Merge branch 'master' into raspi (including upstream raspi patches)
[qemu/ar7.git] / hw / sd / sdhci.c
blobf27f7dab84a495ca9b4356aa1007f7766280974e
1 /*
2 * SD Association Host Standard Specification v2.0 controller emulation
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * Mitsyanko Igor <i.mitsyanko@samsung.com>
6 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Based on MMC controller for Samsung S5PC1xx-based board emulation
9 * by Alexey Merkulov and Vladimir Monakhov.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
19 * See the GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, see <http://www.gnu.org/licenses/>.
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/block-backend.h"
28 #include "sysemu/blockdev.h"
29 #include "sysemu/dma.h"
30 #include "qemu/timer.h"
31 #include "qemu/bitops.h"
32 #include "sdhci-internal.h"
34 /* host controller debug messages */
35 #ifndef SDHC_DEBUG
36 #define SDHC_DEBUG 0
37 #endif
39 #define DPRINT_L1(fmt, args...) \
40 do { \
41 if (SDHC_DEBUG) { \
42 fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
43 } \
44 } while (0)
45 #define DPRINT_L2(fmt, args...) \
46 do { \
47 if (SDHC_DEBUG > 1) { \
48 fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
49 } \
50 } while (0)
51 #define ERRPRINT(fmt, args...) \
52 do { \
53 if (SDHC_DEBUG) { \
54 fprintf(stderr, "QEMU SDHC ERROR: " fmt, ## args); \
55 } \
56 } while (0)
58 #define TYPE_SDHCI_BUS "sdhci-bus"
59 #define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)
61 /* Default SD/MMC host controller features information, which will be
62 * presented in CAPABILITIES register of generic SD host controller at reset.
63 * If not stated otherwise:
64 * 0 - not supported, 1 - supported, other - prohibited.
66 #define SDHC_CAPAB_64BITBUS 0ul /* 64-bit System Bus Support */
67 #define SDHC_CAPAB_18V 1ul /* Voltage support 1.8v */
68 #define SDHC_CAPAB_30V 0ul /* Voltage support 3.0v */
69 #define SDHC_CAPAB_33V 1ul /* Voltage support 3.3v */
70 #define SDHC_CAPAB_SUSPRESUME 0ul /* Suspend/resume support */
71 #define SDHC_CAPAB_SDMA 1ul /* SDMA support */
72 #define SDHC_CAPAB_HIGHSPEED 1ul /* High speed support */
73 #define SDHC_CAPAB_ADMA1 1ul /* ADMA1 support */
74 #define SDHC_CAPAB_ADMA2 1ul /* ADMA2 support */
75 /* Maximum host controller R/W buffers size
76 * Possible values: 512, 1024, 2048 bytes */
77 #define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
78 /* Maximum clock frequency for SDclock in MHz
79 * value in range 10-63 MHz, 0 - not defined */
80 #define SDHC_CAPAB_BASECLKFREQ 52ul
81 #define SDHC_CAPAB_TOUNIT 1ul /* Timeout clock unit 0 - kHz, 1 - MHz */
82 /* Timeout clock frequency 1-63, 0 - not defined */
83 #define SDHC_CAPAB_TOCLKFREQ 52ul
85 /* Now check all parameters and calculate CAPABILITIES REGISTER value */
86 #if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 || \
87 SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 || \
88 SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\
89 SDHC_CAPAB_TOUNIT > 1
90 #error Capabilities features can have value 0 or 1 only!
91 #endif
93 #if SDHC_CAPAB_MAXBLOCKLENGTH == 512
94 #define MAX_BLOCK_LENGTH 0ul
95 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024
96 #define MAX_BLOCK_LENGTH 1ul
97 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048
98 #define MAX_BLOCK_LENGTH 2ul
99 #else
100 #error Max host controller block size can have value 512, 1024 or 2048 only!
101 #endif
103 #if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \
104 SDHC_CAPAB_BASECLKFREQ > 63
105 #error SDclock frequency can have value in range 0, 10-63 only!
106 #endif
108 #if SDHC_CAPAB_TOCLKFREQ > 63
109 #error Timeout clock frequency can have value in range 0-63 only!
110 #endif
112 #define SDHC_CAPAB_REG_DEFAULT \
113 ((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) | \
114 (SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) | \
115 (SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) | \
116 (SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) | \
117 (SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) | \
118 (SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \
119 (SDHC_CAPAB_TOCLKFREQ))
121 #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val))
123 static uint8_t sdhci_slotint(SDHCIState *s)
125 return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
126 ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
127 ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
130 static inline void sdhci_update_irq(SDHCIState *s)
132 qemu_set_irq(s->irq, sdhci_slotint(s));
135 static void sdhci_raise_insertion_irq(void *opaque)
137 SDHCIState *s = (SDHCIState *)opaque;
139 if (s->norintsts & SDHC_NIS_REMOVE) {
140 timer_mod(s->insert_timer,
141 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
142 } else {
143 s->prnsts = 0x1ff0000;
144 if (s->norintstsen & SDHC_NISEN_INSERT) {
145 s->norintsts |= SDHC_NIS_INSERT;
147 sdhci_update_irq(s);
151 static void sdhci_set_inserted(DeviceState *dev, bool level)
153 SDHCIState *s = (SDHCIState *)dev;
154 DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject");
156 if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
157 /* Give target some time to notice card ejection */
158 timer_mod(s->insert_timer,
159 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
160 } else {
161 if (level) {
162 s->prnsts = 0x1ff0000;
163 if (s->norintstsen & SDHC_NISEN_INSERT) {
164 s->norintsts |= SDHC_NIS_INSERT;
166 } else {
167 s->prnsts = 0x1fa0000;
168 s->pwrcon &= ~SDHC_POWER_ON;
169 s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
170 if (s->norintstsen & SDHC_NISEN_REMOVE) {
171 s->norintsts |= SDHC_NIS_REMOVE;
174 sdhci_update_irq(s);
178 static void sdhci_set_readonly(DeviceState *dev, bool level)
180 SDHCIState *s = (SDHCIState *)dev;
182 if (level) {
183 s->prnsts &= ~SDHC_WRITE_PROTECT;
184 } else {
185 /* Write enabled */
186 s->prnsts |= SDHC_WRITE_PROTECT;
190 static void sdhci_reset(SDHCIState *s)
192 DeviceState *dev = DEVICE(s);
194 timer_del(s->insert_timer);
195 timer_del(s->transfer_timer);
196 /* Set all registers to 0. Capabilities registers are not cleared
197 * and assumed to always preserve their value, given to them during
198 * initialization */
199 memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
201 /* Reset other state based on current card insertion/readonly status */
202 sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
203 sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
205 s->data_count = 0;
206 s->stopped_state = sdhc_not_stopped;
207 s->pending_insert = false;
210 static void sdhci_data_transfer(void *opaque);
212 static void sdhci_send_command(SDHCIState *s)
214 SDRequest request;
215 uint8_t response[16];
216 int rlen;
218 s->errintsts = 0;
219 s->acmd12errsts = 0;
220 request.cmd = s->cmdreg >> 8;
221 request.arg = s->argument;
222 DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg);
223 rlen = sdbus_do_command(&s->sdbus, &request, response);
225 if (s->cmdreg & SDHC_CMD_RESPONSE) {
226 if (rlen == 4) {
227 s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
228 (response[2] << 8) | response[3];
229 s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
230 DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]);
231 } else if (rlen == 16) {
232 s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
233 (response[13] << 8) | response[14];
234 s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
235 (response[9] << 8) | response[10];
236 s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
237 (response[5] << 8) | response[6];
238 s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
239 response[2];
240 DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.."
241 "64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n",
242 s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]);
243 } else {
244 ERRPRINT("Timeout waiting for command response\n");
245 if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
246 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
247 s->norintsts |= SDHC_NIS_ERR;
251 if ((s->norintstsen & SDHC_NISEN_TRSCMP) &&
252 (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
253 s->norintsts |= SDHC_NIS_TRSCMP;
257 if (s->norintstsen & SDHC_NISEN_CMDCMP) {
258 s->norintsts |= SDHC_NIS_CMDCMP;
261 sdhci_update_irq(s);
263 if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
264 s->data_count = 0;
265 sdhci_data_transfer(s);
269 static void sdhci_end_transfer(SDHCIState *s)
271 /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
272 if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
273 SDRequest request;
274 uint8_t response[16];
276 request.cmd = 0x0C;
277 request.arg = 0;
278 DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg);
279 sdbus_do_command(&s->sdbus, &request, response);
280 /* Auto CMD12 response goes to the upper Response register */
281 s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
282 (response[2] << 8) | response[3];
285 s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
286 SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
287 SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
289 if (s->norintstsen & SDHC_NISEN_TRSCMP) {
290 s->norintsts |= SDHC_NIS_TRSCMP;
293 sdhci_update_irq(s);
297 * Programmed i/o data transfer
300 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
301 static void sdhci_read_block_from_card(SDHCIState *s)
303 int index = 0;
305 if ((s->trnmod & SDHC_TRNS_MULTI) &&
306 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
307 return;
310 for (index = 0; index < (s->blksize & 0x0fff); index++) {
311 s->fifo_buffer[index] = sdbus_read_data(&s->sdbus);
314 /* New data now available for READ through Buffer Port Register */
315 s->prnsts |= SDHC_DATA_AVAILABLE;
316 if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
317 s->norintsts |= SDHC_NIS_RBUFRDY;
320 /* Clear DAT line active status if that was the last block */
321 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
322 ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
323 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
326 /* If stop at block gap request was set and it's not the last block of
327 * data - generate Block Event interrupt */
328 if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
329 s->blkcnt != 1) {
330 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
331 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
332 s->norintsts |= SDHC_EIS_BLKGAP;
336 sdhci_update_irq(s);
339 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
340 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
342 uint32_t value = 0;
343 int i;
345 /* first check that a valid data exists in host controller input buffer */
346 if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
347 ERRPRINT("Trying to read from empty buffer\n");
348 return 0;
351 for (i = 0; i < size; i++) {
352 value |= s->fifo_buffer[s->data_count] << i * 8;
353 s->data_count++;
354 /* check if we've read all valid data (blksize bytes) from buffer */
355 if ((s->data_count) >= (s->blksize & 0x0fff)) {
356 DPRINT_L2("All %u bytes of data have been read from input buffer\n",
357 s->data_count);
358 s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
359 s->data_count = 0; /* next buff read must start at position [0] */
361 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
362 s->blkcnt--;
365 /* if that was the last block of data */
366 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
367 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
368 /* stop at gap request */
369 (s->stopped_state == sdhc_gap_read &&
370 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
371 sdhci_end_transfer(s);
372 } else { /* if there are more data, read next block from card */
373 sdhci_read_block_from_card(s);
375 break;
379 return value;
382 /* Write data from host controller FIFO to card */
383 static void sdhci_write_block_to_card(SDHCIState *s)
385 int index = 0;
387 if (s->prnsts & SDHC_SPACE_AVAILABLE) {
388 if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
389 s->norintsts |= SDHC_NIS_WBUFRDY;
391 sdhci_update_irq(s);
392 return;
395 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
396 if (s->blkcnt == 0) {
397 return;
398 } else {
399 s->blkcnt--;
403 for (index = 0; index < (s->blksize & 0x0fff); index++) {
404 sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
407 /* Next data can be written through BUFFER DATORT register */
408 s->prnsts |= SDHC_SPACE_AVAILABLE;
410 /* Finish transfer if that was the last block of data */
411 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
412 ((s->trnmod & SDHC_TRNS_MULTI) &&
413 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
414 sdhci_end_transfer(s);
415 } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
416 s->norintsts |= SDHC_NIS_WBUFRDY;
419 /* Generate Block Gap Event if requested and if not the last block */
420 if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
421 s->blkcnt > 0) {
422 s->prnsts &= ~SDHC_DOING_WRITE;
423 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
424 s->norintsts |= SDHC_EIS_BLKGAP;
426 sdhci_end_transfer(s);
429 sdhci_update_irq(s);
432 /* Write @size bytes of @value data to host controller @s Buffer Data Port
433 * register */
434 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
436 unsigned i;
438 /* Check that there is free space left in a buffer */
439 if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
440 ERRPRINT("Can't write to data buffer: buffer full\n");
441 return;
444 for (i = 0; i < size; i++) {
445 s->fifo_buffer[s->data_count] = value & 0xFF;
446 s->data_count++;
447 value >>= 8;
448 if (s->data_count >= (s->blksize & 0x0fff)) {
449 DPRINT_L2("write buffer filled with %u bytes of data\n",
450 s->data_count);
451 s->data_count = 0;
452 s->prnsts &= ~SDHC_SPACE_AVAILABLE;
453 if (s->prnsts & SDHC_DOING_WRITE) {
454 sdhci_write_block_to_card(s);
461 * Single DMA data transfer
464 /* Multi block SDMA transfer */
465 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
467 bool page_aligned = false;
468 unsigned int n, begin;
469 const uint16_t block_size = s->blksize & 0x0fff;
470 uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
471 uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
473 /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
474 * possible stop at page boundary if initial address is not page aligned,
475 * allow them to work properly */
476 if ((s->sdmasysad % boundary_chk) == 0) {
477 page_aligned = true;
480 if (s->trnmod & SDHC_TRNS_READ) {
481 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
482 SDHC_DAT_LINE_ACTIVE;
483 while (s->blkcnt) {
484 if (s->data_count == 0) {
485 for (n = 0; n < block_size; n++) {
486 s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
489 begin = s->data_count;
490 if (((boundary_count + begin) < block_size) && page_aligned) {
491 s->data_count = boundary_count + begin;
492 boundary_count = 0;
493 } else {
494 s->data_count = block_size;
495 boundary_count -= block_size - begin;
496 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
497 s->blkcnt--;
500 dma_memory_write(&address_space_memory, s->sdmasysad,
501 &s->fifo_buffer[begin], s->data_count - begin);
502 s->sdmasysad += s->data_count - begin;
503 if (s->data_count == block_size) {
504 s->data_count = 0;
506 if (page_aligned && boundary_count == 0) {
507 break;
510 } else {
511 s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
512 SDHC_DAT_LINE_ACTIVE;
513 while (s->blkcnt) {
514 begin = s->data_count;
515 if (((boundary_count + begin) < block_size) && page_aligned) {
516 s->data_count = boundary_count + begin;
517 boundary_count = 0;
518 } else {
519 s->data_count = block_size;
520 boundary_count -= block_size - begin;
522 dma_memory_read(&address_space_memory, s->sdmasysad,
523 &s->fifo_buffer[begin], s->data_count);
524 s->sdmasysad += s->data_count - begin;
525 if (s->data_count == block_size) {
526 for (n = 0; n < block_size; n++) {
527 sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
529 s->data_count = 0;
530 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
531 s->blkcnt--;
534 if (page_aligned && boundary_count == 0) {
535 break;
540 if (s->blkcnt == 0) {
541 sdhci_end_transfer(s);
542 } else {
543 if (s->norintstsen & SDHC_NISEN_DMA) {
544 s->norintsts |= SDHC_NIS_DMA;
546 sdhci_update_irq(s);
550 /* single block SDMA transfer */
552 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
554 int n;
555 uint32_t datacnt = s->blksize & 0x0fff;
557 if (s->trnmod & SDHC_TRNS_READ) {
558 for (n = 0; n < datacnt; n++) {
559 s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
561 dma_memory_write(&address_space_memory, s->sdmasysad, s->fifo_buffer,
562 datacnt);
563 } else {
564 dma_memory_read(&address_space_memory, s->sdmasysad, s->fifo_buffer,
565 datacnt);
566 for (n = 0; n < datacnt; n++) {
567 sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
571 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
572 s->blkcnt--;
575 sdhci_end_transfer(s);
578 typedef struct ADMADescr {
579 hwaddr addr;
580 uint16_t length;
581 uint8_t attr;
582 uint8_t incr;
583 } ADMADescr;
585 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
587 uint32_t adma1 = 0;
588 uint64_t adma2 = 0;
589 hwaddr entry_addr = (hwaddr)s->admasysaddr;
590 switch (SDHC_DMA_TYPE(s->hostctl)) {
591 case SDHC_CTRL_ADMA2_32:
592 dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma2,
593 sizeof(adma2));
594 adma2 = le64_to_cpu(adma2);
595 /* The spec does not specify endianness of descriptor table.
596 * We currently assume that it is LE.
598 dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
599 dscr->length = (uint16_t)extract64(adma2, 16, 16);
600 dscr->attr = (uint8_t)extract64(adma2, 0, 7);
601 dscr->incr = 8;
602 break;
603 case SDHC_CTRL_ADMA1_32:
604 dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma1,
605 sizeof(adma1));
606 adma1 = le32_to_cpu(adma1);
607 dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
608 dscr->attr = (uint8_t)extract32(adma1, 0, 7);
609 dscr->incr = 4;
610 if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
611 dscr->length = (uint16_t)extract32(adma1, 12, 16);
612 } else {
613 dscr->length = 4096;
615 break;
616 case SDHC_CTRL_ADMA2_64:
617 dma_memory_read(&address_space_memory, entry_addr,
618 (uint8_t *)(&dscr->attr), 1);
619 dma_memory_read(&address_space_memory, entry_addr + 2,
620 (uint8_t *)(&dscr->length), 2);
621 dscr->length = le16_to_cpu(dscr->length);
622 dma_memory_read(&address_space_memory, entry_addr + 4,
623 (uint8_t *)(&dscr->addr), 8);
624 dscr->attr = le64_to_cpu(dscr->attr);
625 dscr->attr &= 0xfffffff8;
626 dscr->incr = 12;
627 break;
631 /* Advanced DMA data transfer */
633 static void sdhci_do_adma(SDHCIState *s)
635 unsigned int n, begin, length;
636 const uint16_t block_size = s->blksize & 0x0fff;
637 ADMADescr dscr;
638 int i;
640 for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
641 s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
643 get_adma_description(s, &dscr);
644 DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n",
645 dscr.addr, dscr.length, dscr.attr);
647 if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
648 /* Indicate that error occurred in ST_FDS state */
649 s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
650 s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
652 /* Generate ADMA error interrupt */
653 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
654 s->errintsts |= SDHC_EIS_ADMAERR;
655 s->norintsts |= SDHC_NIS_ERR;
658 sdhci_update_irq(s);
659 return;
662 length = dscr.length ? dscr.length : 65536;
664 switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
665 case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */
667 if (s->trnmod & SDHC_TRNS_READ) {
668 while (length) {
669 if (s->data_count == 0) {
670 for (n = 0; n < block_size; n++) {
671 s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
674 begin = s->data_count;
675 if ((length + begin) < block_size) {
676 s->data_count = length + begin;
677 length = 0;
678 } else {
679 s->data_count = block_size;
680 length -= block_size - begin;
682 dma_memory_write(&address_space_memory, dscr.addr,
683 &s->fifo_buffer[begin],
684 s->data_count - begin);
685 dscr.addr += s->data_count - begin;
686 if (s->data_count == block_size) {
687 s->data_count = 0;
688 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
689 s->blkcnt--;
690 if (s->blkcnt == 0) {
691 break;
696 } else {
697 while (length) {
698 begin = s->data_count;
699 if ((length + begin) < block_size) {
700 s->data_count = length + begin;
701 length = 0;
702 } else {
703 s->data_count = block_size;
704 length -= block_size - begin;
706 dma_memory_read(&address_space_memory, dscr.addr,
707 &s->fifo_buffer[begin],
708 s->data_count - begin);
709 dscr.addr += s->data_count - begin;
710 if (s->data_count == block_size) {
711 for (n = 0; n < block_size; n++) {
712 sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
714 s->data_count = 0;
715 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
716 s->blkcnt--;
717 if (s->blkcnt == 0) {
718 break;
724 s->admasysaddr += dscr.incr;
725 break;
726 case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */
727 s->admasysaddr = dscr.addr;
728 DPRINT_L1("ADMA link: admasysaddr=0x%" PRIx64 "\n",
729 s->admasysaddr);
730 break;
731 default:
732 s->admasysaddr += dscr.incr;
733 break;
736 if (dscr.attr & SDHC_ADMA_ATTR_INT) {
737 DPRINT_L1("ADMA interrupt: admasysaddr=0x%" PRIx64 "\n",
738 s->admasysaddr);
739 if (s->norintstsen & SDHC_NISEN_DMA) {
740 s->norintsts |= SDHC_NIS_DMA;
743 sdhci_update_irq(s);
746 /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
747 if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
748 (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
749 DPRINT_L2("ADMA transfer completed\n");
750 if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
751 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
752 s->blkcnt != 0)) {
753 ERRPRINT("SD/MMC host ADMA length mismatch\n");
754 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
755 SDHC_ADMAERR_STATE_ST_TFR;
756 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
757 ERRPRINT("Set ADMA error flag\n");
758 s->errintsts |= SDHC_EIS_ADMAERR;
759 s->norintsts |= SDHC_NIS_ERR;
762 sdhci_update_irq(s);
764 sdhci_end_transfer(s);
765 return;
770 /* we have unfinished business - reschedule to continue ADMA */
771 timer_mod(s->transfer_timer,
772 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
775 /* Perform data transfer according to controller configuration */
777 static void sdhci_data_transfer(void *opaque)
779 SDHCIState *s = (SDHCIState *)opaque;
781 if (s->trnmod & SDHC_TRNS_DMA) {
782 switch (SDHC_DMA_TYPE(s->hostctl)) {
783 case SDHC_CTRL_SDMA:
784 if ((s->trnmod & SDHC_TRNS_MULTI) &&
785 (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) {
786 break;
789 if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
790 sdhci_sdma_transfer_single_block(s);
791 } else {
792 sdhci_sdma_transfer_multi_blocks(s);
795 break;
796 case SDHC_CTRL_ADMA1_32:
797 if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
798 ERRPRINT("ADMA1 not supported\n");
799 break;
802 sdhci_do_adma(s);
803 break;
804 case SDHC_CTRL_ADMA2_32:
805 if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
806 ERRPRINT("ADMA2 not supported\n");
807 break;
810 sdhci_do_adma(s);
811 break;
812 case SDHC_CTRL_ADMA2_64:
813 if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
814 !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
815 ERRPRINT("64 bit ADMA not supported\n");
816 break;
819 sdhci_do_adma(s);
820 break;
821 default:
822 ERRPRINT("Unsupported DMA type\n");
823 break;
825 } else {
826 if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
827 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
828 SDHC_DAT_LINE_ACTIVE;
829 sdhci_read_block_from_card(s);
830 } else {
831 s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
832 SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
833 sdhci_write_block_to_card(s);
838 static bool sdhci_can_issue_command(SDHCIState *s)
840 if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
841 (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
842 ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
843 ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
844 !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
845 return false;
848 return true;
851 /* The Buffer Data Port register must be accessed in sequential and
852 * continuous manner */
853 static inline bool
854 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
856 if ((s->data_count & 0x3) != byte_num) {
857 ERRPRINT("Non-sequential access to Buffer Data Port register"
858 "is prohibited\n");
859 return false;
861 return true;
864 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
866 SDHCIState *s = (SDHCIState *)opaque;
867 uint32_t ret = 0;
869 switch (offset & ~0x3) {
870 case SDHC_SYSAD:
871 ret = s->sdmasysad;
872 break;
873 case SDHC_BLKSIZE:
874 ret = s->blksize | (s->blkcnt << 16);
875 break;
876 case SDHC_ARGUMENT:
877 ret = s->argument;
878 break;
879 case SDHC_TRNMOD:
880 ret = s->trnmod | (s->cmdreg << 16);
881 break;
882 case SDHC_RSPREG0 ... SDHC_RSPREG3:
883 ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
884 break;
885 case SDHC_BDATA:
886 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
887 ret = sdhci_read_dataport(s, size);
888 DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset,
889 ret, ret);
890 return ret;
892 break;
893 case SDHC_PRNSTS:
894 ret = s->prnsts;
895 break;
896 case SDHC_HOSTCTL:
897 ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
898 (s->wakcon << 24);
899 break;
900 case SDHC_CLKCON:
901 ret = s->clkcon | (s->timeoutcon << 16);
902 break;
903 case SDHC_NORINTSTS:
904 ret = s->norintsts | (s->errintsts << 16);
905 break;
906 case SDHC_NORINTSTSEN:
907 ret = s->norintstsen | (s->errintstsen << 16);
908 break;
909 case SDHC_NORINTSIGEN:
910 ret = s->norintsigen | (s->errintsigen << 16);
911 break;
912 case SDHC_ACMD12ERRSTS:
913 ret = s->acmd12errsts;
914 break;
915 case SDHC_CAPAREG:
916 ret = s->capareg;
917 break;
918 case SDHC_MAXCURR:
919 ret = s->maxcurr;
920 break;
921 case SDHC_ADMAERR:
922 ret = s->admaerr;
923 break;
924 case SDHC_ADMASYSADDR:
925 ret = (uint32_t)s->admasysaddr;
926 break;
927 case SDHC_ADMASYSADDR + 4:
928 ret = (uint32_t)(s->admasysaddr >> 32);
929 break;
930 case SDHC_SLOT_INT_STATUS:
931 ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
932 break;
933 default:
934 ERRPRINT("bad %ub read: addr[0x%04x]\n", size, (int)offset);
935 break;
938 ret >>= (offset & 0x3) * 8;
939 ret &= (1ULL << (size * 8)) - 1;
940 DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset, ret, ret);
941 return ret;
944 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
946 if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
947 return;
949 s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
951 if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
952 (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
953 if (s->stopped_state == sdhc_gap_read) {
954 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
955 sdhci_read_block_from_card(s);
956 } else {
957 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
958 sdhci_write_block_to_card(s);
960 s->stopped_state = sdhc_not_stopped;
961 } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
962 if (s->prnsts & SDHC_DOING_READ) {
963 s->stopped_state = sdhc_gap_read;
964 } else if (s->prnsts & SDHC_DOING_WRITE) {
965 s->stopped_state = sdhc_gap_write;
970 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
972 switch (value) {
973 case SDHC_RESET_ALL:
974 sdhci_reset(s);
975 break;
976 case SDHC_RESET_CMD:
977 s->prnsts &= ~SDHC_CMD_INHIBIT;
978 s->norintsts &= ~SDHC_NIS_CMDCMP;
979 break;
980 case SDHC_RESET_DATA:
981 s->data_count = 0;
982 s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
983 SDHC_DOING_READ | SDHC_DOING_WRITE |
984 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
985 s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
986 s->stopped_state = sdhc_not_stopped;
987 s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
988 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
989 break;
993 static void
994 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
996 SDHCIState *s = (SDHCIState *)opaque;
997 unsigned shift = 8 * (offset & 0x3);
998 uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
999 uint32_t value = val;
1000 value <<= shift;
1002 switch (offset & ~0x3) {
1003 case SDHC_SYSAD:
1004 s->sdmasysad = (s->sdmasysad & mask) | value;
1005 MASKED_WRITE(s->sdmasysad, mask, value);
1006 /* Writing to last byte of sdmasysad might trigger transfer */
1007 if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1008 s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
1009 sdhci_sdma_transfer_multi_blocks(s);
1011 break;
1012 case SDHC_BLKSIZE:
1013 if (!TRANSFERRING_DATA(s->prnsts)) {
1014 MASKED_WRITE(s->blksize, mask, value);
1015 MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1018 /* Limit block size to the maximum buffer size */
1019 if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1020 qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
1021 "the maximum buffer 0x%x", __func__, s->blksize,
1022 s->buf_maxsz);
1024 s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1027 break;
1028 case SDHC_ARGUMENT:
1029 MASKED_WRITE(s->argument, mask, value);
1030 break;
1031 case SDHC_TRNMOD:
1032 /* DMA can be enabled only if it is supported as indicated by
1033 * capabilities register */
1034 if (!(s->capareg & SDHC_CAN_DO_DMA)) {
1035 value &= ~SDHC_TRNS_DMA;
1037 MASKED_WRITE(s->trnmod, mask, value);
1038 MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1040 /* Writing to the upper byte of CMDREG triggers SD command generation */
1041 if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1042 break;
1045 sdhci_send_command(s);
1046 break;
1047 case SDHC_BDATA:
1048 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1049 sdhci_write_dataport(s, value >> shift, size);
1051 break;
1052 case SDHC_HOSTCTL:
1053 if (!(mask & 0xFF0000)) {
1054 sdhci_blkgap_write(s, value >> 16);
1056 MASKED_WRITE(s->hostctl, mask, value);
1057 MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1058 MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1059 if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1060 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1061 s->pwrcon &= ~SDHC_POWER_ON;
1063 break;
1064 case SDHC_CLKCON:
1065 if (!(mask & 0xFF000000)) {
1066 sdhci_reset_write(s, value >> 24);
1068 MASKED_WRITE(s->clkcon, mask, value);
1069 MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1070 if (s->clkcon & SDHC_CLOCK_INT_EN) {
1071 s->clkcon |= SDHC_CLOCK_INT_STABLE;
1072 } else {
1073 s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1075 break;
1076 case SDHC_NORINTSTS:
1077 if (s->norintstsen & SDHC_NISEN_CARDINT) {
1078 value &= ~SDHC_NIS_CARDINT;
1080 s->norintsts &= mask | ~value;
1081 s->errintsts &= (mask >> 16) | ~(value >> 16);
1082 if (s->errintsts) {
1083 s->norintsts |= SDHC_NIS_ERR;
1084 } else {
1085 s->norintsts &= ~SDHC_NIS_ERR;
1087 sdhci_update_irq(s);
1088 break;
1089 case SDHC_NORINTSTSEN:
1090 MASKED_WRITE(s->norintstsen, mask, value);
1091 MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1092 s->norintsts &= s->norintstsen;
1093 s->errintsts &= s->errintstsen;
1094 if (s->errintsts) {
1095 s->norintsts |= SDHC_NIS_ERR;
1096 } else {
1097 s->norintsts &= ~SDHC_NIS_ERR;
1099 /* Quirk for Raspberry Pi: pending card insert interrupt
1100 * appears when first enabled after power on */
1101 if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert) {
1102 s->norintsts |= SDHC_NIS_INSERT;
1103 s->pending_insert = false;
1105 sdhci_update_irq(s);
1106 break;
1107 case SDHC_NORINTSIGEN:
1108 MASKED_WRITE(s->norintsigen, mask, value);
1109 MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1110 sdhci_update_irq(s);
1111 break;
1112 case SDHC_ADMAERR:
1113 MASKED_WRITE(s->admaerr, mask, value);
1114 break;
1115 case SDHC_ADMASYSADDR:
1116 s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1117 (uint64_t)mask)) | (uint64_t)value;
1118 break;
1119 case SDHC_ADMASYSADDR + 4:
1120 s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1121 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1122 break;
1123 case SDHC_FEAER:
1124 s->acmd12errsts |= value;
1125 s->errintsts |= (value >> 16) & s->errintstsen;
1126 if (s->acmd12errsts) {
1127 s->errintsts |= SDHC_EIS_CMD12ERR;
1129 if (s->errintsts) {
1130 s->norintsts |= SDHC_NIS_ERR;
1132 sdhci_update_irq(s);
1133 break;
1134 default:
1135 ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n",
1136 size, (int)offset, value >> shift, value >> shift);
1137 break;
1139 DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n",
1140 size, (int)offset, value >> shift, value >> shift);
1143 static const MemoryRegionOps sdhci_mmio_ops = {
1144 .read = sdhci_read,
1145 .write = sdhci_write,
1146 .valid = {
1147 .min_access_size = 1,
1148 .max_access_size = 4,
1149 .unaligned = false
1151 .endianness = DEVICE_LITTLE_ENDIAN,
1154 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
1156 switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) {
1157 case 0:
1158 return 512;
1159 case 1:
1160 return 1024;
1161 case 2:
1162 return 2048;
1163 default:
1164 hw_error("SDHC: unsupported value for maximum block size\n");
1165 return 0;
1169 static void sdhci_initfn(SDHCIState *s)
1171 qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
1172 TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1174 s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1175 s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1178 static void sdhci_uninitfn(SDHCIState *s)
1180 timer_del(s->insert_timer);
1181 timer_free(s->insert_timer);
1182 timer_del(s->transfer_timer);
1183 timer_free(s->transfer_timer);
1184 qemu_free_irq(s->eject_cb);
1185 qemu_free_irq(s->ro_cb);
1187 g_free(s->fifo_buffer);
1188 s->fifo_buffer = NULL;
1191 const VMStateDescription sdhci_vmstate = {
1192 .name = "sdhci",
1193 .version_id = 2,
1194 .minimum_version_id = 1,
1195 .fields = (VMStateField[]) {
1196 VMSTATE_UINT32(sdmasysad, SDHCIState),
1197 VMSTATE_UINT16(blksize, SDHCIState),
1198 VMSTATE_UINT16(blkcnt, SDHCIState),
1199 VMSTATE_UINT32(argument, SDHCIState),
1200 VMSTATE_UINT16(trnmod, SDHCIState),
1201 VMSTATE_UINT16(cmdreg, SDHCIState),
1202 VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1203 VMSTATE_UINT32(prnsts, SDHCIState),
1204 VMSTATE_UINT8(hostctl, SDHCIState),
1205 VMSTATE_UINT8(pwrcon, SDHCIState),
1206 VMSTATE_UINT8(blkgap, SDHCIState),
1207 VMSTATE_UINT8(wakcon, SDHCIState),
1208 VMSTATE_UINT16(clkcon, SDHCIState),
1209 VMSTATE_UINT8(timeoutcon, SDHCIState),
1210 VMSTATE_UINT8(admaerr, SDHCIState),
1211 VMSTATE_UINT16(norintsts, SDHCIState),
1212 VMSTATE_UINT16(errintsts, SDHCIState),
1213 VMSTATE_UINT16(norintstsen, SDHCIState),
1214 VMSTATE_UINT16(errintstsen, SDHCIState),
1215 VMSTATE_UINT16(norintsigen, SDHCIState),
1216 VMSTATE_UINT16(errintsigen, SDHCIState),
1217 VMSTATE_UINT16(acmd12errsts, SDHCIState),
1218 VMSTATE_UINT16(data_count, SDHCIState),
1219 VMSTATE_UINT64(admasysaddr, SDHCIState),
1220 VMSTATE_UINT8(stopped_state, SDHCIState),
1221 VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, 0, buf_maxsz),
1222 VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1223 VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1224 VMSTATE_BOOL(pending_insert, SDHCIState),
1225 VMSTATE_END_OF_LIST()
1229 /* Capabilities registers provide information on supported features of this
1230 * specific host controller implementation */
1231 static Property sdhci_pci_properties[] = {
1232 DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1233 SDHC_CAPAB_REG_DEFAULT),
1234 DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1235 DEFINE_PROP_END_OF_LIST(),
1238 static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1240 SDHCIState *s = PCI_SDHCI(dev);
1241 dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
1242 dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
1243 sdhci_initfn(s);
1244 s->buf_maxsz = sdhci_get_fifolen(s);
1245 s->fifo_buffer = g_malloc0(s->buf_maxsz);
1246 s->irq = pci_allocate_irq(dev);
1247 memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1248 SDHC_REGISTERS_MAP_SIZE);
1249 pci_register_bar(dev, 0, 0, &s->iomem);
1252 static void sdhci_pci_exit(PCIDevice *dev)
1254 SDHCIState *s = PCI_SDHCI(dev);
1255 sdhci_uninitfn(s);
1258 static void sdhci_pci_class_init(ObjectClass *klass, void *data)
1260 DeviceClass *dc = DEVICE_CLASS(klass);
1261 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1263 k->realize = sdhci_pci_realize;
1264 k->exit = sdhci_pci_exit;
1265 k->vendor_id = PCI_VENDOR_ID_REDHAT;
1266 k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
1267 k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1268 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1269 dc->vmsd = &sdhci_vmstate;
1270 dc->props = sdhci_pci_properties;
1273 static const TypeInfo sdhci_pci_info = {
1274 .name = TYPE_PCI_SDHCI,
1275 .parent = TYPE_PCI_DEVICE,
1276 .instance_size = sizeof(SDHCIState),
1277 .class_init = sdhci_pci_class_init,
1280 static Property sdhci_sysbus_properties[] = {
1281 DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1282 SDHC_CAPAB_REG_DEFAULT),
1283 DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1284 DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert,
1285 false),
1286 DEFINE_PROP_END_OF_LIST(),
1289 static void sdhci_sysbus_init(Object *obj)
1291 SDHCIState *s = SYSBUS_SDHCI(obj);
1293 sdhci_initfn(s);
1296 static void sdhci_sysbus_finalize(Object *obj)
1298 SDHCIState *s = SYSBUS_SDHCI(obj);
1299 sdhci_uninitfn(s);
1302 static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1304 SDHCIState *s = SYSBUS_SDHCI(dev);
1305 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1307 s->buf_maxsz = sdhci_get_fifolen(s);
1308 s->fifo_buffer = g_malloc0(s->buf_maxsz);
1309 sysbus_init_irq(sbd, &s->irq);
1310 memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1311 SDHC_REGISTERS_MAP_SIZE);
1312 sysbus_init_mmio(sbd, &s->iomem);
1315 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1317 DeviceClass *dc = DEVICE_CLASS(klass);
1319 dc->vmsd = &sdhci_vmstate;
1320 dc->props = sdhci_sysbus_properties;
1321 dc->realize = sdhci_sysbus_realize;
1324 static const TypeInfo sdhci_sysbus_info = {
1325 .name = TYPE_SYSBUS_SDHCI,
1326 .parent = TYPE_SYS_BUS_DEVICE,
1327 .instance_size = sizeof(SDHCIState),
1328 .instance_init = sdhci_sysbus_init,
1329 .instance_finalize = sdhci_sysbus_finalize,
1330 .class_init = sdhci_sysbus_class_init,
1333 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1335 SDBusClass *sbc = SD_BUS_CLASS(klass);
1337 sbc->set_inserted = sdhci_set_inserted;
1338 sbc->set_readonly = sdhci_set_readonly;
1341 static const TypeInfo sdhci_bus_info = {
1342 .name = TYPE_SDHCI_BUS,
1343 .parent = TYPE_SD_BUS,
1344 .instance_size = sizeof(SDBus),
1345 .class_init = sdhci_bus_class_init,
1348 static void sdhci_register_types(void)
1350 type_register_static(&sdhci_pci_info);
1351 type_register_static(&sdhci_sysbus_info);
1352 type_register_static(&sdhci_bus_info);
1355 type_init(sdhci_register_types)