hw/intc/gicv3: Add data fields for virtualization support
[qemu/ar7.git] / hw / intc / arm_gicv3_cpuif.c
blobd2f859c26c57d264cefa516511f90bf36f286dd4
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "trace.h"
17 #include "gicv3_internal.h"
18 #include "cpu.h"
20 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
22 /* Given the CPU, find the right GICv3CPUState struct.
23 * Since we registered the CPU interface with the EL change hook as
24 * the opaque pointer, we can just directly get from the CPU to it.
26 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
29 static bool gicv3_use_ns_bank(CPUARMState *env)
31 /* Return true if we should use the NonSecure bank for a banked GIC
32 * CPU interface register. Note that this differs from the
33 * access_secure_reg() function because GICv3 banked registers are
34 * banked even for AArch64, unlike the other CPU system registers.
36 return !arm_is_secure_below_el3(env);
39 /* The minimum BPR for the virtual interface is a configurable property */
40 static inline int icv_min_vbpr(GICv3CPUState *cs)
42 return 7 - cs->vprebits;
45 static int icc_highest_active_prio(GICv3CPUState *cs)
47 /* Calculate the current running priority based on the set bits
48 * in the Active Priority Registers.
50 int i;
52 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
53 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
54 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
56 if (!apr) {
57 continue;
59 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
61 /* No current active interrupts: return idle priority */
62 return 0xff;
65 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
67 /* Return a mask word which clears the subpriority bits from
68 * a priority value for an interrupt in the specified group.
69 * This depends on the BPR value:
70 * a BPR of 0 means the group priority bits are [7:1];
71 * a BPR of 1 means they are [7:2], and so on down to
72 * a BPR of 7 meaning no group priority bits at all.
73 * Which BPR to use depends on the group of the interrupt and
74 * the current ICC_CTLR.CBPR settings.
76 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
77 (group == GICV3_G1NS &&
78 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
79 group = GICV3_G0;
82 return ~0U << ((cs->icc_bpr[group] & 7) + 1);
85 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
87 /* Return true if there is no pending interrupt, or the
88 * highest priority pending interrupt is in a group which has been
89 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
91 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
94 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
96 /* Return true if we have a pending interrupt of sufficient
97 * priority to preempt.
99 int rprio;
100 uint32_t mask;
102 if (icc_no_enabled_hppi(cs)) {
103 return false;
106 if (cs->hppi.prio >= cs->icc_pmr_el1) {
107 /* Priority mask masks this interrupt */
108 return false;
111 rprio = icc_highest_active_prio(cs);
112 if (rprio == 0xff) {
113 /* No currently running interrupt so we can preempt */
114 return true;
117 mask = icc_gprio_mask(cs, cs->hppi.grp);
119 /* We only preempt a running interrupt if the pending interrupt's
120 * group priority is sufficient (the subpriorities are not considered).
122 if ((cs->hppi.prio & mask) < (rprio & mask)) {
123 return true;
126 return false;
129 void gicv3_cpuif_update(GICv3CPUState *cs)
131 /* Tell the CPU about its highest priority pending interrupt */
132 int irqlevel = 0;
133 int fiqlevel = 0;
134 ARMCPU *cpu = ARM_CPU(cs->cpu);
135 CPUARMState *env = &cpu->env;
137 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
138 cs->hppi.grp, cs->hppi.prio);
140 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
141 /* If a Security-enabled GIC sends a G1S interrupt to a
142 * Security-disabled CPU, we must treat it as if it were G0.
144 cs->hppi.grp = GICV3_G0;
147 if (icc_hppi_can_preempt(cs)) {
148 /* We have an interrupt: should we signal it as IRQ or FIQ?
149 * This is described in the GICv3 spec section 4.6.2.
151 bool isfiq;
153 switch (cs->hppi.grp) {
154 case GICV3_G0:
155 isfiq = true;
156 break;
157 case GICV3_G1:
158 isfiq = (!arm_is_secure(env) ||
159 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
160 break;
161 case GICV3_G1NS:
162 isfiq = arm_is_secure(env);
163 break;
164 default:
165 g_assert_not_reached();
168 if (isfiq) {
169 fiqlevel = 1;
170 } else {
171 irqlevel = 1;
175 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
177 qemu_set_irq(cs->parent_fiq, fiqlevel);
178 qemu_set_irq(cs->parent_irq, irqlevel);
181 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
183 GICv3CPUState *cs = icc_cs_from_env(env);
184 uint32_t value = cs->icc_pmr_el1;
186 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
187 (env->cp15.scr_el3 & SCR_FIQ)) {
188 /* NS access and Group 0 is inaccessible to NS: return the
189 * NS view of the current priority
191 if (value & 0x80) {
192 /* Secure priorities not visible to NS */
193 value = 0;
194 } else if (value != 0xff) {
195 value = (value << 1) & 0xff;
199 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
201 return value;
204 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
205 uint64_t value)
207 GICv3CPUState *cs = icc_cs_from_env(env);
209 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
211 value &= 0xff;
213 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
214 (env->cp15.scr_el3 & SCR_FIQ)) {
215 /* NS access and Group 0 is inaccessible to NS: return the
216 * NS view of the current priority
218 if (!(cs->icc_pmr_el1 & 0x80)) {
219 /* Current PMR in the secure range, don't allow NS to change it */
220 return;
222 value = (value >> 1) & 0x80;
224 cs->icc_pmr_el1 = value;
225 gicv3_cpuif_update(cs);
228 static void icc_activate_irq(GICv3CPUState *cs, int irq)
230 /* Move the interrupt from the Pending state to Active, and update
231 * the Active Priority Registers
233 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
234 int prio = cs->hppi.prio & mask;
235 int aprbit = prio >> 1;
236 int regno = aprbit / 32;
237 int regbit = aprbit % 32;
239 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
241 if (irq < GIC_INTERNAL) {
242 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
243 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
244 gicv3_redist_update(cs);
245 } else {
246 gicv3_gicd_active_set(cs->gic, irq);
247 gicv3_gicd_pending_clear(cs->gic, irq);
248 gicv3_update(cs->gic, irq, 1);
252 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
254 /* Return the highest priority pending interrupt register value
255 * for group 0.
257 bool irq_is_secure;
259 if (cs->hppi.prio == 0xff) {
260 return INTID_SPURIOUS;
263 /* Check whether we can return the interrupt or if we should return
264 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
265 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
266 * is always zero.)
268 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
269 (cs->hppi.grp != GICV3_G1NS));
271 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
272 return INTID_SPURIOUS;
274 if (irq_is_secure && !arm_is_secure(env)) {
275 /* Secure interrupts not visible to Nonsecure */
276 return INTID_SPURIOUS;
279 if (cs->hppi.grp != GICV3_G0) {
280 /* Indicate to EL3 that there's a Group 1 interrupt for the other
281 * state pending.
283 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
286 return cs->hppi.irq;
289 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
291 /* Return the highest priority pending interrupt register value
292 * for group 1.
294 bool irq_is_secure;
296 if (cs->hppi.prio == 0xff) {
297 return INTID_SPURIOUS;
300 /* Check whether we can return the interrupt or if we should return
301 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
302 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
303 * is always zero.)
305 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
306 (cs->hppi.grp != GICV3_G1NS));
308 if (cs->hppi.grp == GICV3_G0) {
309 /* Group 0 interrupts not visible via HPPIR1 */
310 return INTID_SPURIOUS;
312 if (irq_is_secure) {
313 if (!arm_is_secure(env)) {
314 /* Secure interrupts not visible in Non-secure */
315 return INTID_SPURIOUS;
317 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
318 /* Group 1 non-secure interrupts not visible in Secure EL1 */
319 return INTID_SPURIOUS;
322 return cs->hppi.irq;
325 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
327 GICv3CPUState *cs = icc_cs_from_env(env);
328 uint64_t intid;
330 if (!icc_hppi_can_preempt(cs)) {
331 intid = INTID_SPURIOUS;
332 } else {
333 intid = icc_hppir0_value(cs, env);
336 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
337 icc_activate_irq(cs, intid);
340 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
341 return intid;
344 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
346 GICv3CPUState *cs = icc_cs_from_env(env);
347 uint64_t intid;
349 if (!icc_hppi_can_preempt(cs)) {
350 intid = INTID_SPURIOUS;
351 } else {
352 intid = icc_hppir1_value(cs, env);
355 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
356 icc_activate_irq(cs, intid);
359 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
360 return intid;
363 static void icc_drop_prio(GICv3CPUState *cs, int grp)
365 /* Drop the priority of the currently active interrupt in
366 * the specified group.
368 * Note that we can guarantee (because of the requirement to nest
369 * ICC_IAR reads [which activate an interrupt and raise priority]
370 * with ICC_EOIR writes [which drop the priority for the interrupt])
371 * that the interrupt we're being called for is the highest priority
372 * active interrupt, meaning that it has the lowest set bit in the
373 * APR registers.
375 * If the guest does not honour the ordering constraints then the
376 * behaviour of the GIC is UNPREDICTABLE, which for us means that
377 * the values of the APR registers might become incorrect and the
378 * running priority will be wrong, so interrupts that should preempt
379 * might not do so, and interrupts that should not preempt might do so.
381 int i;
383 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
384 uint64_t *papr = &cs->icc_apr[grp][i];
386 if (!*papr) {
387 continue;
389 /* Clear the lowest set bit */
390 *papr &= *papr - 1;
391 break;
394 /* running priority change means we need an update for this cpu i/f */
395 gicv3_cpuif_update(cs);
398 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
400 /* Return true if we should split priority drop and interrupt
401 * deactivation, ie whether the relevant EOIMode bit is set.
403 if (arm_is_el3_or_mon(env)) {
404 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
406 if (arm_is_secure_below_el3(env)) {
407 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
408 } else {
409 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
413 static int icc_highest_active_group(GICv3CPUState *cs)
415 /* Return the group with the highest priority active interrupt.
416 * We can do this by just comparing the APRs to see which one
417 * has the lowest set bit.
418 * (If more than one group is active at the same priority then
419 * we're in UNPREDICTABLE territory.)
421 int i;
423 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
424 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
425 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
426 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
428 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
429 return GICV3_G1NS;
431 if (g1ctz < g0ctz) {
432 return GICV3_G1;
434 if (g0ctz < 32) {
435 return GICV3_G0;
438 /* No set active bits? UNPREDICTABLE; return -1 so the caller
439 * ignores the spurious EOI attempt.
441 return -1;
444 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
446 if (irq < GIC_INTERNAL) {
447 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
448 gicv3_redist_update(cs);
449 } else {
450 gicv3_gicd_active_clear(cs->gic, irq);
451 gicv3_update(cs->gic, irq, 1);
455 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
456 uint64_t value)
458 /* End of Interrupt */
459 GICv3CPUState *cs = icc_cs_from_env(env);
460 int irq = value & 0xffffff;
461 int grp;
463 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
464 gicv3_redist_affid(cs), value);
466 if (ri->crm == 8) {
467 /* EOIR0 */
468 grp = GICV3_G0;
469 } else {
470 /* EOIR1 */
471 if (arm_is_secure(env)) {
472 grp = GICV3_G1;
473 } else {
474 grp = GICV3_G1NS;
478 if (irq >= cs->gic->num_irq) {
479 /* This handles two cases:
480 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
481 * to the GICC_EOIR, the GIC ignores that write.
482 * 2. If software writes the number of a non-existent interrupt
483 * this must be a subcase of "value written does not match the last
484 * valid interrupt value read from the Interrupt Acknowledge
485 * register" and so this is UNPREDICTABLE. We choose to ignore it.
487 return;
490 if (icc_highest_active_group(cs) != grp) {
491 return;
494 icc_drop_prio(cs, grp);
496 if (!icc_eoi_split(env, cs)) {
497 /* Priority drop and deactivate not split: deactivate irq now */
498 icc_deactivate_irq(cs, irq);
502 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
504 GICv3CPUState *cs = icc_cs_from_env(env);
505 uint64_t value = icc_hppir0_value(cs, env);
507 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
508 return value;
511 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
513 GICv3CPUState *cs = icc_cs_from_env(env);
514 uint64_t value = icc_hppir1_value(cs, env);
516 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
517 return value;
520 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
522 GICv3CPUState *cs = icc_cs_from_env(env);
523 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
524 bool satinc = false;
525 uint64_t bpr;
527 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
528 grp = GICV3_G1NS;
531 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
532 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
533 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
534 * modify BPR0
536 grp = GICV3_G0;
539 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
540 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
541 /* reads return bpr0 + 1 sat to 7, writes ignored */
542 grp = GICV3_G0;
543 satinc = true;
546 bpr = cs->icc_bpr[grp];
547 if (satinc) {
548 bpr++;
549 bpr = MIN(bpr, 7);
552 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
554 return bpr;
557 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
558 uint64_t value)
560 GICv3CPUState *cs = icc_cs_from_env(env);
561 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
563 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
564 gicv3_redist_affid(cs), value);
566 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
567 grp = GICV3_G1NS;
570 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
571 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
572 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
573 * modify BPR0
575 grp = GICV3_G0;
578 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
579 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
580 /* reads return bpr0 + 1 sat to 7, writes ignored */
581 return;
584 cs->icc_bpr[grp] = value & 7;
585 gicv3_cpuif_update(cs);
588 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
590 GICv3CPUState *cs = icc_cs_from_env(env);
591 uint64_t value;
593 int regno = ri->opc2 & 3;
594 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
596 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
597 grp = GICV3_G1NS;
600 value = cs->icc_apr[grp][regno];
602 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
603 return value;
606 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
607 uint64_t value)
609 GICv3CPUState *cs = icc_cs_from_env(env);
611 int regno = ri->opc2 & 3;
612 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
614 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
616 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
617 grp = GICV3_G1NS;
620 /* It's not possible to claim that a Non-secure interrupt is active
621 * at a priority outside the Non-secure range (128..255), since this
622 * would otherwise allow malicious NS code to block delivery of S interrupts
623 * by writing a bad value to these registers.
625 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
626 return;
629 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
630 gicv3_cpuif_update(cs);
633 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
634 uint64_t value)
636 /* Deactivate interrupt */
637 GICv3CPUState *cs = icc_cs_from_env(env);
638 int irq = value & 0xffffff;
639 bool irq_is_secure, single_sec_state, irq_is_grp0;
640 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
642 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
644 if (irq >= cs->gic->num_irq) {
645 /* Also catches special interrupt numbers and LPIs */
646 return;
649 if (!icc_eoi_split(env, cs)) {
650 return;
653 int grp = gicv3_irq_group(cs->gic, cs, irq);
655 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
656 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
657 irq_is_grp0 = grp == GICV3_G0;
659 /* Check whether we're allowed to deactivate this interrupt based
660 * on its group and the current CPU state.
661 * These checks are laid out to correspond to the spec's pseudocode.
663 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
664 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
665 /* No need to include !IsSecure in route_*_to_el2 as it's only
666 * tested in cases where we know !IsSecure is true.
668 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
669 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
671 switch (arm_current_el(env)) {
672 case 3:
673 break;
674 case 2:
675 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
676 break;
678 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
679 break;
681 return;
682 case 1:
683 if (!arm_is_secure_below_el3(env)) {
684 if (single_sec_state && irq_is_grp0 &&
685 !route_fiq_to_el3 && !route_fiq_to_el2) {
686 break;
688 if (!irq_is_secure && !irq_is_grp0 &&
689 !route_irq_to_el3 && !route_irq_to_el2) {
690 break;
692 } else {
693 if (irq_is_grp0 && !route_fiq_to_el3) {
694 break;
696 if (!irq_is_grp0 &&
697 (!irq_is_secure || !single_sec_state) &&
698 !route_irq_to_el3) {
699 break;
702 return;
703 default:
704 g_assert_not_reached();
707 icc_deactivate_irq(cs, irq);
710 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
712 GICv3CPUState *cs = icc_cs_from_env(env);
713 int prio = icc_highest_active_prio(cs);
715 if (arm_feature(env, ARM_FEATURE_EL3) &&
716 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
717 /* NS GIC access and Group 0 is inaccessible to NS */
718 if (prio & 0x80) {
719 /* NS mustn't see priorities in the Secure half of the range */
720 prio = 0;
721 } else if (prio != 0xff) {
722 /* Non-idle priority: show the Non-secure view of it */
723 prio = (prio << 1) & 0xff;
727 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
728 return prio;
731 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
732 uint64_t value, int grp, bool ns)
734 GICv3State *s = cs->gic;
736 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
737 uint64_t aff = extract64(value, 48, 8) << 16 |
738 extract64(value, 32, 8) << 8 |
739 extract64(value, 16, 8);
740 uint32_t targetlist = extract64(value, 0, 16);
741 uint32_t irq = extract64(value, 24, 4);
742 bool irm = extract64(value, 40, 1);
743 int i;
745 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
746 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
747 * interrupts as Group 0 interrupts and must send Secure Group 0
748 * interrupts to the target CPUs.
750 grp = GICV3_G0;
753 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
754 aff, targetlist);
756 for (i = 0; i < s->num_cpu; i++) {
757 GICv3CPUState *ocs = &s->cpu[i];
759 if (irm) {
760 /* IRM == 1 : route to all CPUs except self */
761 if (cs == ocs) {
762 continue;
764 } else {
765 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
766 * where the corresponding bit is set in targetlist
768 int aff0;
770 if (ocs->gicr_typer >> 40 != aff) {
771 continue;
773 aff0 = extract64(ocs->gicr_typer, 32, 8);
774 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
775 continue;
779 /* The redistributor will check against its own GICR_NSACR as needed */
780 gicv3_redist_send_sgi(ocs, grp, irq, ns);
784 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
785 uint64_t value)
787 /* Generate Secure Group 0 SGI. */
788 GICv3CPUState *cs = icc_cs_from_env(env);
789 bool ns = !arm_is_secure(env);
791 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
794 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
797 /* Generate Group 1 SGI for the current Security state */
798 GICv3CPUState *cs = icc_cs_from_env(env);
799 int grp;
800 bool ns = !arm_is_secure(env);
802 grp = ns ? GICV3_G1NS : GICV3_G1;
803 icc_generate_sgi(env, cs, value, grp, ns);
806 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
807 uint64_t value)
809 /* Generate Group 1 SGI for the Security state that is not
810 * the current state
812 GICv3CPUState *cs = icc_cs_from_env(env);
813 int grp;
814 bool ns = !arm_is_secure(env);
816 grp = ns ? GICV3_G1 : GICV3_G1NS;
817 icc_generate_sgi(env, cs, value, grp, ns);
820 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
822 GICv3CPUState *cs = icc_cs_from_env(env);
823 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
824 uint64_t value;
826 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
827 grp = GICV3_G1NS;
830 value = cs->icc_igrpen[grp];
831 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
832 gicv3_redist_affid(cs), value);
833 return value;
836 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
837 uint64_t value)
839 GICv3CPUState *cs = icc_cs_from_env(env);
840 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
842 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
843 gicv3_redist_affid(cs), value);
845 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
846 grp = GICV3_G1NS;
849 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
850 gicv3_cpuif_update(cs);
853 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
855 GICv3CPUState *cs = icc_cs_from_env(env);
856 uint64_t value;
858 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
859 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
860 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
861 return value;
864 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
865 uint64_t value)
867 GICv3CPUState *cs = icc_cs_from_env(env);
869 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
871 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
872 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
873 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
874 gicv3_cpuif_update(cs);
877 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
879 GICv3CPUState *cs = icc_cs_from_env(env);
880 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
881 uint64_t value;
883 value = cs->icc_ctlr_el1[bank];
884 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
885 return value;
888 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
889 uint64_t value)
891 GICv3CPUState *cs = icc_cs_from_env(env);
892 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
893 uint64_t mask;
895 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
897 /* Only CBPR and EOIMODE can be RW;
898 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
899 * the asseciated priority-based routing of them);
900 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
902 if (arm_feature(env, ARM_FEATURE_EL3) &&
903 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
904 mask = ICC_CTLR_EL1_EOIMODE;
905 } else {
906 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
909 cs->icc_ctlr_el1[bank] &= ~mask;
910 cs->icc_ctlr_el1[bank] |= (value & mask);
911 gicv3_cpuif_update(cs);
915 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
917 GICv3CPUState *cs = icc_cs_from_env(env);
918 uint64_t value;
920 value = cs->icc_ctlr_el3;
921 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
922 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
924 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
925 value |= ICC_CTLR_EL3_CBPR_EL1NS;
927 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
928 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
930 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
931 value |= ICC_CTLR_EL3_CBPR_EL1S;
934 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
935 return value;
938 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
939 uint64_t value)
941 GICv3CPUState *cs = icc_cs_from_env(env);
942 uint64_t mask;
944 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
946 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
947 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
948 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
949 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
951 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
952 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
955 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
956 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
957 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
959 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
960 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
963 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
964 mask = ICC_CTLR_EL3_EOIMODE_EL3;
966 cs->icc_ctlr_el3 &= ~mask;
967 cs->icc_ctlr_el3 |= (value & mask);
968 gicv3_cpuif_update(cs);
971 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
972 const ARMCPRegInfo *ri, bool isread)
974 CPAccessResult r = CP_ACCESS_OK;
976 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
977 switch (arm_current_el(env)) {
978 case 1:
979 if (arm_is_secure_below_el3(env) ||
980 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
981 r = CP_ACCESS_TRAP_EL3;
983 break;
984 case 2:
985 r = CP_ACCESS_TRAP_EL3;
986 break;
987 case 3:
988 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
989 r = CP_ACCESS_TRAP_EL3;
991 break;
992 default:
993 g_assert_not_reached();
997 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
998 r = CP_ACCESS_TRAP;
1000 return r;
1003 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1004 const ARMCPRegInfo *ri, bool isread)
1006 CPAccessResult r = CP_ACCESS_OK;
1008 if (env->cp15.scr_el3 & SCR_FIQ) {
1009 switch (arm_current_el(env)) {
1010 case 1:
1011 if (arm_is_secure_below_el3(env) ||
1012 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1013 r = CP_ACCESS_TRAP_EL3;
1015 break;
1016 case 2:
1017 r = CP_ACCESS_TRAP_EL3;
1018 break;
1019 case 3:
1020 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1021 r = CP_ACCESS_TRAP_EL3;
1023 break;
1024 default:
1025 g_assert_not_reached();
1029 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1030 r = CP_ACCESS_TRAP;
1032 return r;
1035 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1036 const ARMCPRegInfo *ri, bool isread)
1038 CPAccessResult r = CP_ACCESS_OK;
1040 if (env->cp15.scr_el3 & SCR_IRQ) {
1041 switch (arm_current_el(env)) {
1042 case 1:
1043 if (arm_is_secure_below_el3(env) ||
1044 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
1045 r = CP_ACCESS_TRAP_EL3;
1047 break;
1048 case 2:
1049 r = CP_ACCESS_TRAP_EL3;
1050 break;
1051 case 3:
1052 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1053 r = CP_ACCESS_TRAP_EL3;
1055 break;
1056 default:
1057 g_assert_not_reached();
1061 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1062 r = CP_ACCESS_TRAP;
1064 return r;
1067 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1069 GICv3CPUState *cs = icc_cs_from_env(env);
1071 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
1072 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1073 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1074 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
1075 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1076 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1077 cs->icc_pmr_el1 = 0;
1078 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
1079 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
1080 if (arm_feature(env, ARM_FEATURE_EL3)) {
1081 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
1082 } else {
1083 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
1085 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
1086 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
1087 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
1088 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
1089 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
1091 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
1092 cs->ich_hcr_el2 = 0;
1093 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
1094 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
1095 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) |
1096 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
1099 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
1100 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
1101 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
1102 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1103 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
1104 .readfn = icc_pmr_read,
1105 .writefn = icc_pmr_write,
1106 /* We hang the whole cpu interface reset routine off here
1107 * rather than parcelling it out into one little function
1108 * per register
1110 .resetfn = icc_reset,
1112 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
1113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
1114 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1115 .access = PL1_R, .accessfn = gicv3_fiq_access,
1116 .readfn = icc_iar0_read,
1118 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
1119 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
1120 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1121 .access = PL1_W, .accessfn = gicv3_fiq_access,
1122 .writefn = icc_eoir_write,
1124 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
1125 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
1126 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1127 .access = PL1_R, .accessfn = gicv3_fiq_access,
1128 .readfn = icc_hppir0_read,
1130 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
1131 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
1132 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1133 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1134 .readfn = icc_bpr_read,
1135 .writefn = icc_bpr_write,
1137 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
1138 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
1139 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1140 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1141 .readfn = icc_ap_read,
1142 .writefn = icc_ap_write,
1144 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
1145 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
1146 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1147 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1148 .readfn = icc_ap_read,
1149 .writefn = icc_ap_write,
1151 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
1152 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
1153 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1154 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1155 .readfn = icc_ap_read,
1156 .writefn = icc_ap_write,
1158 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
1159 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
1160 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1161 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1162 .readfn = icc_ap_read,
1163 .writefn = icc_ap_write,
1165 /* All the ICC_AP1R*_EL1 registers are banked */
1166 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
1167 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
1168 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1169 .access = PL1_RW, .accessfn = gicv3_irq_access,
1170 .readfn = icc_ap_read,
1171 .writefn = icc_ap_write,
1173 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
1174 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
1175 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1176 .access = PL1_RW, .accessfn = gicv3_irq_access,
1177 .readfn = icc_ap_read,
1178 .writefn = icc_ap_write,
1180 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
1181 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
1182 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1183 .access = PL1_RW, .accessfn = gicv3_irq_access,
1184 .readfn = icc_ap_read,
1185 .writefn = icc_ap_write,
1187 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
1188 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
1189 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1190 .access = PL1_RW, .accessfn = gicv3_irq_access,
1191 .readfn = icc_ap_read,
1192 .writefn = icc_ap_write,
1194 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
1195 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
1196 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1197 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1198 .writefn = icc_dir_write,
1200 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
1201 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
1202 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1203 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
1204 .readfn = icc_rpr_read,
1206 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
1207 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
1208 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1209 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1210 .writefn = icc_sgi1r_write,
1212 { .name = "ICC_SGI1R",
1213 .cp = 15, .opc1 = 0, .crm = 12,
1214 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1215 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1216 .writefn = icc_sgi1r_write,
1218 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
1219 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
1220 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1221 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1222 .writefn = icc_asgi1r_write,
1224 { .name = "ICC_ASGI1R",
1225 .cp = 15, .opc1 = 1, .crm = 12,
1226 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1227 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1228 .writefn = icc_asgi1r_write,
1230 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
1231 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
1232 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1233 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1234 .writefn = icc_sgi0r_write,
1236 { .name = "ICC_SGI0R",
1237 .cp = 15, .opc1 = 2, .crm = 12,
1238 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1239 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1240 .writefn = icc_sgi0r_write,
1242 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
1243 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
1244 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1245 .access = PL1_R, .accessfn = gicv3_irq_access,
1246 .readfn = icc_iar1_read,
1248 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
1249 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
1250 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1251 .access = PL1_W, .accessfn = gicv3_irq_access,
1252 .writefn = icc_eoir_write,
1254 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
1255 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
1256 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1257 .access = PL1_R, .accessfn = gicv3_irq_access,
1258 .readfn = icc_hppir1_read,
1260 /* This register is banked */
1261 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
1262 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
1263 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1264 .access = PL1_RW, .accessfn = gicv3_irq_access,
1265 .readfn = icc_bpr_read,
1266 .writefn = icc_bpr_write,
1268 /* This register is banked */
1269 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
1270 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
1271 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1272 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
1273 .readfn = icc_ctlr_el1_read,
1274 .writefn = icc_ctlr_el1_write,
1276 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
1277 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
1278 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1279 .access = PL1_RW,
1280 /* We don't support IRQ/FIQ bypass and system registers are
1281 * always enabled, so all our bits are RAZ/WI or RAO/WI.
1282 * This register is banked but since it's constant we don't
1283 * need to do anything special.
1285 .resetvalue = 0x7,
1287 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
1288 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
1289 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1290 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1291 .readfn = icc_igrpen_read,
1292 .writefn = icc_igrpen_write,
1294 /* This register is banked */
1295 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
1296 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
1297 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1298 .access = PL1_RW, .accessfn = gicv3_irq_access,
1299 .readfn = icc_igrpen_read,
1300 .writefn = icc_igrpen_write,
1302 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
1303 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
1304 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1305 .access = PL2_RW,
1306 /* We don't support IRQ/FIQ bypass and system registers are
1307 * always enabled, so all our bits are RAZ/WI or RAO/WI.
1309 .resetvalue = 0xf,
1311 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
1312 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
1313 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1314 .access = PL3_RW,
1315 .readfn = icc_ctlr_el3_read,
1316 .writefn = icc_ctlr_el3_write,
1318 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
1319 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
1320 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1321 .access = PL3_RW,
1322 /* We don't support IRQ/FIQ bypass and system registers are
1323 * always enabled, so all our bits are RAZ/WI or RAO/WI.
1325 .resetvalue = 0xf,
1327 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
1328 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
1329 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1330 .access = PL3_RW,
1331 .readfn = icc_igrpen1_el3_read,
1332 .writefn = icc_igrpen1_el3_write,
1334 REGINFO_SENTINEL
1337 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
1339 GICv3CPUState *cs = opaque;
1341 gicv3_cpuif_update(cs);
1344 void gicv3_init_cpuif(GICv3State *s)
1346 /* Called from the GICv3 realize function; register our system
1347 * registers with the CPU
1349 int i;
1351 for (i = 0; i < s->num_cpu; i++) {
1352 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
1353 GICv3CPUState *cs = &s->cpu[i];
1355 /* Note that we can't just use the GICv3CPUState as an opaque pointer
1356 * in define_arm_cp_regs_with_opaque(), because when we're called back
1357 * it might be with code translated by CPU 0 but run by CPU 1, in
1358 * which case we'd get the wrong value.
1359 * So instead we define the regs with no ri->opaque info, and
1360 * get back to the GICv3CPUState from the ARMCPU by reading back
1361 * the opaque pointer from the el_change_hook, which we're going
1362 * to need to register anyway.
1364 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
1365 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);