elf2dmp/qemu_elf: Plug memleak in QEMU_Elf_init
[qemu/ar7.git] / docs / specs / ppc-xive.rst
blob83d43f658b90211c18b1d0a7c965ffa4c1f4e9bf
1 ================================
2 POWER9 XIVE interrupt controller
3 ================================
5 The POWER9 processor comes with a new interrupt controller
6 architecture, called XIVE as "eXternal Interrupt Virtualization
7 Engine".
9 Compared to the previous architecture, the main characteristics of
10 XIVE are to support a larger number of interrupt sources and to
11 deliver interrupts directly to virtual processors without hypervisor
12 assistance. This removes the context switches required for the
13 delivery process.
16 XIVE architecture
17 =================
19 The XIVE IC is composed of three sub-engines, each taking care of a
20 processing layer of external interrupts:
22 - Interrupt Virtualization Source Engine (IVSE), or Source Controller
23   (SC). These are found in PCI PHBs, in the Processor Service
24   Interface (PSI) host bridge Controller, but also inside the main
25   controller for the core IPIs and other sub-chips (NX, CAP, NPU) of
26   the chip/processor. They are configured to feed the IVRE with
27   events.
28 - Interrupt Virtualization Routing Engine (IVRE) or Virtualization
29   Controller (VC). It handles event coalescing and perform interrupt
30   routing by matching an event source number with an Event
31   Notification Descriptor (END).
32 - Interrupt Virtualization Presentation Engine (IVPE) or Presentation
33   Controller (PC). It maintains the interrupt context state of each
34   thread and handles the delivery of the external interrupt to the
35   thread.
39                 XIVE Interrupt Controller
40                 +------------------------------------+      IPIs
41                 | +---------+ +---------+ +--------+ |    +-------+
42                 | |IVRE     | |Common Q | |IVPE    |----> | CORES |
43                 | |     esb | |         | |        |----> |       |
44                 | |     eas | |  Bridge | |   tctx |----> |       |
45                 | |SC   end | |         | |    nvt | |    |       |
46     +------+    | +---------+ +----+----+ +--------+ |    +-+-+-+-+
47     | RAM  |    +------------------|-----------------+      | | |
48     |      |                       |                        | | |
49     |      |                       |                        | | |
50     |      |  +--------------------v------------------------v-v-v--+    other
51     |      <--+                     Power Bus                      +--> chips
52     |  esb |  +---------+-----------------------+------------------+
53     |  eas |            |                       |
54     |  end |         +--|------+                |
55     |  nvt |       +----+----+ |           +----+----+
56     +------+       |IVSE     | |           |IVSE     |
57                    |         | |           |         |
58                    | PQ-bits | |           | PQ-bits |
59                    | local   |-+           |  in VC  |
60                    +---------+             +---------+
61                       PCIe                 NX,NPU,CAPI
64     PQ-bits: 2 bits source state machine (P:pending Q:queued)
65     esb: Event State Buffer (Array of PQ bits in an IVSE)
66     eas: Event Assignment Structure
67     end: Event Notification Descriptor
68     nvt: Notification Virtual Target
69     tctx: Thread interrupt Context registers
73 XIVE internal tables
74 --------------------
76 Each of the sub-engines uses a set of tables to redirect interrupts
77 from event sources to CPU threads.
81                                             +-------+
82     User or O/S                             |  EQ   |
83         or                          +------>|entries|
84     Hypervisor                      |       |  ..   |
85       Memory                        |       +-------+
86                                     |           ^
87                                     |           |
88                +-------------------------------------------------+
89                                     |           |
90     Hypervisor      +------+    +---+--+    +---+--+   +------+
91       Memory        | ESB  |    | EAT  |    | ENDT |   | NVTT |
92      (skiboot)      +----+-+    +----+-+    +----+-+   +------+
93                       ^  |        ^  |        ^  |       ^
94                       |  |        |  |        |  |       |
95                +-------------------------------------------------+
96                       |  |        |  |        |  |       |
97                       |  |        |  |        |  |       |
98                  +----|--|--------|--|--------|--|-+   +-|-----+    +------+
99                  |    |  |        |  |        |  | |   | | tctx|    |Thread|
100      IPI or   ---+    +  v        +  v        +  v |---| +  .. |----->     |
101     HW events    |                                 |   |       |    |      |
102                  |             IVRE                |   | IVPE  |    +------+
103                  +---------------------------------+   +-------+
106 The IVSE have a 2-bits state machine, P for pending and Q for queued,
107 for each source that allows events to be triggered. They are stored in
108 an Event State Buffer (ESB) array and can be controlled by MMIOs.
110 If the event is let through, the IVRE looks up in the Event Assignment
111 Structure (EAS) table for an Event Notification Descriptor (END)
112 configured for the source. Each Event Notification Descriptor defines
113 a notification path to a CPU and an in-memory Event Queue, in which
114 will be enqueued an EQ data for the O/S to pull.
116 The IVPE determines if a Notification Virtual Target (NVT) can handle
117 the event by scanning the thread contexts of the VCPUs dispatched on
118 the processor HW threads. It maintains the interrupt context state of
119 each thread in a NVT table.
121 XIVE thread interrupt context
122 -----------------------------
124 The XIVE presenter can generate four different exceptions to its
125 HW threads:
127 - hypervisor exception
128 - O/S exception
129 - Event-Based Branch (user level)
130 - msgsnd (doorbell)
132 Each exception has a state independent from the others called a Thread
133 Interrupt Management context. This context is a set of registers which
134 lets the thread handle priority management and interrupt
135 acknowledgment among other things. The most important ones being :
137 - Interrupt Priority Register  (PIPR)
138 - Interrupt Pending Buffer     (IPB)
139 - Current Processor Priority   (CPPR)
140 - Notification Source Register (NSR)
142 TIMA
143 ~~~~
145 The Thread Interrupt Management registers are accessible through a
146 specific MMIO region, called the Thread Interrupt Management Area
147 (TIMA), four aligned pages, each exposing a different view of the
148 registers. First page (page address ending in ``0b00``) gives access
149 to the entire context and is reserved for the ring 0 view for the
150 physical thread context. The second (page address ending in ``0b01``)
151 is for the hypervisor, ring 1 view. The third (page address ending in
152 ``0b10``) is for the operating system, ring 2 view. The fourth (page
153 address ending in ``0b11``) is for user level, ring 3 view.
155 Interrupt flow from an O/S perspective
156 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
158 After an event data has been enqueued in the O/S Event Queue, the IVPE
159 raises the bit corresponding to the priority of the pending interrupt
160 in the register IBP (Interrupt Pending Buffer) to indicate that an
161 event is pending in one of the 8 priority queues. The Pending
162 Interrupt Priority Register (PIPR) is also updated using the IPB. This
163 register represent the priority of the most favored pending
164 notification.
166 The PIPR is then compared to the Current Processor Priority
167 Register (CPPR). If it is more favored (numerically less than), the
168 CPU interrupt line is raised and the EO bit of the Notification Source
169 Register (NSR) is updated to notify the presence of an exception for
170 the O/S. The O/S acknowledges the interrupt with a special load in the
171 Thread Interrupt Management Area.
173 The O/S handles the interrupt and when done, performs an EOI using a
174 MMIO operation on the ESB management page of the associate source.
176 Overview of the QEMU models for XIVE
177 ====================================
179 The XiveSource models the IVSE in general, internal and external. It
180 handles the source ESBs and the MMIO interface to control them.
182 The XiveNotifier is a small helper interface interconnecting the
183 XiveSource to the XiveRouter.
185 The XiveRouter is an abstract model acting as a combined IVRE and
186 IVPE. It routes event notifications using the EAS and END tables to
187 the IVPE sub-engine which does a CAM scan to find a CPU to deliver the
188 exception. Storage should be provided by the inheriting classes.
190 XiveEnDSource is a special source object. It exposes the END ESB MMIOs
191 of the Event Queues which are used for coalescing event notifications
192 and for escalation. Not used on the field, only to sync the EQ cache
193 in OPAL.
195 Finally, the XiveTCTX contains the interrupt state context of a thread,
196 four sets of registers, one for each exception that can be delivered
197 to a CPU. These contexts are scanned by the IVPE to find a matching VP
198 when a notification is triggered. It also models the Thread Interrupt
199 Management Area (TIMA), which exposes the thread context registers to
200 the CPU for interrupt management.