASK
;
559 ptep
&= pdpe
^ PG_NX_MASK
;
560 if (!(pdpe
& PG_ACCESSED_MASK
)) {
561 pdpe
|= PG_ACCESSED_MASK
;
562 stl_phys_notdirty(pdpe_addr
, pdpe
);
567 /* XXX: load them when cr3 is loaded ? */
568 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
570 pdpe
= ldq_phys(pdpe_addr
);
571 if (!(pdpe
& PG_PRESENT_MASK
)) {
575 ptep
= PG_NX_MASK
| PG_USER_MASK
| PG_RW_MASK
;
578 pde_addr
= ((pdpe
& PHYS_ADDR_MASK
) + (((addr
>> 21) & 0x1ff) << 3)) &
580 pde
= ldq_phys(pde_addr
);
581 if (!(pde
& PG_PRESENT_MASK
)) {
585 if (!(env
->efer
& MSR_EFER_NXE
) && (pde
& PG_NX_MASK
)) {
586 error_code
= PG_ERROR_RSVD_MASK
;
589 ptep
&= pde
^ PG_NX_MASK
;
590 if (pde
& PG_PSE_MASK
) {
592 page_size
= 2048 * 1024;
594 if ((ptep
& PG_NX_MASK
) && is_write1
== 2)
595 goto do_fault_protect
;
597 if (!(ptep
& PG_USER_MASK
))
598 goto do_fault_protect
;
599 if (is_write
&& !(ptep
& PG_RW_MASK
))
600 goto do_fault_protect
;
602 if ((env
->cr
[0] & CR0_WP_MASK
) &&
603 is_write
&& !(ptep
& PG_RW_MASK
))
604 goto do_fault_protect
;
606 is_dirty
= is_write
&& !(pde
& PG_DIRTY_MASK
);
607 if (!(pde
& PG_ACCESSED_MASK
) || is_dirty
) {
608 pde
|= PG_ACCESSED_MASK
;
610 pde
|= PG_DIRTY_MASK
;
611 stl_phys_notdirty(pde_addr
, pde
);
613 /* align to page_size */
614 pte
= pde
& ((PHYS_ADDR_MASK
& ~(page_size
- 1)) | 0xfff);
615 virt_addr
= addr
& ~(page_size
- 1);
618 if (!(pde
& PG_ACCESSED_MASK
)) {
619 pde
|= PG_ACCESSED_MASK
;
620 stl_phys_notdirty(pde_addr
, pde
);
622 pte_addr
= ((pde
& PHYS_ADDR_MASK
) + (((addr
>> 12) & 0x1ff) << 3)) &
624 pte
= ldq_phys(pte_addr
);
625 if (!(pte
& PG_PRESENT_MASK
)) {
629 if (!(env
->efer
& MSR_EFER_NXE
) && (pte
& PG_NX_MASK
)) {
630 error_code
= PG_ERROR_RSVD_MASK
;
633 /* combine pde and pte nx, user and rw protections */
634 ptep
&= pte
^ PG_NX_MASK
;
636 if ((ptep
& PG_NX_MASK
) && is_write1
== 2)
637 goto do_fault_protect
;
639 if (!(ptep
& PG_USER_MASK
))
640 goto do_fault_protect
;
641 if (is_write
&& !(ptep
& PG_RW_MASK
))
642 goto do_fault_protect
;
644 if ((env
->cr
[0] & CR0_WP_MASK
) &&
645 is_write
&& !(ptep
& PG_RW_MASK
))
646 goto do_fault_protect
;
648 is_dirty
= is_write
&& !(pte
& PG_DIRTY_MASK
);
649 if (!(pte
& PG_ACCESSED_MASK
) || is_dirty
) {
650 pte
|= PG_ACCESSED_MASK
;
652 pte
|= PG_DIRTY_MASK
;
653 stl_phys_notdirty(pte_addr
, pte
);
656 virt_addr
= addr
& ~0xfff;
657 pte
= pte
& (PHYS_ADDR_MASK
| 0xfff);
662 /* page directory entry */
663 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) &
665 pde
= ldl_phys(pde_addr
);
666 if (!(pde
& PG_PRESENT_MASK
)) {
670 /* if PSE bit is set, then we use a 4MB page */
671 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
672 page_size
= 4096 * 1024;
674 if (!(pde
& PG_USER_MASK
))
675 goto do_fault_protect
;
676 if (is_write
&& !(pde
& PG_RW_MASK
))
677 goto do_fault_protect
;
679 if ((env
->cr
[0] & CR0_WP_MASK
) &&
680 is_write
&& !(pde
& PG_RW_MASK
))
681 goto do_fault_protect
;
683 is_dirty
= is_write
&& !(pde
& PG_DIRTY_MASK
);
684 if (!(pde
& PG_ACCESSED_MASK
) || is_dirty
) {
685 pde
|= PG_ACCESSED_MASK
;
687 pde
|= PG_DIRTY_MASK
;
688 stl_phys_notdirty(pde_addr
, pde
);
691 pte
= pde
& ~( (page_size
- 1) & ~0xfff); /* align to page_size */
693 virt_addr
= addr
& ~(page_size
- 1);
695 if (!(pde
& PG_ACCESSED_MASK
)) {
696 pde
|= PG_ACCESSED_MASK
;
697 stl_phys_notdirty(pde_addr
, pde
);
700 /* page directory entry */
701 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) &
703 pte
= ldl_phys(pte_addr
);
704 if (!(pte
& PG_PRESENT_MASK
)) {
708 /* combine pde and pte user and rw protections */
711 if (!(ptep
& PG_USER_MASK
))
712 goto do_fault_protect
;
713 if (is_write
&& !(ptep
& PG_RW_MASK
))
714 goto do_fault_protect
;
716 if ((env
->cr
[0] & CR0_WP_MASK
) &&
717 is_write
&& !(ptep
& PG_RW_MASK
))
718 goto do_fault_protect
;
720 is_dirty
= is_write
&& !(pte
& PG_DIRTY_MASK
);
721 if (!(pte
& PG_ACCESSED_MASK
) || is_dirty
) {
722 pte
|= PG_ACCESSED_MASK
;
724 pte
|= PG_DIRTY_MASK
;
725 stl_phys_notdirty(pte_addr
, pte
);
728 virt_addr
= addr
& ~0xfff;
731 /* the page can be put in the TLB */
733 if (!(ptep
& PG_NX_MASK
))
735 if (pte
& PG_DIRTY_MASK
) {
736 /* only set write access if already dirty... otherwise wait
739 if (ptep
& PG_RW_MASK
)
742 if (!(env
->cr
[0] & CR0_WP_MASK
) ||
748 pte
= pte
& env
->a20_mask
;
750 /* Even if 4MB pages, we map only one 4KB page in the cache to
751 avoid filling it too fast */
752 page_offset
= (addr
& TARGET_PAGE_MASK
) & (page_size
- 1);
753 paddr
= (pte
& TARGET_PAGE_MASK
) + page_offset
;
754 vaddr
= virt_addr
+ page_offset
;
756 tlb_set_page(env
, vaddr
, paddr
, prot
, mmu_idx
, page_size
);
759 error_code
= PG_ERROR_P_MASK
;
761 error_code
|= (is_write
<< PG_ERROR_W_BIT
);
763 error_code
|= PG_ERROR_U_MASK
;
764 if (is_write1
== 2 &&
765 (env
->efer
& MSR_EFER_NXE
) &&
766 (env
->cr
[4] & CR4_PAE_MASK
))
767 error_code
|= PG_ERROR_I_D_MASK
;
768 if (env
->intercept_exceptions
& (1 << EXCP0E_PAGE
)) {
769 /* cr2 is not modified in case of exceptions */
770 stq_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.exit_info_2
),
775 env
->error_code
= error_code
;
776 env
->exception_index
= EXCP0E_PAGE
;
780 target_phys_addr_t
cpu_get_phys_page_debug(CPUX86State
*env
, target_ulong addr
)
782 target_ulong pde_addr
, pte_addr
;
784 target_phys_addr_t paddr
;
785 uint32_t page_offset
;
788 if (env
->cr
[4] & CR4_PAE_MASK
) {
789 target_ulong pdpe_addr
;
793 if (env
->hflags
& HF_LMA_MASK
) {
794 uint64_t pml4e_addr
, pml4e
;
797 /* test virtual address sign extension */
798 sext
= (int64_t)addr
>> 47;
799 if (sext
!= 0 && sext
!= -1)
802 pml4e_addr
= ((env
->cr
[3] & ~0xfff) + (((addr
>> 39) & 0x1ff) << 3)) &
804 pml4e
= ldq_phys(pml4e_addr
);
805 if (!(pml4e
& PG_PRESENT_MASK
))
808 pdpe_addr
= ((pml4e
& ~0xfff & ~(PG_NX_MASK
| PG_HI_USER_MASK
)) +
809 (((addr
>> 30) & 0x1ff) << 3)) & env
->a20_mask
;
810 pdpe
= ldq_phys(pdpe_addr
);
811 if (!(pdpe
& PG_PRESENT_MASK
))
816 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
818 pdpe
= ldq_phys(pdpe_addr
);
819 if (!(pdpe
& PG_PRESENT_MASK
))
823 pde_addr
= ((pdpe
& ~0xfff & ~(PG_NX_MASK
| PG_HI_USER_MASK
)) +
824 (((addr
>> 21) & 0x1ff) << 3)) & env
->a20_mask
;
825 pde
= ldq_phys(pde_addr
);
826 if (!(pde
& PG_PRESENT_MASK
)) {
829 if (pde
& PG_PSE_MASK
) {
831 page_size
= 2048 * 1024;
832 pte
= pde
& ~( (page_size
- 1) & ~0xfff); /* align to page_size */
835 pte_addr
= ((pde
& ~0xfff & ~(PG_NX_MASK
| PG_HI_USER_MASK
)) +
836 (((addr
>> 12) & 0x1ff) << 3)) & env
->a20_mask
;
838 pte
= ldq_phys(pte_addr
);
840 pte
&= ~(PG_NX_MASK
| PG_HI_USER_MASK
);
841 if (!(pte
& PG_PRESENT_MASK
))
846 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
850 /* page directory entry */
851 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) & env
->a20_mask
;
852 pde
= ldl_phys(pde_addr
);
853 if (!(pde
& PG_PRESENT_MASK
))
855 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
856 pte
= pde
& ~0x003ff000; /* align to 4MB */
857 page_size
= 4096 * 1024;
859 /* page directory entry */
860 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) & env
->a20_mask
;
861 pte
= ldl_phys(pte_addr
);
862 if (!(pte
& PG_PRESENT_MASK
))
867 pte
= pte
& env
->a20_mask
;
870 page_offset
= (addr
& TARGET_PAGE_MASK
) & (page_size
- 1);
871 paddr
= (pte
& TARGET_PAGE_MASK
) + page_offset
;
875 void hw_breakpoint_insert(CPUX86State
*env
, int index
)
879 switch (hw_breakpoint_type(env
->dr
[7], index
)) {
881 if (hw_breakpoint_enabled(env
->dr
[7], index
))
882 err
= cpu_breakpoint_insert(env
, env
->dr
[index
], BP_CPU
,
883 &env
->cpu_breakpoint
[index
]);
886 type
= BP_CPU
| BP_MEM_WRITE
;
889 /* No support for I/O watchpoints yet */
892 type
= BP_CPU
| BP_MEM_ACCESS
;
894 err
= cpu_watchpoint_insert(env
, env
->dr
[index
],
895 hw_breakpoint_len(env
->dr
[7], index
),
896 type
, &env
->cpu_watchpoint
[index
]);
900 env
->cpu_breakpoint
[index
] = NULL
;
903 void hw_breakpoint_remove(CPUX86State
*env
, int index
)
905 if (!env
->cpu_breakpoint
[index
])
907 switch (hw_breakpoint_type(env
->dr
[7], index
)) {
909 if (hw_breakpoint_enabled(env
->dr
[7], index
))
910 cpu_breakpoint_remove_by_ref(env
, env
->cpu_breakpoint
[index
]);
914 cpu_watchpoint_remove_by_ref(env
, env
->cpu_watchpoint
[index
]);
917 /* No support for I/O watchpoints yet */
922 int check_hw_breakpoints(CPUX86State
*env
, int force_dr6_update
)
928 dr6
= env
->dr
[6] & ~0xf;
929 for (reg
= 0; reg
< 4; reg
++) {
930 type
= hw_breakpoint_type(env
->dr
[7], reg
);
931 if ((type
== 0 && env
->dr
[reg
] == env
->eip
) ||
932 ((type
& 1) && env
->cpu_watchpoint
[reg
] &&
933 (env
->cpu_watchpoint
[reg
]->flags
& BP_WATCHPOINT_HIT
))) {
935 if (hw_breakpoint_enabled(env
->dr
[7], reg
))
939 if (hit_enabled
|| force_dr6_update
)
944 void breakpoint_handler(CPUX86State
*env
)
948 if (env
->watchpoint_hit
) {
949 if (env
->watchpoint_hit
->flags
& BP_CPU
) {
950 env
->watchpoint_hit
= NULL
;
951 if (check_hw_breakpoints(env
, 0))
952 raise_exception(env
, EXCP01_DB
);
954 cpu_resume_from_signal(env
, NULL
);
957 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
)
958 if (bp
->pc
== env
->eip
) {
959 if (bp
->flags
& BP_CPU
) {
960 check_hw_breakpoints(env
, 1);
961 raise_exception(env
, EXCP01_DB
);
968 typedef struct MCEInjectionParams
{
977 } MCEInjectionParams
;
979 static void do_inject_x86_mce(void *data
)
981 MCEInjectionParams
*params
= data
;
982 CPUX86State
*cenv
= params
->env
;
983 uint64_t *banks
= cenv
->mce_banks
+ 4 * params
->bank
;
985 cpu_synchronize_state(cenv
);
988 * If there is an MCE exception being processed, ignore this SRAO MCE
989 * unless unconditional injection was requested.
991 if (!(params
->flags
& MCE_INJECT_UNCOND_AO
)
992 && !(params
->status
& MCI_STATUS_AR
)
993 && (cenv
->mcg_status
& MCG_STATUS_MCIP
)) {
997 if (params
->status
& MCI_STATUS_UC
) {
999 * if MSR_MCG_CTL is not all 1s, the uncorrected error
1000 * reporting is disabled
1002 if ((cenv
->mcg_cap
& MCG_CTL_P
) && cenv
->mcg_ctl
!= ~(uint64_t)0) {
1003 monitor_printf(params
->mon
,
1004 "CPU %d: Uncorrected error reporting disabled\n",
1010 * if MSR_MCi_CTL is not all 1s, the uncorrected error
1011 * reporting is disabled for the bank
1013 if (banks
[0] != ~(uint64_t)0) {
1014 monitor_printf(params
->mon
,
1015 "CPU %d: Uncorrected error reporting disabled for"
1017 cenv
->cpu_index
, params
->bank
);
1021 if ((cenv
->mcg_status
& MCG_STATUS_MCIP
) ||
1022 !(cenv
->cr
[4] & CR4_MCE_MASK
)) {
1023 monitor_printf(params
->mon
,
1024 "CPU %d: Previous MCE still in progress, raising"
1027 qemu_log_mask(CPU_LOG_RESET
, "Triple fault\n");
1028 qemu_system_reset_request();
1031 if (banks
[1] & MCI_STATUS_VAL
) {
1032 params
->status
|= MCI_STATUS_OVER
;
1034 banks
[2] = params
->addr
;
1035 banks
[3] = params
->misc
;
1036 cenv
->mcg_status
= params
->mcg_status
;
1037 banks
[1] = params
->status
;
1038 cpu_interrupt(cenv
, CPU_INTERRUPT_MCE
);
1039 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1040 || !(banks
[1] & MCI_STATUS_UC
)) {
1041 if (banks
[1] & MCI_STATUS_VAL
) {
1042 params
->status
|= MCI_STATUS_OVER
;
1044 banks
[2] = params
->addr
;
1045 banks
[3] = params
->misc
;
1046 banks
[1] = params
->status
;
1048 banks
[1] |= MCI_STATUS_OVER
;
1052 void cpu_x86_inject_mce(Monitor
*mon
, CPUX86State
*cenv
, int bank
,
1053 uint64_t status
, uint64_t mcg_status
, uint64_t addr
,
1054 uint64_t misc
, int flags
)
1056 MCEInjectionParams params
= {
1061 .mcg_status
= mcg_status
,
1066 unsigned bank_num
= cenv
->mcg_cap
& 0xff;
1069 if (!cenv
->mcg_cap
) {
1070 monitor_printf(mon
, "MCE injection not supported\n");
1073 if (bank
>= bank_num
) {
1074 monitor_printf(mon
, "Invalid MCE bank number\n");
1077 if (!(status
& MCI_STATUS_VAL
)) {
1078 monitor_printf(mon
, "Invalid MCE status code\n");
1081 if ((flags
& MCE_INJECT_BROADCAST
)
1082 && !cpu_x86_support_mca_broadcast(cenv
)) {
1083 monitor_printf(mon
, "Guest CPU does not support MCA broadcast\n");
1087 run_on_cpu(cenv
, do_inject_x86_mce
, ¶ms
);
1088 if (flags
& MCE_INJECT_BROADCAST
) {
1090 params
.status
= MCI_STATUS_VAL
| MCI_STATUS_UC
;
1091 params
.mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
;
1094 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1099 run_on_cpu(cenv
, do_inject_x86_mce
, ¶ms
);
1104 void cpu_report_tpr_access(CPUX86State
*env
, TPRAccess access
)
1106 TranslationBlock
*tb
;
1108 if (kvm_enabled()) {
1109 env
->tpr_access_type
= access
;
1111 cpu_interrupt(env
, CPU_INTERRUPT_TPR
);
1113 tb
= tb_find_pc(env
->mem_io_pc
);
1114 cpu_restore_state(tb
, env
, env
->mem_io_pc
);
1116 apic_handle_tpr_access_report(env
->apic_state
, env
->eip
, access
);
1119 #endif /* !CONFIG_USER_ONLY */
1121 int cpu_x86_get_descr_debug(CPUX86State
*env
, unsigned int selector
,
1122 target_ulong
*base
, unsigned int *limit
,
1123 unsigned int *flags
)
1134 index
= selector
& ~7;
1135 ptr
= dt
->base
+ index
;
1136 if ((index
+ 7) > dt
->limit
1137 || cpu_memory_rw_debug(env
, ptr
, (uint8_t *)&e1
, sizeof(e1
), 0) != 0
1138 || cpu_memory_rw_debug(env
, ptr
+4, (uint8_t *)&e2
, sizeof(e2
), 0) != 0)
1141 *base
= ((e1
>> 16) | ((e2
& 0xff) << 16) | (e2
& 0xff000000));
1142 *limit
= (e1
& 0xffff) | (e2
& 0x000f0000);
1143 if (e2
& DESC_G_MASK
)
1144 *limit
= (*limit
<< 12) | 0xfff;
1150 X86CPU
*cpu_x86_init(const char *cpu_model
)
1155 cpu
= X86_CPU(object_new(TYPE_X86_CPU
));
1157 env
->cpu_model_str
= cpu_model
;
1159 if (cpu_x86_register(cpu
, cpu_model
) < 0) {
1160 object_delete(OBJECT(cpu
));
1164 x86_cpu_realize(OBJECT(cpu
), NULL
);
1169 #if !defined(CONFIG_USER_ONLY)
1170 void do_cpu_init(X86CPU
*cpu
)
1172 CPUX86State
*env
= &cpu
->env
;
1173 int sipi
= env
->interrupt_request
& CPU_INTERRUPT_SIPI
;
1174 uint64_t pat
= env
->pat
;
1176 cpu_reset(CPU(cpu
));
1177 env
->interrupt_request
= sipi
;
1179 apic_init_reset(env
->apic_state
);
1182 void do_cpu_sipi(X86CPU
*cpu
)
1184 CPUX86State
*env
= &cpu
->env
;
1186 apic_sipi(env
->apic_state
);
1189 void do_cpu_init(X86CPU
*cpu
)
1192 void do_cpu_sipi(X86CPU
*cpu
)