libcacard/cac: Remove unused statement (value stored is never read)
[qemu/ar7.git] / qemu-doc.texi
blob9232ffbfaabd1c93f7005e994f5ea225d119941a
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
5 @documentlanguage en
6 @documentencoding UTF-8
8 @settitle QEMU Emulator User Documentation
9 @exampleindent 0
10 @paragraphindent 0
11 @c %**end of header
13 @ifinfo
14 @direntry
15 * QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 @end direntry
17 @end ifinfo
19 @iftex
20 @titlepage
21 @sp 7
22 @center @titlefont{QEMU Emulator}
23 @sp 1
24 @center @titlefont{User Documentation}
25 @sp 3
26 @end titlepage
27 @end iftex
29 @ifnottex
30 @node Top
31 @top
33 @menu
34 * Introduction::
35 * Installation::
36 * QEMU PC System emulator::
37 * QEMU System emulator for non PC targets::
38 * QEMU User space emulator::
39 * compilation:: Compilation from the sources
40 * License::
41 * Index::
42 @end menu
43 @end ifnottex
45 @contents
47 @node Introduction
48 @chapter Introduction
50 @menu
51 * intro_features:: Features
52 @end menu
54 @node intro_features
55 @section Features
57 QEMU is a FAST! processor emulator using dynamic translation to
58 achieve good emulation speed.
60 QEMU has two operating modes:
62 @itemize
63 @cindex operating modes
65 @item
66 @cindex system emulation
67 Full system emulation. In this mode, QEMU emulates a full system (for
68 example a PC), including one or several processors and various
69 peripherals. It can be used to launch different Operating Systems
70 without rebooting the PC or to debug system code.
72 @item
73 @cindex user mode emulation
74 User mode emulation. In this mode, QEMU can launch
75 processes compiled for one CPU on another CPU. It can be used to
76 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 to ease cross-compilation and cross-debugging.
79 @end itemize
81 QEMU can run without a host kernel driver and yet gives acceptable
82 performance.
84 For system emulation, the following hardware targets are supported:
85 @itemize
86 @cindex emulated target systems
87 @cindex supported target systems
88 @item PC (x86 or x86_64 processor)
89 @item ISA PC (old style PC without PCI bus)
90 @item PREP (PowerPC processor)
91 @item G3 Beige PowerMac (PowerPC processor)
92 @item Mac99 PowerMac (PowerPC processor, in progress)
93 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 @item Malta board (32-bit and 64-bit MIPS processors)
96 @item MIPS Magnum (64-bit MIPS processor)
97 @item ARM Integrator/CP (ARM)
98 @item ARM Versatile baseboard (ARM)
99 @item ARM RealView Emulation/Platform baseboard (ARM)
100 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 @item Freescale MCF5208EVB (ColdFire V2).
104 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 @item Palm Tungsten|E PDA (OMAP310 processor)
106 @item N800 and N810 tablets (OMAP2420 processor)
107 @item MusicPal (MV88W8618 ARM processor)
108 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 @item Siemens SX1 smartphone (OMAP310 processor)
110 @item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 @item Avnet LX60/LX110/LX200 boards (Xtensa)
113 @end itemize
115 @cindex supported user mode targets
116 For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
120 @node Installation
121 @chapter Installation
123 If you want to compile QEMU yourself, see @ref{compilation}.
125 @menu
126 * install_linux::   Linux
127 * install_windows:: Windows
128 * install_mac::     Macintosh
129 @end menu
131 @node install_linux
132 @section Linux
133 @cindex installation (Linux)
135 If a precompiled package is available for your distribution - you just
136 have to install it. Otherwise, see @ref{compilation}.
138 @node install_windows
139 @section Windows
140 @cindex installation (Windows)
142 Download the experimental binary installer at
143 @url{http://www.free.oszoo.org/@/download.html}.
144 TODO (no longer available)
146 @node install_mac
147 @section Mac OS X
148 @cindex installation (Mac OS X)
150 Download the experimental binary installer at
151 @url{http://www.free.oszoo.org/@/download.html}.
152 TODO (no longer available)
154 @node QEMU PC System emulator
155 @chapter QEMU PC System emulator
156 @cindex system emulation (PC)
158 @menu
159 * pcsys_introduction:: Introduction
160 * pcsys_quickstart::   Quick Start
161 * sec_invocation::     Invocation
162 * pcsys_keys::         Keys
163 * pcsys_monitor::      QEMU Monitor
164 * disk_images::        Disk Images
165 * pcsys_network::      Network emulation
166 * pcsys_other_devs::   Other Devices
167 * direct_linux_boot::  Direct Linux Boot
168 * pcsys_usb::          USB emulation
169 * vnc_security::       VNC security
170 * gdb_usage::          GDB usage
171 * pcsys_os_specific::  Target OS specific information
172 @end menu
174 @node pcsys_introduction
175 @section Introduction
177 @c man begin DESCRIPTION
179 The QEMU PC System emulator simulates the
180 following peripherals:
182 @itemize @minus
183 @item
184 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
185 @item
186 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
187 extensions (hardware level, including all non standard modes).
188 @item
189 PS/2 mouse and keyboard
190 @item
191 2 PCI IDE interfaces with hard disk and CD-ROM support
192 @item
193 Floppy disk
194 @item
195 PCI and ISA network adapters
196 @item
197 Serial ports
198 @item
199 Creative SoundBlaster 16 sound card
200 @item
201 ENSONIQ AudioPCI ES1370 sound card
202 @item
203 Intel 82801AA AC97 Audio compatible sound card
204 @item
205 Intel HD Audio Controller and HDA codec
206 @item
207 Adlib (OPL2) - Yamaha YM3812 compatible chip
208 @item
209 Gravis Ultrasound GF1 sound card
210 @item
211 CS4231A compatible sound card
212 @item
213 PCI UHCI USB controller and a virtual USB hub.
214 @end itemize
216 SMP is supported with up to 255 CPUs.
218 QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
219 VGA BIOS.
221 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
223 QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
224 by Tibor "TS" Schütz.
226 Note that, by default, GUS shares IRQ(7) with parallel ports and so
227 QEMU must be told to not have parallel ports to have working GUS.
229 @example
230 qemu-system-i386 dos.img -soundhw gus -parallel none
231 @end example
233 Alternatively:
234 @example
235 qemu-system-i386 dos.img -device gus,irq=5
236 @end example
238 Or some other unclaimed IRQ.
240 CS4231A is the chip used in Windows Sound System and GUSMAX products
242 @c man end
244 @node pcsys_quickstart
245 @section Quick Start
246 @cindex quick start
248 Download and uncompress the linux image (@file{linux.img}) and type:
250 @example
251 qemu-system-i386 linux.img
252 @end example
254 Linux should boot and give you a prompt.
256 @node sec_invocation
257 @section Invocation
259 @example
260 @c man begin SYNOPSIS
261 usage: qemu-system-i386 [options] [@var{disk_image}]
262 @c man end
263 @end example
265 @c man begin OPTIONS
266 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
267 targets do not need a disk image.
269 @include qemu-options.texi
271 @c man end
273 @node pcsys_keys
274 @section Keys
276 @c man begin OPTIONS
278 During the graphical emulation, you can use special key combinations to change
279 modes. The default key mappings are shown below, but if you use @code{-alt-grab}
280 then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
281 @code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
283 @table @key
284 @item Ctrl-Alt-f
285 @kindex Ctrl-Alt-f
286 Toggle full screen
288 @item Ctrl-Alt-+
289 @kindex Ctrl-Alt-+
290 Enlarge the screen
292 @item Ctrl-Alt--
293 @kindex Ctrl-Alt--
294 Shrink the screen
296 @item Ctrl-Alt-u
297 @kindex Ctrl-Alt-u
298 Restore the screen's un-scaled dimensions
300 @item Ctrl-Alt-n
301 @kindex Ctrl-Alt-n
302 Switch to virtual console 'n'. Standard console mappings are:
303 @table @emph
304 @item 1
305 Target system display
306 @item 2
307 Monitor
308 @item 3
309 Serial port
310 @end table
312 @item Ctrl-Alt
313 @kindex Ctrl-Alt
314 Toggle mouse and keyboard grab.
315 @end table
317 @kindex Ctrl-Up
318 @kindex Ctrl-Down
319 @kindex Ctrl-PageUp
320 @kindex Ctrl-PageDown
321 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
322 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
324 @kindex Ctrl-a h
325 During emulation, if you are using the @option{-nographic} option, use
326 @key{Ctrl-a h} to get terminal commands:
328 @table @key
329 @item Ctrl-a h
330 @kindex Ctrl-a h
331 @item Ctrl-a ?
332 @kindex Ctrl-a ?
333 Print this help
334 @item Ctrl-a x
335 @kindex Ctrl-a x
336 Exit emulator
337 @item Ctrl-a s
338 @kindex Ctrl-a s
339 Save disk data back to file (if -snapshot)
340 @item Ctrl-a t
341 @kindex Ctrl-a t
342 Toggle console timestamps
343 @item Ctrl-a b
344 @kindex Ctrl-a b
345 Send break (magic sysrq in Linux)
346 @item Ctrl-a c
347 @kindex Ctrl-a c
348 Switch between console and monitor
349 @item Ctrl-a Ctrl-a
350 @kindex Ctrl-a a
351 Send Ctrl-a
352 @end table
353 @c man end
355 @ignore
357 @c man begin SEEALSO
358 The HTML documentation of QEMU for more precise information and Linux
359 user mode emulator invocation.
360 @c man end
362 @c man begin AUTHOR
363 Fabrice Bellard
364 @c man end
366 @end ignore
368 @node pcsys_monitor
369 @section QEMU Monitor
370 @cindex QEMU monitor
372 The QEMU monitor is used to give complex commands to the QEMU
373 emulator. You can use it to:
375 @itemize @minus
377 @item
378 Remove or insert removable media images
379 (such as CD-ROM or floppies).
381 @item
382 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
383 from a disk file.
385 @item Inspect the VM state without an external debugger.
387 @end itemize
389 @subsection Commands
391 The following commands are available:
393 @include qemu-monitor.texi
395 @subsection Integer expressions
397 The monitor understands integers expressions for every integer
398 argument. You can use register names to get the value of specifics
399 CPU registers by prefixing them with @emph{$}.
401 @node disk_images
402 @section Disk Images
404 Since version 0.6.1, QEMU supports many disk image formats, including
405 growable disk images (their size increase as non empty sectors are
406 written), compressed and encrypted disk images. Version 0.8.3 added
407 the new qcow2 disk image format which is essential to support VM
408 snapshots.
410 @menu
411 * disk_images_quickstart::    Quick start for disk image creation
412 * disk_images_snapshot_mode:: Snapshot mode
413 * vm_snapshots::              VM snapshots
414 * qemu_img_invocation::       qemu-img Invocation
415 * qemu_nbd_invocation::       qemu-nbd Invocation
416 * disk_images_formats::       Disk image file formats
417 * host_drives::               Using host drives
418 * disk_images_fat_images::    Virtual FAT disk images
419 * disk_images_nbd::           NBD access
420 * disk_images_sheepdog::      Sheepdog disk images
421 * disk_images_iscsi::         iSCSI LUNs
422 * disk_images_gluster::       GlusterFS disk images
423 * disk_images_ssh::           Secure Shell (ssh) disk images
424 @end menu
426 @node disk_images_quickstart
427 @subsection Quick start for disk image creation
429 You can create a disk image with the command:
430 @example
431 qemu-img create myimage.img mysize
432 @end example
433 where @var{myimage.img} is the disk image filename and @var{mysize} is its
434 size in kilobytes. You can add an @code{M} suffix to give the size in
435 megabytes and a @code{G} suffix for gigabytes.
437 See @ref{qemu_img_invocation} for more information.
439 @node disk_images_snapshot_mode
440 @subsection Snapshot mode
442 If you use the option @option{-snapshot}, all disk images are
443 considered as read only. When sectors in written, they are written in
444 a temporary file created in @file{/tmp}. You can however force the
445 write back to the raw disk images by using the @code{commit} monitor
446 command (or @key{C-a s} in the serial console).
448 @node vm_snapshots
449 @subsection VM snapshots
451 VM snapshots are snapshots of the complete virtual machine including
452 CPU state, RAM, device state and the content of all the writable
453 disks. In order to use VM snapshots, you must have at least one non
454 removable and writable block device using the @code{qcow2} disk image
455 format. Normally this device is the first virtual hard drive.
457 Use the monitor command @code{savevm} to create a new VM snapshot or
458 replace an existing one. A human readable name can be assigned to each
459 snapshot in addition to its numerical ID.
461 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462 a VM snapshot. @code{info snapshots} lists the available snapshots
463 with their associated information:
465 @example
466 (qemu) info snapshots
467 Snapshot devices: hda
468 Snapshot list (from hda):
469 ID        TAG                 VM SIZE                DATE       VM CLOCK
470 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
471 2                                 40M 2006-08-06 12:43:29   00:00:18.633
472 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
473 @end example
475 A VM snapshot is made of a VM state info (its size is shown in
476 @code{info snapshots}) and a snapshot of every writable disk image.
477 The VM state info is stored in the first @code{qcow2} non removable
478 and writable block device. The disk image snapshots are stored in
479 every disk image. The size of a snapshot in a disk image is difficult
480 to evaluate and is not shown by @code{info snapshots} because the
481 associated disk sectors are shared among all the snapshots to save
482 disk space (otherwise each snapshot would need a full copy of all the
483 disk images).
485 When using the (unrelated) @code{-snapshot} option
486 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487 but they are deleted as soon as you exit QEMU.
489 VM snapshots currently have the following known limitations:
490 @itemize
491 @item
492 They cannot cope with removable devices if they are removed or
493 inserted after a snapshot is done.
494 @item
495 A few device drivers still have incomplete snapshot support so their
496 state is not saved or restored properly (in particular USB).
497 @end itemize
499 @node qemu_img_invocation
500 @subsection @code{qemu-img} Invocation
502 @include qemu-img.texi
504 @node qemu_nbd_invocation
505 @subsection @code{qemu-nbd} Invocation
507 @include qemu-nbd.texi
509 @node disk_images_formats
510 @subsection Disk image file formats
512 QEMU supports many image file formats that can be used with VMs as well as with
513 any of the tools (like @code{qemu-img}). This includes the preferred formats
514 raw and qcow2 as well as formats that are supported for compatibility with
515 older QEMU versions or other hypervisors.
517 Depending on the image format, different options can be passed to
518 @code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
519 This section describes each format and the options that are supported for it.
521 @table @option
522 @item raw
524 Raw disk image format. This format has the advantage of
525 being simple and easily exportable to all other emulators. If your
526 file system supports @emph{holes} (for example in ext2 or ext3 on
527 Linux or NTFS on Windows), then only the written sectors will reserve
528 space. Use @code{qemu-img info} to know the real size used by the
529 image or @code{ls -ls} on Unix/Linux.
531 @item qcow2
532 QEMU image format, the most versatile format. Use it to have smaller
533 images (useful if your filesystem does not supports holes, for example
534 on Windows), optional AES encryption, zlib based compression and
535 support of multiple VM snapshots.
537 Supported options:
538 @table @code
539 @item compat
540 Determines the qcow2 version to use. @code{compat=0.10} uses the traditional
541 image format that can be read by any QEMU since 0.10 (this is the default).
542 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
543 newer understand. Amongst others, this includes zero clusters, which allow
544 efficient copy-on-read for sparse images.
546 @item backing_file
547 File name of a base image (see @option{create} subcommand)
548 @item backing_fmt
549 Image format of the base image
550 @item encryption
551 If this option is set to @code{on}, the image is encrypted.
553 Encryption uses the AES format which is very secure (128 bit keys). Use
554 a long password (16 characters) to get maximum protection.
556 @item cluster_size
557 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
558 sizes can improve the image file size whereas larger cluster sizes generally
559 provide better performance.
561 @item preallocation
562 Preallocation mode (allowed values: off, metadata). An image with preallocated
563 metadata is initially larger but can improve performance when the image needs
564 to grow.
566 @item lazy_refcounts
567 If this option is set to @code{on}, reference count updates are postponed with
568 the goal of avoiding metadata I/O and improving performance. This is
569 particularly interesting with @option{cache=writethrough} which doesn't batch
570 metadata updates. The tradeoff is that after a host crash, the reference count
571 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
572 check -r all} is required, which may take some time.
574 This option can only be enabled if @code{compat=1.1} is specified.
576 @end table
578 @item qed
579 Old QEMU image format with support for backing files and compact image files
580 (when your filesystem or transport medium does not support holes).
582 When converting QED images to qcow2, you might want to consider using the
583 @code{lazy_refcounts=on} option to get a more QED-like behaviour.
585 Supported options:
586 @table @code
587 @item backing_file
588 File name of a base image (see @option{create} subcommand).
589 @item backing_fmt
590 Image file format of backing file (optional).  Useful if the format cannot be
591 autodetected because it has no header, like some vhd/vpc files.
592 @item cluster_size
593 Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
594 cluster sizes can improve the image file size whereas larger cluster sizes
595 generally provide better performance.
596 @item table_size
597 Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
598 and 16).  There is normally no need to change this value but this option can be
599 used for performance benchmarking.
600 @end table
602 @item qcow
603 Old QEMU image format with support for backing files, compact image files,
604 encryption and compression.
606 Supported options:
607 @table @code
608 @item backing_file
609 File name of a base image (see @option{create} subcommand)
610 @item encryption
611 If this option is set to @code{on}, the image is encrypted.
612 @end table
614 @item cow
615 User Mode Linux Copy On Write image format. It is supported only for
616 compatibility with previous versions.
617 Supported options:
618 @table @code
619 @item backing_file
620 File name of a base image (see @option{create} subcommand)
621 @end table
623 @item vdi
624 VirtualBox 1.1 compatible image format.
625 Supported options:
626 @table @code
627 @item static
628 If this option is set to @code{on}, the image is created with metadata
629 preallocation.
630 @end table
632 @item vmdk
633 VMware 3 and 4 compatible image format.
635 Supported options:
636 @table @code
637 @item backing_file
638 File name of a base image (see @option{create} subcommand).
639 @item compat6
640 Create a VMDK version 6 image (instead of version 4)
641 @item subformat
642 Specifies which VMDK subformat to use. Valid options are
643 @code{monolithicSparse} (default),
644 @code{monolithicFlat},
645 @code{twoGbMaxExtentSparse},
646 @code{twoGbMaxExtentFlat} and
647 @code{streamOptimized}.
648 @end table
650 @item vpc
651 VirtualPC compatible image format (VHD).
652 Supported options:
653 @table @code
654 @item subformat
655 Specifies which VHD subformat to use. Valid options are
656 @code{dynamic} (default) and @code{fixed}.
657 @end table
658 @end table
660 @subsubsection Read-only formats
661 More disk image file formats are supported in a read-only mode.
662 @table @option
663 @item bochs
664 Bochs images of @code{growing} type.
665 @item cloop
666 Linux Compressed Loop image, useful only to reuse directly compressed
667 CD-ROM images present for example in the Knoppix CD-ROMs.
668 @item dmg
669 Apple disk image.
670 @item parallels
671 Parallels disk image format.
672 @end table
675 @node host_drives
676 @subsection Using host drives
678 In addition to disk image files, QEMU can directly access host
679 devices. We describe here the usage for QEMU version >= 0.8.3.
681 @subsubsection Linux
683 On Linux, you can directly use the host device filename instead of a
684 disk image filename provided you have enough privileges to access
685 it. For example, use @file{/dev/cdrom} to access to the CDROM or
686 @file{/dev/fd0} for the floppy.
688 @table @code
689 @item CD
690 You can specify a CDROM device even if no CDROM is loaded. QEMU has
691 specific code to detect CDROM insertion or removal. CDROM ejection by
692 the guest OS is supported. Currently only data CDs are supported.
693 @item Floppy
694 You can specify a floppy device even if no floppy is loaded. Floppy
695 removal is currently not detected accurately (if you change floppy
696 without doing floppy access while the floppy is not loaded, the guest
697 OS will think that the same floppy is loaded).
698 @item Hard disks
699 Hard disks can be used. Normally you must specify the whole disk
700 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
701 see it as a partitioned disk. WARNING: unless you know what you do, it
702 is better to only make READ-ONLY accesses to the hard disk otherwise
703 you may corrupt your host data (use the @option{-snapshot} command
704 line option or modify the device permissions accordingly).
705 @end table
707 @subsubsection Windows
709 @table @code
710 @item CD
711 The preferred syntax is the drive letter (e.g. @file{d:}). The
712 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
713 supported as an alias to the first CDROM drive.
715 Currently there is no specific code to handle removable media, so it
716 is better to use the @code{change} or @code{eject} monitor commands to
717 change or eject media.
718 @item Hard disks
719 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
720 where @var{N} is the drive number (0 is the first hard disk).
721 @file{/dev/hda} is supported as an alias to
722 the first hard disk drive @file{\\.\PhysicalDrive0}.
724 WARNING: unless you know what you do, it is better to only make
725 READ-ONLY accesses to the hard disk otherwise you may corrupt your
726 host data (use the @option{-snapshot} command line so that the
727 modifications are written in a temporary file).
728 @end table
731 @subsubsection Mac OS X
733 @file{/dev/cdrom} is an alias to the first CDROM.
735 Currently there is no specific code to handle removable media, so it
736 is better to use the @code{change} or @code{eject} monitor commands to
737 change or eject media.
739 @node disk_images_fat_images
740 @subsection Virtual FAT disk images
742 QEMU can automatically create a virtual FAT disk image from a
743 directory tree. In order to use it, just type:
745 @example
746 qemu-system-i386 linux.img -hdb fat:/my_directory
747 @end example
749 Then you access access to all the files in the @file{/my_directory}
750 directory without having to copy them in a disk image or to export
751 them via SAMBA or NFS. The default access is @emph{read-only}.
753 Floppies can be emulated with the @code{:floppy:} option:
755 @example
756 qemu-system-i386 linux.img -fda fat:floppy:/my_directory
757 @end example
759 A read/write support is available for testing (beta stage) with the
760 @code{:rw:} option:
762 @example
763 qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
764 @end example
766 What you should @emph{never} do:
767 @itemize
768 @item use non-ASCII filenames ;
769 @item use "-snapshot" together with ":rw:" ;
770 @item expect it to work when loadvm'ing ;
771 @item write to the FAT directory on the host system while accessing it with the guest system.
772 @end itemize
774 @node disk_images_nbd
775 @subsection NBD access
777 QEMU can access directly to block device exported using the Network Block Device
778 protocol.
780 @example
781 qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
782 @end example
784 If the NBD server is located on the same host, you can use an unix socket instead
785 of an inet socket:
787 @example
788 qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
789 @end example
791 In this case, the block device must be exported using qemu-nbd:
793 @example
794 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
795 @end example
797 The use of qemu-nbd allows to share a disk between several guests:
798 @example
799 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
800 @end example
802 @noindent
803 and then you can use it with two guests:
804 @example
805 qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
806 qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
807 @end example
809 If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
810 own embedded NBD server), you must specify an export name in the URI:
811 @example
812 qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
813 qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
814 @end example
816 The URI syntax for NBD is supported since QEMU 1.3.  An alternative syntax is
817 also available.  Here are some example of the older syntax:
818 @example
819 qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
820 qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
821 qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
822 @end example
824 @node disk_images_sheepdog
825 @subsection Sheepdog disk images
827 Sheepdog is a distributed storage system for QEMU.  It provides highly
828 available block level storage volumes that can be attached to
829 QEMU-based virtual machines.
831 You can create a Sheepdog disk image with the command:
832 @example
833 qemu-img create sheepdog:///@var{image} @var{size}
834 @end example
835 where @var{image} is the Sheepdog image name and @var{size} is its
836 size.
838 To import the existing @var{filename} to Sheepdog, you can use a
839 convert command.
840 @example
841 qemu-img convert @var{filename} sheepdog:///@var{image}
842 @end example
844 You can boot from the Sheepdog disk image with the command:
845 @example
846 qemu-system-i386 sheepdog:///@var{image}
847 @end example
849 You can also create a snapshot of the Sheepdog image like qcow2.
850 @example
851 qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
852 @end example
853 where @var{tag} is a tag name of the newly created snapshot.
855 To boot from the Sheepdog snapshot, specify the tag name of the
856 snapshot.
857 @example
858 qemu-system-i386 sheepdog:///@var{image}#@var{tag}
859 @end example
861 You can create a cloned image from the existing snapshot.
862 @example
863 qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
864 @end example
865 where @var{base} is a image name of the source snapshot and @var{tag}
866 is its tag name.
868 You can use an unix socket instead of an inet socket:
870 @example
871 qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
872 @end example
874 If the Sheepdog daemon doesn't run on the local host, you need to
875 specify one of the Sheepdog servers to connect to.
876 @example
877 qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
878 qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
879 @end example
881 @node disk_images_iscsi
882 @subsection iSCSI LUNs
884 iSCSI is a popular protocol used to access SCSI devices across a computer
885 network.
887 There are two different ways iSCSI devices can be used by QEMU.
889 The first method is to mount the iSCSI LUN on the host, and make it appear as
890 any other ordinary SCSI device on the host and then to access this device as a
891 /dev/sd device from QEMU. How to do this differs between host OSes.
893 The second method involves using the iSCSI initiator that is built into
894 QEMU. This provides a mechanism that works the same way regardless of which
895 host OS you are running QEMU on. This section will describe this second method
896 of using iSCSI together with QEMU.
898 In QEMU, iSCSI devices are described using special iSCSI URLs
900 @example
901 URL syntax:
902 iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
903 @end example
905 Username and password are optional and only used if your target is set up
906 using CHAP authentication for access control.
907 Alternatively the username and password can also be set via environment
908 variables to have these not show up in the process list
910 @example
911 export LIBISCSI_CHAP_USERNAME=<username>
912 export LIBISCSI_CHAP_PASSWORD=<password>
913 iscsi://<host>/<target-iqn-name>/<lun>
914 @end example
916 Various session related parameters can be set via special options, either
917 in a configuration file provided via '-readconfig' or directly on the
918 command line.
920 If the initiator-name is not specified qemu will use a default name
921 of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
922 virtual machine.
925 @example
926 Setting a specific initiator name to use when logging in to the target
927 -iscsi initiator-name=iqn.qemu.test:my-initiator
928 @end example
930 @example
931 Controlling which type of header digest to negotiate with the target
932 -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
933 @end example
935 These can also be set via a configuration file
936 @example
937 [iscsi]
938   user = "CHAP username"
939   password = "CHAP password"
940   initiator-name = "iqn.qemu.test:my-initiator"
941   # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
942   header-digest = "CRC32C"
943 @end example
946 Setting the target name allows different options for different targets
947 @example
948 [iscsi "iqn.target.name"]
949   user = "CHAP username"
950   password = "CHAP password"
951   initiator-name = "iqn.qemu.test:my-initiator"
952   # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
953   header-digest = "CRC32C"
954 @end example
957 Howto use a configuration file to set iSCSI configuration options:
958 @example
959 cat >iscsi.conf <<EOF
960 [iscsi]
961   user = "me"
962   password = "my password"
963   initiator-name = "iqn.qemu.test:my-initiator"
964   header-digest = "CRC32C"
967 qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
968     -readconfig iscsi.conf
969 @end example
972 Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
973 @example
974 This example shows how to set up an iSCSI target with one CDROM and one DISK
975 using the Linux STGT software target. This target is available on Red Hat based
976 systems as the package 'scsi-target-utils'.
978 tgtd --iscsi portal=127.0.0.1:3260
979 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
980 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
981     -b /IMAGES/disk.img --device-type=disk
982 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
983     -b /IMAGES/cd.iso --device-type=cd
984 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
986 qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
987     -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
988     -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
989 @end example
991 @node disk_images_gluster
992 @subsection GlusterFS disk images
994 GlusterFS is an user space distributed file system.
996 You can boot from the GlusterFS disk image with the command:
997 @example
998 qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
999 @end example
1001 @var{gluster} is the protocol.
1003 @var{transport} specifies the transport type used to connect to gluster
1004 management daemon (glusterd). Valid transport types are
1005 tcp, unix and rdma. If a transport type isn't specified, then tcp
1006 type is assumed.
1008 @var{server} specifies the server where the volume file specification for
1009 the given volume resides. This can be either hostname, ipv4 address
1010 or ipv6 address. ipv6 address needs to be within square brackets [ ].
1011 If transport type is unix, then @var{server} field should not be specifed.
1012 Instead @var{socket} field needs to be populated with the path to unix domain
1013 socket.
1015 @var{port} is the port number on which glusterd is listening. This is optional
1016 and if not specified, QEMU will send 0 which will make gluster to use the
1017 default port. If the transport type is unix, then @var{port} should not be
1018 specified.
1020 @var{volname} is the name of the gluster volume which contains the disk image.
1022 @var{image} is the path to the actual disk image that resides on gluster volume.
1024 You can create a GlusterFS disk image with the command:
1025 @example
1026 qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1027 @end example
1029 Examples
1030 @example
1031 qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1032 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1033 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1034 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1035 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1036 qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1037 qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1038 qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1039 @end example
1041 @node disk_images_ssh
1042 @subsection Secure Shell (ssh) disk images
1044 You can access disk images located on a remote ssh server
1045 by using the ssh protocol:
1047 @example
1048 qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1049 @end example
1051 Alternative syntax using properties:
1053 @example
1054 qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1055 @end example
1057 @var{ssh} is the protocol.
1059 @var{user} is the remote user.  If not specified, then the local
1060 username is tried.
1062 @var{server} specifies the remote ssh server.  Any ssh server can be
1063 used, but it must implement the sftp-server protocol.  Most Unix/Linux
1064 systems should work without requiring any extra configuration.
1066 @var{port} is the port number on which sshd is listening.  By default
1067 the standard ssh port (22) is used.
1069 @var{path} is the path to the disk image.
1071 The optional @var{host_key_check} parameter controls how the remote
1072 host's key is checked.  The default is @code{yes} which means to use
1073 the local @file{.ssh/known_hosts} file.  Setting this to @code{no}
1074 turns off known-hosts checking.  Or you can check that the host key
1075 matches a specific fingerprint:
1076 @code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1077 (@code{sha1:} can also be used as a prefix, but note that OpenSSH
1078 tools only use MD5 to print fingerprints).
1080 Currently authentication must be done using ssh-agent.  Other
1081 authentication methods may be supported in future.
1083 Note: Many ssh servers do not support an @code{fsync}-style operation.
1084 The ssh driver cannot guarantee that disk flush requests are
1085 obeyed, and this causes a risk of disk corruption if the remote
1086 server or network goes down during writes.  The driver will
1087 print a warning when @code{fsync} is not supported:
1089 warning: ssh server @code{ssh.example.com:22} does not support fsync
1091 With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1092 supported.
1094 @node pcsys_network
1095 @section Network emulation
1097 QEMU can simulate several network cards (PCI or ISA cards on the PC
1098 target) and can connect them to an arbitrary number of Virtual Local
1099 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1100 VLAN. VLAN can be connected between separate instances of QEMU to
1101 simulate large networks. For simpler usage, a non privileged user mode
1102 network stack can replace the TAP device to have a basic network
1103 connection.
1105 @subsection VLANs
1107 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1108 connection between several network devices. These devices can be for
1109 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1110 (TAP devices).
1112 @subsection Using TAP network interfaces
1114 This is the standard way to connect QEMU to a real network. QEMU adds
1115 a virtual network device on your host (called @code{tapN}), and you
1116 can then configure it as if it was a real ethernet card.
1118 @subsubsection Linux host
1120 As an example, you can download the @file{linux-test-xxx.tar.gz}
1121 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1122 configure properly @code{sudo} so that the command @code{ifconfig}
1123 contained in @file{qemu-ifup} can be executed as root. You must verify
1124 that your host kernel supports the TAP network interfaces: the
1125 device @file{/dev/net/tun} must be present.
1127 See @ref{sec_invocation} to have examples of command lines using the
1128 TAP network interfaces.
1130 @subsubsection Windows host
1132 There is a virtual ethernet driver for Windows 2000/XP systems, called
1133 TAP-Win32. But it is not included in standard QEMU for Windows,
1134 so you will need to get it separately. It is part of OpenVPN package,
1135 so download OpenVPN from : @url{http://openvpn.net/}.
1137 @subsection Using the user mode network stack
1139 By using the option @option{-net user} (default configuration if no
1140 @option{-net} option is specified), QEMU uses a completely user mode
1141 network stack (you don't need root privilege to use the virtual
1142 network). The virtual network configuration is the following:
1144 @example
1146          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1147                            |          (10.0.2.2)
1148                            |
1149                            ---->  DNS server (10.0.2.3)
1150                            |
1151                            ---->  SMB server (10.0.2.4)
1152 @end example
1154 The QEMU VM behaves as if it was behind a firewall which blocks all
1155 incoming connections. You can use a DHCP client to automatically
1156 configure the network in the QEMU VM. The DHCP server assign addresses
1157 to the hosts starting from 10.0.2.15.
1159 In order to check that the user mode network is working, you can ping
1160 the address 10.0.2.2 and verify that you got an address in the range
1161 10.0.2.x from the QEMU virtual DHCP server.
1163 Note that @code{ping} is not supported reliably to the internet as it
1164 would require root privileges. It means you can only ping the local
1165 router (10.0.2.2).
1167 When using the built-in TFTP server, the router is also the TFTP
1168 server.
1170 When using the @option{-redir} option, TCP or UDP connections can be
1171 redirected from the host to the guest. It allows for example to
1172 redirect X11, telnet or SSH connections.
1174 @subsection Connecting VLANs between QEMU instances
1176 Using the @option{-net socket} option, it is possible to make VLANs
1177 that span several QEMU instances. See @ref{sec_invocation} to have a
1178 basic example.
1180 @node pcsys_other_devs
1181 @section Other Devices
1183 @subsection Inter-VM Shared Memory device
1185 With KVM enabled on a Linux host, a shared memory device is available.  Guests
1186 map a POSIX shared memory region into the guest as a PCI device that enables
1187 zero-copy communication to the application level of the guests.  The basic
1188 syntax is:
1190 @example
1191 qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
1192 @end example
1194 If desired, interrupts can be sent between guest VMs accessing the same shared
1195 memory region.  Interrupt support requires using a shared memory server and
1196 using a chardev socket to connect to it.  The code for the shared memory server
1197 is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
1198 memory server is:
1200 @example
1201 qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1202                  [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1203 qemu-system-i386 -chardev socket,path=<path>,id=<id>
1204 @end example
1206 When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1207 using the same server to communicate via interrupts.  Guests can read their
1208 VM ID from a device register (see example code).  Since receiving the shared
1209 memory region from the server is asynchronous, there is a (small) chance the
1210 guest may boot before the shared memory is attached.  To allow an application
1211 to ensure shared memory is attached, the VM ID register will return -1 (an
1212 invalid VM ID) until the memory is attached.  Once the shared memory is
1213 attached, the VM ID will return the guest's valid VM ID.  With these semantics,
1214 the guest application can check to ensure the shared memory is attached to the
1215 guest before proceeding.
1217 The @option{role} argument can be set to either master or peer and will affect
1218 how the shared memory is migrated.  With @option{role=master}, the guest will
1219 copy the shared memory on migration to the destination host.  With
1220 @option{role=peer}, the guest will not be able to migrate with the device attached.
1221 With the @option{peer} case, the device should be detached and then reattached
1222 after migration using the PCI hotplug support.
1224 @node direct_linux_boot
1225 @section Direct Linux Boot
1227 This section explains how to launch a Linux kernel inside QEMU without
1228 having to make a full bootable image. It is very useful for fast Linux
1229 kernel testing.
1231 The syntax is:
1232 @example
1233 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1234 @end example
1236 Use @option{-kernel} to provide the Linux kernel image and
1237 @option{-append} to give the kernel command line arguments. The
1238 @option{-initrd} option can be used to provide an INITRD image.
1240 When using the direct Linux boot, a disk image for the first hard disk
1241 @file{hda} is required because its boot sector is used to launch the
1242 Linux kernel.
1244 If you do not need graphical output, you can disable it and redirect
1245 the virtual serial port and the QEMU monitor to the console with the
1246 @option{-nographic} option. The typical command line is:
1247 @example
1248 qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1249                  -append "root=/dev/hda console=ttyS0" -nographic
1250 @end example
1252 Use @key{Ctrl-a c} to switch between the serial console and the
1253 monitor (@pxref{pcsys_keys}).
1255 @node pcsys_usb
1256 @section USB emulation
1258 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1259 virtual USB devices or real host USB devices (experimental, works only
1260 on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
1261 as necessary to connect multiple USB devices.
1263 @menu
1264 * usb_devices::
1265 * host_usb_devices::
1266 @end menu
1267 @node usb_devices
1268 @subsection Connecting USB devices
1270 USB devices can be connected with the @option{-usbdevice} commandline option
1271 or the @code{usb_add} monitor command.  Available devices are:
1273 @table @code
1274 @item mouse
1275 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1276 @item tablet
1277 Pointer device that uses absolute coordinates (like a touchscreen).
1278 This means QEMU is able to report the mouse position without having
1279 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1280 @item disk:@var{file}
1281 Mass storage device based on @var{file} (@pxref{disk_images})
1282 @item host:@var{bus.addr}
1283 Pass through the host device identified by @var{bus.addr}
1284 (Linux only)
1285 @item host:@var{vendor_id:product_id}
1286 Pass through the host device identified by @var{vendor_id:product_id}
1287 (Linux only)
1288 @item wacom-tablet
1289 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1290 above but it can be used with the tslib library because in addition to touch
1291 coordinates it reports touch pressure.
1292 @item keyboard
1293 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1294 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1295 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1296 device @var{dev}. The available character devices are the same as for the
1297 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1298 used to override the default 0403:6001. For instance,
1299 @example
1300 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1301 @end example
1302 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1303 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1304 @item braille
1305 Braille device.  This will use BrlAPI to display the braille output on a real
1306 or fake device.
1307 @item net:@var{options}
1308 Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1309 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1310 For instance, user-mode networking can be used with
1311 @example
1312 qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1313 @end example
1314 Currently this cannot be used in machines that support PCI NICs.
1315 @item bt[:@var{hci-type}]
1316 Bluetooth dongle whose type is specified in the same format as with
1317 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1318 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1319 This USB device implements the USB Transport Layer of HCI.  Example
1320 usage:
1321 @example
1322 qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1323 @end example
1324 @end table
1326 @node host_usb_devices
1327 @subsection Using host USB devices on a Linux host
1329 WARNING: this is an experimental feature. QEMU will slow down when
1330 using it. USB devices requiring real time streaming (i.e. USB Video
1331 Cameras) are not supported yet.
1333 @enumerate
1334 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1335 is actually using the USB device. A simple way to do that is simply to
1336 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1337 to @file{mydriver.o.disabled}.
1339 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1340 @example
1341 ls /proc/bus/usb
1342 001  devices  drivers
1343 @end example
1345 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1346 @example
1347 chown -R myuid /proc/bus/usb
1348 @end example
1350 @item Launch QEMU and do in the monitor:
1351 @example
1352 info usbhost
1353   Device 1.2, speed 480 Mb/s
1354     Class 00: USB device 1234:5678, USB DISK
1355 @end example
1356 You should see the list of the devices you can use (Never try to use
1357 hubs, it won't work).
1359 @item Add the device in QEMU by using:
1360 @example
1361 usb_add host:1234:5678
1362 @end example
1364 Normally the guest OS should report that a new USB device is
1365 plugged. You can use the option @option{-usbdevice} to do the same.
1367 @item Now you can try to use the host USB device in QEMU.
1369 @end enumerate
1371 When relaunching QEMU, you may have to unplug and plug again the USB
1372 device to make it work again (this is a bug).
1374 @node vnc_security
1375 @section VNC security
1377 The VNC server capability provides access to the graphical console
1378 of the guest VM across the network. This has a number of security
1379 considerations depending on the deployment scenarios.
1381 @menu
1382 * vnc_sec_none::
1383 * vnc_sec_password::
1384 * vnc_sec_certificate::
1385 * vnc_sec_certificate_verify::
1386 * vnc_sec_certificate_pw::
1387 * vnc_sec_sasl::
1388 * vnc_sec_certificate_sasl::
1389 * vnc_generate_cert::
1390 * vnc_setup_sasl::
1391 @end menu
1392 @node vnc_sec_none
1393 @subsection Without passwords
1395 The simplest VNC server setup does not include any form of authentication.
1396 For this setup it is recommended to restrict it to listen on a UNIX domain
1397 socket only. For example
1399 @example
1400 qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1401 @end example
1403 This ensures that only users on local box with read/write access to that
1404 path can access the VNC server. To securely access the VNC server from a
1405 remote machine, a combination of netcat+ssh can be used to provide a secure
1406 tunnel.
1408 @node vnc_sec_password
1409 @subsection With passwords
1411 The VNC protocol has limited support for password based authentication. Since
1412 the protocol limits passwords to 8 characters it should not be considered
1413 to provide high security. The password can be fairly easily brute-forced by
1414 a client making repeat connections. For this reason, a VNC server using password
1415 authentication should be restricted to only listen on the loopback interface
1416 or UNIX domain sockets. Password authentication is not supported when operating
1417 in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1418 authentication is requested with the @code{password} option, and then once QEMU
1419 is running the password is set with the monitor. Until the monitor is used to
1420 set the password all clients will be rejected.
1422 @example
1423 qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1424 (qemu) change vnc password
1425 Password: ********
1426 (qemu)
1427 @end example
1429 @node vnc_sec_certificate
1430 @subsection With x509 certificates
1432 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1433 TLS for encryption of the session, and x509 certificates for authentication.
1434 The use of x509 certificates is strongly recommended, because TLS on its
1435 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1436 support provides a secure session, but no authentication. This allows any
1437 client to connect, and provides an encrypted session.
1439 @example
1440 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1441 @end example
1443 In the above example @code{/etc/pki/qemu} should contain at least three files,
1444 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1445 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1446 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1447 only be readable by the user owning it.
1449 @node vnc_sec_certificate_verify
1450 @subsection With x509 certificates and client verification
1452 Certificates can also provide a means to authenticate the client connecting.
1453 The server will request that the client provide a certificate, which it will
1454 then validate against the CA certificate. This is a good choice if deploying
1455 in an environment with a private internal certificate authority.
1457 @example
1458 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1459 @end example
1462 @node vnc_sec_certificate_pw
1463 @subsection With x509 certificates, client verification and passwords
1465 Finally, the previous method can be combined with VNC password authentication
1466 to provide two layers of authentication for clients.
1468 @example
1469 qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1470 (qemu) change vnc password
1471 Password: ********
1472 (qemu)
1473 @end example
1476 @node vnc_sec_sasl
1477 @subsection With SASL authentication
1479 The SASL authentication method is a VNC extension, that provides an
1480 easily extendable, pluggable authentication method. This allows for
1481 integration with a wide range of authentication mechanisms, such as
1482 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1483 The strength of the authentication depends on the exact mechanism
1484 configured. If the chosen mechanism also provides a SSF layer, then
1485 it will encrypt the datastream as well.
1487 Refer to the later docs on how to choose the exact SASL mechanism
1488 used for authentication, but assuming use of one supporting SSF,
1489 then QEMU can be launched with:
1491 @example
1492 qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1493 @end example
1495 @node vnc_sec_certificate_sasl
1496 @subsection With x509 certificates and SASL authentication
1498 If the desired SASL authentication mechanism does not supported
1499 SSF layers, then it is strongly advised to run it in combination
1500 with TLS and x509 certificates. This provides securely encrypted
1501 data stream, avoiding risk of compromising of the security
1502 credentials. This can be enabled, by combining the 'sasl' option
1503 with the aforementioned TLS + x509 options:
1505 @example
1506 qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1507 @end example
1510 @node vnc_generate_cert
1511 @subsection Generating certificates for VNC
1513 The GNU TLS packages provides a command called @code{certtool} which can
1514 be used to generate certificates and keys in PEM format. At a minimum it
1515 is necessary to setup a certificate authority, and issue certificates to
1516 each server. If using certificates for authentication, then each client
1517 will also need to be issued a certificate. The recommendation is for the
1518 server to keep its certificates in either @code{/etc/pki/qemu} or for
1519 unprivileged users in @code{$HOME/.pki/qemu}.
1521 @menu
1522 * vnc_generate_ca::
1523 * vnc_generate_server::
1524 * vnc_generate_client::
1525 @end menu
1526 @node vnc_generate_ca
1527 @subsubsection Setup the Certificate Authority
1529 This step only needs to be performed once per organization / organizational
1530 unit. First the CA needs a private key. This key must be kept VERY secret
1531 and secure. If this key is compromised the entire trust chain of the certificates
1532 issued with it is lost.
1534 @example
1535 # certtool --generate-privkey > ca-key.pem
1536 @end example
1538 A CA needs to have a public certificate. For simplicity it can be a self-signed
1539 certificate, or one issue by a commercial certificate issuing authority. To
1540 generate a self-signed certificate requires one core piece of information, the
1541 name of the organization.
1543 @example
1544 # cat > ca.info <<EOF
1545 cn = Name of your organization
1547 cert_signing_key
1549 # certtool --generate-self-signed \
1550            --load-privkey ca-key.pem
1551            --template ca.info \
1552            --outfile ca-cert.pem
1553 @end example
1555 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1556 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1558 @node vnc_generate_server
1559 @subsubsection Issuing server certificates
1561 Each server (or host) needs to be issued with a key and certificate. When connecting
1562 the certificate is sent to the client which validates it against the CA certificate.
1563 The core piece of information for a server certificate is the hostname. This should
1564 be the fully qualified hostname that the client will connect with, since the client
1565 will typically also verify the hostname in the certificate. On the host holding the
1566 secure CA private key:
1568 @example
1569 # cat > server.info <<EOF
1570 organization = Name  of your organization
1571 cn = server.foo.example.com
1572 tls_www_server
1573 encryption_key
1574 signing_key
1576 # certtool --generate-privkey > server-key.pem
1577 # certtool --generate-certificate \
1578            --load-ca-certificate ca-cert.pem \
1579            --load-ca-privkey ca-key.pem \
1580            --load-privkey server server-key.pem \
1581            --template server.info \
1582            --outfile server-cert.pem
1583 @end example
1585 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1586 to the server for which they were generated. The @code{server-key.pem} is security
1587 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1589 @node vnc_generate_client
1590 @subsubsection Issuing client certificates
1592 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1593 certificates as its authentication mechanism, each client also needs to be issued
1594 a certificate. The client certificate contains enough metadata to uniquely identify
1595 the client, typically organization, state, city, building, etc. On the host holding
1596 the secure CA private key:
1598 @example
1599 # cat > client.info <<EOF
1600 country = GB
1601 state = London
1602 locality = London
1603 organiazation = Name of your organization
1604 cn = client.foo.example.com
1605 tls_www_client
1606 encryption_key
1607 signing_key
1609 # certtool --generate-privkey > client-key.pem
1610 # certtool --generate-certificate \
1611            --load-ca-certificate ca-cert.pem \
1612            --load-ca-privkey ca-key.pem \
1613            --load-privkey client-key.pem \
1614            --template client.info \
1615            --outfile client-cert.pem
1616 @end example
1618 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1619 copied to the client for which they were generated.
1622 @node vnc_setup_sasl
1624 @subsection Configuring SASL mechanisms
1626 The following documentation assumes use of the Cyrus SASL implementation on a
1627 Linux host, but the principals should apply to any other SASL impl. When SASL
1628 is enabled, the mechanism configuration will be loaded from system default
1629 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1630 unprivileged user, an environment variable SASL_CONF_PATH can be used
1631 to make it search alternate locations for the service config.
1633 The default configuration might contain
1635 @example
1636 mech_list: digest-md5
1637 sasldb_path: /etc/qemu/passwd.db
1638 @end example
1640 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1641 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1642 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1643 command. While this mechanism is easy to configure and use, it is not
1644 considered secure by modern standards, so only suitable for developers /
1645 ad-hoc testing.
1647 A more serious deployment might use Kerberos, which is done with the 'gssapi'
1648 mechanism
1650 @example
1651 mech_list: gssapi
1652 keytab: /etc/qemu/krb5.tab
1653 @end example
1655 For this to work the administrator of your KDC must generate a Kerberos
1656 principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1657 replacing 'somehost.example.com' with the fully qualified host name of the
1658 machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1660 Other configurations will be left as an exercise for the reader. It should
1661 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1662 encryption. For all other mechanisms, VNC should always be configured to
1663 use TLS and x509 certificates to protect security credentials from snooping.
1665 @node gdb_usage
1666 @section GDB usage
1668 QEMU has a primitive support to work with gdb, so that you can do
1669 'Ctrl-C' while the virtual machine is running and inspect its state.
1671 In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1672 gdb connection:
1673 @example
1674 qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1675                     -append "root=/dev/hda"
1676 Connected to host network interface: tun0
1677 Waiting gdb connection on port 1234
1678 @end example
1680 Then launch gdb on the 'vmlinux' executable:
1681 @example
1682 > gdb vmlinux
1683 @end example
1685 In gdb, connect to QEMU:
1686 @example
1687 (gdb) target remote localhost:1234
1688 @end example
1690 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1691 @example
1692 (gdb) c
1693 @end example
1695 Here are some useful tips in order to use gdb on system code:
1697 @enumerate
1698 @item
1699 Use @code{info reg} to display all the CPU registers.
1700 @item
1701 Use @code{x/10i $eip} to display the code at the PC position.
1702 @item
1703 Use @code{set architecture i8086} to dump 16 bit code. Then use
1704 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1705 @end enumerate
1707 Advanced debugging options:
1709 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1710 @table @code
1711 @item maintenance packet qqemu.sstepbits
1713 This will display the MASK bits used to control the single stepping IE:
1714 @example
1715 (gdb) maintenance packet qqemu.sstepbits
1716 sending: "qqemu.sstepbits"
1717 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1718 @end example
1719 @item maintenance packet qqemu.sstep
1721 This will display the current value of the mask used when single stepping IE:
1722 @example
1723 (gdb) maintenance packet qqemu.sstep
1724 sending: "qqemu.sstep"
1725 received: "0x7"
1726 @end example
1727 @item maintenance packet Qqemu.sstep=HEX_VALUE
1729 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1730 @example
1731 (gdb) maintenance packet Qqemu.sstep=0x5
1732 sending: "qemu.sstep=0x5"
1733 received: "OK"
1734 @end example
1735 @end table
1737 @node pcsys_os_specific
1738 @section Target OS specific information
1740 @subsection Linux
1742 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1743 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1744 color depth in the guest and the host OS.
1746 When using a 2.6 guest Linux kernel, you should add the option
1747 @code{clock=pit} on the kernel command line because the 2.6 Linux
1748 kernels make very strict real time clock checks by default that QEMU
1749 cannot simulate exactly.
1751 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1752 not activated because QEMU is slower with this patch. The QEMU
1753 Accelerator Module is also much slower in this case. Earlier Fedora
1754 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1755 patch by default. Newer kernels don't have it.
1757 @subsection Windows
1759 If you have a slow host, using Windows 95 is better as it gives the
1760 best speed. Windows 2000 is also a good choice.
1762 @subsubsection SVGA graphic modes support
1764 QEMU emulates a Cirrus Logic GD5446 Video
1765 card. All Windows versions starting from Windows 95 should recognize
1766 and use this graphic card. For optimal performances, use 16 bit color
1767 depth in the guest and the host OS.
1769 If you are using Windows XP as guest OS and if you want to use high
1770 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1771 1280x1024x16), then you should use the VESA VBE virtual graphic card
1772 (option @option{-std-vga}).
1774 @subsubsection CPU usage reduction
1776 Windows 9x does not correctly use the CPU HLT
1777 instruction. The result is that it takes host CPU cycles even when
1778 idle. You can install the utility from
1779 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1780 problem. Note that no such tool is needed for NT, 2000 or XP.
1782 @subsubsection Windows 2000 disk full problem
1784 Windows 2000 has a bug which gives a disk full problem during its
1785 installation. When installing it, use the @option{-win2k-hack} QEMU
1786 option to enable a specific workaround. After Windows 2000 is
1787 installed, you no longer need this option (this option slows down the
1788 IDE transfers).
1790 @subsubsection Windows 2000 shutdown
1792 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1793 can. It comes from the fact that Windows 2000 does not automatically
1794 use the APM driver provided by the BIOS.
1796 In order to correct that, do the following (thanks to Struan
1797 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1798 Add/Troubleshoot a device => Add a new device & Next => No, select the
1799 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1800 (again) a few times. Now the driver is installed and Windows 2000 now
1801 correctly instructs QEMU to shutdown at the appropriate moment.
1803 @subsubsection Share a directory between Unix and Windows
1805 See @ref{sec_invocation} about the help of the option @option{-smb}.
1807 @subsubsection Windows XP security problem
1809 Some releases of Windows XP install correctly but give a security
1810 error when booting:
1811 @example
1812 A problem is preventing Windows from accurately checking the
1813 license for this computer. Error code: 0x800703e6.
1814 @end example
1816 The workaround is to install a service pack for XP after a boot in safe
1817 mode. Then reboot, and the problem should go away. Since there is no
1818 network while in safe mode, its recommended to download the full
1819 installation of SP1 or SP2 and transfer that via an ISO or using the
1820 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1822 @subsection MS-DOS and FreeDOS
1824 @subsubsection CPU usage reduction
1826 DOS does not correctly use the CPU HLT instruction. The result is that
1827 it takes host CPU cycles even when idle. You can install the utility
1828 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1829 problem.
1831 @node QEMU System emulator for non PC targets
1832 @chapter QEMU System emulator for non PC targets
1834 QEMU is a generic emulator and it emulates many non PC
1835 machines. Most of the options are similar to the PC emulator. The
1836 differences are mentioned in the following sections.
1838 @menu
1839 * PowerPC System emulator::
1840 * Sparc32 System emulator::
1841 * Sparc64 System emulator::
1842 * MIPS System emulator::
1843 * ARM System emulator::
1844 * ColdFire System emulator::
1845 * Cris System emulator::
1846 * Microblaze System emulator::
1847 * SH4 System emulator::
1848 * Xtensa System emulator::
1849 @end menu
1851 @node PowerPC System emulator
1852 @section PowerPC System emulator
1853 @cindex system emulation (PowerPC)
1855 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1856 or PowerMac PowerPC system.
1858 QEMU emulates the following PowerMac peripherals:
1860 @itemize @minus
1861 @item
1862 UniNorth or Grackle PCI Bridge
1863 @item
1864 PCI VGA compatible card with VESA Bochs Extensions
1865 @item
1866 2 PMAC IDE interfaces with hard disk and CD-ROM support
1867 @item
1868 NE2000 PCI adapters
1869 @item
1870 Non Volatile RAM
1871 @item
1872 VIA-CUDA with ADB keyboard and mouse.
1873 @end itemize
1875 QEMU emulates the following PREP peripherals:
1877 @itemize @minus
1878 @item
1879 PCI Bridge
1880 @item
1881 PCI VGA compatible card with VESA Bochs Extensions
1882 @item
1883 2 IDE interfaces with hard disk and CD-ROM support
1884 @item
1885 Floppy disk
1886 @item
1887 NE2000 network adapters
1888 @item
1889 Serial port
1890 @item
1891 PREP Non Volatile RAM
1892 @item
1893 PC compatible keyboard and mouse.
1894 @end itemize
1896 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS.
1898 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1899 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1900 v2) portable firmware implementation. The goal is to implement a 100%
1901 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1903 @c man begin OPTIONS
1905 The following options are specific to the PowerPC emulation:
1907 @table @option
1909 @item -g @var{W}x@var{H}[x@var{DEPTH}]
1911 Set the initial VGA graphic mode. The default is 800x600x15.
1913 @item -prom-env @var{string}
1915 Set OpenBIOS variables in NVRAM, for example:
1917 @example
1918 qemu-system-ppc -prom-env 'auto-boot?=false' \
1919  -prom-env 'boot-device=hd:2,\yaboot' \
1920  -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1921 @end example
1923 These variables are not used by Open Hack'Ware.
1925 @end table
1927 @c man end
1929 @node Sparc32 System emulator
1930 @section Sparc32 System emulator
1931 @cindex system emulation (Sparc32)
1933 Use the executable @file{qemu-system-sparc} to simulate the following
1934 Sun4m architecture machines:
1935 @itemize @minus
1936 @item
1937 SPARCstation 4
1938 @item
1939 SPARCstation 5
1940 @item
1941 SPARCstation 10
1942 @item
1943 SPARCstation 20
1944 @item
1945 SPARCserver 600MP
1946 @item
1947 SPARCstation LX
1948 @item
1949 SPARCstation Voyager
1950 @item
1951 SPARCclassic
1952 @item
1953 SPARCbook
1954 @end itemize
1956 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1957 but Linux limits the number of usable CPUs to 4.
1959 QEMU emulates the following sun4m peripherals:
1961 @itemize @minus
1962 @item
1963 IOMMU
1964 @item
1965 TCX Frame buffer
1966 @item
1967 Lance (Am7990) Ethernet
1968 @item
1969 Non Volatile RAM M48T02/M48T08
1970 @item
1971 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1972 and power/reset logic
1973 @item
1974 ESP SCSI controller with hard disk and CD-ROM support
1975 @item
1976 Floppy drive (not on SS-600MP)
1977 @item
1978 CS4231 sound device (only on SS-5, not working yet)
1979 @end itemize
1981 The number of peripherals is fixed in the architecture.  Maximum
1982 memory size depends on the machine type, for SS-5 it is 256MB and for
1983 others 2047MB.
1985 Since version 0.8.2, QEMU uses OpenBIOS
1986 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1987 firmware implementation. The goal is to implement a 100% IEEE
1988 1275-1994 (referred to as Open Firmware) compliant firmware.
1990 A sample Linux 2.6 series kernel and ram disk image are available on
1991 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1992 some kernel versions work. Please note that currently Solaris kernels
1993 don't work probably due to interface issues between OpenBIOS and
1994 Solaris.
1996 @c man begin OPTIONS
1998 The following options are specific to the Sparc32 emulation:
2000 @table @option
2002 @item -g @var{W}x@var{H}x[x@var{DEPTH}]
2004 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2005 the only other possible mode is 1024x768x24.
2007 @item -prom-env @var{string}
2009 Set OpenBIOS variables in NVRAM, for example:
2011 @example
2012 qemu-system-sparc -prom-env 'auto-boot?=false' \
2013  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2014 @end example
2016 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2018 Set the emulated machine type. Default is SS-5.
2020 @end table
2022 @c man end
2024 @node Sparc64 System emulator
2025 @section Sparc64 System emulator
2026 @cindex system emulation (Sparc64)
2028 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2029 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2030 Niagara (T1) machine. The emulator is not usable for anything yet, but
2031 it can launch some kernels.
2033 QEMU emulates the following peripherals:
2035 @itemize @minus
2036 @item
2037 UltraSparc IIi APB PCI Bridge
2038 @item
2039 PCI VGA compatible card with VESA Bochs Extensions
2040 @item
2041 PS/2 mouse and keyboard
2042 @item
2043 Non Volatile RAM M48T59
2044 @item
2045 PC-compatible serial ports
2046 @item
2047 2 PCI IDE interfaces with hard disk and CD-ROM support
2048 @item
2049 Floppy disk
2050 @end itemize
2052 @c man begin OPTIONS
2054 The following options are specific to the Sparc64 emulation:
2056 @table @option
2058 @item -prom-env @var{string}
2060 Set OpenBIOS variables in NVRAM, for example:
2062 @example
2063 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2064 @end example
2066 @item -M [sun4u|sun4v|Niagara]
2068 Set the emulated machine type. The default is sun4u.
2070 @end table
2072 @c man end
2074 @node MIPS System emulator
2075 @section MIPS System emulator
2076 @cindex system emulation (MIPS)
2078 Four executables cover simulation of 32 and 64-bit MIPS systems in
2079 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2080 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2081 Five different machine types are emulated:
2083 @itemize @minus
2084 @item
2085 A generic ISA PC-like machine "mips"
2086 @item
2087 The MIPS Malta prototype board "malta"
2088 @item
2089 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2090 @item
2091 MIPS emulator pseudo board "mipssim"
2092 @item
2093 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2094 @end itemize
2096 The generic emulation is supported by Debian 'Etch' and is able to
2097 install Debian into a virtual disk image. The following devices are
2098 emulated:
2100 @itemize @minus
2101 @item
2102 A range of MIPS CPUs, default is the 24Kf
2103 @item
2104 PC style serial port
2105 @item
2106 PC style IDE disk
2107 @item
2108 NE2000 network card
2109 @end itemize
2111 The Malta emulation supports the following devices:
2113 @itemize @minus
2114 @item
2115 Core board with MIPS 24Kf CPU and Galileo system controller
2116 @item
2117 PIIX4 PCI/USB/SMbus controller
2118 @item
2119 The Multi-I/O chip's serial device
2120 @item
2121 PCI network cards (PCnet32 and others)
2122 @item
2123 Malta FPGA serial device
2124 @item
2125 Cirrus (default) or any other PCI VGA graphics card
2126 @end itemize
2128 The ACER Pica emulation supports:
2130 @itemize @minus
2131 @item
2132 MIPS R4000 CPU
2133 @item
2134 PC-style IRQ and DMA controllers
2135 @item
2136 PC Keyboard
2137 @item
2138 IDE controller
2139 @end itemize
2141 The mipssim pseudo board emulation provides an environment similar
2142 to what the proprietary MIPS emulator uses for running Linux.
2143 It supports:
2145 @itemize @minus
2146 @item
2147 A range of MIPS CPUs, default is the 24Kf
2148 @item
2149 PC style serial port
2150 @item
2151 MIPSnet network emulation
2152 @end itemize
2154 The MIPS Magnum R4000 emulation supports:
2156 @itemize @minus
2157 @item
2158 MIPS R4000 CPU
2159 @item
2160 PC-style IRQ controller
2161 @item
2162 PC Keyboard
2163 @item
2164 SCSI controller
2165 @item
2166 G364 framebuffer
2167 @end itemize
2170 @node ARM System emulator
2171 @section ARM System emulator
2172 @cindex system emulation (ARM)
2174 Use the executable @file{qemu-system-arm} to simulate a ARM
2175 machine. The ARM Integrator/CP board is emulated with the following
2176 devices:
2178 @itemize @minus
2179 @item
2180 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2181 @item
2182 Two PL011 UARTs
2183 @item
2184 SMC 91c111 Ethernet adapter
2185 @item
2186 PL110 LCD controller
2187 @item
2188 PL050 KMI with PS/2 keyboard and mouse.
2189 @item
2190 PL181 MultiMedia Card Interface with SD card.
2191 @end itemize
2193 The ARM Versatile baseboard is emulated with the following devices:
2195 @itemize @minus
2196 @item
2197 ARM926E, ARM1136 or Cortex-A8 CPU
2198 @item
2199 PL190 Vectored Interrupt Controller
2200 @item
2201 Four PL011 UARTs
2202 @item
2203 SMC 91c111 Ethernet adapter
2204 @item
2205 PL110 LCD controller
2206 @item
2207 PL050 KMI with PS/2 keyboard and mouse.
2208 @item
2209 PCI host bridge.  Note the emulated PCI bridge only provides access to
2210 PCI memory space.  It does not provide access to PCI IO space.
2211 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2212 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2213 mapped control registers.
2214 @item
2215 PCI OHCI USB controller.
2216 @item
2217 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2218 @item
2219 PL181 MultiMedia Card Interface with SD card.
2220 @end itemize
2222 Several variants of the ARM RealView baseboard are emulated,
2223 including the EB, PB-A8 and PBX-A9.  Due to interactions with the
2224 bootloader, only certain Linux kernel configurations work out
2225 of the box on these boards.
2227 Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2228 enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
2229 should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2230 disabled and expect 1024M RAM.
2232 The following devices are emulated:
2234 @itemize @minus
2235 @item
2236 ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2237 @item
2238 ARM AMBA Generic/Distributed Interrupt Controller
2239 @item
2240 Four PL011 UARTs
2241 @item
2242 SMC 91c111 or SMSC LAN9118 Ethernet adapter
2243 @item
2244 PL110 LCD controller
2245 @item
2246 PL050 KMI with PS/2 keyboard and mouse
2247 @item
2248 PCI host bridge
2249 @item
2250 PCI OHCI USB controller
2251 @item
2252 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2253 @item
2254 PL181 MultiMedia Card Interface with SD card.
2255 @end itemize
2257 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2258 and "Terrier") emulation includes the following peripherals:
2260 @itemize @minus
2261 @item
2262 Intel PXA270 System-on-chip (ARM V5TE core)
2263 @item
2264 NAND Flash memory
2265 @item
2266 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2267 @item
2268 On-chip OHCI USB controller
2269 @item
2270 On-chip LCD controller
2271 @item
2272 On-chip Real Time Clock
2273 @item
2274 TI ADS7846 touchscreen controller on SSP bus
2275 @item
2276 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2277 @item
2278 GPIO-connected keyboard controller and LEDs
2279 @item
2280 Secure Digital card connected to PXA MMC/SD host
2281 @item
2282 Three on-chip UARTs
2283 @item
2284 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2285 @end itemize
2287 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2288 following elements:
2290 @itemize @minus
2291 @item
2292 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2293 @item
2294 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2295 @item
2296 On-chip LCD controller
2297 @item
2298 On-chip Real Time Clock
2299 @item
2300 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2301 CODEC, connected through MicroWire and I@math{^2}S busses
2302 @item
2303 GPIO-connected matrix keypad
2304 @item
2305 Secure Digital card connected to OMAP MMC/SD host
2306 @item
2307 Three on-chip UARTs
2308 @end itemize
2310 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2311 emulation supports the following elements:
2313 @itemize @minus
2314 @item
2315 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2316 @item
2317 RAM and non-volatile OneNAND Flash memories
2318 @item
2319 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2320 display controller and a LS041y3 MIPI DBI-C controller
2321 @item
2322 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2323 driven through SPI bus
2324 @item
2325 National Semiconductor LM8323-controlled qwerty keyboard driven
2326 through I@math{^2}C bus
2327 @item
2328 Secure Digital card connected to OMAP MMC/SD host
2329 @item
2330 Three OMAP on-chip UARTs and on-chip STI debugging console
2331 @item
2332 A Bluetooth(R) transceiver and HCI connected to an UART
2333 @item
2334 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2335 TUSB6010 chip - only USB host mode is supported
2336 @item
2337 TI TMP105 temperature sensor driven through I@math{^2}C bus
2338 @item
2339 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2340 @item
2341 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2342 through CBUS
2343 @end itemize
2345 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2346 devices:
2348 @itemize @minus
2349 @item
2350 Cortex-M3 CPU core.
2351 @item
2352 64k Flash and 8k SRAM.
2353 @item
2354 Timers, UARTs, ADC and I@math{^2}C interface.
2355 @item
2356 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2357 @end itemize
2359 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2360 devices:
2362 @itemize @minus
2363 @item
2364 Cortex-M3 CPU core.
2365 @item
2366 256k Flash and 64k SRAM.
2367 @item
2368 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2369 @item
2370 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2371 @end itemize
2373 The Freecom MusicPal internet radio emulation includes the following
2374 elements:
2376 @itemize @minus
2377 @item
2378 Marvell MV88W8618 ARM core.
2379 @item
2380 32 MB RAM, 256 KB SRAM, 8 MB flash.
2381 @item
2382 Up to 2 16550 UARTs
2383 @item
2384 MV88W8xx8 Ethernet controller
2385 @item
2386 MV88W8618 audio controller, WM8750 CODEC and mixer
2387 @item
2388 128×64 display with brightness control
2389 @item
2390 2 buttons, 2 navigation wheels with button function
2391 @end itemize
2393 The Siemens SX1 models v1 and v2 (default) basic emulation.
2394 The emulation includes the following elements:
2396 @itemize @minus
2397 @item
2398 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2399 @item
2400 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2402 1 Flash of 16MB and 1 Flash of 8MB
2404 1 Flash of 32MB
2405 @item
2406 On-chip LCD controller
2407 @item
2408 On-chip Real Time Clock
2409 @item
2410 Secure Digital card connected to OMAP MMC/SD host
2411 @item
2412 Three on-chip UARTs
2413 @end itemize
2415 A Linux 2.6 test image is available on the QEMU web site. More
2416 information is available in the QEMU mailing-list archive.
2418 @c man begin OPTIONS
2420 The following options are specific to the ARM emulation:
2422 @table @option
2424 @item -semihosting
2425 Enable semihosting syscall emulation.
2427 On ARM this implements the "Angel" interface.
2429 Note that this allows guest direct access to the host filesystem,
2430 so should only be used with trusted guest OS.
2432 @end table
2434 @node ColdFire System emulator
2435 @section ColdFire System emulator
2436 @cindex system emulation (ColdFire)
2437 @cindex system emulation (M68K)
2439 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2440 The emulator is able to boot a uClinux kernel.
2442 The M5208EVB emulation includes the following devices:
2444 @itemize @minus
2445 @item
2446 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2447 @item
2448 Three Two on-chip UARTs.
2449 @item
2450 Fast Ethernet Controller (FEC)
2451 @end itemize
2453 The AN5206 emulation includes the following devices:
2455 @itemize @minus
2456 @item
2457 MCF5206 ColdFire V2 Microprocessor.
2458 @item
2459 Two on-chip UARTs.
2460 @end itemize
2462 @c man begin OPTIONS
2464 The following options are specific to the ColdFire emulation:
2466 @table @option
2468 @item -semihosting
2469 Enable semihosting syscall emulation.
2471 On M68K this implements the "ColdFire GDB" interface used by libgloss.
2473 Note that this allows guest direct access to the host filesystem,
2474 so should only be used with trusted guest OS.
2476 @end table
2478 @node Cris System emulator
2479 @section Cris System emulator
2480 @cindex system emulation (Cris)
2482 TODO
2484 @node Microblaze System emulator
2485 @section Microblaze System emulator
2486 @cindex system emulation (Microblaze)
2488 TODO
2490 @node SH4 System emulator
2491 @section SH4 System emulator
2492 @cindex system emulation (SH4)
2494 TODO
2496 @node Xtensa System emulator
2497 @section Xtensa System emulator
2498 @cindex system emulation (Xtensa)
2500 Two executables cover simulation of both Xtensa endian options,
2501 @file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2502 Two different machine types are emulated:
2504 @itemize @minus
2505 @item
2506 Xtensa emulator pseudo board "sim"
2507 @item
2508 Avnet LX60/LX110/LX200 board
2509 @end itemize
2511 The sim pseudo board emulation provides an environment similar
2512 to one provided by the proprietary Tensilica ISS.
2513 It supports:
2515 @itemize @minus
2516 @item
2517 A range of Xtensa CPUs, default is the DC232B
2518 @item
2519 Console and filesystem access via semihosting calls
2520 @end itemize
2522 The Avnet LX60/LX110/LX200 emulation supports:
2524 @itemize @minus
2525 @item
2526 A range of Xtensa CPUs, default is the DC232B
2527 @item
2528 16550 UART
2529 @item
2530 OpenCores 10/100 Mbps Ethernet MAC
2531 @end itemize
2533 @c man begin OPTIONS
2535 The following options are specific to the Xtensa emulation:
2537 @table @option
2539 @item -semihosting
2540 Enable semihosting syscall emulation.
2542 Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2543 Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2545 Note that this allows guest direct access to the host filesystem,
2546 so should only be used with trusted guest OS.
2548 @end table
2549 @node QEMU User space emulator
2550 @chapter QEMU User space emulator
2552 @menu
2553 * Supported Operating Systems ::
2554 * Linux User space emulator::
2555 * BSD User space emulator ::
2556 @end menu
2558 @node Supported Operating Systems
2559 @section Supported Operating Systems
2561 The following OS are supported in user space emulation:
2563 @itemize @minus
2564 @item
2565 Linux (referred as qemu-linux-user)
2566 @item
2567 BSD (referred as qemu-bsd-user)
2568 @end itemize
2570 @node Linux User space emulator
2571 @section Linux User space emulator
2573 @menu
2574 * Quick Start::
2575 * Wine launch::
2576 * Command line options::
2577 * Other binaries::
2578 @end menu
2580 @node Quick Start
2581 @subsection Quick Start
2583 In order to launch a Linux process, QEMU needs the process executable
2584 itself and all the target (x86) dynamic libraries used by it.
2586 @itemize
2588 @item On x86, you can just try to launch any process by using the native
2589 libraries:
2591 @example
2592 qemu-i386 -L / /bin/ls
2593 @end example
2595 @code{-L /} tells that the x86 dynamic linker must be searched with a
2596 @file{/} prefix.
2598 @item Since QEMU is also a linux process, you can launch QEMU with
2599 QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2601 @example
2602 qemu-i386 -L / qemu-i386 -L / /bin/ls
2603 @end example
2605 @item On non x86 CPUs, you need first to download at least an x86 glibc
2606 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2607 @code{LD_LIBRARY_PATH} is not set:
2609 @example
2610 unset LD_LIBRARY_PATH
2611 @end example
2613 Then you can launch the precompiled @file{ls} x86 executable:
2615 @example
2616 qemu-i386 tests/i386/ls
2617 @end example
2618 You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2619 QEMU is automatically launched by the Linux kernel when you try to
2620 launch x86 executables. It requires the @code{binfmt_misc} module in the
2621 Linux kernel.
2623 @item The x86 version of QEMU is also included. You can try weird things such as:
2624 @example
2625 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2626           /usr/local/qemu-i386/bin/ls-i386
2627 @end example
2629 @end itemize
2631 @node Wine launch
2632 @subsection Wine launch
2634 @itemize
2636 @item Ensure that you have a working QEMU with the x86 glibc
2637 distribution (see previous section). In order to verify it, you must be
2638 able to do:
2640 @example
2641 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2642 @end example
2644 @item Download the binary x86 Wine install
2645 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2647 @item Configure Wine on your account. Look at the provided script
2648 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2649 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2651 @item Then you can try the example @file{putty.exe}:
2653 @example
2654 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2655           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2656 @end example
2658 @end itemize
2660 @node Command line options
2661 @subsection Command line options
2663 @example
2664 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2665 @end example
2667 @table @option
2668 @item -h
2669 Print the help
2670 @item -L path
2671 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2672 @item -s size
2673 Set the x86 stack size in bytes (default=524288)
2674 @item -cpu model
2675 Select CPU model (-cpu help for list and additional feature selection)
2676 @item -E @var{var}=@var{value}
2677 Set environment @var{var} to @var{value}.
2678 @item -U @var{var}
2679 Remove @var{var} from the environment.
2680 @item -B offset
2681 Offset guest address by the specified number of bytes.  This is useful when
2682 the address region required by guest applications is reserved on the host.
2683 This option is currently only supported on some hosts.
2684 @item -R size
2685 Pre-allocate a guest virtual address space of the given size (in bytes).
2686 "G", "M", and "k" suffixes may be used when specifying the size.
2687 @end table
2689 Debug options:
2691 @table @option
2692 @item -d item1,...
2693 Activate logging of the specified items (use '-d help' for a list of log items)
2694 @item -p pagesize
2695 Act as if the host page size was 'pagesize' bytes
2696 @item -g port
2697 Wait gdb connection to port
2698 @item -singlestep
2699 Run the emulation in single step mode.
2700 @end table
2702 Environment variables:
2704 @table @env
2705 @item QEMU_STRACE
2706 Print system calls and arguments similar to the 'strace' program
2707 (NOTE: the actual 'strace' program will not work because the user
2708 space emulator hasn't implemented ptrace).  At the moment this is
2709 incomplete.  All system calls that don't have a specific argument
2710 format are printed with information for six arguments.  Many
2711 flag-style arguments don't have decoders and will show up as numbers.
2712 @end table
2714 @node Other binaries
2715 @subsection Other binaries
2717 @cindex user mode (Alpha)
2718 @command{qemu-alpha} TODO.
2720 @cindex user mode (ARM)
2721 @command{qemu-armeb} TODO.
2723 @cindex user mode (ARM)
2724 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2725 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2726 configurations), and arm-uclinux bFLT format binaries.
2728 @cindex user mode (ColdFire)
2729 @cindex user mode (M68K)
2730 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2731 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2732 coldfire uClinux bFLT format binaries.
2734 The binary format is detected automatically.
2736 @cindex user mode (Cris)
2737 @command{qemu-cris} TODO.
2739 @cindex user mode (i386)
2740 @command{qemu-i386} TODO.
2741 @command{qemu-x86_64} TODO.
2743 @cindex user mode (Microblaze)
2744 @command{qemu-microblaze} TODO.
2746 @cindex user mode (MIPS)
2747 @command{qemu-mips} TODO.
2748 @command{qemu-mipsel} TODO.
2750 @cindex user mode (PowerPC)
2751 @command{qemu-ppc64abi32} TODO.
2752 @command{qemu-ppc64} TODO.
2753 @command{qemu-ppc} TODO.
2755 @cindex user mode (SH4)
2756 @command{qemu-sh4eb} TODO.
2757 @command{qemu-sh4} TODO.
2759 @cindex user mode (SPARC)
2760 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2762 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2763 (Sparc64 CPU, 32 bit ABI).
2765 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2766 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2768 @node BSD User space emulator
2769 @section BSD User space emulator
2771 @menu
2772 * BSD Status::
2773 * BSD Quick Start::
2774 * BSD Command line options::
2775 @end menu
2777 @node BSD Status
2778 @subsection BSD Status
2780 @itemize @minus
2781 @item
2782 target Sparc64 on Sparc64: Some trivial programs work.
2783 @end itemize
2785 @node BSD Quick Start
2786 @subsection Quick Start
2788 In order to launch a BSD process, QEMU needs the process executable
2789 itself and all the target dynamic libraries used by it.
2791 @itemize
2793 @item On Sparc64, you can just try to launch any process by using the native
2794 libraries:
2796 @example
2797 qemu-sparc64 /bin/ls
2798 @end example
2800 @end itemize
2802 @node BSD Command line options
2803 @subsection Command line options
2805 @example
2806 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2807 @end example
2809 @table @option
2810 @item -h
2811 Print the help
2812 @item -L path
2813 Set the library root path (default=/)
2814 @item -s size
2815 Set the stack size in bytes (default=524288)
2816 @item -ignore-environment
2817 Start with an empty environment. Without this option,
2818 the initial environment is a copy of the caller's environment.
2819 @item -E @var{var}=@var{value}
2820 Set environment @var{var} to @var{value}.
2821 @item -U @var{var}
2822 Remove @var{var} from the environment.
2823 @item -bsd type
2824 Set the type of the emulated BSD Operating system. Valid values are
2825 FreeBSD, NetBSD and OpenBSD (default).
2826 @end table
2828 Debug options:
2830 @table @option
2831 @item -d item1,...
2832 Activate logging of the specified items (use '-d help' for a list of log items)
2833 @item -p pagesize
2834 Act as if the host page size was 'pagesize' bytes
2835 @item -singlestep
2836 Run the emulation in single step mode.
2837 @end table
2839 @node compilation
2840 @chapter Compilation from the sources
2842 @menu
2843 * Linux/Unix::
2844 * Windows::
2845 * Cross compilation for Windows with Linux::
2846 * Mac OS X::
2847 * Make targets::
2848 @end menu
2850 @node Linux/Unix
2851 @section Linux/Unix
2853 @subsection Compilation
2855 First you must decompress the sources:
2856 @example
2857 cd /tmp
2858 tar zxvf qemu-x.y.z.tar.gz
2859 cd qemu-x.y.z
2860 @end example
2862 Then you configure QEMU and build it (usually no options are needed):
2863 @example
2864 ./configure
2865 make
2866 @end example
2868 Then type as root user:
2869 @example
2870 make install
2871 @end example
2872 to install QEMU in @file{/usr/local}.
2874 @node Windows
2875 @section Windows
2877 @itemize
2878 @item Install the current versions of MSYS and MinGW from
2879 @url{http://www.mingw.org/}. You can find detailed installation
2880 instructions in the download section and the FAQ.
2882 @item Download
2883 the MinGW development library of SDL 1.2.x
2884 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2885 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2886 edit the @file{sdl-config} script so that it gives the
2887 correct SDL directory when invoked.
2889 @item Install the MinGW version of zlib and make sure
2890 @file{zlib.h} and @file{libz.dll.a} are in
2891 MinGW's default header and linker search paths.
2893 @item Extract the current version of QEMU.
2895 @item Start the MSYS shell (file @file{msys.bat}).
2897 @item Change to the QEMU directory. Launch @file{./configure} and
2898 @file{make}.  If you have problems using SDL, verify that
2899 @file{sdl-config} can be launched from the MSYS command line.
2901 @item You can install QEMU in @file{Program Files/QEMU} by typing
2902 @file{make install}. Don't forget to copy @file{SDL.dll} in
2903 @file{Program Files/QEMU}.
2905 @end itemize
2907 @node Cross compilation for Windows with Linux
2908 @section Cross compilation for Windows with Linux
2910 @itemize
2911 @item
2912 Install the MinGW cross compilation tools available at
2913 @url{http://www.mingw.org/}.
2915 @item Download
2916 the MinGW development library of SDL 1.2.x
2917 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2918 @url{http://www.libsdl.org}. Unpack it in a temporary place and
2919 edit the @file{sdl-config} script so that it gives the
2920 correct SDL directory when invoked.  Set up the @code{PATH} environment
2921 variable so that @file{sdl-config} can be launched by
2922 the QEMU configuration script.
2924 @item Install the MinGW version of zlib and make sure
2925 @file{zlib.h} and @file{libz.dll.a} are in
2926 MinGW's default header and linker search paths.
2928 @item
2929 Configure QEMU for Windows cross compilation:
2930 @example
2931 PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2932 @end example
2933 The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2934 MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2935 We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2936 use --cross-prefix to specify the name of the cross compiler.
2937 You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2939 Under Fedora Linux, you can run:
2940 @example
2941 yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2942 @end example
2943 to get a suitable cross compilation environment.
2945 @item You can install QEMU in the installation directory by typing
2946 @code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2947 installation directory.
2949 @end itemize
2951 @cindex wine, starting system emulation
2952 Wine can be used to launch the resulting qemu-system-i386.exe
2953 and all other qemu-system-@var{target}.exe compiled for Win32.
2954 @example
2955 wine qemu-system-i386
2956 @end example
2958 @node Mac OS X
2959 @section Mac OS X
2961 The Mac OS X patches are not fully merged in QEMU, so you should look
2962 at the QEMU mailing list archive to have all the necessary
2963 information. (TODO: is this still true?)
2965 @node Make targets
2966 @section Make targets
2968 @table @code
2970 @item make
2971 @item make all
2972 Make everything which is typically needed.
2974 @item install
2975 TODO
2977 @item install-doc
2978 TODO
2980 @item make clean
2981 Remove most files which were built during make.
2983 @item make distclean
2984 Remove everything which was built during make.
2986 @item make dvi
2987 @item make html
2988 @item make info
2989 @item make pdf
2990 Create documentation in dvi, html, info or pdf format.
2992 @item make cscope
2993 TODO
2995 @item make defconfig
2996 (Re-)create some build configuration files.
2997 User made changes will be overwritten.
2999 @item tar
3000 @item tarbin
3001 TODO
3003 @end table
3005 @node License
3006 @appendix License
3008 QEMU is a trademark of Fabrice Bellard.
3010 QEMU is released under the GNU General Public License (TODO: add link).
3011 Parts of QEMU have specific licenses, see file LICENSE.
3013 TODO (refer to file LICENSE, include it, include the GPL?)
3015 @node Index
3016 @appendix Index
3017 @menu
3018 * Concept Index::
3019 * Function Index::
3020 * Keystroke Index::
3021 * Program Index::
3022 * Data Type Index::
3023 * Variable Index::
3024 @end menu
3026 @node Concept Index
3027 @section Concept Index
3028 This is the main index. Should we combine all keywords in one index? TODO
3029 @printindex cp
3031 @node Function Index
3032 @section Function Index
3033 This index could be used for command line options and monitor functions.
3034 @printindex fn
3036 @node Keystroke Index
3037 @section Keystroke Index
3039 This is a list of all keystrokes which have a special function
3040 in system emulation.
3042 @printindex ky
3044 @node Program Index
3045 @section Program Index
3046 @printindex pg
3048 @node Data Type Index
3049 @section Data Type Index
3051 This index could be used for qdev device names and options.
3053 @printindex tp
3055 @node Variable Index
3056 @section Variable Index
3057 @printindex vr
3059 @bye