qjson: Apply nesting limit more sanely
[qemu/ar7.git] / util / bitmap.c
blob44f0f481beed300a1afdfcb737349384b19813c9
1 /*
2 * Bitmap Module
4 * Stolen from linux/src/lib/bitmap.c
6 * Copyright (C) 2010 Corentin Chary
8 * This source code is licensed under the GNU General Public License,
9 * Version 2.
12 #include "qemu/bitops.h"
13 #include "qemu/bitmap.h"
14 #include "qemu/atomic.h"
17 * bitmaps provide an array of bits, implemented using an
18 * array of unsigned longs. The number of valid bits in a
19 * given bitmap does _not_ need to be an exact multiple of
20 * BITS_PER_LONG.
22 * The possible unused bits in the last, partially used word
23 * of a bitmap are 'don't care'. The implementation makes
24 * no particular effort to keep them zero. It ensures that
25 * their value will not affect the results of any operation.
26 * The bitmap operations that return Boolean (bitmap_empty,
27 * for example) or scalar (bitmap_weight, for example) results
28 * carefully filter out these unused bits from impacting their
29 * results.
31 * These operations actually hold to a slightly stronger rule:
32 * if you don't input any bitmaps to these ops that have some
33 * unused bits set, then they won't output any set unused bits
34 * in output bitmaps.
36 * The byte ordering of bitmaps is more natural on little
37 * endian architectures.
40 int slow_bitmap_empty(const unsigned long *bitmap, long bits)
42 long k, lim = bits/BITS_PER_LONG;
44 for (k = 0; k < lim; ++k) {
45 if (bitmap[k]) {
46 return 0;
49 if (bits % BITS_PER_LONG) {
50 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
51 return 0;
55 return 1;
58 int slow_bitmap_full(const unsigned long *bitmap, long bits)
60 long k, lim = bits/BITS_PER_LONG;
62 for (k = 0; k < lim; ++k) {
63 if (~bitmap[k]) {
64 return 0;
68 if (bits % BITS_PER_LONG) {
69 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
70 return 0;
74 return 1;
77 int slow_bitmap_equal(const unsigned long *bitmap1,
78 const unsigned long *bitmap2, long bits)
80 long k, lim = bits/BITS_PER_LONG;
82 for (k = 0; k < lim; ++k) {
83 if (bitmap1[k] != bitmap2[k]) {
84 return 0;
88 if (bits % BITS_PER_LONG) {
89 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
90 return 0;
94 return 1;
97 void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
98 long bits)
100 long k, lim = bits/BITS_PER_LONG;
102 for (k = 0; k < lim; ++k) {
103 dst[k] = ~src[k];
106 if (bits % BITS_PER_LONG) {
107 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
111 int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
112 const unsigned long *bitmap2, long bits)
114 long k;
115 long nr = BITS_TO_LONGS(bits);
116 unsigned long result = 0;
118 for (k = 0; k < nr; k++) {
119 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
121 return result != 0;
124 void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
125 const unsigned long *bitmap2, long bits)
127 long k;
128 long nr = BITS_TO_LONGS(bits);
130 for (k = 0; k < nr; k++) {
131 dst[k] = bitmap1[k] | bitmap2[k];
135 void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
136 const unsigned long *bitmap2, long bits)
138 long k;
139 long nr = BITS_TO_LONGS(bits);
141 for (k = 0; k < nr; k++) {
142 dst[k] = bitmap1[k] ^ bitmap2[k];
146 int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
147 const unsigned long *bitmap2, long bits)
149 long k;
150 long nr = BITS_TO_LONGS(bits);
151 unsigned long result = 0;
153 for (k = 0; k < nr; k++) {
154 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
156 return result != 0;
159 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
161 void bitmap_set(unsigned long *map, long start, long nr)
163 unsigned long *p = map + BIT_WORD(start);
164 const long size = start + nr;
165 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
166 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
168 while (nr - bits_to_set >= 0) {
169 *p |= mask_to_set;
170 nr -= bits_to_set;
171 bits_to_set = BITS_PER_LONG;
172 mask_to_set = ~0UL;
173 p++;
175 if (nr) {
176 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
177 *p |= mask_to_set;
181 void bitmap_set_atomic(unsigned long *map, long start, long nr)
183 unsigned long *p = map + BIT_WORD(start);
184 const long size = start + nr;
185 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
186 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
188 /* First word */
189 if (nr - bits_to_set > 0) {
190 atomic_or(p, mask_to_set);
191 nr -= bits_to_set;
192 bits_to_set = BITS_PER_LONG;
193 mask_to_set = ~0UL;
194 p++;
197 /* Full words */
198 if (bits_to_set == BITS_PER_LONG) {
199 while (nr >= BITS_PER_LONG) {
200 *p = ~0UL;
201 nr -= BITS_PER_LONG;
202 p++;
206 /* Last word */
207 if (nr) {
208 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
209 atomic_or(p, mask_to_set);
210 } else {
211 /* If we avoided the full barrier in atomic_or(), issue a
212 * barrier to account for the assignments in the while loop.
214 smp_mb();
218 void bitmap_clear(unsigned long *map, long start, long nr)
220 unsigned long *p = map + BIT_WORD(start);
221 const long size = start + nr;
222 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
223 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
225 while (nr - bits_to_clear >= 0) {
226 *p &= ~mask_to_clear;
227 nr -= bits_to_clear;
228 bits_to_clear = BITS_PER_LONG;
229 mask_to_clear = ~0UL;
230 p++;
232 if (nr) {
233 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
234 *p &= ~mask_to_clear;
238 bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
240 unsigned long *p = map + BIT_WORD(start);
241 const long size = start + nr;
242 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
243 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
244 unsigned long dirty = 0;
245 unsigned long old_bits;
247 /* First word */
248 if (nr - bits_to_clear > 0) {
249 old_bits = atomic_fetch_and(p, ~mask_to_clear);
250 dirty |= old_bits & mask_to_clear;
251 nr -= bits_to_clear;
252 bits_to_clear = BITS_PER_LONG;
253 mask_to_clear = ~0UL;
254 p++;
257 /* Full words */
258 if (bits_to_clear == BITS_PER_LONG) {
259 while (nr >= BITS_PER_LONG) {
260 if (*p) {
261 old_bits = atomic_xchg(p, 0);
262 dirty |= old_bits;
264 nr -= BITS_PER_LONG;
265 p++;
269 /* Last word */
270 if (nr) {
271 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
272 old_bits = atomic_fetch_and(p, ~mask_to_clear);
273 dirty |= old_bits & mask_to_clear;
274 } else {
275 if (!dirty) {
276 smp_mb();
280 return dirty != 0;
283 #define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
286 * bitmap_find_next_zero_area - find a contiguous aligned zero area
287 * @map: The address to base the search on
288 * @size: The bitmap size in bits
289 * @start: The bitnumber to start searching at
290 * @nr: The number of zeroed bits we're looking for
291 * @align_mask: Alignment mask for zero area
293 * The @align_mask should be one less than a power of 2; the effect is that
294 * the bit offset of all zero areas this function finds is multiples of that
295 * power of 2. A @align_mask of 0 means no alignment is required.
297 unsigned long bitmap_find_next_zero_area(unsigned long *map,
298 unsigned long size,
299 unsigned long start,
300 unsigned long nr,
301 unsigned long align_mask)
303 unsigned long index, end, i;
304 again:
305 index = find_next_zero_bit(map, size, start);
307 /* Align allocation */
308 index = ALIGN_MASK(index, align_mask);
310 end = index + nr;
311 if (end > size) {
312 return end;
314 i = find_next_bit(map, end, index);
315 if (i < end) {
316 start = i + 1;
317 goto again;
319 return index;
322 int slow_bitmap_intersects(const unsigned long *bitmap1,
323 const unsigned long *bitmap2, long bits)
325 long k, lim = bits/BITS_PER_LONG;
327 for (k = 0; k < lim; ++k) {
328 if (bitmap1[k] & bitmap2[k]) {
329 return 1;
333 if (bits % BITS_PER_LONG) {
334 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
335 return 1;
338 return 0;