linux-user/sparc: Remove target_rt_signal_frame as unused
[qemu/ar7.git] / linux-user / sparc / signal.c
blob29c5e3b0c0beb8fa7d280c6a5f1748fc425a0d5d
1 /*
2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
24 /* A Sparc stack frame */
25 struct sparc_stackf {
26 abi_ulong locals[8];
27 abi_ulong ins[8];
28 /* It's simpler to treat fp and callers_pc as elements of ins[]
29 * since we never need to access them ourselves.
31 char *structptr;
32 abi_ulong xargs[6];
33 abi_ulong xxargs[1];
36 typedef struct {
37 struct {
38 abi_ulong psr;
39 abi_ulong pc;
40 abi_ulong npc;
41 abi_ulong y;
42 abi_ulong u_regs[16]; /* globals and ins */
43 } si_regs;
44 int si_mask;
45 } __siginfo_t;
47 typedef struct {
48 abi_ulong si_float_regs[32];
49 unsigned long si_fsr;
50 unsigned long si_fpqdepth;
51 struct {
52 unsigned long *insn_addr;
53 unsigned long insn;
54 } si_fpqueue [16];
55 } qemu_siginfo_fpu_t;
58 struct target_signal_frame {
59 struct sparc_stackf ss;
60 __siginfo_t info;
61 abi_ulong fpu_save;
62 uint32_t insns[2] QEMU_ALIGNED(8);
63 abi_ulong extramask[TARGET_NSIG_WORDS - 1];
64 abi_ulong extra_size; /* Should be 0 */
65 qemu_siginfo_fpu_t fpu_state;
68 static inline abi_ulong get_sigframe(struct target_sigaction *sa,
69 CPUSPARCState *env,
70 unsigned long framesize)
72 abi_ulong sp = get_sp_from_cpustate(env);
75 * If we are on the alternate signal stack and would overflow it, don't.
76 * Return an always-bogus address instead so we will die with SIGSEGV.
78 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
79 return -1;
82 /* This is the X/Open sanctioned signal stack switching. */
83 sp = target_sigsp(sp, sa) - framesize;
85 /* Always align the stack frame. This handles two cases. First,
86 * sigaltstack need not be mindful of platform specific stack
87 * alignment. Second, if we took this signal because the stack
88 * is not aligned properly, we'd like to take the signal cleanly
89 * and report that.
91 sp &= ~15UL;
93 return sp;
96 static int
97 setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask)
99 int err = 0, i;
101 __put_user(env->psr, &si->si_regs.psr);
102 __put_user(env->pc, &si->si_regs.pc);
103 __put_user(env->npc, &si->si_regs.npc);
104 __put_user(env->y, &si->si_regs.y);
105 for (i=0; i < 8; i++) {
106 __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
108 for (i=0; i < 8; i++) {
109 __put_user(env->regwptr[WREG_O0 + i], &si->si_regs.u_regs[i + 8]);
111 __put_user(mask, &si->si_mask);
112 return err;
115 #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7)))
117 void setup_frame(int sig, struct target_sigaction *ka,
118 target_sigset_t *set, CPUSPARCState *env)
120 abi_ulong sf_addr;
121 struct target_signal_frame *sf;
122 int sigframe_size, err, i;
124 /* 1. Make sure everything is clean */
125 //synchronize_user_stack();
127 sigframe_size = NF_ALIGNEDSZ;
128 sf_addr = get_sigframe(ka, env, sigframe_size);
129 trace_user_setup_frame(env, sf_addr);
131 sf = lock_user(VERIFY_WRITE, sf_addr,
132 sizeof(struct target_signal_frame), 0);
133 if (!sf) {
134 goto sigsegv;
136 #if 0
137 if (invalid_frame_pointer(sf, sigframe_size))
138 goto sigill_and_return;
139 #endif
140 /* 2. Save the current process state */
141 err = setup___siginfo(&sf->info, env, set->sig[0]);
142 __put_user(0, &sf->extra_size);
144 //save_fpu_state(regs, &sf->fpu_state);
145 //__put_user(&sf->fpu_state, &sf->fpu_save);
147 __put_user(set->sig[0], &sf->info.si_mask);
148 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
149 __put_user(set->sig[i + 1], &sf->extramask[i]);
152 for (i = 0; i < 8; i++) {
153 __put_user(env->regwptr[i + WREG_L0], &sf->ss.locals[i]);
155 for (i = 0; i < 8; i++) {
156 __put_user(env->regwptr[i + WREG_I0], &sf->ss.ins[i]);
158 if (err)
159 goto sigsegv;
161 /* 3. signal handler back-trampoline and parameters */
162 env->regwptr[WREG_SP] = sf_addr;
163 env->regwptr[WREG_O0] = sig;
164 env->regwptr[WREG_O1] = sf_addr +
165 offsetof(struct target_signal_frame, info);
166 env->regwptr[WREG_O2] = sf_addr +
167 offsetof(struct target_signal_frame, info);
169 /* 4. signal handler */
170 env->pc = ka->_sa_handler;
171 env->npc = (env->pc + 4);
172 /* 5. return to kernel instructions */
173 if (ka->ka_restorer) {
174 env->regwptr[WREG_O7] = ka->ka_restorer;
175 } else {
176 uint32_t val32;
178 env->regwptr[WREG_O7] = sf_addr +
179 offsetof(struct target_signal_frame, insns) - 2 * 4;
181 /* mov __NR_sigreturn, %g1 */
182 val32 = 0x821020d8;
183 __put_user(val32, &sf->insns[0]);
185 /* t 0x10 */
186 val32 = 0x91d02010;
187 __put_user(val32, &sf->insns[1]);
189 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
190 return;
191 #if 0
192 sigill_and_return:
193 force_sig(TARGET_SIGILL);
194 #endif
195 sigsegv:
196 unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
197 force_sigsegv(sig);
200 void setup_rt_frame(int sig, struct target_sigaction *ka,
201 target_siginfo_t *info,
202 target_sigset_t *set, CPUSPARCState *env)
204 qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
207 long do_sigreturn(CPUSPARCState *env)
209 abi_ulong sf_addr;
210 struct target_signal_frame *sf;
211 abi_ulong up_psr, pc, npc;
212 target_sigset_t set;
213 sigset_t host_set;
214 int i;
216 sf_addr = env->regwptr[WREG_SP];
217 trace_user_do_sigreturn(env, sf_addr);
218 if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
219 goto segv_and_exit;
222 /* 1. Make sure we are not getting garbage from the user */
224 if (sf_addr & 3)
225 goto segv_and_exit;
227 __get_user(pc, &sf->info.si_regs.pc);
228 __get_user(npc, &sf->info.si_regs.npc);
230 if ((pc | npc) & 3) {
231 goto segv_and_exit;
234 /* 2. Restore the state */
235 __get_user(up_psr, &sf->info.si_regs.psr);
237 /* User can only change condition codes and FPU enabling in %psr. */
238 env->psr = (up_psr & (PSR_ICC /* | PSR_EF */))
239 | (env->psr & ~(PSR_ICC /* | PSR_EF */));
241 env->pc = pc;
242 env->npc = npc;
243 __get_user(env->y, &sf->info.si_regs.y);
244 for (i=0; i < 8; i++) {
245 __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
247 for (i=0; i < 8; i++) {
248 __get_user(env->regwptr[i + WREG_O0], &sf->info.si_regs.u_regs[i + 8]);
251 /* FIXME: implement FPU save/restore:
252 * __get_user(fpu_save, &sf->fpu_save);
253 * if (fpu_save) {
254 * if (restore_fpu_state(env, fpu_save)) {
255 * goto segv_and_exit;
260 /* This is pretty much atomic, no amount locking would prevent
261 * the races which exist anyways.
263 __get_user(set.sig[0], &sf->info.si_mask);
264 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
265 __get_user(set.sig[i], &sf->extramask[i - 1]);
268 target_to_host_sigset_internal(&host_set, &set);
269 set_sigmask(&host_set);
271 unlock_user_struct(sf, sf_addr, 0);
272 return -TARGET_QEMU_ESIGRETURN;
274 segv_and_exit:
275 unlock_user_struct(sf, sf_addr, 0);
276 force_sig(TARGET_SIGSEGV);
277 return -TARGET_QEMU_ESIGRETURN;
280 long do_rt_sigreturn(CPUSPARCState *env)
282 trace_user_do_rt_sigreturn(env, 0);
283 qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
284 return -TARGET_ENOSYS;
287 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
288 #define SPARC_MC_TSTATE 0
289 #define SPARC_MC_PC 1
290 #define SPARC_MC_NPC 2
291 #define SPARC_MC_Y 3
292 #define SPARC_MC_G1 4
293 #define SPARC_MC_G2 5
294 #define SPARC_MC_G3 6
295 #define SPARC_MC_G4 7
296 #define SPARC_MC_G5 8
297 #define SPARC_MC_G6 9
298 #define SPARC_MC_G7 10
299 #define SPARC_MC_O0 11
300 #define SPARC_MC_O1 12
301 #define SPARC_MC_O2 13
302 #define SPARC_MC_O3 14
303 #define SPARC_MC_O4 15
304 #define SPARC_MC_O5 16
305 #define SPARC_MC_O6 17
306 #define SPARC_MC_O7 18
307 #define SPARC_MC_NGREG 19
309 typedef abi_ulong target_mc_greg_t;
310 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
312 struct target_mc_fq {
313 abi_ulong mcfq_addr;
314 uint32_t mcfq_insn;
318 * Note the manual 16-alignment; the kernel gets this because it
319 * includes a "long double qregs[16]" in the mcpu_fregs union,
320 * which we can't do.
322 struct target_mc_fpu {
323 union {
324 uint32_t sregs[32];
325 uint64_t dregs[32];
326 //uint128_t qregs[16];
327 } mcfpu_fregs;
328 abi_ulong mcfpu_fsr;
329 abi_ulong mcfpu_fprs;
330 abi_ulong mcfpu_gsr;
331 abi_ulong mcfpu_fq;
332 unsigned char mcfpu_qcnt;
333 unsigned char mcfpu_qentsz;
334 unsigned char mcfpu_enab;
335 } __attribute__((aligned(16)));
336 typedef struct target_mc_fpu target_mc_fpu_t;
338 typedef struct {
339 target_mc_gregset_t mc_gregs;
340 target_mc_greg_t mc_fp;
341 target_mc_greg_t mc_i7;
342 target_mc_fpu_t mc_fpregs;
343 } target_mcontext_t;
345 struct target_ucontext {
346 abi_ulong tuc_link;
347 abi_ulong tuc_flags;
348 target_sigset_t tuc_sigmask;
349 target_mcontext_t tuc_mcontext;
352 /* A V9 register window */
353 struct target_reg_window {
354 abi_ulong locals[8];
355 abi_ulong ins[8];
358 /* {set, get}context() needed for 64-bit SparcLinux userland. */
359 void sparc64_set_context(CPUSPARCState *env)
361 abi_ulong ucp_addr;
362 struct target_ucontext *ucp;
363 target_mc_gregset_t *grp;
364 target_mc_fpu_t *fpup;
365 abi_ulong pc, npc, tstate;
366 unsigned int i;
367 unsigned char fenab;
369 ucp_addr = env->regwptr[WREG_O0];
370 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
371 goto do_sigsegv;
373 grp = &ucp->tuc_mcontext.mc_gregs;
374 __get_user(pc, &((*grp)[SPARC_MC_PC]));
375 __get_user(npc, &((*grp)[SPARC_MC_NPC]));
376 if ((pc | npc) & 3) {
377 goto do_sigsegv;
379 if (env->regwptr[WREG_O1]) {
380 target_sigset_t target_set;
381 sigset_t set;
383 if (TARGET_NSIG_WORDS == 1) {
384 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
385 } else {
386 abi_ulong *src, *dst;
387 src = ucp->tuc_sigmask.sig;
388 dst = target_set.sig;
389 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
390 __get_user(*dst, src);
393 target_to_host_sigset_internal(&set, &target_set);
394 set_sigmask(&set);
396 env->pc = pc;
397 env->npc = npc;
398 __get_user(env->y, &((*grp)[SPARC_MC_Y]));
399 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
400 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
401 env->asi = (tstate >> 24) & 0xff;
402 cpu_put_ccr(env, (tstate >> 32) & 0xff);
403 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
404 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
405 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
406 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
407 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
408 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
409 /* Skip g7 as that's the thread register in userspace */
412 * Note that unlike the kernel, we didn't need to mess with the
413 * guest register window state to save it into a pt_regs to run
414 * the kernel. So for us the guest's O regs are still in WREG_O*
415 * (unlike the kernel which has put them in UREG_I* in a pt_regs)
416 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
417 * need to be written back to userspace memory.
419 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
420 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
421 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
422 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
423 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
424 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
425 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
426 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
428 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
429 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
431 fpup = &ucp->tuc_mcontext.mc_fpregs;
433 __get_user(fenab, &(fpup->mcfpu_enab));
434 if (fenab) {
435 abi_ulong fprs;
438 * We use the FPRS from the guest only in deciding whether
439 * to restore the upper, lower, or both banks of the FPU regs.
440 * The kernel here writes the FPU register data into the
441 * process's current_thread_info state and unconditionally
442 * clears FPRS and TSTATE_PEF: this disables the FPU so that the
443 * next FPU-disabled trap will copy the data out of
444 * current_thread_info and into the real FPU registers.
445 * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
446 * so we always load the data directly into the FPU registers
447 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
448 * Note that because we (and the kernel) always write zeroes for
449 * the fenab and fprs in sparc64_get_context() none of this code
450 * will execute unless the guest manually constructed or changed
451 * the context structure.
453 __get_user(fprs, &(fpup->mcfpu_fprs));
454 if (fprs & FPRS_DL) {
455 for (i = 0; i < 16; i++) {
456 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
459 if (fprs & FPRS_DU) {
460 for (i = 16; i < 32; i++) {
461 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
464 __get_user(env->fsr, &(fpup->mcfpu_fsr));
465 __get_user(env->gsr, &(fpup->mcfpu_gsr));
467 unlock_user_struct(ucp, ucp_addr, 0);
468 return;
469 do_sigsegv:
470 unlock_user_struct(ucp, ucp_addr, 0);
471 force_sig(TARGET_SIGSEGV);
474 void sparc64_get_context(CPUSPARCState *env)
476 abi_ulong ucp_addr;
477 struct target_ucontext *ucp;
478 target_mc_gregset_t *grp;
479 target_mcontext_t *mcp;
480 int err;
481 unsigned int i;
482 target_sigset_t target_set;
483 sigset_t set;
485 ucp_addr = env->regwptr[WREG_O0];
486 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
487 goto do_sigsegv;
490 memset(ucp, 0, sizeof(*ucp));
492 mcp = &ucp->tuc_mcontext;
493 grp = &mcp->mc_gregs;
495 /* Skip over the trap instruction, first. */
496 env->pc = env->npc;
497 env->npc += 4;
499 /* If we're only reading the signal mask then do_sigprocmask()
500 * is guaranteed not to fail, which is important because we don't
501 * have any way to signal a failure or restart this operation since
502 * this is not a normal syscall.
504 err = do_sigprocmask(0, NULL, &set);
505 assert(err == 0);
506 host_to_target_sigset_internal(&target_set, &set);
507 if (TARGET_NSIG_WORDS == 1) {
508 __put_user(target_set.sig[0],
509 (abi_ulong *)&ucp->tuc_sigmask);
510 } else {
511 abi_ulong *src, *dst;
512 src = target_set.sig;
513 dst = ucp->tuc_sigmask.sig;
514 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
515 __put_user(*src, dst);
519 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
520 __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
521 __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
522 __put_user(env->y, &((*grp)[SPARC_MC_Y]));
523 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
524 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
525 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
526 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
527 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
528 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
529 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
532 * Note that unlike the kernel, we didn't need to mess with the
533 * guest register window state to save it into a pt_regs to run
534 * the kernel. So for us the guest's O regs are still in WREG_O*
535 * (unlike the kernel which has put them in UREG_I* in a pt_regs)
536 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
537 * need to be fished out of userspace memory.
539 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
540 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
541 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
542 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
543 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
544 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
545 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
546 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
548 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
549 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
552 * We don't write out the FPU state. This matches the kernel's
553 * implementation (which has the code for doing this but
554 * hidden behind an "if (fenab)" where fenab is always 0).
557 unlock_user_struct(ucp, ucp_addr, 1);
558 return;
559 do_sigsegv:
560 unlock_user_struct(ucp, ucp_addr, 1);
561 force_sig(TARGET_SIGSEGV);
563 #endif