2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 /* This file contains implementation code for the RealView EB interrupt
11 controller, MPCore distributed interrupt controller and ARMv7-M
12 Nested Vectored Interrupt Controller. */
17 #define DPRINTF(fmt, ...) \
18 do { printf("arm_gic: " fmt , ## __VA_ARGS__); } while (0)
20 #define DPRINTF(fmt, ...) do {} while(0)
24 static const uint8_t gic_id
[] =
25 { 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 };
26 /* The NVIC has 16 internal vectors. However these are not exposed
27 through the normal GIC interface. */
28 #define GIC_BASE_IRQ 32
30 static const uint8_t gic_id
[] =
31 { 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
32 #define GIC_BASE_IRQ 0
35 #define FROM_SYSBUSGIC(type, dev) \
36 DO_UPCAST(type, gic, FROM_SYSBUS(gic_state, dev))
38 typedef struct gic_irq_state
40 /* The enable bits are only banked for per-cpu interrupts. */
41 unsigned enabled
:NCPU
;
42 unsigned pending
:NCPU
;
45 unsigned model
:1; /* 0 = N:N, 1 = 1:N */
46 unsigned trigger
:1; /* nonzero = edge triggered. */
49 #define ALL_CPU_MASK ((1 << NCPU) - 1)
51 #define NUM_CPU(s) ((s)->num_cpu)
56 #define GIC_SET_ENABLED(irq, cm) s->irq_state[irq].enabled |= (cm)
57 #define GIC_CLEAR_ENABLED(irq, cm) s->irq_state[irq].enabled &= ~(cm)
58 #define GIC_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0)
59 #define GIC_SET_PENDING(irq, cm) s->irq_state[irq].pending |= (cm)
60 #define GIC_CLEAR_PENDING(irq, cm) s->irq_state[irq].pending &= ~(cm)
61 #define GIC_TEST_PENDING(irq, cm) ((s->irq_state[irq].pending & (cm)) != 0)
62 #define GIC_SET_ACTIVE(irq, cm) s->irq_state[irq].active |= (cm)
63 #define GIC_CLEAR_ACTIVE(irq, cm) s->irq_state[irq].active &= ~(cm)
64 #define GIC_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0)
65 #define GIC_SET_MODEL(irq) s->irq_state[irq].model = 1
66 #define GIC_CLEAR_MODEL(irq) s->irq_state[irq].model = 0
67 #define GIC_TEST_MODEL(irq) s->irq_state[irq].model
68 #define GIC_SET_LEVEL(irq, cm) s->irq_state[irq].level = (cm)
69 #define GIC_CLEAR_LEVEL(irq, cm) s->irq_state[irq].level &= ~(cm)
70 #define GIC_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0)
71 #define GIC_SET_TRIGGER(irq) s->irq_state[irq].trigger = 1
72 #define GIC_CLEAR_TRIGGER(irq) s->irq_state[irq].trigger = 0
73 #define GIC_TEST_TRIGGER(irq) s->irq_state[irq].trigger
74 #define GIC_GET_PRIORITY(irq, cpu) \
75 (((irq) < 32) ? s->priority1[irq][cpu] : s->priority2[(irq) - 32])
77 #define GIC_TARGET(irq) 1
79 #define GIC_TARGET(irq) s->irq_target[irq]
82 typedef struct gic_state
85 qemu_irq parent_irq
[NCPU
];
87 int cpu_enabled
[NCPU
];
89 gic_irq_state irq_state
[GIC_NIRQ
];
91 int irq_target
[GIC_NIRQ
];
93 int priority1
[32][NCPU
];
94 int priority2
[GIC_NIRQ
- 32];
95 int last_active
[GIC_NIRQ
][NCPU
];
97 int priority_mask
[NCPU
];
98 int running_irq
[NCPU
];
99 int running_priority
[NCPU
];
100 int current_pending
[NCPU
];
106 MemoryRegion iomem
; /* Distributor */
108 /* This is just so we can have an opaque pointer which identifies
109 * both this GIC and which CPU interface we should be accessing.
111 struct gic_state
*backref
[NCPU
];
112 MemoryRegion cpuiomem
[NCPU
+1]; /* CPU interfaces */
116 /* TODO: Many places that call this routine could be optimized. */
117 /* Update interrupt status after enabled or pending bits have been changed. */
118 static void gic_update(gic_state
*s
)
127 for (cpu
= 0; cpu
< NUM_CPU(s
); cpu
++) {
129 s
->current_pending
[cpu
] = 1023;
130 if (!s
->enabled
|| !s
->cpu_enabled
[cpu
]) {
131 qemu_irq_lower(s
->parent_irq
[cpu
]);
136 for (irq
= 0; irq
< GIC_NIRQ
; irq
++) {
137 if (GIC_TEST_ENABLED(irq
, cm
) && GIC_TEST_PENDING(irq
, cm
)) {
138 if (GIC_GET_PRIORITY(irq
, cpu
) < best_prio
) {
139 best_prio
= GIC_GET_PRIORITY(irq
, cpu
);
145 if (best_prio
<= s
->priority_mask
[cpu
]) {
146 s
->current_pending
[cpu
] = best_irq
;
147 if (best_prio
< s
->running_priority
[cpu
]) {
148 DPRINTF("Raised pending IRQ %d\n", best_irq
);
152 qemu_set_irq(s
->parent_irq
[cpu
], level
);
156 static void __attribute__((unused
))
157 gic_set_pending_private(gic_state
*s
, int cpu
, int irq
)
161 if (GIC_TEST_PENDING(irq
, cm
))
164 DPRINTF("Set %d pending cpu %d\n", irq
, cpu
);
165 GIC_SET_PENDING(irq
, cm
);
169 /* Process a change in an external IRQ input. */
170 static void gic_set_irq(void *opaque
, int irq
, int level
)
172 gic_state
*s
= (gic_state
*)opaque
;
173 /* The first external input line is internal interrupt 32. */
175 if (level
== GIC_TEST_LEVEL(irq
, ALL_CPU_MASK
))
179 GIC_SET_LEVEL(irq
, ALL_CPU_MASK
);
180 if (GIC_TEST_TRIGGER(irq
) || GIC_TEST_ENABLED(irq
, ALL_CPU_MASK
)) {
181 DPRINTF("Set %d pending mask %x\n", irq
, GIC_TARGET(irq
));
182 GIC_SET_PENDING(irq
, GIC_TARGET(irq
));
185 GIC_CLEAR_LEVEL(irq
, ALL_CPU_MASK
);
190 static void gic_set_running_irq(gic_state
*s
, int cpu
, int irq
)
192 s
->running_irq
[cpu
] = irq
;
194 s
->running_priority
[cpu
] = 0x100;
196 s
->running_priority
[cpu
] = GIC_GET_PRIORITY(irq
, cpu
);
201 static uint32_t gic_acknowledge_irq(gic_state
*s
, int cpu
)
205 new_irq
= s
->current_pending
[cpu
];
207 || GIC_GET_PRIORITY(new_irq
, cpu
) >= s
->running_priority
[cpu
]) {
208 DPRINTF("ACK no pending IRQ\n");
211 s
->last_active
[new_irq
][cpu
] = s
->running_irq
[cpu
];
212 /* Clear pending flags for both level and edge triggered interrupts.
213 Level triggered IRQs will be reasserted once they become inactive. */
214 GIC_CLEAR_PENDING(new_irq
, GIC_TEST_MODEL(new_irq
) ? ALL_CPU_MASK
: cm
);
215 gic_set_running_irq(s
, cpu
, new_irq
);
216 DPRINTF("ACK %d\n", new_irq
);
220 static void gic_complete_irq(gic_state
* s
, int cpu
, int irq
)
224 DPRINTF("EOI %d\n", irq
);
225 if (irq
>= GIC_NIRQ
) {
226 /* This handles two cases:
227 * 1. If software writes the ID of a spurious interrupt [ie 1023]
228 * to the GICC_EOIR, the GIC ignores that write.
229 * 2. If software writes the number of a non-existent interrupt
230 * this must be a subcase of "value written does not match the last
231 * valid interrupt value read from the Interrupt Acknowledge
232 * register" and so this is UNPREDICTABLE. We choose to ignore it.
236 if (s
->running_irq
[cpu
] == 1023)
237 return; /* No active IRQ. */
238 /* Mark level triggered interrupts as pending if they are still
240 if (!GIC_TEST_TRIGGER(irq
) && GIC_TEST_ENABLED(irq
, cm
)
241 && GIC_TEST_LEVEL(irq
, cm
) && (GIC_TARGET(irq
) & cm
) != 0) {
242 DPRINTF("Set %d pending mask %x\n", irq
, cm
);
243 GIC_SET_PENDING(irq
, cm
);
246 if (irq
!= s
->running_irq
[cpu
]) {
247 /* Complete an IRQ that is not currently running. */
248 int tmp
= s
->running_irq
[cpu
];
249 while (s
->last_active
[tmp
][cpu
] != 1023) {
250 if (s
->last_active
[tmp
][cpu
] == irq
) {
251 s
->last_active
[tmp
][cpu
] = s
->last_active
[irq
][cpu
];
254 tmp
= s
->last_active
[tmp
][cpu
];
260 /* Complete the current running IRQ. */
261 gic_set_running_irq(s
, cpu
, s
->last_active
[s
->running_irq
[cpu
]][cpu
]);
265 static uint32_t gic_dist_readb(void *opaque
, target_phys_addr_t offset
)
267 gic_state
*s
= (gic_state
*)opaque
;
275 cpu
= gic_get_current_cpu();
277 if (offset
< 0x100) {
282 return ((GIC_NIRQ
/ 32) - 1) | ((NUM_CPU(s
) - 1) << 5);
285 if (offset
>= 0x80) {
286 /* Interrupt Security , RAZ/WI */
291 } else if (offset
< 0x200) {
292 /* Interrupt Set/Clear Enable. */
294 irq
= (offset
- 0x100) * 8;
296 irq
= (offset
- 0x180) * 8;
301 for (i
= 0; i
< 8; i
++) {
302 if (GIC_TEST_ENABLED(irq
+ i
, cm
)) {
306 } else if (offset
< 0x300) {
307 /* Interrupt Set/Clear Pending. */
309 irq
= (offset
- 0x200) * 8;
311 irq
= (offset
- 0x280) * 8;
316 mask
= (irq
< 32) ? cm
: ALL_CPU_MASK
;
317 for (i
= 0; i
< 8; i
++) {
318 if (GIC_TEST_PENDING(irq
+ i
, mask
)) {
322 } else if (offset
< 0x400) {
323 /* Interrupt Active. */
324 irq
= (offset
- 0x300) * 8 + GIC_BASE_IRQ
;
328 mask
= (irq
< 32) ? cm
: ALL_CPU_MASK
;
329 for (i
= 0; i
< 8; i
++) {
330 if (GIC_TEST_ACTIVE(irq
+ i
, mask
)) {
334 } else if (offset
< 0x800) {
335 /* Interrupt Priority. */
336 irq
= (offset
- 0x400) + GIC_BASE_IRQ
;
339 res
= GIC_GET_PRIORITY(irq
, cpu
);
341 } else if (offset
< 0xc00) {
342 /* Interrupt CPU Target. */
343 irq
= (offset
- 0x800) + GIC_BASE_IRQ
;
346 if (irq
>= 29 && irq
<= 31) {
349 res
= GIC_TARGET(irq
);
351 } else if (offset
< 0xf00) {
352 /* Interrupt Configuration. */
353 irq
= (offset
- 0xc00) * 2 + GIC_BASE_IRQ
;
357 for (i
= 0; i
< 4; i
++) {
358 if (GIC_TEST_MODEL(irq
+ i
))
359 res
|= (1 << (i
* 2));
360 if (GIC_TEST_TRIGGER(irq
+ i
))
361 res
|= (2 << (i
* 2));
364 } else if (offset
< 0xfe0) {
366 } else /* offset >= 0xfe0 */ {
370 res
= gic_id
[(offset
- 0xfe0) >> 2];
375 hw_error("gic_dist_readb: Bad offset %x\n", (int)offset
);
379 static uint32_t gic_dist_readw(void *opaque
, target_phys_addr_t offset
)
382 val
= gic_dist_readb(opaque
, offset
);
383 val
|= gic_dist_readb(opaque
, offset
+ 1) << 8;
387 static uint32_t gic_dist_readl(void *opaque
, target_phys_addr_t offset
)
391 gic_state
*s
= (gic_state
*)opaque
;
394 if (addr
< 0x100 || addr
> 0xd00)
395 return nvic_readl(s
, addr
);
397 val
= gic_dist_readw(opaque
, offset
);
398 val
|= gic_dist_readw(opaque
, offset
+ 2) << 16;
402 static void gic_dist_writeb(void *opaque
, target_phys_addr_t offset
,
405 gic_state
*s
= (gic_state
*)opaque
;
410 cpu
= gic_get_current_cpu();
411 if (offset
< 0x100) {
416 s
->enabled
= (value
& 1);
417 DPRINTF("Distribution %sabled\n", s
->enabled
? "En" : "Dis");
418 } else if (offset
< 4) {
420 } else if (offset
>= 0x80) {
421 /* Interrupt Security Registers, RAZ/WI */
426 } else if (offset
< 0x180) {
427 /* Interrupt Set Enable. */
428 irq
= (offset
- 0x100) * 8 + GIC_BASE_IRQ
;
433 for (i
= 0; i
< 8; i
++) {
434 if (value
& (1 << i
)) {
435 int mask
= (irq
< 32) ? (1 << cpu
) : GIC_TARGET(irq
);
436 int cm
= (irq
< 32) ? (1 << cpu
) : ALL_CPU_MASK
;
438 if (!GIC_TEST_ENABLED(irq
+ i
, cm
)) {
439 DPRINTF("Enabled IRQ %d\n", irq
+ i
);
441 GIC_SET_ENABLED(irq
+ i
, cm
);
442 /* If a raised level triggered IRQ enabled then mark
444 if (GIC_TEST_LEVEL(irq
+ i
, mask
)
445 && !GIC_TEST_TRIGGER(irq
+ i
)) {
446 DPRINTF("Set %d pending mask %x\n", irq
+ i
, mask
);
447 GIC_SET_PENDING(irq
+ i
, mask
);
451 } else if (offset
< 0x200) {
452 /* Interrupt Clear Enable. */
453 irq
= (offset
- 0x180) * 8 + GIC_BASE_IRQ
;
458 for (i
= 0; i
< 8; i
++) {
459 if (value
& (1 << i
)) {
460 int cm
= (irq
< 32) ? (1 << cpu
) : ALL_CPU_MASK
;
462 if (GIC_TEST_ENABLED(irq
+ i
, cm
)) {
463 DPRINTF("Disabled IRQ %d\n", irq
+ i
);
465 GIC_CLEAR_ENABLED(irq
+ i
, cm
);
468 } else if (offset
< 0x280) {
469 /* Interrupt Set Pending. */
470 irq
= (offset
- 0x200) * 8 + GIC_BASE_IRQ
;
476 for (i
= 0; i
< 8; i
++) {
477 if (value
& (1 << i
)) {
478 GIC_SET_PENDING(irq
+ i
, GIC_TARGET(irq
));
481 } else if (offset
< 0x300) {
482 /* Interrupt Clear Pending. */
483 irq
= (offset
- 0x280) * 8 + GIC_BASE_IRQ
;
486 for (i
= 0; i
< 8; i
++) {
487 /* ??? This currently clears the pending bit for all CPUs, even
488 for per-CPU interrupts. It's unclear whether this is the
490 if (value
& (1 << i
)) {
491 GIC_CLEAR_PENDING(irq
+ i
, ALL_CPU_MASK
);
494 } else if (offset
< 0x400) {
495 /* Interrupt Active. */
497 } else if (offset
< 0x800) {
498 /* Interrupt Priority. */
499 irq
= (offset
- 0x400) + GIC_BASE_IRQ
;
503 s
->priority1
[irq
][cpu
] = value
;
505 s
->priority2
[irq
- 32] = value
;
508 } else if (offset
< 0xc00) {
509 /* Interrupt CPU Target. */
510 irq
= (offset
- 0x800) + GIC_BASE_IRQ
;
516 value
= ALL_CPU_MASK
;
517 s
->irq_target
[irq
] = value
& ALL_CPU_MASK
;
518 } else if (offset
< 0xf00) {
519 /* Interrupt Configuration. */
520 irq
= (offset
- 0xc00) * 4 + GIC_BASE_IRQ
;
525 for (i
= 0; i
< 4; i
++) {
526 if (value
& (1 << (i
* 2))) {
527 GIC_SET_MODEL(irq
+ i
);
529 GIC_CLEAR_MODEL(irq
+ i
);
531 if (value
& (2 << (i
* 2))) {
532 GIC_SET_TRIGGER(irq
+ i
);
534 GIC_CLEAR_TRIGGER(irq
+ i
);
539 /* 0xf00 is only handled for 32-bit writes. */
545 hw_error("gic_dist_writeb: Bad offset %x\n", (int)offset
);
548 static void gic_dist_writew(void *opaque
, target_phys_addr_t offset
,
551 gic_dist_writeb(opaque
, offset
, value
& 0xff);
552 gic_dist_writeb(opaque
, offset
+ 1, value
>> 8);
555 static void gic_dist_writel(void *opaque
, target_phys_addr_t offset
,
558 gic_state
*s
= (gic_state
*)opaque
;
562 if (addr
< 0x100 || (addr
> 0xd00 && addr
!= 0xf00)) {
563 nvic_writel(s
, addr
, value
);
567 if (offset
== 0xf00) {
572 cpu
= gic_get_current_cpu();
574 switch ((value
>> 24) & 3) {
576 mask
= (value
>> 16) & ALL_CPU_MASK
;
579 mask
= ALL_CPU_MASK
^ (1 << cpu
);
585 DPRINTF("Bad Soft Int target filter\n");
589 GIC_SET_PENDING(irq
, mask
);
593 gic_dist_writew(opaque
, offset
, value
& 0xffff);
594 gic_dist_writew(opaque
, offset
+ 2, value
>> 16);
597 static const MemoryRegionOps gic_dist_ops
= {
599 .read
= { gic_dist_readb
, gic_dist_readw
, gic_dist_readl
, },
600 .write
= { gic_dist_writeb
, gic_dist_writew
, gic_dist_writel
, },
602 .endianness
= DEVICE_NATIVE_ENDIAN
,
606 static uint32_t gic_cpu_read(gic_state
*s
, int cpu
, int offset
)
609 case 0x00: /* Control */
610 return s
->cpu_enabled
[cpu
];
611 case 0x04: /* Priority mask */
612 return s
->priority_mask
[cpu
];
613 case 0x08: /* Binary Point */
614 /* ??? Not implemented. */
616 case 0x0c: /* Acknowledge */
617 return gic_acknowledge_irq(s
, cpu
);
618 case 0x14: /* Running Priority */
619 return s
->running_priority
[cpu
];
620 case 0x18: /* Highest Pending Interrupt */
621 return s
->current_pending
[cpu
];
623 hw_error("gic_cpu_read: Bad offset %x\n", (int)offset
);
628 static void gic_cpu_write(gic_state
*s
, int cpu
, int offset
, uint32_t value
)
631 case 0x00: /* Control */
632 s
->cpu_enabled
[cpu
] = (value
& 1);
633 DPRINTF("CPU %d %sabled\n", cpu
, s
->cpu_enabled
? "En" : "Dis");
635 case 0x04: /* Priority mask */
636 s
->priority_mask
[cpu
] = (value
& 0xff);
638 case 0x08: /* Binary Point */
639 /* ??? Not implemented. */
641 case 0x10: /* End Of Interrupt */
642 return gic_complete_irq(s
, cpu
, value
& 0x3ff);
644 hw_error("gic_cpu_write: Bad offset %x\n", (int)offset
);
650 /* Wrappers to read/write the GIC CPU interface for the current CPU */
651 static uint64_t gic_thiscpu_read(void *opaque
, target_phys_addr_t addr
,
654 gic_state
*s
= (gic_state
*)opaque
;
655 return gic_cpu_read(s
, gic_get_current_cpu(), addr
& 0xff);
658 static void gic_thiscpu_write(void *opaque
, target_phys_addr_t addr
,
659 uint64_t value
, unsigned size
)
661 gic_state
*s
= (gic_state
*)opaque
;
662 gic_cpu_write(s
, gic_get_current_cpu(), addr
& 0xff, value
);
665 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
666 * These just decode the opaque pointer into gic_state* + cpu id.
668 static uint64_t gic_do_cpu_read(void *opaque
, target_phys_addr_t addr
,
671 gic_state
**backref
= (gic_state
**)opaque
;
672 gic_state
*s
= *backref
;
673 int id
= (backref
- s
->backref
);
674 return gic_cpu_read(s
, id
, addr
& 0xff);
677 static void gic_do_cpu_write(void *opaque
, target_phys_addr_t addr
,
678 uint64_t value
, unsigned size
)
680 gic_state
**backref
= (gic_state
**)opaque
;
681 gic_state
*s
= *backref
;
682 int id
= (backref
- s
->backref
);
683 gic_cpu_write(s
, id
, addr
& 0xff, value
);
686 static const MemoryRegionOps gic_thiscpu_ops
= {
687 .read
= gic_thiscpu_read
,
688 .write
= gic_thiscpu_write
,
689 .endianness
= DEVICE_NATIVE_ENDIAN
,
692 static const MemoryRegionOps gic_cpu_ops
= {
693 .read
= gic_do_cpu_read
,
694 .write
= gic_do_cpu_write
,
695 .endianness
= DEVICE_NATIVE_ENDIAN
,
699 static void gic_reset(gic_state
*s
)
702 memset(s
->irq_state
, 0, GIC_NIRQ
* sizeof(gic_irq_state
));
703 for (i
= 0 ; i
< NUM_CPU(s
); i
++) {
704 s
->priority_mask
[i
] = 0xf0;
705 s
->current_pending
[i
] = 1023;
706 s
->running_irq
[i
] = 1023;
707 s
->running_priority
[i
] = 0x100;
709 /* The NVIC doesn't have per-cpu interfaces, so enable by default. */
710 s
->cpu_enabled
[i
] = 1;
712 s
->cpu_enabled
[i
] = 0;
715 for (i
= 0; i
< 16; i
++) {
716 GIC_SET_ENABLED(i
, ALL_CPU_MASK
);
720 /* The NVIC is always enabled. */
727 static void gic_save(QEMUFile
*f
, void *opaque
)
729 gic_state
*s
= (gic_state
*)opaque
;
733 qemu_put_be32(f
, s
->enabled
);
734 for (i
= 0; i
< NUM_CPU(s
); i
++) {
735 qemu_put_be32(f
, s
->cpu_enabled
[i
]);
736 for (j
= 0; j
< 32; j
++)
737 qemu_put_be32(f
, s
->priority1
[j
][i
]);
738 for (j
= 0; j
< GIC_NIRQ
; j
++)
739 qemu_put_be32(f
, s
->last_active
[j
][i
]);
740 qemu_put_be32(f
, s
->priority_mask
[i
]);
741 qemu_put_be32(f
, s
->running_irq
[i
]);
742 qemu_put_be32(f
, s
->running_priority
[i
]);
743 qemu_put_be32(f
, s
->current_pending
[i
]);
745 for (i
= 0; i
< GIC_NIRQ
- 32; i
++) {
746 qemu_put_be32(f
, s
->priority2
[i
]);
748 for (i
= 0; i
< GIC_NIRQ
; i
++) {
750 qemu_put_be32(f
, s
->irq_target
[i
]);
752 qemu_put_byte(f
, s
->irq_state
[i
].enabled
);
753 qemu_put_byte(f
, s
->irq_state
[i
].pending
);
754 qemu_put_byte(f
, s
->irq_state
[i
].active
);
755 qemu_put_byte(f
, s
->irq_state
[i
].level
);
756 qemu_put_byte(f
, s
->irq_state
[i
].model
);
757 qemu_put_byte(f
, s
->irq_state
[i
].trigger
);
761 static int gic_load(QEMUFile
*f
, void *opaque
, int version_id
)
763 gic_state
*s
= (gic_state
*)opaque
;
770 s
->enabled
= qemu_get_be32(f
);
771 for (i
= 0; i
< NUM_CPU(s
); i
++) {
772 s
->cpu_enabled
[i
] = qemu_get_be32(f
);
773 for (j
= 0; j
< 32; j
++)
774 s
->priority1
[j
][i
] = qemu_get_be32(f
);
775 for (j
= 0; j
< GIC_NIRQ
; j
++)
776 s
->last_active
[j
][i
] = qemu_get_be32(f
);
777 s
->priority_mask
[i
] = qemu_get_be32(f
);
778 s
->running_irq
[i
] = qemu_get_be32(f
);
779 s
->running_priority
[i
] = qemu_get_be32(f
);
780 s
->current_pending
[i
] = qemu_get_be32(f
);
782 for (i
= 0; i
< GIC_NIRQ
- 32; i
++) {
783 s
->priority2
[i
] = qemu_get_be32(f
);
785 for (i
= 0; i
< GIC_NIRQ
; i
++) {
787 s
->irq_target
[i
] = qemu_get_be32(f
);
789 s
->irq_state
[i
].enabled
= qemu_get_byte(f
);
790 s
->irq_state
[i
].pending
= qemu_get_byte(f
);
791 s
->irq_state
[i
].active
= qemu_get_byte(f
);
792 s
->irq_state
[i
].level
= qemu_get_byte(f
);
793 s
->irq_state
[i
].model
= qemu_get_byte(f
);
794 s
->irq_state
[i
].trigger
= qemu_get_byte(f
);
801 static void gic_init(gic_state
*s
, int num_cpu
)
803 static void gic_init(gic_state
*s
)
809 s
->num_cpu
= num_cpu
;
811 qdev_init_gpio_in(&s
->busdev
.qdev
, gic_set_irq
, GIC_NIRQ
- 32);
812 for (i
= 0; i
< NUM_CPU(s
); i
++) {
813 sysbus_init_irq(&s
->busdev
, &s
->parent_irq
[i
]);
815 memory_region_init_io(&s
->iomem
, &gic_dist_ops
, s
, "gic_dist", 0x1000);
817 /* Memory regions for the CPU interfaces (NVIC doesn't have these):
818 * a region for "CPU interface for this core", then a region for
819 * "CPU interface for core 0", "for core 1", ...
820 * NB that the memory region size of 0x100 applies for the 11MPCore
821 * and also cores following the GIC v1 spec (ie A9).
822 * GIC v2 defines a larger memory region (0x1000) so this will need
823 * to be extended when we implement A15.
825 memory_region_init_io(&s
->cpuiomem
[0], &gic_thiscpu_ops
, s
,
827 for (i
= 0; i
< NUM_CPU(s
); i
++) {
829 memory_region_init_io(&s
->cpuiomem
[i
+1], &gic_cpu_ops
, &s
->backref
[i
],
835 register_savevm(NULL
, "arm_gic", -1, 2, gic_save
, gic_load
, s
);