Merge remote-tracking branch 'remotes/armbru/tags/pull-qapi-2021-02-08' into staging
[qemu/ar7.git] / target / arm / cpu.c
blob8ddb2556f8cf6f4d749fc07834baa005bbfa8015
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/sysemu.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_arm.h"
43 #include "disas/capstone.h"
44 #include "fpu/softfloat.h"
46 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
48 ARMCPU *cpu = ARM_CPU(cs);
49 CPUARMState *env = &cpu->env;
51 if (is_a64(env)) {
52 env->pc = value;
53 env->thumb = 0;
54 } else {
55 env->regs[15] = value & ~1;
56 env->thumb = value & 1;
60 #ifdef CONFIG_TCG
61 void arm_cpu_synchronize_from_tb(CPUState *cs,
62 const TranslationBlock *tb)
64 ARMCPU *cpu = ARM_CPU(cs);
65 CPUARMState *env = &cpu->env;
68 * It's OK to look at env for the current mode here, because it's
69 * never possible for an AArch64 TB to chain to an AArch32 TB.
71 if (is_a64(env)) {
72 env->pc = tb->pc;
73 } else {
74 env->regs[15] = tb->pc;
77 #endif /* CONFIG_TCG */
79 static bool arm_cpu_has_work(CPUState *cs)
81 ARMCPU *cpu = ARM_CPU(cs);
83 return (cpu->power_state != PSCI_OFF)
84 && cs->interrupt_request &
85 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
86 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
87 | CPU_INTERRUPT_EXITTB);
90 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
91 void *opaque)
93 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
95 entry->hook = hook;
96 entry->opaque = opaque;
98 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
101 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
102 void *opaque)
104 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
106 entry->hook = hook;
107 entry->opaque = opaque;
109 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
112 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
114 /* Reset a single ARMCPRegInfo register */
115 ARMCPRegInfo *ri = value;
116 ARMCPU *cpu = opaque;
118 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
119 return;
122 if (ri->resetfn) {
123 ri->resetfn(&cpu->env, ri);
124 return;
127 /* A zero offset is never possible as it would be regs[0]
128 * so we use it to indicate that reset is being handled elsewhere.
129 * This is basically only used for fields in non-core coprocessors
130 * (like the pxa2xx ones).
132 if (!ri->fieldoffset) {
133 return;
136 if (cpreg_field_is_64bit(ri)) {
137 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
138 } else {
139 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
143 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
145 /* Purely an assertion check: we've already done reset once,
146 * so now check that running the reset for the cpreg doesn't
147 * change its value. This traps bugs where two different cpregs
148 * both try to reset the same state field but to different values.
150 ARMCPRegInfo *ri = value;
151 ARMCPU *cpu = opaque;
152 uint64_t oldvalue, newvalue;
154 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
155 return;
158 oldvalue = read_raw_cp_reg(&cpu->env, ri);
159 cp_reg_reset(key, value, opaque);
160 newvalue = read_raw_cp_reg(&cpu->env, ri);
161 assert(oldvalue == newvalue);
164 static void arm_cpu_reset(DeviceState *dev)
166 CPUState *s = CPU(dev);
167 ARMCPU *cpu = ARM_CPU(s);
168 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
169 CPUARMState *env = &cpu->env;
171 acc->parent_reset(dev);
173 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
175 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
176 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
178 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
179 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
180 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
181 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
183 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
185 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
186 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
189 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
190 /* 64 bit CPUs always start in 64 bit mode */
191 env->aarch64 = 1;
192 #if defined(CONFIG_USER_ONLY)
193 env->pstate = PSTATE_MODE_EL0t;
194 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
195 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
196 /* Enable all PAC keys. */
197 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
198 SCTLR_EnDA | SCTLR_EnDB);
199 /* and to the FP/Neon instructions */
200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
201 /* and to the SVE instructions */
202 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
203 /* with reasonable vector length */
204 if (cpu_isar_feature(aa64_sve, cpu)) {
205 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
208 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
209 * turning on both here will produce smaller code and otherwise
210 * make no difference to the user-level emulation.
212 * In sve_probe_page, we assume that this is set.
213 * Do not modify this without other changes.
215 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
216 #else
217 /* Reset into the highest available EL */
218 if (arm_feature(env, ARM_FEATURE_EL3)) {
219 env->pstate = PSTATE_MODE_EL3h;
220 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
221 env->pstate = PSTATE_MODE_EL2h;
222 } else {
223 env->pstate = PSTATE_MODE_EL1h;
225 env->pc = cpu->rvbar;
226 #endif
227 } else {
228 #if defined(CONFIG_USER_ONLY)
229 /* Userspace expects access to cp10 and cp11 for FP/Neon */
230 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
231 #endif
234 #if defined(CONFIG_USER_ONLY)
235 env->uncached_cpsr = ARM_CPU_MODE_USR;
236 /* For user mode we must enable access to coprocessors */
237 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
238 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
239 env->cp15.c15_cpar = 3;
240 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
241 env->cp15.c15_cpar = 1;
243 #else
246 * If the highest available EL is EL2, AArch32 will start in Hyp
247 * mode; otherwise it starts in SVC. Note that if we start in
248 * AArch64 then these values in the uncached_cpsr will be ignored.
250 if (arm_feature(env, ARM_FEATURE_EL2) &&
251 !arm_feature(env, ARM_FEATURE_EL3)) {
252 env->uncached_cpsr = ARM_CPU_MODE_HYP;
253 } else {
254 env->uncached_cpsr = ARM_CPU_MODE_SVC;
256 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
258 if (arm_feature(env, ARM_FEATURE_M)) {
259 uint32_t initial_msp; /* Loaded from 0x0 */
260 uint32_t initial_pc; /* Loaded from 0x4 */
261 uint8_t *rom;
262 uint32_t vecbase;
264 if (cpu_isar_feature(aa32_lob, cpu)) {
266 * LTPSIZE is constant 4 if MVE not implemented, and resets
267 * to an UNKNOWN value if MVE is implemented. We choose to
268 * always reset to 4.
270 env->v7m.ltpsize = 4;
271 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
272 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
273 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
276 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
277 env->v7m.secure = true;
278 } else {
279 /* This bit resets to 0 if security is supported, but 1 if
280 * it is not. The bit is not present in v7M, but we set it
281 * here so we can avoid having to make checks on it conditional
282 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
284 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
286 * Set NSACR to indicate "NS access permitted to everything";
287 * this avoids having to have all the tests of it being
288 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
289 * v8.1M the guest-visible value of NSACR in a CPU without the
290 * Security Extension is 0xcff.
292 env->v7m.nsacr = 0xcff;
295 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
296 * that it resets to 1, so QEMU always does that rather than making
297 * it dependent on CPU model. In v8M it is RES1.
299 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
300 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
301 if (arm_feature(env, ARM_FEATURE_V8)) {
302 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
303 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
304 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
306 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
307 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
308 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
311 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
312 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
313 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
314 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
316 /* Unlike A/R profile, M profile defines the reset LR value */
317 env->regs[14] = 0xffffffff;
319 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
321 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
322 vecbase = env->v7m.vecbase[env->v7m.secure];
323 rom = rom_ptr(vecbase, 8);
324 if (rom) {
325 /* Address zero is covered by ROM which hasn't yet been
326 * copied into physical memory.
328 initial_msp = ldl_p(rom);
329 initial_pc = ldl_p(rom + 4);
330 } else {
331 /* Address zero not covered by a ROM blob, or the ROM blob
332 * is in non-modifiable memory and this is a second reset after
333 * it got copied into memory. In the latter case, rom_ptr
334 * will return a NULL pointer and we should use ldl_phys instead.
336 initial_msp = ldl_phys(s->as, vecbase);
337 initial_pc = ldl_phys(s->as, vecbase + 4);
340 env->regs[13] = initial_msp & 0xFFFFFFFC;
341 env->regs[15] = initial_pc & ~1;
342 env->thumb = initial_pc & 1;
345 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
346 * executing as AArch32 then check if highvecs are enabled and
347 * adjust the PC accordingly.
349 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
350 env->regs[15] = 0xFFFF0000;
353 /* M profile requires that reset clears the exclusive monitor;
354 * A profile does not, but clearing it makes more sense than having it
355 * set with an exclusive access on address zero.
357 arm_clear_exclusive(env);
359 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
360 #endif
362 if (arm_feature(env, ARM_FEATURE_PMSA)) {
363 if (cpu->pmsav7_dregion > 0) {
364 if (arm_feature(env, ARM_FEATURE_V8)) {
365 memset(env->pmsav8.rbar[M_REG_NS], 0,
366 sizeof(*env->pmsav8.rbar[M_REG_NS])
367 * cpu->pmsav7_dregion);
368 memset(env->pmsav8.rlar[M_REG_NS], 0,
369 sizeof(*env->pmsav8.rlar[M_REG_NS])
370 * cpu->pmsav7_dregion);
371 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
372 memset(env->pmsav8.rbar[M_REG_S], 0,
373 sizeof(*env->pmsav8.rbar[M_REG_S])
374 * cpu->pmsav7_dregion);
375 memset(env->pmsav8.rlar[M_REG_S], 0,
376 sizeof(*env->pmsav8.rlar[M_REG_S])
377 * cpu->pmsav7_dregion);
379 } else if (arm_feature(env, ARM_FEATURE_V7)) {
380 memset(env->pmsav7.drbar, 0,
381 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
382 memset(env->pmsav7.drsr, 0,
383 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
384 memset(env->pmsav7.dracr, 0,
385 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
388 env->pmsav7.rnr[M_REG_NS] = 0;
389 env->pmsav7.rnr[M_REG_S] = 0;
390 env->pmsav8.mair0[M_REG_NS] = 0;
391 env->pmsav8.mair0[M_REG_S] = 0;
392 env->pmsav8.mair1[M_REG_NS] = 0;
393 env->pmsav8.mair1[M_REG_S] = 0;
396 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
397 if (cpu->sau_sregion > 0) {
398 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
399 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
401 env->sau.rnr = 0;
402 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
403 * the Cortex-M33 does.
405 env->sau.ctrl = 0;
408 set_flush_to_zero(1, &env->vfp.standard_fp_status);
409 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
410 set_default_nan_mode(1, &env->vfp.standard_fp_status);
411 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
412 set_float_detect_tininess(float_tininess_before_rounding,
413 &env->vfp.fp_status);
414 set_float_detect_tininess(float_tininess_before_rounding,
415 &env->vfp.standard_fp_status);
416 set_float_detect_tininess(float_tininess_before_rounding,
417 &env->vfp.fp_status_f16);
418 set_float_detect_tininess(float_tininess_before_rounding,
419 &env->vfp.standard_fp_status_f16);
420 #ifndef CONFIG_USER_ONLY
421 if (kvm_enabled()) {
422 kvm_arm_reset_vcpu(cpu);
424 #endif
426 hw_breakpoint_update_all(cpu);
427 hw_watchpoint_update_all(cpu);
428 arm_rebuild_hflags(env);
431 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
432 unsigned int target_el,
433 unsigned int cur_el, bool secure,
434 uint64_t hcr_el2)
436 CPUARMState *env = cs->env_ptr;
437 bool pstate_unmasked;
438 bool unmasked = false;
441 * Don't take exceptions if they target a lower EL.
442 * This check should catch any exceptions that would not be taken
443 * but left pending.
445 if (cur_el > target_el) {
446 return false;
449 switch (excp_idx) {
450 case EXCP_FIQ:
451 pstate_unmasked = !(env->daif & PSTATE_F);
452 break;
454 case EXCP_IRQ:
455 pstate_unmasked = !(env->daif & PSTATE_I);
456 break;
458 case EXCP_VFIQ:
459 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
460 /* VFIQs are only taken when hypervized. */
461 return false;
463 return !(env->daif & PSTATE_F);
464 case EXCP_VIRQ:
465 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
466 /* VIRQs are only taken when hypervized. */
467 return false;
469 return !(env->daif & PSTATE_I);
470 default:
471 g_assert_not_reached();
475 * Use the target EL, current execution state and SCR/HCR settings to
476 * determine whether the corresponding CPSR bit is used to mask the
477 * interrupt.
479 if ((target_el > cur_el) && (target_el != 1)) {
480 /* Exceptions targeting a higher EL may not be maskable */
481 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
483 * 64-bit masking rules are simple: exceptions to EL3
484 * can't be masked, and exceptions to EL2 can only be
485 * masked from Secure state. The HCR and SCR settings
486 * don't affect the masking logic, only the interrupt routing.
488 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
489 unmasked = true;
491 } else {
493 * The old 32-bit-only environment has a more complicated
494 * masking setup. HCR and SCR bits not only affect interrupt
495 * routing but also change the behaviour of masking.
497 bool hcr, scr;
499 switch (excp_idx) {
500 case EXCP_FIQ:
502 * If FIQs are routed to EL3 or EL2 then there are cases where
503 * we override the CPSR.F in determining if the exception is
504 * masked or not. If neither of these are set then we fall back
505 * to the CPSR.F setting otherwise we further assess the state
506 * below.
508 hcr = hcr_el2 & HCR_FMO;
509 scr = (env->cp15.scr_el3 & SCR_FIQ);
512 * When EL3 is 32-bit, the SCR.FW bit controls whether the
513 * CPSR.F bit masks FIQ interrupts when taken in non-secure
514 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
515 * when non-secure but only when FIQs are only routed to EL3.
517 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
518 break;
519 case EXCP_IRQ:
521 * When EL3 execution state is 32-bit, if HCR.IMO is set then
522 * we may override the CPSR.I masking when in non-secure state.
523 * The SCR.IRQ setting has already been taken into consideration
524 * when setting the target EL, so it does not have a further
525 * affect here.
527 hcr = hcr_el2 & HCR_IMO;
528 scr = false;
529 break;
530 default:
531 g_assert_not_reached();
534 if ((scr || hcr) && !secure) {
535 unmasked = true;
541 * The PSTATE bits only mask the interrupt if we have not overriden the
542 * ability above.
544 return unmasked || pstate_unmasked;
547 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
549 CPUClass *cc = CPU_GET_CLASS(cs);
550 CPUARMState *env = cs->env_ptr;
551 uint32_t cur_el = arm_current_el(env);
552 bool secure = arm_is_secure(env);
553 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
554 uint32_t target_el;
555 uint32_t excp_idx;
557 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
559 if (interrupt_request & CPU_INTERRUPT_FIQ) {
560 excp_idx = EXCP_FIQ;
561 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
562 if (arm_excp_unmasked(cs, excp_idx, target_el,
563 cur_el, secure, hcr_el2)) {
564 goto found;
567 if (interrupt_request & CPU_INTERRUPT_HARD) {
568 excp_idx = EXCP_IRQ;
569 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
570 if (arm_excp_unmasked(cs, excp_idx, target_el,
571 cur_el, secure, hcr_el2)) {
572 goto found;
575 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
576 excp_idx = EXCP_VIRQ;
577 target_el = 1;
578 if (arm_excp_unmasked(cs, excp_idx, target_el,
579 cur_el, secure, hcr_el2)) {
580 goto found;
583 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
584 excp_idx = EXCP_VFIQ;
585 target_el = 1;
586 if (arm_excp_unmasked(cs, excp_idx, target_el,
587 cur_el, secure, hcr_el2)) {
588 goto found;
591 return false;
593 found:
594 cs->exception_index = excp_idx;
595 env->exception.target_el = target_el;
596 cc->tcg_ops->do_interrupt(cs);
597 return true;
600 void arm_cpu_update_virq(ARMCPU *cpu)
603 * Update the interrupt level for VIRQ, which is the logical OR of
604 * the HCR_EL2.VI bit and the input line level from the GIC.
606 CPUARMState *env = &cpu->env;
607 CPUState *cs = CPU(cpu);
609 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
610 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
612 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
613 if (new_state) {
614 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
615 } else {
616 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
621 void arm_cpu_update_vfiq(ARMCPU *cpu)
624 * Update the interrupt level for VFIQ, which is the logical OR of
625 * the HCR_EL2.VF bit and the input line level from the GIC.
627 CPUARMState *env = &cpu->env;
628 CPUState *cs = CPU(cpu);
630 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
631 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
633 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
634 if (new_state) {
635 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
636 } else {
637 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
642 #ifndef CONFIG_USER_ONLY
643 static void arm_cpu_set_irq(void *opaque, int irq, int level)
645 ARMCPU *cpu = opaque;
646 CPUARMState *env = &cpu->env;
647 CPUState *cs = CPU(cpu);
648 static const int mask[] = {
649 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
650 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
651 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
652 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
655 if (level) {
656 env->irq_line_state |= mask[irq];
657 } else {
658 env->irq_line_state &= ~mask[irq];
661 switch (irq) {
662 case ARM_CPU_VIRQ:
663 assert(arm_feature(env, ARM_FEATURE_EL2));
664 arm_cpu_update_virq(cpu);
665 break;
666 case ARM_CPU_VFIQ:
667 assert(arm_feature(env, ARM_FEATURE_EL2));
668 arm_cpu_update_vfiq(cpu);
669 break;
670 case ARM_CPU_IRQ:
671 case ARM_CPU_FIQ:
672 if (level) {
673 cpu_interrupt(cs, mask[irq]);
674 } else {
675 cpu_reset_interrupt(cs, mask[irq]);
677 break;
678 default:
679 g_assert_not_reached();
683 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
685 #ifdef CONFIG_KVM
686 ARMCPU *cpu = opaque;
687 CPUARMState *env = &cpu->env;
688 CPUState *cs = CPU(cpu);
689 uint32_t linestate_bit;
690 int irq_id;
692 switch (irq) {
693 case ARM_CPU_IRQ:
694 irq_id = KVM_ARM_IRQ_CPU_IRQ;
695 linestate_bit = CPU_INTERRUPT_HARD;
696 break;
697 case ARM_CPU_FIQ:
698 irq_id = KVM_ARM_IRQ_CPU_FIQ;
699 linestate_bit = CPU_INTERRUPT_FIQ;
700 break;
701 default:
702 g_assert_not_reached();
705 if (level) {
706 env->irq_line_state |= linestate_bit;
707 } else {
708 env->irq_line_state &= ~linestate_bit;
710 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
711 #endif
714 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
716 ARMCPU *cpu = ARM_CPU(cs);
717 CPUARMState *env = &cpu->env;
719 cpu_synchronize_state(cs);
720 return arm_cpu_data_is_big_endian(env);
723 #endif
725 static int
726 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
728 return print_insn_arm(pc | 1, info);
731 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
733 ARMCPU *ac = ARM_CPU(cpu);
734 CPUARMState *env = &ac->env;
735 bool sctlr_b;
737 if (is_a64(env)) {
738 /* We might not be compiled with the A64 disassembler
739 * because it needs a C++ compiler. Leave print_insn
740 * unset in this case to use the caller default behaviour.
742 #if defined(CONFIG_ARM_A64_DIS)
743 info->print_insn = print_insn_arm_a64;
744 #endif
745 info->cap_arch = CS_ARCH_ARM64;
746 info->cap_insn_unit = 4;
747 info->cap_insn_split = 4;
748 } else {
749 int cap_mode;
750 if (env->thumb) {
751 info->print_insn = print_insn_thumb1;
752 info->cap_insn_unit = 2;
753 info->cap_insn_split = 4;
754 cap_mode = CS_MODE_THUMB;
755 } else {
756 info->print_insn = print_insn_arm;
757 info->cap_insn_unit = 4;
758 info->cap_insn_split = 4;
759 cap_mode = CS_MODE_ARM;
761 if (arm_feature(env, ARM_FEATURE_V8)) {
762 cap_mode |= CS_MODE_V8;
764 if (arm_feature(env, ARM_FEATURE_M)) {
765 cap_mode |= CS_MODE_MCLASS;
767 info->cap_arch = CS_ARCH_ARM;
768 info->cap_mode = cap_mode;
771 sctlr_b = arm_sctlr_b(env);
772 if (bswap_code(sctlr_b)) {
773 #ifdef TARGET_WORDS_BIGENDIAN
774 info->endian = BFD_ENDIAN_LITTLE;
775 #else
776 info->endian = BFD_ENDIAN_BIG;
777 #endif
779 info->flags &= ~INSN_ARM_BE32;
780 #ifndef CONFIG_USER_ONLY
781 if (sctlr_b) {
782 info->flags |= INSN_ARM_BE32;
784 #endif
787 #ifdef TARGET_AARCH64
789 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
791 ARMCPU *cpu = ARM_CPU(cs);
792 CPUARMState *env = &cpu->env;
793 uint32_t psr = pstate_read(env);
794 int i;
795 int el = arm_current_el(env);
796 const char *ns_status;
798 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
799 for (i = 0; i < 32; i++) {
800 if (i == 31) {
801 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
802 } else {
803 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
804 (i + 2) % 3 ? " " : "\n");
808 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
809 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
810 } else {
811 ns_status = "";
813 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
814 psr,
815 psr & PSTATE_N ? 'N' : '-',
816 psr & PSTATE_Z ? 'Z' : '-',
817 psr & PSTATE_C ? 'C' : '-',
818 psr & PSTATE_V ? 'V' : '-',
819 ns_status,
821 psr & PSTATE_SP ? 'h' : 't');
823 if (cpu_isar_feature(aa64_bti, cpu)) {
824 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
826 if (!(flags & CPU_DUMP_FPU)) {
827 qemu_fprintf(f, "\n");
828 return;
830 if (fp_exception_el(env, el) != 0) {
831 qemu_fprintf(f, " FPU disabled\n");
832 return;
834 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
835 vfp_get_fpcr(env), vfp_get_fpsr(env));
837 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
838 int j, zcr_len = sve_zcr_len_for_el(env, el);
840 for (i = 0; i <= FFR_PRED_NUM; i++) {
841 bool eol;
842 if (i == FFR_PRED_NUM) {
843 qemu_fprintf(f, "FFR=");
844 /* It's last, so end the line. */
845 eol = true;
846 } else {
847 qemu_fprintf(f, "P%02d=", i);
848 switch (zcr_len) {
849 case 0:
850 eol = i % 8 == 7;
851 break;
852 case 1:
853 eol = i % 6 == 5;
854 break;
855 case 2:
856 case 3:
857 eol = i % 3 == 2;
858 break;
859 default:
860 /* More than one quadword per predicate. */
861 eol = true;
862 break;
865 for (j = zcr_len / 4; j >= 0; j--) {
866 int digits;
867 if (j * 4 + 4 <= zcr_len + 1) {
868 digits = 16;
869 } else {
870 digits = (zcr_len % 4 + 1) * 4;
872 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
873 env->vfp.pregs[i].p[j],
874 j ? ":" : eol ? "\n" : " ");
878 for (i = 0; i < 32; i++) {
879 if (zcr_len == 0) {
880 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
881 i, env->vfp.zregs[i].d[1],
882 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
883 } else if (zcr_len == 1) {
884 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
885 ":%016" PRIx64 ":%016" PRIx64 "\n",
886 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
887 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
888 } else {
889 for (j = zcr_len; j >= 0; j--) {
890 bool odd = (zcr_len - j) % 2 != 0;
891 if (j == zcr_len) {
892 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
893 } else if (!odd) {
894 if (j > 0) {
895 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
896 } else {
897 qemu_fprintf(f, " [%x]=", j);
900 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
901 env->vfp.zregs[i].d[j * 2 + 1],
902 env->vfp.zregs[i].d[j * 2],
903 odd || j == 0 ? "\n" : ":");
907 } else {
908 for (i = 0; i < 32; i++) {
909 uint64_t *q = aa64_vfp_qreg(env, i);
910 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
911 i, q[1], q[0], (i & 1 ? "\n" : " "));
916 #else
918 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
920 g_assert_not_reached();
923 #endif
925 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
927 ARMCPU *cpu = ARM_CPU(cs);
928 CPUARMState *env = &cpu->env;
929 int i;
931 if (is_a64(env)) {
932 aarch64_cpu_dump_state(cs, f, flags);
933 return;
936 for (i = 0; i < 16; i++) {
937 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
938 if ((i % 4) == 3) {
939 qemu_fprintf(f, "\n");
940 } else {
941 qemu_fprintf(f, " ");
945 if (arm_feature(env, ARM_FEATURE_M)) {
946 uint32_t xpsr = xpsr_read(env);
947 const char *mode;
948 const char *ns_status = "";
950 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
951 ns_status = env->v7m.secure ? "S " : "NS ";
954 if (xpsr & XPSR_EXCP) {
955 mode = "handler";
956 } else {
957 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
958 mode = "unpriv-thread";
959 } else {
960 mode = "priv-thread";
964 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
965 xpsr,
966 xpsr & XPSR_N ? 'N' : '-',
967 xpsr & XPSR_Z ? 'Z' : '-',
968 xpsr & XPSR_C ? 'C' : '-',
969 xpsr & XPSR_V ? 'V' : '-',
970 xpsr & XPSR_T ? 'T' : 'A',
971 ns_status,
972 mode);
973 } else {
974 uint32_t psr = cpsr_read(env);
975 const char *ns_status = "";
977 if (arm_feature(env, ARM_FEATURE_EL3) &&
978 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
979 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
982 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
983 psr,
984 psr & CPSR_N ? 'N' : '-',
985 psr & CPSR_Z ? 'Z' : '-',
986 psr & CPSR_C ? 'C' : '-',
987 psr & CPSR_V ? 'V' : '-',
988 psr & CPSR_T ? 'T' : 'A',
989 ns_status,
990 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
993 if (flags & CPU_DUMP_FPU) {
994 int numvfpregs = 0;
995 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
996 numvfpregs = 32;
997 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
998 numvfpregs = 16;
1000 for (i = 0; i < numvfpregs; i++) {
1001 uint64_t v = *aa32_vfp_dreg(env, i);
1002 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1003 i * 2, (uint32_t)v,
1004 i * 2 + 1, (uint32_t)(v >> 32),
1005 i, v);
1007 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1011 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1013 uint32_t Aff1 = idx / clustersz;
1014 uint32_t Aff0 = idx % clustersz;
1015 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1018 static void cpreg_hashtable_data_destroy(gpointer data)
1021 * Destroy function for cpu->cp_regs hashtable data entries.
1022 * We must free the name string because it was g_strdup()ed in
1023 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1024 * from r->name because we know we definitely allocated it.
1026 ARMCPRegInfo *r = data;
1028 g_free((void *)r->name);
1029 g_free(r);
1032 static void arm_cpu_initfn(Object *obj)
1034 ARMCPU *cpu = ARM_CPU(obj);
1036 cpu_set_cpustate_pointers(cpu);
1037 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1038 g_free, cpreg_hashtable_data_destroy);
1040 QLIST_INIT(&cpu->pre_el_change_hooks);
1041 QLIST_INIT(&cpu->el_change_hooks);
1043 #ifndef CONFIG_USER_ONLY
1044 /* Our inbound IRQ and FIQ lines */
1045 if (kvm_enabled()) {
1046 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1047 * the same interface as non-KVM CPUs.
1049 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1050 } else {
1051 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1054 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1055 ARRAY_SIZE(cpu->gt_timer_outputs));
1057 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1058 "gicv3-maintenance-interrupt", 1);
1059 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1060 "pmu-interrupt", 1);
1061 #endif
1063 /* DTB consumers generally don't in fact care what the 'compatible'
1064 * string is, so always provide some string and trust that a hypothetical
1065 * picky DTB consumer will also provide a helpful error message.
1067 cpu->dtb_compatible = "qemu,unknown";
1068 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1069 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1071 if (tcg_enabled()) {
1072 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1076 static Property arm_cpu_gt_cntfrq_property =
1077 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1078 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1080 static Property arm_cpu_reset_cbar_property =
1081 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1083 static Property arm_cpu_reset_hivecs_property =
1084 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1086 static Property arm_cpu_rvbar_property =
1087 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1089 #ifndef CONFIG_USER_ONLY
1090 static Property arm_cpu_has_el2_property =
1091 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1093 static Property arm_cpu_has_el3_property =
1094 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1095 #endif
1097 static Property arm_cpu_cfgend_property =
1098 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1100 static Property arm_cpu_has_vfp_property =
1101 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1103 static Property arm_cpu_has_neon_property =
1104 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1106 static Property arm_cpu_has_dsp_property =
1107 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1109 static Property arm_cpu_has_mpu_property =
1110 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1112 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1113 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1114 * the right value for that particular CPU type, and we don't want
1115 * to override that with an incorrect constant value.
1117 static Property arm_cpu_pmsav7_dregion_property =
1118 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1119 pmsav7_dregion,
1120 qdev_prop_uint32, uint32_t);
1122 static bool arm_get_pmu(Object *obj, Error **errp)
1124 ARMCPU *cpu = ARM_CPU(obj);
1126 return cpu->has_pmu;
1129 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1131 ARMCPU *cpu = ARM_CPU(obj);
1133 if (value) {
1134 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1135 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1136 return;
1138 set_feature(&cpu->env, ARM_FEATURE_PMU);
1139 } else {
1140 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1142 cpu->has_pmu = value;
1145 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1148 * The exact approach to calculating guest ticks is:
1150 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1151 * NANOSECONDS_PER_SECOND);
1153 * We don't do that. Rather we intentionally use integer division
1154 * truncation below and in the caller for the conversion of host monotonic
1155 * time to guest ticks to provide the exact inverse for the semantics of
1156 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1157 * it loses precision when representing frequencies where
1158 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1159 * provide an exact inverse leads to scheduling timers with negative
1160 * periods, which in turn leads to sticky behaviour in the guest.
1162 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1163 * cannot become zero.
1165 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1166 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1169 void arm_cpu_post_init(Object *obj)
1171 ARMCPU *cpu = ARM_CPU(obj);
1173 /* M profile implies PMSA. We have to do this here rather than
1174 * in realize with the other feature-implication checks because
1175 * we look at the PMSA bit to see if we should add some properties.
1177 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1178 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1181 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1182 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1183 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1186 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1187 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1190 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1191 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1194 #ifndef CONFIG_USER_ONLY
1195 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1196 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1197 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1199 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1201 object_property_add_link(obj, "secure-memory",
1202 TYPE_MEMORY_REGION,
1203 (Object **)&cpu->secure_memory,
1204 qdev_prop_allow_set_link_before_realize,
1205 OBJ_PROP_LINK_STRONG);
1208 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1209 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1211 #endif
1213 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1214 cpu->has_pmu = true;
1215 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1219 * Allow user to turn off VFP and Neon support, but only for TCG --
1220 * KVM does not currently allow us to lie to the guest about its
1221 * ID/feature registers, so the guest always sees what the host has.
1223 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1224 ? cpu_isar_feature(aa64_fp_simd, cpu)
1225 : cpu_isar_feature(aa32_vfp, cpu)) {
1226 cpu->has_vfp = true;
1227 if (!kvm_enabled()) {
1228 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1232 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1233 cpu->has_neon = true;
1234 if (!kvm_enabled()) {
1235 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1239 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1240 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1241 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1244 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1245 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1246 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1247 qdev_property_add_static(DEVICE(obj),
1248 &arm_cpu_pmsav7_dregion_property);
1252 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1253 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1254 qdev_prop_allow_set_link_before_realize,
1255 OBJ_PROP_LINK_STRONG);
1257 * M profile: initial value of the Secure VTOR. We can't just use
1258 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1259 * the property to be set after realize.
1261 object_property_add_uint32_ptr(obj, "init-svtor",
1262 &cpu->init_svtor,
1263 OBJ_PROP_FLAG_READWRITE);
1266 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1268 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1269 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1272 if (kvm_enabled()) {
1273 kvm_arm_add_vcpu_properties(obj);
1276 #ifndef CONFIG_USER_ONLY
1277 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1278 cpu_isar_feature(aa64_mte, cpu)) {
1279 object_property_add_link(obj, "tag-memory",
1280 TYPE_MEMORY_REGION,
1281 (Object **)&cpu->tag_memory,
1282 qdev_prop_allow_set_link_before_realize,
1283 OBJ_PROP_LINK_STRONG);
1285 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1286 object_property_add_link(obj, "secure-tag-memory",
1287 TYPE_MEMORY_REGION,
1288 (Object **)&cpu->secure_tag_memory,
1289 qdev_prop_allow_set_link_before_realize,
1290 OBJ_PROP_LINK_STRONG);
1293 #endif
1296 static void arm_cpu_finalizefn(Object *obj)
1298 ARMCPU *cpu = ARM_CPU(obj);
1299 ARMELChangeHook *hook, *next;
1301 g_hash_table_destroy(cpu->cp_regs);
1303 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1304 QLIST_REMOVE(hook, node);
1305 g_free(hook);
1307 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1308 QLIST_REMOVE(hook, node);
1309 g_free(hook);
1311 #ifndef CONFIG_USER_ONLY
1312 if (cpu->pmu_timer) {
1313 timer_free(cpu->pmu_timer);
1315 #endif
1318 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1320 Error *local_err = NULL;
1322 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1323 arm_cpu_sve_finalize(cpu, &local_err);
1324 if (local_err != NULL) {
1325 error_propagate(errp, local_err);
1326 return;
1330 * KVM does not support modifications to this feature.
1331 * We have not registered the cpu properties when KVM
1332 * is in use, so the user will not be able to set them.
1334 if (!kvm_enabled()) {
1335 arm_cpu_pauth_finalize(cpu, &local_err);
1336 if (local_err != NULL) {
1337 error_propagate(errp, local_err);
1338 return;
1343 if (kvm_enabled()) {
1344 kvm_arm_steal_time_finalize(cpu, &local_err);
1345 if (local_err != NULL) {
1346 error_propagate(errp, local_err);
1347 return;
1352 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1354 CPUState *cs = CPU(dev);
1355 ARMCPU *cpu = ARM_CPU(dev);
1356 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1357 CPUARMState *env = &cpu->env;
1358 int pagebits;
1359 Error *local_err = NULL;
1360 bool no_aa32 = false;
1362 /* If we needed to query the host kernel for the CPU features
1363 * then it's possible that might have failed in the initfn, but
1364 * this is the first point where we can report it.
1366 if (cpu->host_cpu_probe_failed) {
1367 if (!kvm_enabled()) {
1368 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1369 } else {
1370 error_setg(errp, "Failed to retrieve host CPU features");
1372 return;
1375 #ifndef CONFIG_USER_ONLY
1376 /* The NVIC and M-profile CPU are two halves of a single piece of
1377 * hardware; trying to use one without the other is a command line
1378 * error and will result in segfaults if not caught here.
1380 if (arm_feature(env, ARM_FEATURE_M)) {
1381 if (!env->nvic) {
1382 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1383 return;
1385 } else {
1386 if (env->nvic) {
1387 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1388 return;
1393 uint64_t scale;
1395 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1396 if (!cpu->gt_cntfrq_hz) {
1397 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1398 cpu->gt_cntfrq_hz);
1399 return;
1401 scale = gt_cntfrq_period_ns(cpu);
1402 } else {
1403 scale = GTIMER_SCALE;
1406 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1407 arm_gt_ptimer_cb, cpu);
1408 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1409 arm_gt_vtimer_cb, cpu);
1410 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1411 arm_gt_htimer_cb, cpu);
1412 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1413 arm_gt_stimer_cb, cpu);
1414 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1415 arm_gt_hvtimer_cb, cpu);
1417 #endif
1419 cpu_exec_realizefn(cs, &local_err);
1420 if (local_err != NULL) {
1421 error_propagate(errp, local_err);
1422 return;
1425 arm_cpu_finalize_features(cpu, &local_err);
1426 if (local_err != NULL) {
1427 error_propagate(errp, local_err);
1428 return;
1431 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1432 cpu->has_vfp != cpu->has_neon) {
1434 * This is an architectural requirement for AArch64; AArch32 is
1435 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1437 error_setg(errp,
1438 "AArch64 CPUs must have both VFP and Neon or neither");
1439 return;
1442 if (!cpu->has_vfp) {
1443 uint64_t t;
1444 uint32_t u;
1446 t = cpu->isar.id_aa64isar1;
1447 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1448 cpu->isar.id_aa64isar1 = t;
1450 t = cpu->isar.id_aa64pfr0;
1451 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1452 cpu->isar.id_aa64pfr0 = t;
1454 u = cpu->isar.id_isar6;
1455 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1456 cpu->isar.id_isar6 = u;
1458 u = cpu->isar.mvfr0;
1459 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1460 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1461 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1462 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1463 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1464 if (!arm_feature(env, ARM_FEATURE_M)) {
1465 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1466 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1468 cpu->isar.mvfr0 = u;
1470 u = cpu->isar.mvfr1;
1471 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1472 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1473 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1474 if (arm_feature(env, ARM_FEATURE_M)) {
1475 u = FIELD_DP32(u, MVFR1, FP16, 0);
1477 cpu->isar.mvfr1 = u;
1479 u = cpu->isar.mvfr2;
1480 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1481 cpu->isar.mvfr2 = u;
1484 if (!cpu->has_neon) {
1485 uint64_t t;
1486 uint32_t u;
1488 unset_feature(env, ARM_FEATURE_NEON);
1490 t = cpu->isar.id_aa64isar0;
1491 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1492 cpu->isar.id_aa64isar0 = t;
1494 t = cpu->isar.id_aa64isar1;
1495 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1496 cpu->isar.id_aa64isar1 = t;
1498 t = cpu->isar.id_aa64pfr0;
1499 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1500 cpu->isar.id_aa64pfr0 = t;
1502 u = cpu->isar.id_isar5;
1503 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1504 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1505 cpu->isar.id_isar5 = u;
1507 u = cpu->isar.id_isar6;
1508 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1509 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1510 cpu->isar.id_isar6 = u;
1512 if (!arm_feature(env, ARM_FEATURE_M)) {
1513 u = cpu->isar.mvfr1;
1514 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1515 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1516 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1517 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1518 cpu->isar.mvfr1 = u;
1520 u = cpu->isar.mvfr2;
1521 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1522 cpu->isar.mvfr2 = u;
1526 if (!cpu->has_neon && !cpu->has_vfp) {
1527 uint64_t t;
1528 uint32_t u;
1530 t = cpu->isar.id_aa64isar0;
1531 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1532 cpu->isar.id_aa64isar0 = t;
1534 t = cpu->isar.id_aa64isar1;
1535 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1536 cpu->isar.id_aa64isar1 = t;
1538 u = cpu->isar.mvfr0;
1539 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1540 cpu->isar.mvfr0 = u;
1542 /* Despite the name, this field covers both VFP and Neon */
1543 u = cpu->isar.mvfr1;
1544 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1545 cpu->isar.mvfr1 = u;
1548 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1549 uint32_t u;
1551 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1553 u = cpu->isar.id_isar1;
1554 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1555 cpu->isar.id_isar1 = u;
1557 u = cpu->isar.id_isar2;
1558 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1559 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1560 cpu->isar.id_isar2 = u;
1562 u = cpu->isar.id_isar3;
1563 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1564 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1565 cpu->isar.id_isar3 = u;
1568 /* Some features automatically imply others: */
1569 if (arm_feature(env, ARM_FEATURE_V8)) {
1570 if (arm_feature(env, ARM_FEATURE_M)) {
1571 set_feature(env, ARM_FEATURE_V7);
1572 } else {
1573 set_feature(env, ARM_FEATURE_V7VE);
1578 * There exist AArch64 cpus without AArch32 support. When KVM
1579 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1580 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1581 * As a general principle, we also do not make ID register
1582 * consistency checks anywhere unless using TCG, because only
1583 * for TCG would a consistency-check failure be a QEMU bug.
1585 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1586 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1589 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1590 /* v7 Virtualization Extensions. In real hardware this implies
1591 * EL2 and also the presence of the Security Extensions.
1592 * For QEMU, for backwards-compatibility we implement some
1593 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1594 * include the various other features that V7VE implies.
1595 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1596 * Security Extensions is ARM_FEATURE_EL3.
1598 assert(!tcg_enabled() || no_aa32 ||
1599 cpu_isar_feature(aa32_arm_div, cpu));
1600 set_feature(env, ARM_FEATURE_LPAE);
1601 set_feature(env, ARM_FEATURE_V7);
1603 if (arm_feature(env, ARM_FEATURE_V7)) {
1604 set_feature(env, ARM_FEATURE_VAPA);
1605 set_feature(env, ARM_FEATURE_THUMB2);
1606 set_feature(env, ARM_FEATURE_MPIDR);
1607 if (!arm_feature(env, ARM_FEATURE_M)) {
1608 set_feature(env, ARM_FEATURE_V6K);
1609 } else {
1610 set_feature(env, ARM_FEATURE_V6);
1613 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1614 * non-EL3 configs. This is needed by some legacy boards.
1616 set_feature(env, ARM_FEATURE_VBAR);
1618 if (arm_feature(env, ARM_FEATURE_V6K)) {
1619 set_feature(env, ARM_FEATURE_V6);
1620 set_feature(env, ARM_FEATURE_MVFR);
1622 if (arm_feature(env, ARM_FEATURE_V6)) {
1623 set_feature(env, ARM_FEATURE_V5);
1624 if (!arm_feature(env, ARM_FEATURE_M)) {
1625 assert(!tcg_enabled() || no_aa32 ||
1626 cpu_isar_feature(aa32_jazelle, cpu));
1627 set_feature(env, ARM_FEATURE_AUXCR);
1630 if (arm_feature(env, ARM_FEATURE_V5)) {
1631 set_feature(env, ARM_FEATURE_V4T);
1633 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1634 set_feature(env, ARM_FEATURE_V7MP);
1636 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1637 set_feature(env, ARM_FEATURE_CBAR);
1639 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1640 !arm_feature(env, ARM_FEATURE_M)) {
1641 set_feature(env, ARM_FEATURE_THUMB_DSP);
1645 * We rely on no XScale CPU having VFP so we can use the same bits in the
1646 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1648 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1649 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1650 !arm_feature(env, ARM_FEATURE_XSCALE));
1652 if (arm_feature(env, ARM_FEATURE_V7) &&
1653 !arm_feature(env, ARM_FEATURE_M) &&
1654 !arm_feature(env, ARM_FEATURE_PMSA)) {
1655 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1656 * can use 4K pages.
1658 pagebits = 12;
1659 } else {
1660 /* For CPUs which might have tiny 1K pages, or which have an
1661 * MPU and might have small region sizes, stick with 1K pages.
1663 pagebits = 10;
1665 if (!set_preferred_target_page_bits(pagebits)) {
1666 /* This can only ever happen for hotplugging a CPU, or if
1667 * the board code incorrectly creates a CPU which it has
1668 * promised via minimum_page_size that it will not.
1670 error_setg(errp, "This CPU requires a smaller page size than the "
1671 "system is using");
1672 return;
1675 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1676 * We don't support setting cluster ID ([16..23]) (known as Aff2
1677 * in later ARM ARM versions), or any of the higher affinity level fields,
1678 * so these bits always RAZ.
1680 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1681 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1682 ARM_DEFAULT_CPUS_PER_CLUSTER);
1685 if (cpu->reset_hivecs) {
1686 cpu->reset_sctlr |= (1 << 13);
1689 if (cpu->cfgend) {
1690 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1691 cpu->reset_sctlr |= SCTLR_EE;
1692 } else {
1693 cpu->reset_sctlr |= SCTLR_B;
1697 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1698 /* If the has_el3 CPU property is disabled then we need to disable the
1699 * feature.
1701 unset_feature(env, ARM_FEATURE_EL3);
1703 /* Disable the security extension feature bits in the processor feature
1704 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1706 cpu->isar.id_pfr1 &= ~0xf0;
1707 cpu->isar.id_aa64pfr0 &= ~0xf000;
1710 if (!cpu->has_el2) {
1711 unset_feature(env, ARM_FEATURE_EL2);
1714 if (!cpu->has_pmu) {
1715 unset_feature(env, ARM_FEATURE_PMU);
1717 if (arm_feature(env, ARM_FEATURE_PMU)) {
1718 pmu_init(cpu);
1720 if (!kvm_enabled()) {
1721 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1722 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1725 #ifndef CONFIG_USER_ONLY
1726 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1727 cpu);
1728 #endif
1729 } else {
1730 cpu->isar.id_aa64dfr0 =
1731 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1732 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1733 cpu->pmceid0 = 0;
1734 cpu->pmceid1 = 0;
1737 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1738 /* Disable the hypervisor feature bits in the processor feature
1739 * registers if we don't have EL2. These are id_pfr1[15:12] and
1740 * id_aa64pfr0_el1[11:8].
1742 cpu->isar.id_aa64pfr0 &= ~0xf00;
1743 cpu->isar.id_pfr1 &= ~0xf000;
1746 #ifndef CONFIG_USER_ONLY
1747 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1749 * Disable the MTE feature bits if we do not have tag-memory
1750 * provided by the machine.
1752 cpu->isar.id_aa64pfr1 =
1753 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1755 #endif
1757 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1758 * to false or by setting pmsav7-dregion to 0.
1760 if (!cpu->has_mpu) {
1761 cpu->pmsav7_dregion = 0;
1763 if (cpu->pmsav7_dregion == 0) {
1764 cpu->has_mpu = false;
1767 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1768 arm_feature(env, ARM_FEATURE_V7)) {
1769 uint32_t nr = cpu->pmsav7_dregion;
1771 if (nr > 0xff) {
1772 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1773 return;
1776 if (nr) {
1777 if (arm_feature(env, ARM_FEATURE_V8)) {
1778 /* PMSAv8 */
1779 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1780 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1781 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1782 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1783 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1785 } else {
1786 env->pmsav7.drbar = g_new0(uint32_t, nr);
1787 env->pmsav7.drsr = g_new0(uint32_t, nr);
1788 env->pmsav7.dracr = g_new0(uint32_t, nr);
1793 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1794 uint32_t nr = cpu->sau_sregion;
1796 if (nr > 0xff) {
1797 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1798 return;
1801 if (nr) {
1802 env->sau.rbar = g_new0(uint32_t, nr);
1803 env->sau.rlar = g_new0(uint32_t, nr);
1807 if (arm_feature(env, ARM_FEATURE_EL3)) {
1808 set_feature(env, ARM_FEATURE_VBAR);
1811 register_cp_regs_for_features(cpu);
1812 arm_cpu_register_gdb_regs_for_features(cpu);
1814 init_cpreg_list(cpu);
1816 #ifndef CONFIG_USER_ONLY
1817 MachineState *ms = MACHINE(qdev_get_machine());
1818 unsigned int smp_cpus = ms->smp.cpus;
1819 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1822 * We must set cs->num_ases to the final value before
1823 * the first call to cpu_address_space_init.
1825 if (cpu->tag_memory != NULL) {
1826 cs->num_ases = 3 + has_secure;
1827 } else {
1828 cs->num_ases = 1 + has_secure;
1831 if (has_secure) {
1832 if (!cpu->secure_memory) {
1833 cpu->secure_memory = cs->memory;
1835 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1836 cpu->secure_memory);
1839 if (cpu->tag_memory != NULL) {
1840 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1841 cpu->tag_memory);
1842 if (has_secure) {
1843 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1844 cpu->secure_tag_memory);
1848 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1850 /* No core_count specified, default to smp_cpus. */
1851 if (cpu->core_count == -1) {
1852 cpu->core_count = smp_cpus;
1854 #endif
1856 if (tcg_enabled()) {
1857 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1860 * We only support DCZ blocklen that fits on one page.
1862 * Architectually this is always true. However TARGET_PAGE_SIZE
1863 * is variable and, for compatibility with -machine virt-2.7,
1864 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1865 * But even then, while the largest architectural DCZ blocklen
1866 * is 2KiB, no cpu actually uses such a large blocklen.
1868 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1871 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1872 * both nibbles of each byte storing tag data may be written at once.
1873 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1875 if (cpu_isar_feature(aa64_mte, cpu)) {
1876 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1880 qemu_init_vcpu(cs);
1881 cpu_reset(cs);
1883 acc->parent_realize(dev, errp);
1886 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1888 ObjectClass *oc;
1889 char *typename;
1890 char **cpuname;
1891 const char *cpunamestr;
1893 cpuname = g_strsplit(cpu_model, ",", 1);
1894 cpunamestr = cpuname[0];
1895 #ifdef CONFIG_USER_ONLY
1896 /* For backwards compatibility usermode emulation allows "-cpu any",
1897 * which has the same semantics as "-cpu max".
1899 if (!strcmp(cpunamestr, "any")) {
1900 cpunamestr = "max";
1902 #endif
1903 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1904 oc = object_class_by_name(typename);
1905 g_strfreev(cpuname);
1906 g_free(typename);
1907 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1908 object_class_is_abstract(oc)) {
1909 return NULL;
1911 return oc;
1914 /* CPU models. These are not needed for the AArch64 linux-user build. */
1915 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1917 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1918 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1919 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1920 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1921 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1922 REGINFO_SENTINEL
1925 static void cortex_a8_initfn(Object *obj)
1927 ARMCPU *cpu = ARM_CPU(obj);
1929 cpu->dtb_compatible = "arm,cortex-a8";
1930 set_feature(&cpu->env, ARM_FEATURE_V7);
1931 set_feature(&cpu->env, ARM_FEATURE_NEON);
1932 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1933 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1934 set_feature(&cpu->env, ARM_FEATURE_EL3);
1935 cpu->midr = 0x410fc080;
1936 cpu->reset_fpsid = 0x410330c0;
1937 cpu->isar.mvfr0 = 0x11110222;
1938 cpu->isar.mvfr1 = 0x00011111;
1939 cpu->ctr = 0x82048004;
1940 cpu->reset_sctlr = 0x00c50078;
1941 cpu->isar.id_pfr0 = 0x1031;
1942 cpu->isar.id_pfr1 = 0x11;
1943 cpu->isar.id_dfr0 = 0x400;
1944 cpu->id_afr0 = 0;
1945 cpu->isar.id_mmfr0 = 0x31100003;
1946 cpu->isar.id_mmfr1 = 0x20000000;
1947 cpu->isar.id_mmfr2 = 0x01202000;
1948 cpu->isar.id_mmfr3 = 0x11;
1949 cpu->isar.id_isar0 = 0x00101111;
1950 cpu->isar.id_isar1 = 0x12112111;
1951 cpu->isar.id_isar2 = 0x21232031;
1952 cpu->isar.id_isar3 = 0x11112131;
1953 cpu->isar.id_isar4 = 0x00111142;
1954 cpu->isar.dbgdidr = 0x15141000;
1955 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1956 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1957 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1958 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1959 cpu->reset_auxcr = 2;
1960 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1963 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1964 /* power_control should be set to maximum latency. Again,
1965 * default to 0 and set by private hook
1967 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1968 .access = PL1_RW, .resetvalue = 0,
1969 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1970 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1971 .access = PL1_RW, .resetvalue = 0,
1972 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1973 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1974 .access = PL1_RW, .resetvalue = 0,
1975 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1976 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1977 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1978 /* TLB lockdown control */
1979 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1980 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1981 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1982 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1983 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1984 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1985 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1986 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1987 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1988 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1989 REGINFO_SENTINEL
1992 static void cortex_a9_initfn(Object *obj)
1994 ARMCPU *cpu = ARM_CPU(obj);
1996 cpu->dtb_compatible = "arm,cortex-a9";
1997 set_feature(&cpu->env, ARM_FEATURE_V7);
1998 set_feature(&cpu->env, ARM_FEATURE_NEON);
1999 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2000 set_feature(&cpu->env, ARM_FEATURE_EL3);
2001 /* Note that A9 supports the MP extensions even for
2002 * A9UP and single-core A9MP (which are both different
2003 * and valid configurations; we don't model A9UP).
2005 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2006 set_feature(&cpu->env, ARM_FEATURE_CBAR);
2007 cpu->midr = 0x410fc090;
2008 cpu->reset_fpsid = 0x41033090;
2009 cpu->isar.mvfr0 = 0x11110222;
2010 cpu->isar.mvfr1 = 0x01111111;
2011 cpu->ctr = 0x80038003;
2012 cpu->reset_sctlr = 0x00c50078;
2013 cpu->isar.id_pfr0 = 0x1031;
2014 cpu->isar.id_pfr1 = 0x11;
2015 cpu->isar.id_dfr0 = 0x000;
2016 cpu->id_afr0 = 0;
2017 cpu->isar.id_mmfr0 = 0x00100103;
2018 cpu->isar.id_mmfr1 = 0x20000000;
2019 cpu->isar.id_mmfr2 = 0x01230000;
2020 cpu->isar.id_mmfr3 = 0x00002111;
2021 cpu->isar.id_isar0 = 0x00101111;
2022 cpu->isar.id_isar1 = 0x13112111;
2023 cpu->isar.id_isar2 = 0x21232041;
2024 cpu->isar.id_isar3 = 0x11112131;
2025 cpu->isar.id_isar4 = 0x00111142;
2026 cpu->isar.dbgdidr = 0x35141000;
2027 cpu->clidr = (1 << 27) | (1 << 24) | 3;
2028 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2029 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2030 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2033 #ifndef CONFIG_USER_ONLY
2034 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2036 MachineState *ms = MACHINE(qdev_get_machine());
2038 /* Linux wants the number of processors from here.
2039 * Might as well set the interrupt-controller bit too.
2041 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2043 #endif
2045 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2046 #ifndef CONFIG_USER_ONLY
2047 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2048 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2049 .writefn = arm_cp_write_ignore, },
2050 #endif
2051 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2052 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2053 REGINFO_SENTINEL
2056 static void cortex_a7_initfn(Object *obj)
2058 ARMCPU *cpu = ARM_CPU(obj);
2060 cpu->dtb_compatible = "arm,cortex-a7";
2061 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2062 set_feature(&cpu->env, ARM_FEATURE_NEON);
2063 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2064 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2065 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2066 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2067 set_feature(&cpu->env, ARM_FEATURE_EL2);
2068 set_feature(&cpu->env, ARM_FEATURE_EL3);
2069 set_feature(&cpu->env, ARM_FEATURE_PMU);
2070 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2071 cpu->midr = 0x410fc075;
2072 cpu->reset_fpsid = 0x41023075;
2073 cpu->isar.mvfr0 = 0x10110222;
2074 cpu->isar.mvfr1 = 0x11111111;
2075 cpu->ctr = 0x84448003;
2076 cpu->reset_sctlr = 0x00c50078;
2077 cpu->isar.id_pfr0 = 0x00001131;
2078 cpu->isar.id_pfr1 = 0x00011011;
2079 cpu->isar.id_dfr0 = 0x02010555;
2080 cpu->id_afr0 = 0x00000000;
2081 cpu->isar.id_mmfr0 = 0x10101105;
2082 cpu->isar.id_mmfr1 = 0x40000000;
2083 cpu->isar.id_mmfr2 = 0x01240000;
2084 cpu->isar.id_mmfr3 = 0x02102211;
2085 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2086 * table 4-41 gives 0x02101110, which includes the arm div insns.
2088 cpu->isar.id_isar0 = 0x02101110;
2089 cpu->isar.id_isar1 = 0x13112111;
2090 cpu->isar.id_isar2 = 0x21232041;
2091 cpu->isar.id_isar3 = 0x11112131;
2092 cpu->isar.id_isar4 = 0x10011142;
2093 cpu->isar.dbgdidr = 0x3515f005;
2094 cpu->clidr = 0x0a200023;
2095 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2096 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2097 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2098 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2101 static void cortex_a15_initfn(Object *obj)
2103 ARMCPU *cpu = ARM_CPU(obj);
2105 cpu->dtb_compatible = "arm,cortex-a15";
2106 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2107 set_feature(&cpu->env, ARM_FEATURE_NEON);
2108 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2109 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2110 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2111 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2112 set_feature(&cpu->env, ARM_FEATURE_EL2);
2113 set_feature(&cpu->env, ARM_FEATURE_EL3);
2114 set_feature(&cpu->env, ARM_FEATURE_PMU);
2115 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2116 cpu->midr = 0x412fc0f1;
2117 cpu->reset_fpsid = 0x410430f0;
2118 cpu->isar.mvfr0 = 0x10110222;
2119 cpu->isar.mvfr1 = 0x11111111;
2120 cpu->ctr = 0x8444c004;
2121 cpu->reset_sctlr = 0x00c50078;
2122 cpu->isar.id_pfr0 = 0x00001131;
2123 cpu->isar.id_pfr1 = 0x00011011;
2124 cpu->isar.id_dfr0 = 0x02010555;
2125 cpu->id_afr0 = 0x00000000;
2126 cpu->isar.id_mmfr0 = 0x10201105;
2127 cpu->isar.id_mmfr1 = 0x20000000;
2128 cpu->isar.id_mmfr2 = 0x01240000;
2129 cpu->isar.id_mmfr3 = 0x02102211;
2130 cpu->isar.id_isar0 = 0x02101110;
2131 cpu->isar.id_isar1 = 0x13112111;
2132 cpu->isar.id_isar2 = 0x21232041;
2133 cpu->isar.id_isar3 = 0x11112131;
2134 cpu->isar.id_isar4 = 0x10011142;
2135 cpu->isar.dbgdidr = 0x3515f021;
2136 cpu->clidr = 0x0a200023;
2137 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2138 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2139 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2140 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2143 #ifndef TARGET_AARCH64
2145 * -cpu max: a CPU with as many features enabled as our emulation supports.
2146 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2147 * this only needs to handle 32 bits, and need not care about KVM.
2149 static void arm_max_initfn(Object *obj)
2151 ARMCPU *cpu = ARM_CPU(obj);
2153 cortex_a15_initfn(obj);
2155 /* old-style VFP short-vector support */
2156 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2158 #ifdef CONFIG_USER_ONLY
2160 * We don't set these in system emulation mode for the moment,
2161 * since we don't correctly set (all of) the ID registers to
2162 * advertise them.
2164 set_feature(&cpu->env, ARM_FEATURE_V8);
2166 uint32_t t;
2168 t = cpu->isar.id_isar5;
2169 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2170 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2171 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2172 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2173 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2174 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2175 cpu->isar.id_isar5 = t;
2177 t = cpu->isar.id_isar6;
2178 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2179 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2180 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2181 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2182 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2183 cpu->isar.id_isar6 = t;
2185 t = cpu->isar.mvfr1;
2186 t = FIELD_DP32(t, MVFR1, FPHP, 3); /* v8.2-FP16 */
2187 t = FIELD_DP32(t, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
2188 cpu->isar.mvfr1 = t;
2190 t = cpu->isar.mvfr2;
2191 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2192 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2193 cpu->isar.mvfr2 = t;
2195 t = cpu->isar.id_mmfr3;
2196 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2197 cpu->isar.id_mmfr3 = t;
2199 t = cpu->isar.id_mmfr4;
2200 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2201 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2202 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2203 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2204 cpu->isar.id_mmfr4 = t;
2206 #endif
2208 #endif
2210 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2212 static const ARMCPUInfo arm_cpus[] = {
2213 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2214 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2215 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2216 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2217 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2218 #ifndef TARGET_AARCH64
2219 { .name = "max", .initfn = arm_max_initfn },
2220 #endif
2221 #ifdef CONFIG_USER_ONLY
2222 { .name = "any", .initfn = arm_max_initfn },
2223 #endif
2224 #endif
2227 static Property arm_cpu_properties[] = {
2228 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2229 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2230 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2231 mp_affinity, ARM64_AFFINITY_INVALID),
2232 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2233 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2234 DEFINE_PROP_END_OF_LIST()
2237 static gchar *arm_gdb_arch_name(CPUState *cs)
2239 ARMCPU *cpu = ARM_CPU(cs);
2240 CPUARMState *env = &cpu->env;
2242 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2243 return g_strdup("iwmmxt");
2245 return g_strdup("arm");
2248 #ifdef CONFIG_TCG
2249 static struct TCGCPUOps arm_tcg_ops = {
2250 .initialize = arm_translate_init,
2251 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2252 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2253 .tlb_fill = arm_cpu_tlb_fill,
2254 .debug_excp_handler = arm_debug_excp_handler,
2256 #if !defined(CONFIG_USER_ONLY)
2257 .do_interrupt = arm_cpu_do_interrupt,
2258 .do_transaction_failed = arm_cpu_do_transaction_failed,
2259 .do_unaligned_access = arm_cpu_do_unaligned_access,
2260 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2261 .debug_check_watchpoint = arm_debug_check_watchpoint,
2262 #endif /* !CONFIG_USER_ONLY */
2264 #endif /* CONFIG_TCG */
2266 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2268 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2269 CPUClass *cc = CPU_CLASS(acc);
2270 DeviceClass *dc = DEVICE_CLASS(oc);
2272 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2273 &acc->parent_realize);
2275 device_class_set_props(dc, arm_cpu_properties);
2276 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2278 cc->class_by_name = arm_cpu_class_by_name;
2279 cc->has_work = arm_cpu_has_work;
2280 cc->dump_state = arm_cpu_dump_state;
2281 cc->set_pc = arm_cpu_set_pc;
2282 cc->gdb_read_register = arm_cpu_gdb_read_register;
2283 cc->gdb_write_register = arm_cpu_gdb_write_register;
2284 #ifndef CONFIG_USER_ONLY
2285 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2286 cc->asidx_from_attrs = arm_asidx_from_attrs;
2287 cc->vmsd = &vmstate_arm_cpu;
2288 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2289 cc->write_elf64_note = arm_cpu_write_elf64_note;
2290 cc->write_elf32_note = arm_cpu_write_elf32_note;
2291 #endif
2292 cc->gdb_num_core_regs = 26;
2293 cc->gdb_core_xml_file = "arm-core.xml";
2294 cc->gdb_arch_name = arm_gdb_arch_name;
2295 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2296 cc->gdb_stop_before_watchpoint = true;
2297 cc->disas_set_info = arm_disas_set_info;
2299 #ifdef CONFIG_TCG
2300 cc->tcg_ops = &arm_tcg_ops;
2301 #endif /* CONFIG_TCG */
2304 #ifdef CONFIG_KVM
2305 static void arm_host_initfn(Object *obj)
2307 ARMCPU *cpu = ARM_CPU(obj);
2309 kvm_arm_set_cpu_features_from_host(cpu);
2310 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2311 aarch64_add_sve_properties(obj);
2313 arm_cpu_post_init(obj);
2316 static const TypeInfo host_arm_cpu_type_info = {
2317 .name = TYPE_ARM_HOST_CPU,
2318 .parent = TYPE_AARCH64_CPU,
2319 .instance_init = arm_host_initfn,
2322 #endif
2324 static void arm_cpu_instance_init(Object *obj)
2326 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2328 acc->info->initfn(obj);
2329 arm_cpu_post_init(obj);
2332 static void cpu_register_class_init(ObjectClass *oc, void *data)
2334 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2336 acc->info = data;
2339 void arm_cpu_register(const ARMCPUInfo *info)
2341 TypeInfo type_info = {
2342 .parent = TYPE_ARM_CPU,
2343 .instance_size = sizeof(ARMCPU),
2344 .instance_align = __alignof__(ARMCPU),
2345 .instance_init = arm_cpu_instance_init,
2346 .class_size = sizeof(ARMCPUClass),
2347 .class_init = info->class_init ?: cpu_register_class_init,
2348 .class_data = (void *)info,
2351 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2352 type_register(&type_info);
2353 g_free((void *)type_info.name);
2356 static const TypeInfo arm_cpu_type_info = {
2357 .name = TYPE_ARM_CPU,
2358 .parent = TYPE_CPU,
2359 .instance_size = sizeof(ARMCPU),
2360 .instance_align = __alignof__(ARMCPU),
2361 .instance_init = arm_cpu_initfn,
2362 .instance_finalize = arm_cpu_finalizefn,
2363 .abstract = true,
2364 .class_size = sizeof(ARMCPUClass),
2365 .class_init = arm_cpu_class_init,
2368 static const TypeInfo idau_interface_type_info = {
2369 .name = TYPE_IDAU_INTERFACE,
2370 .parent = TYPE_INTERFACE,
2371 .class_size = sizeof(IDAUInterfaceClass),
2374 static void arm_cpu_register_types(void)
2376 const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2378 type_register_static(&arm_cpu_type_info);
2380 #ifdef CONFIG_KVM
2381 type_register_static(&host_arm_cpu_type_info);
2382 #endif
2384 if (cpu_count) {
2385 size_t i;
2387 type_register_static(&idau_interface_type_info);
2388 for (i = 0; i < cpu_count; ++i) {
2389 arm_cpu_register(&arm_cpus[i]);
2394 type_init(arm_cpu_register_types)