ps2: migration support for command reply queue
[qemu/ar7.git] / target / arm / helper.c
bloba7ae78146d4b264dc34c165c8638e6b50d8b184f
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
43 #ifndef CONFIG_USER_ONLY
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46 MMUAccessType access_type, ARMMMUIdx mmu_idx,
47 bool s1_is_el0,
48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49 target_ulong *page_size_ptr,
50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51 __attribute__((nonnull));
52 #endif
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
59 ARMCPU *cpu = env_archcpu(env);
60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
62 /* VFP data registers are always little-endian. */
63 if (reg < nregs) {
64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
66 if (arm_feature(env, ARM_FEATURE_NEON)) {
67 /* Aliases for Q regs. */
68 nregs += 16;
69 if (reg < nregs) {
70 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
71 return gdb_get_reg128(buf, q[0], q[1]);
74 switch (reg - nregs) {
75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
79 return 0;
82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
84 ARMCPU *cpu = env_archcpu(env);
85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
87 if (reg < nregs) {
88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
89 return 8;
91 if (arm_feature(env, ARM_FEATURE_NEON)) {
92 nregs += 16;
93 if (reg < nregs) {
94 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
95 q[0] = ldq_le_p(buf);
96 q[1] = ldq_le_p(buf + 8);
97 return 16;
100 switch (reg - nregs) {
101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
105 return 0;
108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
110 switch (reg) {
111 case 0 ... 31:
113 /* 128 bit FP register - quads are in LE order */
114 uint64_t *q = aa64_vfp_qreg(env, reg);
115 return gdb_get_reg128(buf, q[1], q[0]);
117 case 32:
118 /* FPSR */
119 return gdb_get_reg32(buf, vfp_get_fpsr(env));
120 case 33:
121 /* FPCR */
122 return gdb_get_reg32(buf,vfp_get_fpcr(env));
123 default:
124 return 0;
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
130 switch (reg) {
131 case 0 ... 31:
132 /* 128 bit FP register */
134 uint64_t *q = aa64_vfp_qreg(env, reg);
135 q[0] = ldq_le_p(buf);
136 q[1] = ldq_le_p(buf + 8);
137 return 16;
139 case 32:
140 /* FPSR */
141 vfp_set_fpsr(env, ldl_p(buf));
142 return 4;
143 case 33:
144 /* FPCR */
145 vfp_set_fpcr(env, ldl_p(buf));
146 return 4;
147 default:
148 return 0;
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
154 assert(ri->fieldoffset);
155 if (cpreg_field_is_64bit(ri)) {
156 return CPREG_FIELD64(env, ri);
157 } else {
158 return CPREG_FIELD32(env, ri);
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163 uint64_t value)
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 CPREG_FIELD64(env, ri) = value;
168 } else {
169 CPREG_FIELD32(env, ri) = value;
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
175 return (char *)env + ri->fieldoffset;
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri->type & ARM_CP_CONST) {
182 return ri->resetvalue;
183 } else if (ri->raw_readfn) {
184 return ri->raw_readfn(env, ri);
185 } else if (ri->readfn) {
186 return ri->readfn(env, ri);
187 } else {
188 return raw_read(env, ri);
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193 uint64_t v)
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
198 * value written.
200 if (ri->type & ARM_CP_CONST) {
201 return;
202 } else if (ri->raw_writefn) {
203 ri->raw_writefn(env, ri, v);
204 } else if (ri->writefn) {
205 ri->writefn(env, ri, v);
206 } else {
207 raw_write(env, ri, v);
212 * arm_get/set_gdb_*: get/set a gdb register
213 * @env: the CPU state
214 * @buf: a buffer to copy to/from
215 * @reg: register number (offset from start of group)
217 * We return the number of bytes copied
220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
222 ARMCPU *cpu = env_archcpu(env);
223 const ARMCPRegInfo *ri;
224 uint32_t key;
226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
227 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228 if (ri) {
229 if (cpreg_field_is_64bit(ri)) {
230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231 } else {
232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
235 return 0;
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
240 return 0;
243 #ifdef TARGET_AARCH64
244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
246 ARMCPU *cpu = env_archcpu(env);
248 switch (reg) {
249 /* The first 32 registers are the zregs */
250 case 0 ... 31:
252 int vq, len = 0;
253 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
254 len += gdb_get_reg128(buf,
255 env->vfp.zregs[reg].d[vq * 2 + 1],
256 env->vfp.zregs[reg].d[vq * 2]);
258 return len;
260 case 32:
261 return gdb_get_reg32(buf, vfp_get_fpsr(env));
262 case 33:
263 return gdb_get_reg32(buf, vfp_get_fpcr(env));
264 /* then 16 predicates and the ffr */
265 case 34 ... 50:
267 int preg = reg - 34;
268 int vq, len = 0;
269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
272 return len;
274 case 51:
277 * We report in Vector Granules (VG) which is 64bit in a Z reg
278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
281 return gdb_get_reg64(buf, vq * 2);
283 default:
284 /* gdbstub asked for something out our range */
285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
286 break;
289 return 0;
292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
294 ARMCPU *cpu = env_archcpu(env);
296 /* The first 32 registers are the zregs */
297 switch (reg) {
298 /* The first 32 registers are the zregs */
299 case 0 ... 31:
301 int vq, len = 0;
302 uint64_t *p = (uint64_t *) buf;
303 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
305 env->vfp.zregs[reg].d[vq * 2] = *p++;
306 len += 16;
308 return len;
310 case 32:
311 vfp_set_fpsr(env, *(uint32_t *)buf);
312 return 4;
313 case 33:
314 vfp_set_fpcr(env, *(uint32_t *)buf);
315 return 4;
316 case 34 ... 50:
318 int preg = reg - 34;
319 int vq, len = 0;
320 uint64_t *p = (uint64_t *) buf;
321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
322 env->vfp.pregs[preg].p[vq / 4] = *p++;
323 len += 8;
325 return len;
327 case 51:
328 /* cannot set vg via gdbstub */
329 return 0;
330 default:
331 /* gdbstub asked for something out our range */
332 break;
335 return 0;
337 #endif /* TARGET_AARCH64 */
339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
341 /* Return true if the regdef would cause an assertion if you called
342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
343 * program bug for it not to have the NO_RAW flag).
344 * NB that returning false here doesn't necessarily mean that calling
345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
346 * read/write access functions which are safe for raw use" from "has
347 * read/write access functions which have side effects but has forgotten
348 * to provide raw access functions".
349 * The tests here line up with the conditions in read/write_raw_cp_reg()
350 * and assertions in raw_read()/raw_write().
352 if ((ri->type & ARM_CP_CONST) ||
353 ri->fieldoffset ||
354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
355 return false;
357 return true;
360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
362 /* Write the coprocessor state from cpu->env to the (index,value) list. */
363 int i;
364 bool ok = true;
366 for (i = 0; i < cpu->cpreg_array_len; i++) {
367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
368 const ARMCPRegInfo *ri;
369 uint64_t newval;
371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372 if (!ri) {
373 ok = false;
374 continue;
376 if (ri->type & ARM_CP_NO_RAW) {
377 continue;
380 newval = read_raw_cp_reg(&cpu->env, ri);
381 if (kvm_sync) {
383 * Only sync if the previous list->cpustate sync succeeded.
384 * Rather than tracking the success/failure state for every
385 * item in the list, we just recheck "does the raw write we must
386 * have made in write_list_to_cpustate() read back OK" here.
388 uint64_t oldval = cpu->cpreg_values[i];
390 if (oldval == newval) {
391 continue;
394 write_raw_cp_reg(&cpu->env, ri, oldval);
395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
396 continue;
399 write_raw_cp_reg(&cpu->env, ri, newval);
401 cpu->cpreg_values[i] = newval;
403 return ok;
406 bool write_list_to_cpustate(ARMCPU *cpu)
408 int i;
409 bool ok = true;
411 for (i = 0; i < cpu->cpreg_array_len; i++) {
412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
413 uint64_t v = cpu->cpreg_values[i];
414 const ARMCPRegInfo *ri;
416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
417 if (!ri) {
418 ok = false;
419 continue;
421 if (ri->type & ARM_CP_NO_RAW) {
422 continue;
424 /* Write value and confirm it reads back as written
425 * (to catch read-only registers and partially read-only
426 * registers where the incoming migration value doesn't match)
428 write_raw_cp_reg(&cpu->env, ri, v);
429 if (read_raw_cp_reg(&cpu->env, ri) != v) {
430 ok = false;
433 return ok;
436 static void add_cpreg_to_list(gpointer key, gpointer opaque)
438 ARMCPU *cpu = opaque;
439 uint64_t regidx;
440 const ARMCPRegInfo *ri;
442 regidx = *(uint32_t *)key;
443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
447 /* The value array need not be initialized at this point */
448 cpu->cpreg_array_len++;
452 static void count_cpreg(gpointer key, gpointer opaque)
454 ARMCPU *cpu = opaque;
455 uint64_t regidx;
456 const ARMCPRegInfo *ri;
458 regidx = *(uint32_t *)key;
459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
462 cpu->cpreg_array_len++;
466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
471 if (aidx > bidx) {
472 return 1;
474 if (aidx < bidx) {
475 return -1;
477 return 0;
480 void init_cpreg_list(ARMCPU *cpu)
482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
483 * Note that we require cpreg_tuples[] to be sorted by key ID.
485 GList *keys;
486 int arraylen;
488 keys = g_hash_table_get_keys(cpu->cp_regs);
489 keys = g_list_sort(keys, cpreg_key_compare);
491 cpu->cpreg_array_len = 0;
493 g_list_foreach(keys, count_cpreg, cpu);
495 arraylen = cpu->cpreg_array_len;
496 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
497 cpu->cpreg_values = g_new(uint64_t, arraylen);
498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
501 cpu->cpreg_array_len = 0;
503 g_list_foreach(keys, add_cpreg_to_list, cpu);
505 assert(cpu->cpreg_array_len == arraylen);
507 g_list_free(keys);
511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
513 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
514 const ARMCPRegInfo *ri,
515 bool isread)
517 if (!is_a64(env) && arm_current_el(env) == 3 &&
518 arm_is_secure_below_el3(env)) {
519 return CP_ACCESS_TRAP_UNCATEGORIZED;
521 return CP_ACCESS_OK;
524 /* Some secure-only AArch32 registers trap to EL3 if used from
525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
527 * We assume that the .access field is set to PL1_RW.
529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
530 const ARMCPRegInfo *ri,
531 bool isread)
533 if (arm_current_el(env) == 3) {
534 return CP_ACCESS_OK;
536 if (arm_is_secure_below_el3(env)) {
537 if (env->cp15.scr_el3 & SCR_EEL2) {
538 return CP_ACCESS_TRAP_EL2;
540 return CP_ACCESS_TRAP_EL3;
542 /* This will be EL1 NS and EL2 NS, which just UNDEF */
543 return CP_ACCESS_TRAP_UNCATEGORIZED;
546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
551 /* Check for traps to "powerdown debug" registers, which are controlled
552 * by MDCR.TDOSA
554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
555 bool isread)
557 int el = arm_current_el(env);
558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
560 (arm_hcr_el2_eff(env) & HCR_TGE);
562 if (el < 2 && mdcr_el2_tdosa) {
563 return CP_ACCESS_TRAP_EL2;
565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
566 return CP_ACCESS_TRAP_EL3;
568 return CP_ACCESS_OK;
571 /* Check for traps to "debug ROM" registers, which are controlled
572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
575 bool isread)
577 int el = arm_current_el(env);
578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
580 (arm_hcr_el2_eff(env) & HCR_TGE);
582 if (el < 2 && mdcr_el2_tdra) {
583 return CP_ACCESS_TRAP_EL2;
585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
586 return CP_ACCESS_TRAP_EL3;
588 return CP_ACCESS_OK;
591 /* Check for traps to general debug registers, which are controlled
592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
595 bool isread)
597 int el = arm_current_el(env);
598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
600 (arm_hcr_el2_eff(env) & HCR_TGE);
602 if (el < 2 && mdcr_el2_tda) {
603 return CP_ACCESS_TRAP_EL2;
605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
606 return CP_ACCESS_TRAP_EL3;
608 return CP_ACCESS_OK;
611 /* Check for traps to performance monitor registers, which are controlled
612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
615 bool isread)
617 int el = arm_current_el(env);
618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
621 return CP_ACCESS_TRAP_EL2;
623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
624 return CP_ACCESS_TRAP_EL3;
626 return CP_ACCESS_OK;
629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
631 bool isread)
633 if (arm_current_el(env) == 1) {
634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
635 if (arm_hcr_el2_eff(env) & trap) {
636 return CP_ACCESS_TRAP_EL2;
639 return CP_ACCESS_OK;
642 /* Check for traps from EL1 due to HCR_EL2.TSW. */
643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
644 bool isread)
646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
647 return CP_ACCESS_TRAP_EL2;
649 return CP_ACCESS_OK;
652 /* Check for traps from EL1 due to HCR_EL2.TACR. */
653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
654 bool isread)
656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
657 return CP_ACCESS_TRAP_EL2;
659 return CP_ACCESS_OK;
662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
664 bool isread)
666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
667 return CP_ACCESS_TRAP_EL2;
669 return CP_ACCESS_OK;
672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
674 ARMCPU *cpu = env_archcpu(env);
676 raw_write(env, ri, value);
677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
682 ARMCPU *cpu = env_archcpu(env);
684 if (raw_read(env, ri) != value) {
685 /* Unlike real hardware the qemu TLB uses virtual addresses,
686 * not modified virtual addresses, so this causes a TLB flush.
688 tlb_flush(CPU(cpu));
689 raw_write(env, ri, value);
693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 ARMCPU *cpu = env_archcpu(env);
698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
699 && !extended_addresses_enabled(env)) {
700 /* For VMSA (when not using the LPAE long descriptor page table
701 * format) this register includes the ASID, so do a TLB flush.
702 * For PMSA it is purely a process ID and no action is needed.
704 tlb_flush(CPU(cpu));
706 raw_write(env, ri, value);
709 /* IS variants of TLB operations must affect all cores */
710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711 uint64_t value)
713 CPUState *cs = env_cpu(env);
715 tlb_flush_all_cpus_synced(cs);
718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
719 uint64_t value)
721 CPUState *cs = env_cpu(env);
723 tlb_flush_all_cpus_synced(cs);
726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727 uint64_t value)
729 CPUState *cs = env_cpu(env);
731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735 uint64_t value)
737 CPUState *cs = env_cpu(env);
739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
743 * Non-IS variants of TLB operations are upgraded to
744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
745 * force broadcast of these operations.
747 static bool tlb_force_broadcast(CPUARMState *env)
749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
753 uint64_t value)
755 /* Invalidate all (TLBIALL) */
756 CPUState *cs = env_cpu(env);
758 if (tlb_force_broadcast(env)) {
759 tlb_flush_all_cpus_synced(cs);
760 } else {
761 tlb_flush(cs);
765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
766 uint64_t value)
768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
769 CPUState *cs = env_cpu(env);
771 value &= TARGET_PAGE_MASK;
772 if (tlb_force_broadcast(env)) {
773 tlb_flush_page_all_cpus_synced(cs, value);
774 } else {
775 tlb_flush_page(cs, value);
779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
780 uint64_t value)
782 /* Invalidate by ASID (TLBIASID) */
783 CPUState *cs = env_cpu(env);
785 if (tlb_force_broadcast(env)) {
786 tlb_flush_all_cpus_synced(cs);
787 } else {
788 tlb_flush(cs);
792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
793 uint64_t value)
795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
796 CPUState *cs = env_cpu(env);
798 value &= TARGET_PAGE_MASK;
799 if (tlb_force_broadcast(env)) {
800 tlb_flush_page_all_cpus_synced(cs, value);
801 } else {
802 tlb_flush_page(cs, value);
806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
807 uint64_t value)
809 CPUState *cs = env_cpu(env);
811 tlb_flush_by_mmuidx(cs,
812 ARMMMUIdxBit_E10_1 |
813 ARMMMUIdxBit_E10_1_PAN |
814 ARMMMUIdxBit_E10_0);
817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t value)
820 CPUState *cs = env_cpu(env);
822 tlb_flush_by_mmuidx_all_cpus_synced(cs,
823 ARMMMUIdxBit_E10_1 |
824 ARMMMUIdxBit_E10_1_PAN |
825 ARMMMUIdxBit_E10_0);
829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
830 uint64_t value)
832 CPUState *cs = env_cpu(env);
834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
838 uint64_t value)
840 CPUState *cs = env_cpu(env);
842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
846 uint64_t value)
848 CPUState *cs = env_cpu(env);
849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855 uint64_t value)
857 CPUState *cs = env_cpu(env);
858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
861 ARMMMUIdxBit_E2);
864 static const ARMCPRegInfo cp_reginfo[] = {
865 /* Define the secure and non-secure FCSE identifier CP registers
866 * separately because there is no secure bank in V8 (no _EL3). This allows
867 * the secure register to be properly reset and migrated. There is also no
868 * v8 EL1 version of the register so the non-secure instance stands alone.
870 { .name = "FCSEIDR",
871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
875 { .name = "FCSEIDR_S",
876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
880 /* Define the secure and non-secure context identifier CP registers
881 * separately because there is no secure bank in V8 (no _EL3). This allows
882 * the secure register to be properly reset and migrated. In the
883 * non-secure case, the 32-bit register will have reset and migration
884 * disabled during registration as it is handled by the 64-bit instance.
886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
888 .access = PL1_RW, .accessfn = access_tvm_trvm,
889 .secure = ARM_CP_SECSTATE_NS,
890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
894 .access = PL1_RW, .accessfn = access_tvm_trvm,
895 .secure = ARM_CP_SECSTATE_S,
896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
898 REGINFO_SENTINEL
901 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
902 /* NB: Some of these registers exist in v8 but with more precise
903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
905 /* MMU Domain access control / MPU write buffer control */
906 { .name = "DACR",
907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
909 .writefn = dacr_write, .raw_writefn = raw_write,
910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
911 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
913 * For v6 and v5, these mappings are overly broad.
915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923 /* Cache maintenance ops; some of this space may be overridden later. */
924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
927 REGINFO_SENTINEL
930 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
931 /* Not all pre-v6 cores implemented this WFI, so this is slightly
932 * over-broad.
934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
935 .access = PL1_W, .type = ARM_CP_WFI },
936 REGINFO_SENTINEL
939 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
941 * is UNPREDICTABLE; we choose to NOP as most implementations do).
943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
944 .access = PL1_W, .type = ARM_CP_WFI },
945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
947 * OMAPCP will override this space.
949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
951 .resetvalue = 0 },
952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
954 .resetvalue = 0 },
955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
958 .resetvalue = 0 },
959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
960 * implementing it as RAZ means the "debug architecture version" bits
961 * will read as a reserved value, which should cause Linux to not try
962 * to use the debug hardware.
964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
966 /* MMU TLB control. Note that the wildcarding means we cover not just
967 * the unified TLB ops but also the dside/iside/inner-shareable variants.
969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
971 .type = ARM_CP_NO_RAW },
972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
974 .type = ARM_CP_NO_RAW },
975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
977 .type = ARM_CP_NO_RAW },
978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
980 .type = ARM_CP_NO_RAW },
981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
985 REGINFO_SENTINEL
988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
989 uint64_t value)
991 uint32_t mask = 0;
993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
994 if (!arm_feature(env, ARM_FEATURE_V8)) {
995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000 /* VFP coprocessor: cp10 & cp11 [23:20] */
1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1003 if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004 /* ASEDIS [31] bit is RAO/WI */
1005 value |= (1 << 31);
1008 /* VFPv3 and upwards with NEON implement 32 double precision
1009 * registers (D0-D31).
1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013 value |= (1 << 30);
1016 value &= mask;
1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025 value &= ~(0xf << 20);
1026 value |= env->cp15.cpacr_el1 & (0xf << 20);
1029 env->cp15.cpacr_el1 = value;
1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1038 uint64_t value = env->cp15.cpacr_el1;
1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042 value &= ~(0xf << 20);
1044 return value;
1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1050 /* Call cpacr_write() so that we reset with the correct RAO bits set
1051 * for our CPU features.
1053 cpacr_write(env, ri, 0);
1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057 bool isread)
1059 if (arm_feature(env, ARM_FEATURE_V8)) {
1060 /* Check if CPACR accesses are to be trapped to EL2 */
1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063 return CP_ACCESS_TRAP_EL2;
1064 /* Check if CPACR accesses are to be trapped to EL3 */
1065 } else if (arm_current_el(env) < 3 &&
1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067 return CP_ACCESS_TRAP_EL3;
1071 return CP_ACCESS_OK;
1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075 bool isread)
1077 /* Check if CPTR accesses are set to trap to EL3 */
1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079 return CP_ACCESS_TRAP_EL3;
1082 return CP_ACCESS_OK;
1085 static const ARMCPRegInfo v6_cp_reginfo[] = {
1086 /* prefetch by MVA in v6, NOP in v7 */
1087 { .name = "MVA_prefetch",
1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089 .access = PL1_W, .type = ARM_CP_NOP },
1090 /* We need to break the TB after ISB to execute self-modifying code
1091 * correctly and also to take any pending interrupts immediately.
1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097 .access = PL0_W, .type = ARM_CP_NOP },
1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099 .access = PL0_W, .type = ARM_CP_NOP },
1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101 .access = PL1_RW, .accessfn = access_tvm_trvm,
1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103 offsetof(CPUARMState, cp15.ifar_ns) },
1104 .resetvalue = 0, },
1105 /* Watchpoint Fault Address Register : should actually only be present
1106 * for 1136, 1176, 11MPCore.
1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114 REGINFO_SENTINEL
1117 /* Definitions for the PMU registers */
1118 #define PMCRN_MASK 0xf800
1119 #define PMCRN_SHIFT 11
1120 #define PMCRLC 0x40
1121 #define PMCRDP 0x20
1122 #define PMCRX 0x10
1123 #define PMCRD 0x8
1124 #define PMCRC 0x4
1125 #define PMCRP 0x2
1126 #define PMCRE 0x1
1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129 * which can be written as 1 to trigger behaviour but which stay RAZ).
1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1133 #define PMXEVTYPER_P 0x80000000
1134 #define PMXEVTYPER_U 0x40000000
1135 #define PMXEVTYPER_NSK 0x20000000
1136 #define PMXEVTYPER_NSU 0x10000000
1137 #define PMXEVTYPER_NSH 0x08000000
1138 #define PMXEVTYPER_M 0x04000000
1139 #define PMXEVTYPER_MT 0x02000000
1140 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1141 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143 PMXEVTYPER_M | PMXEVTYPER_MT | \
1144 PMXEVTYPER_EVTCOUNT)
1146 #define PMCCFILTR 0xf8000000
1147 #define PMCCFILTR_M PMXEVTYPER_M
1148 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1150 static inline uint32_t pmu_num_counters(CPUARMState *env)
1152 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1158 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1161 typedef struct pm_event {
1162 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164 bool (*supported)(CPUARMState *);
1166 * Retrieve the current count of the underlying event. The programmed
1167 * counters hold a difference from the return value from this function
1169 uint64_t (*get_count)(CPUARMState *);
1171 * Return how many nanoseconds it will take (at a minimum) for count events
1172 * to occur. A negative value indicates the counter will never overflow, or
1173 * that the counter has otherwise arranged for the overflow bit to be set
1174 * and the PMU interrupt to be raised on overflow.
1176 int64_t (*ns_per_count)(uint64_t);
1177 } pm_event;
1179 static bool event_always_supported(CPUARMState *env)
1181 return true;
1184 static uint64_t swinc_get_count(CPUARMState *env)
1187 * SW_INCR events are written directly to the pmevcntr's by writes to
1188 * PMSWINC, so there is no underlying count maintained by the PMU itself
1190 return 0;
1193 static int64_t swinc_ns_per(uint64_t ignored)
1195 return -1;
1199 * Return the underlying cycle count for the PMU cycle counters. If we're in
1200 * usermode, simply return 0.
1202 static uint64_t cycles_get_count(CPUARMState *env)
1204 #ifndef CONFIG_USER_ONLY
1205 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207 #else
1208 return cpu_get_host_ticks();
1209 #endif
1212 #ifndef CONFIG_USER_ONLY
1213 static int64_t cycles_ns_per(uint64_t cycles)
1215 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1218 static bool instructions_supported(CPUARMState *env)
1220 return icount_enabled() == 1; /* Precise instruction counting */
1223 static uint64_t instructions_get_count(CPUARMState *env)
1225 return (uint64_t)icount_get_raw();
1228 static int64_t instructions_ns_per(uint64_t icount)
1230 return icount_to_ns((int64_t)icount);
1232 #endif
1234 static bool pmu_8_1_events_supported(CPUARMState *env)
1236 /* For events which are supported in any v8.1 PMU */
1237 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1240 static bool pmu_8_4_events_supported(CPUARMState *env)
1242 /* For events which are supported in any v8.1 PMU */
1243 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1246 static uint64_t zero_event_get_count(CPUARMState *env)
1248 /* For events which on QEMU never fire, so their count is always zero */
1249 return 0;
1252 static int64_t zero_event_ns_per(uint64_t cycles)
1254 /* An event which never fires can never overflow */
1255 return -1;
1258 static const pm_event pm_events[] = {
1259 { .number = 0x000, /* SW_INCR */
1260 .supported = event_always_supported,
1261 .get_count = swinc_get_count,
1262 .ns_per_count = swinc_ns_per,
1264 #ifndef CONFIG_USER_ONLY
1265 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266 .supported = instructions_supported,
1267 .get_count = instructions_get_count,
1268 .ns_per_count = instructions_ns_per,
1270 { .number = 0x011, /* CPU_CYCLES, Cycle */
1271 .supported = event_always_supported,
1272 .get_count = cycles_get_count,
1273 .ns_per_count = cycles_ns_per,
1275 #endif
1276 { .number = 0x023, /* STALL_FRONTEND */
1277 .supported = pmu_8_1_events_supported,
1278 .get_count = zero_event_get_count,
1279 .ns_per_count = zero_event_ns_per,
1281 { .number = 0x024, /* STALL_BACKEND */
1282 .supported = pmu_8_1_events_supported,
1283 .get_count = zero_event_get_count,
1284 .ns_per_count = zero_event_ns_per,
1286 { .number = 0x03c, /* STALL */
1287 .supported = pmu_8_4_events_supported,
1288 .get_count = zero_event_get_count,
1289 .ns_per_count = zero_event_ns_per,
1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295 * events (i.e. the statistical profiling extension), this implementation
1296 * should first be updated to something sparse instead of the current
1297 * supported_event_map[] array.
1299 #define MAX_EVENT_ID 0x3c
1300 #define UNSUPPORTED_EVENT UINT16_MAX
1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305 * of ARM event numbers to indices in our pm_events array.
1307 * Note: Events in the 0x40XX range are not currently supported.
1309 void pmu_init(ARMCPU *cpu)
1311 unsigned int i;
1314 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315 * events to them
1317 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318 supported_event_map[i] = UNSUPPORTED_EVENT;
1320 cpu->pmceid0 = 0;
1321 cpu->pmceid1 = 0;
1323 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324 const pm_event *cnt = &pm_events[i];
1325 assert(cnt->number <= MAX_EVENT_ID);
1326 /* We do not currently support events in the 0x40xx range */
1327 assert(cnt->number <= 0x3f);
1329 if (cnt->supported(&cpu->env)) {
1330 supported_event_map[cnt->number] = i;
1331 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332 if (cnt->number & 0x20) {
1333 cpu->pmceid1 |= event_mask;
1334 } else {
1335 cpu->pmceid0 |= event_mask;
1342 * Check at runtime whether a PMU event is supported for the current machine
1344 static bool event_supported(uint16_t number)
1346 if (number > MAX_EVENT_ID) {
1347 return false;
1349 return supported_event_map[number] != UNSUPPORTED_EVENT;
1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353 bool isread)
1355 /* Performance monitor registers user accessibility is controlled
1356 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357 * trapping to EL2 or EL3 for other accesses.
1359 int el = arm_current_el(env);
1360 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1362 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363 return CP_ACCESS_TRAP;
1365 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366 return CP_ACCESS_TRAP_EL2;
1368 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369 return CP_ACCESS_TRAP_EL3;
1372 return CP_ACCESS_OK;
1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376 const ARMCPRegInfo *ri,
1377 bool isread)
1379 /* ER: event counter read trap control */
1380 if (arm_feature(env, ARM_FEATURE_V8)
1381 && arm_current_el(env) == 0
1382 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383 && isread) {
1384 return CP_ACCESS_OK;
1387 return pmreg_access(env, ri, isread);
1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391 const ARMCPRegInfo *ri,
1392 bool isread)
1394 /* SW: software increment write trap control */
1395 if (arm_feature(env, ARM_FEATURE_V8)
1396 && arm_current_el(env) == 0
1397 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398 && !isread) {
1399 return CP_ACCESS_OK;
1402 return pmreg_access(env, ri, isread);
1405 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406 const ARMCPRegInfo *ri,
1407 bool isread)
1409 /* ER: event counter read trap control */
1410 if (arm_feature(env, ARM_FEATURE_V8)
1411 && arm_current_el(env) == 0
1412 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413 return CP_ACCESS_OK;
1416 return pmreg_access(env, ri, isread);
1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420 const ARMCPRegInfo *ri,
1421 bool isread)
1423 /* CR: cycle counter read trap control */
1424 if (arm_feature(env, ARM_FEATURE_V8)
1425 && arm_current_el(env) == 0
1426 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427 && isread) {
1428 return CP_ACCESS_OK;
1431 return pmreg_access(env, ri, isread);
1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435 * the current EL, security state, and register configuration.
1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1439 uint64_t filter;
1440 bool e, p, u, nsk, nsu, nsh, m;
1441 bool enabled, prohibited, filtered;
1442 bool secure = arm_is_secure(env);
1443 int el = arm_current_el(env);
1444 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1447 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448 return false;
1451 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452 (counter < hpmn || counter == 31)) {
1453 e = env->cp15.c9_pmcr & PMCRE;
1454 } else {
1455 e = mdcr_el2 & MDCR_HPME;
1457 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1459 if (!secure) {
1460 if (el == 2 && (counter < hpmn || counter == 31)) {
1461 prohibited = mdcr_el2 & MDCR_HPMD;
1462 } else {
1463 prohibited = false;
1465 } else {
1466 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467 !(env->cp15.mdcr_el3 & MDCR_SPME);
1470 if (prohibited && counter == 31) {
1471 prohibited = env->cp15.c9_pmcr & PMCRDP;
1474 if (counter == 31) {
1475 filter = env->cp15.pmccfiltr_el0;
1476 } else {
1477 filter = env->cp15.c14_pmevtyper[counter];
1480 p = filter & PMXEVTYPER_P;
1481 u = filter & PMXEVTYPER_U;
1482 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485 m = arm_el_is_aa64(env, 1) &&
1486 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1488 if (el == 0) {
1489 filtered = secure ? u : u != nsu;
1490 } else if (el == 1) {
1491 filtered = secure ? p : p != nsk;
1492 } else if (el == 2) {
1493 filtered = !nsh;
1494 } else { /* EL3 */
1495 filtered = m != p;
1498 if (counter != 31) {
1500 * If not checking PMCCNTR, ensure the counter is setup to an event we
1501 * support
1503 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504 if (!event_supported(event)) {
1505 return false;
1509 return enabled && !prohibited && !filtered;
1512 static void pmu_update_irq(CPUARMState *env)
1514 ARMCPU *cpu = env_archcpu(env);
1515 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1520 * Ensure c15_ccnt is the guest-visible count so that operations such as
1521 * enabling/disabling the counter or filtering, modifying the count itself,
1522 * etc. can be done logically. This is essentially a no-op if the counter is
1523 * not enabled at the time of the call.
1525 static void pmccntr_op_start(CPUARMState *env)
1527 uint64_t cycles = cycles_get_count(env);
1529 if (pmu_counter_enabled(env, 31)) {
1530 uint64_t eff_cycles = cycles;
1531 if (env->cp15.c9_pmcr & PMCRD) {
1532 /* Increment once every 64 processor clock cycles */
1533 eff_cycles /= 64;
1536 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1538 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539 1ull << 63 : 1ull << 31;
1540 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541 env->cp15.c9_pmovsr |= (1 << 31);
1542 pmu_update_irq(env);
1545 env->cp15.c15_ccnt = new_pmccntr;
1547 env->cp15.c15_ccnt_delta = cycles;
1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553 * pmccntr_op_start.
1555 static void pmccntr_op_finish(CPUARMState *env)
1557 if (pmu_counter_enabled(env, 31)) {
1558 #ifndef CONFIG_USER_ONLY
1559 /* Calculate when the counter will next overflow */
1560 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562 remaining_cycles = (uint32_t)remaining_cycles;
1564 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1566 if (overflow_in > 0) {
1567 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568 overflow_in;
1569 ARMCPU *cpu = env_archcpu(env);
1570 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1572 #endif
1574 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575 if (env->cp15.c9_pmcr & PMCRD) {
1576 /* Increment once every 64 processor clock cycles */
1577 prev_cycles /= 64;
1579 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1586 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587 uint64_t count = 0;
1588 if (event_supported(event)) {
1589 uint16_t event_idx = supported_event_map[event];
1590 count = pm_events[event_idx].get_count(env);
1593 if (pmu_counter_enabled(env, counter)) {
1594 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1596 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597 env->cp15.c9_pmovsr |= (1 << counter);
1598 pmu_update_irq(env);
1600 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1602 env->cp15.c14_pmevcntr_delta[counter] = count;
1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1607 if (pmu_counter_enabled(env, counter)) {
1608 #ifndef CONFIG_USER_ONLY
1609 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610 uint16_t event_idx = supported_event_map[event];
1611 uint64_t delta = UINT32_MAX -
1612 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1615 if (overflow_in > 0) {
1616 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617 overflow_in;
1618 ARMCPU *cpu = env_archcpu(env);
1619 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1621 #endif
1623 env->cp15.c14_pmevcntr_delta[counter] -=
1624 env->cp15.c14_pmevcntr[counter];
1628 void pmu_op_start(CPUARMState *env)
1630 unsigned int i;
1631 pmccntr_op_start(env);
1632 for (i = 0; i < pmu_num_counters(env); i++) {
1633 pmevcntr_op_start(env, i);
1637 void pmu_op_finish(CPUARMState *env)
1639 unsigned int i;
1640 pmccntr_op_finish(env);
1641 for (i = 0; i < pmu_num_counters(env); i++) {
1642 pmevcntr_op_finish(env, i);
1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1648 pmu_op_start(&cpu->env);
1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1653 pmu_op_finish(&cpu->env);
1656 void arm_pmu_timer_cb(void *opaque)
1658 ARMCPU *cpu = opaque;
1661 * Update all the counter values based on the current underlying counts,
1662 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664 * counter may expire.
1666 pmu_op_start(&cpu->env);
1667 pmu_op_finish(&cpu->env);
1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671 uint64_t value)
1673 pmu_op_start(env);
1675 if (value & PMCRC) {
1676 /* The counter has been reset */
1677 env->cp15.c15_ccnt = 0;
1680 if (value & PMCRP) {
1681 unsigned int i;
1682 for (i = 0; i < pmu_num_counters(env); i++) {
1683 env->cp15.c14_pmevcntr[i] = 0;
1687 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1690 pmu_op_finish(env);
1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694 uint64_t value)
1696 unsigned int i;
1697 for (i = 0; i < pmu_num_counters(env); i++) {
1698 /* Increment a counter's count iff: */
1699 if ((value & (1 << i)) && /* counter's bit is set */
1700 /* counter is enabled and not filtered */
1701 pmu_counter_enabled(env, i) &&
1702 /* counter is SW_INCR */
1703 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704 pmevcntr_op_start(env, i);
1707 * Detect if this write causes an overflow since we can't predict
1708 * PMSWINC overflows like we can for other events
1710 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1712 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713 env->cp15.c9_pmovsr |= (1 << i);
1714 pmu_update_irq(env);
1717 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1719 pmevcntr_op_finish(env, i);
1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1726 uint64_t ret;
1727 pmccntr_op_start(env);
1728 ret = env->cp15.c15_ccnt;
1729 pmccntr_op_finish(env);
1730 return ret;
1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 uint64_t value)
1736 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739 * accessed.
1741 env->cp15.c9_pmselr = value & 0x1f;
1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1747 pmccntr_op_start(env);
1748 env->cp15.c15_ccnt = value;
1749 pmccntr_op_finish(env);
1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753 uint64_t value)
1755 uint64_t cur_val = pmccntr_read(env, NULL);
1757 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1763 pmccntr_op_start(env);
1764 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765 pmccntr_op_finish(env);
1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769 uint64_t value)
1771 pmccntr_op_start(env);
1772 /* M is not accessible from AArch32 */
1773 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774 (value & PMCCFILTR);
1775 pmccntr_op_finish(env);
1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1780 /* M is not visible in AArch32 */
1781 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785 uint64_t value)
1787 value &= pmu_counter_mask(env);
1788 env->cp15.c9_pmcnten |= value;
1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 value &= pmu_counter_mask(env);
1795 env->cp15.c9_pmcnten &= ~value;
1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1801 value &= pmu_counter_mask(env);
1802 env->cp15.c9_pmovsr &= ~value;
1803 pmu_update_irq(env);
1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1809 value &= pmu_counter_mask(env);
1810 env->cp15.c9_pmovsr |= value;
1811 pmu_update_irq(env);
1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value, const uint8_t counter)
1817 if (counter == 31) {
1818 pmccfiltr_write(env, ri, value);
1819 } else if (counter < pmu_num_counters(env)) {
1820 pmevcntr_op_start(env, counter);
1823 * If this counter's event type is changing, store the current
1824 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825 * pmevcntr_op_finish has the correct baseline when it converts back to
1826 * a delta.
1828 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829 PMXEVTYPER_EVTCOUNT;
1830 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831 if (old_event != new_event) {
1832 uint64_t count = 0;
1833 if (event_supported(new_event)) {
1834 uint16_t event_idx = supported_event_map[new_event];
1835 count = pm_events[event_idx].get_count(env);
1837 env->cp15.c14_pmevcntr_delta[counter] = count;
1840 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841 pmevcntr_op_finish(env, counter);
1843 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844 * PMSELR value is equal to or greater than the number of implemented
1845 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850 const uint8_t counter)
1852 if (counter == 31) {
1853 return env->cp15.pmccfiltr_el0;
1854 } else if (counter < pmu_num_counters(env)) {
1855 return env->cp15.c14_pmevtyper[counter];
1856 } else {
1858 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1861 return 0;
1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866 uint64_t value)
1868 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869 pmevtyper_write(env, ri, value, counter);
1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873 uint64_t value)
1875 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876 env->cp15.c14_pmevtyper[counter] = value;
1879 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880 * pmu_op_finish calls when loading saved state for a migration. Because
1881 * we're potentially updating the type of event here, the value written to
1882 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883 * different counter type. Therefore, we need to set this value to the
1884 * current count for the counter type we're writing so that pmu_op_finish
1885 * has the correct count for its calculation.
1887 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888 if (event_supported(event)) {
1889 uint16_t event_idx = supported_event_map[event];
1890 env->cp15.c14_pmevcntr_delta[counter] =
1891 pm_events[event_idx].get_count(env);
1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1897 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898 return pmevtyper_read(env, ri, counter);
1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902 uint64_t value)
1904 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1909 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913 uint64_t value, uint8_t counter)
1915 if (counter < pmu_num_counters(env)) {
1916 pmevcntr_op_start(env, counter);
1917 env->cp15.c14_pmevcntr[counter] = value;
1918 pmevcntr_op_finish(env, counter);
1921 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922 * are CONSTRAINED UNPREDICTABLE.
1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927 uint8_t counter)
1929 if (counter < pmu_num_counters(env)) {
1930 uint64_t ret;
1931 pmevcntr_op_start(env, counter);
1932 ret = env->cp15.c14_pmevcntr[counter];
1933 pmevcntr_op_finish(env, counter);
1934 return ret;
1935 } else {
1936 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937 * are CONSTRAINED UNPREDICTABLE. */
1938 return 0;
1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943 uint64_t value)
1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946 pmevcntr_write(env, ri, value, counter);
1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1951 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952 return pmevcntr_read(env, ri, counter);
1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956 uint64_t value)
1958 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959 assert(counter < pmu_num_counters(env));
1960 env->cp15.c14_pmevcntr[counter] = value;
1961 pmevcntr_write(env, ri, value, counter);
1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1966 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967 assert(counter < pmu_num_counters(env));
1968 return env->cp15.c14_pmevcntr[counter];
1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972 uint64_t value)
1974 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1979 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983 uint64_t value)
1985 if (arm_feature(env, ARM_FEATURE_V8)) {
1986 env->cp15.c9_pmuserenr = value & 0xf;
1987 } else {
1988 env->cp15.c9_pmuserenr = value & 1;
1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993 uint64_t value)
1995 /* We have no event counters so only the C bit can be changed */
1996 value &= pmu_counter_mask(env);
1997 env->cp15.c9_pminten |= value;
1998 pmu_update_irq(env);
2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002 uint64_t value)
2004 value &= pmu_counter_mask(env);
2005 env->cp15.c9_pminten &= ~value;
2006 pmu_update_irq(env);
2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010 uint64_t value)
2012 /* Note that even though the AArch64 view of this register has bits
2013 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014 * architectural requirements for bits which are RES0 only in some
2015 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2018 raw_write(env, ri, value & ~0x1FULL);
2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2023 /* Begin with base v8.0 state. */
2024 uint32_t valid_mask = 0x3fff;
2025 ARMCPU *cpu = env_archcpu(env);
2027 if (ri->state == ARM_CP_STATE_AA64) {
2028 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029 !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2032 valid_mask &= ~SCR_NET;
2034 if (cpu_isar_feature(aa64_lor, cpu)) {
2035 valid_mask |= SCR_TLOR;
2037 if (cpu_isar_feature(aa64_pauth, cpu)) {
2038 valid_mask |= SCR_API | SCR_APK;
2040 if (cpu_isar_feature(aa64_sel2, cpu)) {
2041 valid_mask |= SCR_EEL2;
2043 if (cpu_isar_feature(aa64_mte, cpu)) {
2044 valid_mask |= SCR_ATA;
2046 } else {
2047 valid_mask &= ~(SCR_RW | SCR_ST);
2050 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051 valid_mask &= ~SCR_HCE;
2053 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054 * supported if EL2 exists. The bit is UNK/SBZP when
2055 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056 * when EL2 is unavailable.
2057 * On ARMv8, this bit is always available.
2059 if (arm_feature(env, ARM_FEATURE_V7) &&
2060 !arm_feature(env, ARM_FEATURE_V8)) {
2061 valid_mask &= ~SCR_SMD;
2065 /* Clear all-context RES0 bits. */
2066 value &= valid_mask;
2067 raw_write(env, ri, value);
2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2073 * scr_write will set the RES1 bits on an AArch64-only CPU.
2074 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2076 scr_write(env, ri, 0);
2079 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080 const ARMCPRegInfo *ri,
2081 bool isread)
2083 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084 return CP_ACCESS_TRAP_EL2;
2087 return CP_ACCESS_OK;
2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2092 ARMCPU *cpu = env_archcpu(env);
2094 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095 * bank
2097 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098 ri->secure & ARM_CP_SECSTATE_S);
2100 return cpu->ccsidr[index];
2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104 uint64_t value)
2106 raw_write(env, ri, value & 0xf);
2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2111 CPUState *cs = env_cpu(env);
2112 bool el1 = arm_current_el(env) == 1;
2113 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114 uint64_t ret = 0;
2116 if (hcr_el2 & HCR_IMO) {
2117 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118 ret |= CPSR_I;
2120 } else {
2121 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122 ret |= CPSR_I;
2126 if (hcr_el2 & HCR_FMO) {
2127 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128 ret |= CPSR_F;
2130 } else {
2131 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132 ret |= CPSR_F;
2136 /* External aborts are not possible in QEMU so A bit is always clear */
2137 return ret;
2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141 bool isread)
2143 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144 return CP_ACCESS_TRAP_EL2;
2147 return CP_ACCESS_OK;
2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151 bool isread)
2153 if (arm_feature(env, ARM_FEATURE_V8)) {
2154 return access_aa64_tid1(env, ri, isread);
2157 return CP_ACCESS_OK;
2160 static const ARMCPRegInfo v7_cp_reginfo[] = {
2161 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163 .access = PL1_W, .type = ARM_CP_NOP },
2164 /* Performance monitors are implementation defined in v7,
2165 * but with an ARM recommended set of registers, which we
2166 * follow.
2168 * Performance registers fall into three categories:
2169 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2175 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176 .access = PL0_RW, .type = ARM_CP_ALIAS,
2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178 .writefn = pmcntenset_write,
2179 .accessfn = pmreg_access,
2180 .raw_writefn = raw_write },
2181 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183 .access = PL0_RW, .accessfn = pmreg_access,
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187 .access = PL0_RW,
2188 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189 .accessfn = pmreg_access,
2190 .writefn = pmcntenclr_write,
2191 .type = ARM_CP_ALIAS },
2192 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194 .access = PL0_RW, .accessfn = pmreg_access,
2195 .type = ARM_CP_ALIAS,
2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197 .writefn = pmcntenclr_write },
2198 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199 .access = PL0_RW, .type = ARM_CP_IO,
2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201 .accessfn = pmreg_access,
2202 .writefn = pmovsr_write,
2203 .raw_writefn = raw_write },
2204 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206 .access = PL0_RW, .accessfn = pmreg_access,
2207 .type = ARM_CP_ALIAS | ARM_CP_IO,
2208 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209 .writefn = pmovsr_write,
2210 .raw_writefn = raw_write },
2211 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212 .access = PL0_W, .accessfn = pmreg_access_swinc,
2213 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214 .writefn = pmswinc_write },
2215 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217 .access = PL0_W, .accessfn = pmreg_access_swinc,
2218 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219 .writefn = pmswinc_write },
2220 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221 .access = PL0_RW, .type = ARM_CP_ALIAS,
2222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224 .raw_writefn = raw_write},
2225 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227 .access = PL0_RW, .accessfn = pmreg_access_selr,
2228 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229 .writefn = pmselr_write, .raw_writefn = raw_write, },
2230 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233 .accessfn = pmreg_access_ccntr },
2234 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237 .type = ARM_CP_IO,
2238 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239 .readfn = pmccntr_read, .writefn = pmccntr_write,
2240 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243 .access = PL0_RW, .accessfn = pmreg_access,
2244 .type = ARM_CP_ALIAS | ARM_CP_IO,
2245 .resetvalue = 0, },
2246 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249 .access = PL0_RW, .accessfn = pmreg_access,
2250 .type = ARM_CP_IO,
2251 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252 .resetvalue = 0, },
2253 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255 .accessfn = pmreg_access,
2256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260 .accessfn = pmreg_access,
2261 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264 .accessfn = pmreg_access_xevcntr,
2265 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269 .accessfn = pmreg_access_xevcntr,
2270 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274 .resetvalue = 0,
2275 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280 .resetvalue = 0,
2281 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283 .access = PL1_RW, .accessfn = access_tpm,
2284 .type = ARM_CP_ALIAS | ARM_CP_IO,
2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286 .resetvalue = 0,
2287 .writefn = pmintenset_write, .raw_writefn = raw_write },
2288 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290 .access = PL1_RW, .accessfn = access_tpm,
2291 .type = ARM_CP_IO,
2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293 .writefn = pmintenset_write, .raw_writefn = raw_write,
2294 .resetvalue = 0x0 },
2295 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296 .access = PL1_RW, .accessfn = access_tpm,
2297 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299 .writefn = pmintenclr_write, },
2300 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302 .access = PL1_RW, .accessfn = access_tpm,
2303 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305 .writefn = pmintenclr_write },
2306 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308 .access = PL1_R,
2309 .accessfn = access_aa64_tid2,
2310 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313 .access = PL1_RW,
2314 .accessfn = access_aa64_tid2,
2315 .writefn = csselr_write, .resetvalue = 0,
2316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317 offsetof(CPUARMState, cp15.csselr_ns) } },
2318 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319 * just RAZ for all cores:
2321 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323 .access = PL1_R, .type = ARM_CP_CONST,
2324 .accessfn = access_aa64_tid1,
2325 .resetvalue = 0 },
2326 /* Auxiliary fault status registers: these also are IMPDEF, and we
2327 * choose to RAZ/WI for all cores.
2329 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331 .access = PL1_RW, .accessfn = access_tvm_trvm,
2332 .type = ARM_CP_CONST, .resetvalue = 0 },
2333 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335 .access = PL1_RW, .accessfn = access_tvm_trvm,
2336 .type = ARM_CP_CONST, .resetvalue = 0 },
2337 /* MAIR can just read-as-written because we don't implement caches
2338 * and so don't need to care about memory attributes.
2340 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342 .access = PL1_RW, .accessfn = access_tvm_trvm,
2343 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344 .resetvalue = 0 },
2345 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348 .resetvalue = 0 },
2349 /* For non-long-descriptor page tables these are PRRR and NMRR;
2350 * regardless they still act as reads-as-written for QEMU.
2352 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353 * allows them to assign the correct fieldoffset based on the endianness
2354 * handled in the field definitions.
2356 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358 .access = PL1_RW, .accessfn = access_tvm_trvm,
2359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360 offsetof(CPUARMState, cp15.mair0_ns) },
2361 .resetfn = arm_cp_reset_ignore },
2362 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364 .access = PL1_RW, .accessfn = access_tvm_trvm,
2365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366 offsetof(CPUARMState, cp15.mair1_ns) },
2367 .resetfn = arm_cp_reset_ignore },
2368 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371 /* 32 bit ITLB invalidates */
2372 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374 .writefn = tlbiall_write },
2375 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377 .writefn = tlbimva_write },
2378 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380 .writefn = tlbiasid_write },
2381 /* 32 bit DTLB invalidates */
2382 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384 .writefn = tlbiall_write },
2385 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387 .writefn = tlbimva_write },
2388 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390 .writefn = tlbiasid_write },
2391 /* 32 bit TLB invalidates */
2392 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394 .writefn = tlbiall_write },
2395 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397 .writefn = tlbimva_write },
2398 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400 .writefn = tlbiasid_write },
2401 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403 .writefn = tlbimvaa_write },
2404 REGINFO_SENTINEL
2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408 /* 32 bit TLB invalidates, Inner Shareable */
2409 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411 .writefn = tlbiall_is_write },
2412 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414 .writefn = tlbimva_is_write },
2415 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417 .writefn = tlbiasid_is_write },
2418 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420 .writefn = tlbimvaa_is_write },
2421 REGINFO_SENTINEL
2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425 /* PMOVSSET is not implemented in v7 before v7ve */
2426 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427 .access = PL0_RW, .accessfn = pmreg_access,
2428 .type = ARM_CP_ALIAS | ARM_CP_IO,
2429 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430 .writefn = pmovsset_write,
2431 .raw_writefn = raw_write },
2432 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434 .access = PL0_RW, .accessfn = pmreg_access,
2435 .type = ARM_CP_ALIAS | ARM_CP_IO,
2436 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437 .writefn = pmovsset_write,
2438 .raw_writefn = raw_write },
2439 REGINFO_SENTINEL
2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443 uint64_t value)
2445 value &= 1;
2446 env->teecr = value;
2449 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450 bool isread)
2453 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2454 * at all, so we don't need to check whether we're v8A.
2456 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2457 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2458 return CP_ACCESS_TRAP_EL2;
2460 return CP_ACCESS_OK;
2463 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2464 bool isread)
2466 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2467 return CP_ACCESS_TRAP;
2469 return teecr_access(env, ri, isread);
2472 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2473 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2474 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2475 .resetvalue = 0,
2476 .writefn = teecr_write, .accessfn = teecr_access },
2477 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2478 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2479 .accessfn = teehbr_access, .resetvalue = 0 },
2480 REGINFO_SENTINEL
2483 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2484 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2485 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2486 .access = PL0_RW,
2487 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2488 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2489 .access = PL0_RW,
2490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2491 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2492 .resetfn = arm_cp_reset_ignore },
2493 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2494 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2495 .access = PL0_R|PL1_W,
2496 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2497 .resetvalue = 0},
2498 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2499 .access = PL0_R|PL1_W,
2500 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2501 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2502 .resetfn = arm_cp_reset_ignore },
2503 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2504 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2505 .access = PL1_RW,
2506 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2507 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2508 .access = PL1_RW,
2509 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2510 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2511 .resetvalue = 0 },
2512 REGINFO_SENTINEL
2515 #ifndef CONFIG_USER_ONLY
2517 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2518 bool isread)
2520 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2521 * Writable only at the highest implemented exception level.
2523 int el = arm_current_el(env);
2524 uint64_t hcr;
2525 uint32_t cntkctl;
2527 switch (el) {
2528 case 0:
2529 hcr = arm_hcr_el2_eff(env);
2530 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2531 cntkctl = env->cp15.cnthctl_el2;
2532 } else {
2533 cntkctl = env->cp15.c14_cntkctl;
2535 if (!extract32(cntkctl, 0, 2)) {
2536 return CP_ACCESS_TRAP;
2538 break;
2539 case 1:
2540 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2541 arm_is_secure_below_el3(env)) {
2542 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2543 return CP_ACCESS_TRAP_UNCATEGORIZED;
2545 break;
2546 case 2:
2547 case 3:
2548 break;
2551 if (!isread && el < arm_highest_el(env)) {
2552 return CP_ACCESS_TRAP_UNCATEGORIZED;
2555 return CP_ACCESS_OK;
2558 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2559 bool isread)
2561 unsigned int cur_el = arm_current_el(env);
2562 bool has_el2 = arm_is_el2_enabled(env);
2563 uint64_t hcr = arm_hcr_el2_eff(env);
2565 switch (cur_el) {
2566 case 0:
2567 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2568 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2569 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2570 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2573 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2574 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2575 return CP_ACCESS_TRAP;
2578 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2579 if (hcr & HCR_E2H) {
2580 if (timeridx == GTIMER_PHYS &&
2581 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2582 return CP_ACCESS_TRAP_EL2;
2584 } else {
2585 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2586 if (has_el2 && timeridx == GTIMER_PHYS &&
2587 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2588 return CP_ACCESS_TRAP_EL2;
2591 break;
2593 case 1:
2594 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2595 if (has_el2 && timeridx == GTIMER_PHYS &&
2596 (hcr & HCR_E2H
2597 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2598 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2599 return CP_ACCESS_TRAP_EL2;
2601 break;
2603 return CP_ACCESS_OK;
2606 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2607 bool isread)
2609 unsigned int cur_el = arm_current_el(env);
2610 bool has_el2 = arm_is_el2_enabled(env);
2611 uint64_t hcr = arm_hcr_el2_eff(env);
2613 switch (cur_el) {
2614 case 0:
2615 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2616 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2617 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2618 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2622 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2623 * EL0 if EL0[PV]TEN is zero.
2625 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2626 return CP_ACCESS_TRAP;
2628 /* fall through */
2630 case 1:
2631 if (has_el2 && timeridx == GTIMER_PHYS) {
2632 if (hcr & HCR_E2H) {
2633 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2634 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2635 return CP_ACCESS_TRAP_EL2;
2637 } else {
2638 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2639 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2640 return CP_ACCESS_TRAP_EL2;
2644 break;
2646 return CP_ACCESS_OK;
2649 static CPAccessResult gt_pct_access(CPUARMState *env,
2650 const ARMCPRegInfo *ri,
2651 bool isread)
2653 return gt_counter_access(env, GTIMER_PHYS, isread);
2656 static CPAccessResult gt_vct_access(CPUARMState *env,
2657 const ARMCPRegInfo *ri,
2658 bool isread)
2660 return gt_counter_access(env, GTIMER_VIRT, isread);
2663 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2664 bool isread)
2666 return gt_timer_access(env, GTIMER_PHYS, isread);
2669 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2670 bool isread)
2672 return gt_timer_access(env, GTIMER_VIRT, isread);
2675 static CPAccessResult gt_stimer_access(CPUARMState *env,
2676 const ARMCPRegInfo *ri,
2677 bool isread)
2679 /* The AArch64 register view of the secure physical timer is
2680 * always accessible from EL3, and configurably accessible from
2681 * Secure EL1.
2683 switch (arm_current_el(env)) {
2684 case 1:
2685 if (!arm_is_secure(env)) {
2686 return CP_ACCESS_TRAP;
2688 if (!(env->cp15.scr_el3 & SCR_ST)) {
2689 return CP_ACCESS_TRAP_EL3;
2691 return CP_ACCESS_OK;
2692 case 0:
2693 case 2:
2694 return CP_ACCESS_TRAP;
2695 case 3:
2696 return CP_ACCESS_OK;
2697 default:
2698 g_assert_not_reached();
2702 static uint64_t gt_get_countervalue(CPUARMState *env)
2704 ARMCPU *cpu = env_archcpu(env);
2706 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2709 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2711 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2713 if (gt->ctl & 1) {
2714 /* Timer enabled: calculate and set current ISTATUS, irq, and
2715 * reset timer to when ISTATUS next has to change
2717 uint64_t offset = timeridx == GTIMER_VIRT ?
2718 cpu->env.cp15.cntvoff_el2 : 0;
2719 uint64_t count = gt_get_countervalue(&cpu->env);
2720 /* Note that this must be unsigned 64 bit arithmetic: */
2721 int istatus = count - offset >= gt->cval;
2722 uint64_t nexttick;
2723 int irqstate;
2725 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2727 irqstate = (istatus && !(gt->ctl & 2));
2728 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2730 if (istatus) {
2731 /* Next transition is when count rolls back over to zero */
2732 nexttick = UINT64_MAX;
2733 } else {
2734 /* Next transition is when we hit cval */
2735 nexttick = gt->cval + offset;
2737 /* Note that the desired next expiry time might be beyond the
2738 * signed-64-bit range of a QEMUTimer -- in this case we just
2739 * set the timer for as far in the future as possible. When the
2740 * timer expires we will reset the timer for any remaining period.
2742 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2743 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2744 } else {
2745 timer_mod(cpu->gt_timer[timeridx], nexttick);
2747 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2748 } else {
2749 /* Timer disabled: ISTATUS and timer output always clear */
2750 gt->ctl &= ~4;
2751 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2752 timer_del(cpu->gt_timer[timeridx]);
2753 trace_arm_gt_recalc_disabled(timeridx);
2757 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2758 int timeridx)
2760 ARMCPU *cpu = env_archcpu(env);
2762 timer_del(cpu->gt_timer[timeridx]);
2765 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2767 return gt_get_countervalue(env);
2770 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2772 uint64_t hcr;
2774 switch (arm_current_el(env)) {
2775 case 2:
2776 hcr = arm_hcr_el2_eff(env);
2777 if (hcr & HCR_E2H) {
2778 return 0;
2780 break;
2781 case 0:
2782 hcr = arm_hcr_el2_eff(env);
2783 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2784 return 0;
2786 break;
2789 return env->cp15.cntvoff_el2;
2792 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2794 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2797 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2798 int timeridx,
2799 uint64_t value)
2801 trace_arm_gt_cval_write(timeridx, value);
2802 env->cp15.c14_timer[timeridx].cval = value;
2803 gt_recalc_timer(env_archcpu(env), timeridx);
2806 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2807 int timeridx)
2809 uint64_t offset = 0;
2811 switch (timeridx) {
2812 case GTIMER_VIRT:
2813 case GTIMER_HYPVIRT:
2814 offset = gt_virt_cnt_offset(env);
2815 break;
2818 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2819 (gt_get_countervalue(env) - offset));
2822 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823 int timeridx,
2824 uint64_t value)
2826 uint64_t offset = 0;
2828 switch (timeridx) {
2829 case GTIMER_VIRT:
2830 case GTIMER_HYPVIRT:
2831 offset = gt_virt_cnt_offset(env);
2832 break;
2835 trace_arm_gt_tval_write(timeridx, value);
2836 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2837 sextract64(value, 0, 32);
2838 gt_recalc_timer(env_archcpu(env), timeridx);
2841 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2842 int timeridx,
2843 uint64_t value)
2845 ARMCPU *cpu = env_archcpu(env);
2846 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2848 trace_arm_gt_ctl_write(timeridx, value);
2849 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2850 if ((oldval ^ value) & 1) {
2851 /* Enable toggled */
2852 gt_recalc_timer(cpu, timeridx);
2853 } else if ((oldval ^ value) & 2) {
2854 /* IMASK toggled: don't need to recalculate,
2855 * just set the interrupt line based on ISTATUS
2857 int irqstate = (oldval & 4) && !(value & 2);
2859 trace_arm_gt_imask_toggle(timeridx, irqstate);
2860 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2864 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2866 gt_timer_reset(env, ri, GTIMER_PHYS);
2869 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2870 uint64_t value)
2872 gt_cval_write(env, ri, GTIMER_PHYS, value);
2875 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2877 return gt_tval_read(env, ri, GTIMER_PHYS);
2880 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2881 uint64_t value)
2883 gt_tval_write(env, ri, GTIMER_PHYS, value);
2886 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887 uint64_t value)
2889 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2892 static int gt_phys_redir_timeridx(CPUARMState *env)
2894 switch (arm_mmu_idx(env)) {
2895 case ARMMMUIdx_E20_0:
2896 case ARMMMUIdx_E20_2:
2897 case ARMMMUIdx_E20_2_PAN:
2898 case ARMMMUIdx_SE20_0:
2899 case ARMMMUIdx_SE20_2:
2900 case ARMMMUIdx_SE20_2_PAN:
2901 return GTIMER_HYP;
2902 default:
2903 return GTIMER_PHYS;
2907 static int gt_virt_redir_timeridx(CPUARMState *env)
2909 switch (arm_mmu_idx(env)) {
2910 case ARMMMUIdx_E20_0:
2911 case ARMMMUIdx_E20_2:
2912 case ARMMMUIdx_E20_2_PAN:
2913 case ARMMMUIdx_SE20_0:
2914 case ARMMMUIdx_SE20_2:
2915 case ARMMMUIdx_SE20_2_PAN:
2916 return GTIMER_HYPVIRT;
2917 default:
2918 return GTIMER_VIRT;
2922 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2923 const ARMCPRegInfo *ri)
2925 int timeridx = gt_phys_redir_timeridx(env);
2926 return env->cp15.c14_timer[timeridx].cval;
2929 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930 uint64_t value)
2932 int timeridx = gt_phys_redir_timeridx(env);
2933 gt_cval_write(env, ri, timeridx, value);
2936 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2937 const ARMCPRegInfo *ri)
2939 int timeridx = gt_phys_redir_timeridx(env);
2940 return gt_tval_read(env, ri, timeridx);
2943 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944 uint64_t value)
2946 int timeridx = gt_phys_redir_timeridx(env);
2947 gt_tval_write(env, ri, timeridx, value);
2950 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2951 const ARMCPRegInfo *ri)
2953 int timeridx = gt_phys_redir_timeridx(env);
2954 return env->cp15.c14_timer[timeridx].ctl;
2957 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2958 uint64_t value)
2960 int timeridx = gt_phys_redir_timeridx(env);
2961 gt_ctl_write(env, ri, timeridx, value);
2964 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2966 gt_timer_reset(env, ri, GTIMER_VIRT);
2969 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2972 gt_cval_write(env, ri, GTIMER_VIRT, value);
2975 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2977 return gt_tval_read(env, ri, GTIMER_VIRT);
2980 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2981 uint64_t value)
2983 gt_tval_write(env, ri, GTIMER_VIRT, value);
2986 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987 uint64_t value)
2989 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2992 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2993 uint64_t value)
2995 ARMCPU *cpu = env_archcpu(env);
2997 trace_arm_gt_cntvoff_write(value);
2998 raw_write(env, ri, value);
2999 gt_recalc_timer(cpu, GTIMER_VIRT);
3002 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3003 const ARMCPRegInfo *ri)
3005 int timeridx = gt_virt_redir_timeridx(env);
3006 return env->cp15.c14_timer[timeridx].cval;
3009 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3012 int timeridx = gt_virt_redir_timeridx(env);
3013 gt_cval_write(env, ri, timeridx, value);
3016 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3017 const ARMCPRegInfo *ri)
3019 int timeridx = gt_virt_redir_timeridx(env);
3020 return gt_tval_read(env, ri, timeridx);
3023 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 int timeridx = gt_virt_redir_timeridx(env);
3027 gt_tval_write(env, ri, timeridx, value);
3030 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3031 const ARMCPRegInfo *ri)
3033 int timeridx = gt_virt_redir_timeridx(env);
3034 return env->cp15.c14_timer[timeridx].ctl;
3037 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3038 uint64_t value)
3040 int timeridx = gt_virt_redir_timeridx(env);
3041 gt_ctl_write(env, ri, timeridx, value);
3044 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3046 gt_timer_reset(env, ri, GTIMER_HYP);
3049 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050 uint64_t value)
3052 gt_cval_write(env, ri, GTIMER_HYP, value);
3055 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3057 return gt_tval_read(env, ri, GTIMER_HYP);
3060 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061 uint64_t value)
3063 gt_tval_write(env, ri, GTIMER_HYP, value);
3066 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3067 uint64_t value)
3069 gt_ctl_write(env, ri, GTIMER_HYP, value);
3072 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3074 gt_timer_reset(env, ri, GTIMER_SEC);
3077 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078 uint64_t value)
3080 gt_cval_write(env, ri, GTIMER_SEC, value);
3083 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3085 return gt_tval_read(env, ri, GTIMER_SEC);
3088 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3089 uint64_t value)
3091 gt_tval_write(env, ri, GTIMER_SEC, value);
3094 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095 uint64_t value)
3097 gt_ctl_write(env, ri, GTIMER_SEC, value);
3100 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3102 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3105 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3106 uint64_t value)
3108 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3111 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3113 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3116 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117 uint64_t value)
3119 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3122 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123 uint64_t value)
3125 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3128 void arm_gt_ptimer_cb(void *opaque)
3130 ARMCPU *cpu = opaque;
3132 gt_recalc_timer(cpu, GTIMER_PHYS);
3135 void arm_gt_vtimer_cb(void *opaque)
3137 ARMCPU *cpu = opaque;
3139 gt_recalc_timer(cpu, GTIMER_VIRT);
3142 void arm_gt_htimer_cb(void *opaque)
3144 ARMCPU *cpu = opaque;
3146 gt_recalc_timer(cpu, GTIMER_HYP);
3149 void arm_gt_stimer_cb(void *opaque)
3151 ARMCPU *cpu = opaque;
3153 gt_recalc_timer(cpu, GTIMER_SEC);
3156 void arm_gt_hvtimer_cb(void *opaque)
3158 ARMCPU *cpu = opaque;
3160 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3163 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3165 ARMCPU *cpu = env_archcpu(env);
3167 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3170 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3171 /* Note that CNTFRQ is purely reads-as-written for the benefit
3172 * of software; writing it doesn't actually change the timer frequency.
3173 * Our reset value matches the fixed frequency we implement the timer at.
3175 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3176 .type = ARM_CP_ALIAS,
3177 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3178 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3180 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3181 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3182 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3183 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3184 .resetfn = arm_gt_cntfrq_reset,
3186 /* overall control: mostly access permissions */
3187 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3188 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3189 .access = PL1_RW,
3190 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3191 .resetvalue = 0,
3193 /* per-timer control */
3194 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3195 .secure = ARM_CP_SECSTATE_NS,
3196 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3197 .accessfn = gt_ptimer_access,
3198 .fieldoffset = offsetoflow32(CPUARMState,
3199 cp15.c14_timer[GTIMER_PHYS].ctl),
3200 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3201 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3203 { .name = "CNTP_CTL_S",
3204 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3205 .secure = ARM_CP_SECSTATE_S,
3206 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3207 .accessfn = gt_ptimer_access,
3208 .fieldoffset = offsetoflow32(CPUARMState,
3209 cp15.c14_timer[GTIMER_SEC].ctl),
3210 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3212 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3213 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3214 .type = ARM_CP_IO, .access = PL0_RW,
3215 .accessfn = gt_ptimer_access,
3216 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3217 .resetvalue = 0,
3218 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3219 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3221 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3222 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3223 .accessfn = gt_vtimer_access,
3224 .fieldoffset = offsetoflow32(CPUARMState,
3225 cp15.c14_timer[GTIMER_VIRT].ctl),
3226 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3227 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3229 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3230 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3231 .type = ARM_CP_IO, .access = PL0_RW,
3232 .accessfn = gt_vtimer_access,
3233 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3234 .resetvalue = 0,
3235 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3236 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3238 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3239 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3240 .secure = ARM_CP_SECSTATE_NS,
3241 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3242 .accessfn = gt_ptimer_access,
3243 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3245 { .name = "CNTP_TVAL_S",
3246 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3247 .secure = ARM_CP_SECSTATE_S,
3248 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3249 .accessfn = gt_ptimer_access,
3250 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3252 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3254 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3255 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3256 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3258 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3259 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3260 .accessfn = gt_vtimer_access,
3261 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3263 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3264 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3265 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3266 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3267 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3269 /* The counter itself */
3270 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3271 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3272 .accessfn = gt_pct_access,
3273 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3275 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3276 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3277 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3278 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3280 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3281 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3282 .accessfn = gt_vct_access,
3283 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3285 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3286 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3287 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3288 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3290 /* Comparison value, indicating when the timer goes off */
3291 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3292 .secure = ARM_CP_SECSTATE_NS,
3293 .access = PL0_RW,
3294 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3295 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3296 .accessfn = gt_ptimer_access,
3297 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3298 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3300 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3301 .secure = ARM_CP_SECSTATE_S,
3302 .access = PL0_RW,
3303 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3304 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3305 .accessfn = gt_ptimer_access,
3306 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3308 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3309 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3310 .access = PL0_RW,
3311 .type = ARM_CP_IO,
3312 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3313 .resetvalue = 0, .accessfn = gt_ptimer_access,
3314 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3315 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3317 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3318 .access = PL0_RW,
3319 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3320 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3321 .accessfn = gt_vtimer_access,
3322 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3323 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3325 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3326 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3327 .access = PL0_RW,
3328 .type = ARM_CP_IO,
3329 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3330 .resetvalue = 0, .accessfn = gt_vtimer_access,
3331 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3332 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3334 /* Secure timer -- this is actually restricted to only EL3
3335 * and configurably Secure-EL1 via the accessfn.
3337 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3338 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3339 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3340 .accessfn = gt_stimer_access,
3341 .readfn = gt_sec_tval_read,
3342 .writefn = gt_sec_tval_write,
3343 .resetfn = gt_sec_timer_reset,
3345 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3347 .type = ARM_CP_IO, .access = PL1_RW,
3348 .accessfn = gt_stimer_access,
3349 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3350 .resetvalue = 0,
3351 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3353 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3354 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3355 .type = ARM_CP_IO, .access = PL1_RW,
3356 .accessfn = gt_stimer_access,
3357 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3358 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3360 REGINFO_SENTINEL
3363 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3364 bool isread)
3366 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3367 return CP_ACCESS_TRAP;
3369 return CP_ACCESS_OK;
3372 #else
3374 /* In user-mode most of the generic timer registers are inaccessible
3375 * however modern kernels (4.12+) allow access to cntvct_el0
3378 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3380 ARMCPU *cpu = env_archcpu(env);
3382 /* Currently we have no support for QEMUTimer in linux-user so we
3383 * can't call gt_get_countervalue(env), instead we directly
3384 * call the lower level functions.
3386 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3389 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3390 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3391 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3392 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3393 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3394 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3396 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3397 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3398 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3399 .readfn = gt_virt_cnt_read,
3401 REGINFO_SENTINEL
3404 #endif
3406 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3408 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3409 raw_write(env, ri, value);
3410 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3411 raw_write(env, ri, value & 0xfffff6ff);
3412 } else {
3413 raw_write(env, ri, value & 0xfffff1ff);
3417 #ifndef CONFIG_USER_ONLY
3418 /* get_phys_addr() isn't present for user-mode-only targets */
3420 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3421 bool isread)
3423 if (ri->opc2 & 4) {
3424 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3425 * Secure EL1 (which can only happen if EL3 is AArch64).
3426 * They are simply UNDEF if executed from NS EL1.
3427 * They function normally from EL2 or EL3.
3429 if (arm_current_el(env) == 1) {
3430 if (arm_is_secure_below_el3(env)) {
3431 if (env->cp15.scr_el3 & SCR_EEL2) {
3432 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3434 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3436 return CP_ACCESS_TRAP_UNCATEGORIZED;
3439 return CP_ACCESS_OK;
3442 #ifdef CONFIG_TCG
3443 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3444 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3446 hwaddr phys_addr;
3447 target_ulong page_size;
3448 int prot;
3449 bool ret;
3450 uint64_t par64;
3451 bool format64 = false;
3452 MemTxAttrs attrs = {};
3453 ARMMMUFaultInfo fi = {};
3454 ARMCacheAttrs cacheattrs = {};
3456 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3457 &prot, &page_size, &fi, &cacheattrs);
3459 if (ret) {
3461 * Some kinds of translation fault must cause exceptions rather
3462 * than being reported in the PAR.
3464 int current_el = arm_current_el(env);
3465 int target_el;
3466 uint32_t syn, fsr, fsc;
3467 bool take_exc = false;
3469 if (fi.s1ptw && current_el == 1
3470 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3472 * Synchronous stage 2 fault on an access made as part of the
3473 * translation table walk for AT S1E0* or AT S1E1* insn
3474 * executed from NS EL1. If this is a synchronous external abort
3475 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3476 * to EL3. Otherwise the fault is taken as an exception to EL2,
3477 * and HPFAR_EL2 holds the faulting IPA.
3479 if (fi.type == ARMFault_SyncExternalOnWalk &&
3480 (env->cp15.scr_el3 & SCR_EA)) {
3481 target_el = 3;
3482 } else {
3483 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3484 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3485 env->cp15.hpfar_el2 |= HPFAR_NS;
3487 target_el = 2;
3489 take_exc = true;
3490 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3492 * Synchronous external aborts during a translation table walk
3493 * are taken as Data Abort exceptions.
3495 if (fi.stage2) {
3496 if (current_el == 3) {
3497 target_el = 3;
3498 } else {
3499 target_el = 2;
3501 } else {
3502 target_el = exception_target_el(env);
3504 take_exc = true;
3507 if (take_exc) {
3508 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3509 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3510 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3511 fsr = arm_fi_to_lfsc(&fi);
3512 fsc = extract32(fsr, 0, 6);
3513 } else {
3514 fsr = arm_fi_to_sfsc(&fi);
3515 fsc = 0x3f;
3518 * Report exception with ESR indicating a fault due to a
3519 * translation table walk for a cache maintenance instruction.
3521 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3522 fi.ea, 1, fi.s1ptw, 1, fsc);
3523 env->exception.vaddress = value;
3524 env->exception.fsr = fsr;
3525 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3529 if (is_a64(env)) {
3530 format64 = true;
3531 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3533 * ATS1Cxx:
3534 * * TTBCR.EAE determines whether the result is returned using the
3535 * 32-bit or the 64-bit PAR format
3536 * * Instructions executed in Hyp mode always use the 64bit format
3538 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3539 * * The Non-secure TTBCR.EAE bit is set to 1
3540 * * The implementation includes EL2, and the value of HCR.VM is 1
3542 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3544 * ATS1Hx always uses the 64bit format.
3546 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3548 if (arm_feature(env, ARM_FEATURE_EL2)) {
3549 if (mmu_idx == ARMMMUIdx_E10_0 ||
3550 mmu_idx == ARMMMUIdx_E10_1 ||
3551 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3552 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3553 } else {
3554 format64 |= arm_current_el(env) == 2;
3559 if (format64) {
3560 /* Create a 64-bit PAR */
3561 par64 = (1 << 11); /* LPAE bit always set */
3562 if (!ret) {
3563 par64 |= phys_addr & ~0xfffULL;
3564 if (!attrs.secure) {
3565 par64 |= (1 << 9); /* NS */
3567 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3568 par64 |= cacheattrs.shareability << 7; /* SH */
3569 } else {
3570 uint32_t fsr = arm_fi_to_lfsc(&fi);
3572 par64 |= 1; /* F */
3573 par64 |= (fsr & 0x3f) << 1; /* FS */
3574 if (fi.stage2) {
3575 par64 |= (1 << 9); /* S */
3577 if (fi.s1ptw) {
3578 par64 |= (1 << 8); /* PTW */
3581 } else {
3582 /* fsr is a DFSR/IFSR value for the short descriptor
3583 * translation table format (with WnR always clear).
3584 * Convert it to a 32-bit PAR.
3586 if (!ret) {
3587 /* We do not set any attribute bits in the PAR */
3588 if (page_size == (1 << 24)
3589 && arm_feature(env, ARM_FEATURE_V7)) {
3590 par64 = (phys_addr & 0xff000000) | (1 << 1);
3591 } else {
3592 par64 = phys_addr & 0xfffff000;
3594 if (!attrs.secure) {
3595 par64 |= (1 << 9); /* NS */
3597 } else {
3598 uint32_t fsr = arm_fi_to_sfsc(&fi);
3600 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3601 ((fsr & 0xf) << 1) | 1;
3604 return par64;
3606 #endif /* CONFIG_TCG */
3608 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3610 #ifdef CONFIG_TCG
3611 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3612 uint64_t par64;
3613 ARMMMUIdx mmu_idx;
3614 int el = arm_current_el(env);
3615 bool secure = arm_is_secure_below_el3(env);
3617 switch (ri->opc2 & 6) {
3618 case 0:
3619 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3620 switch (el) {
3621 case 3:
3622 mmu_idx = ARMMMUIdx_SE3;
3623 break;
3624 case 2:
3625 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3626 /* fall through */
3627 case 1:
3628 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3629 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3630 : ARMMMUIdx_Stage1_E1_PAN);
3631 } else {
3632 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3634 break;
3635 default:
3636 g_assert_not_reached();
3638 break;
3639 case 2:
3640 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3641 switch (el) {
3642 case 3:
3643 mmu_idx = ARMMMUIdx_SE10_0;
3644 break;
3645 case 2:
3646 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3647 mmu_idx = ARMMMUIdx_Stage1_E0;
3648 break;
3649 case 1:
3650 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3651 break;
3652 default:
3653 g_assert_not_reached();
3655 break;
3656 case 4:
3657 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3658 mmu_idx = ARMMMUIdx_E10_1;
3659 break;
3660 case 6:
3661 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3662 mmu_idx = ARMMMUIdx_E10_0;
3663 break;
3664 default:
3665 g_assert_not_reached();
3668 par64 = do_ats_write(env, value, access_type, mmu_idx);
3670 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3671 #else
3672 /* Handled by hardware accelerator. */
3673 g_assert_not_reached();
3674 #endif /* CONFIG_TCG */
3677 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3678 uint64_t value)
3680 #ifdef CONFIG_TCG
3681 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3682 uint64_t par64;
3684 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3686 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3687 #else
3688 /* Handled by hardware accelerator. */
3689 g_assert_not_reached();
3690 #endif /* CONFIG_TCG */
3693 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3694 bool isread)
3696 if (arm_current_el(env) == 3 &&
3697 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3698 return CP_ACCESS_TRAP;
3700 return CP_ACCESS_OK;
3703 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3704 uint64_t value)
3706 #ifdef CONFIG_TCG
3707 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3708 ARMMMUIdx mmu_idx;
3709 int secure = arm_is_secure_below_el3(env);
3711 switch (ri->opc2 & 6) {
3712 case 0:
3713 switch (ri->opc1) {
3714 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3715 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3716 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3717 : ARMMMUIdx_Stage1_E1_PAN);
3718 } else {
3719 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3721 break;
3722 case 4: /* AT S1E2R, AT S1E2W */
3723 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3724 break;
3725 case 6: /* AT S1E3R, AT S1E3W */
3726 mmu_idx = ARMMMUIdx_SE3;
3727 break;
3728 default:
3729 g_assert_not_reached();
3731 break;
3732 case 2: /* AT S1E0R, AT S1E0W */
3733 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3734 break;
3735 case 4: /* AT S12E1R, AT S12E1W */
3736 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3737 break;
3738 case 6: /* AT S12E0R, AT S12E0W */
3739 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3740 break;
3741 default:
3742 g_assert_not_reached();
3745 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3746 #else
3747 /* Handled by hardware accelerator. */
3748 g_assert_not_reached();
3749 #endif /* CONFIG_TCG */
3751 #endif
3753 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3754 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3755 .access = PL1_RW, .resetvalue = 0,
3756 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3757 offsetoflow32(CPUARMState, cp15.par_ns) },
3758 .writefn = par_write },
3759 #ifndef CONFIG_USER_ONLY
3760 /* This underdecoding is safe because the reginfo is NO_RAW. */
3761 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3762 .access = PL1_W, .accessfn = ats_access,
3763 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3764 #endif
3765 REGINFO_SENTINEL
3768 /* Return basic MPU access permission bits. */
3769 static uint32_t simple_mpu_ap_bits(uint32_t val)
3771 uint32_t ret;
3772 uint32_t mask;
3773 int i;
3774 ret = 0;
3775 mask = 3;
3776 for (i = 0; i < 16; i += 2) {
3777 ret |= (val >> i) & mask;
3778 mask <<= 2;
3780 return ret;
3783 /* Pad basic MPU access permission bits to extended format. */
3784 static uint32_t extended_mpu_ap_bits(uint32_t val)
3786 uint32_t ret;
3787 uint32_t mask;
3788 int i;
3789 ret = 0;
3790 mask = 3;
3791 for (i = 0; i < 16; i += 2) {
3792 ret |= (val & mask) << i;
3793 mask <<= 2;
3795 return ret;
3798 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799 uint64_t value)
3801 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3804 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3806 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3809 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3810 uint64_t value)
3812 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3815 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3817 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3820 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3822 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3824 if (!u32p) {
3825 return 0;
3828 u32p += env->pmsav7.rnr[M_REG_NS];
3829 return *u32p;
3832 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3833 uint64_t value)
3835 ARMCPU *cpu = env_archcpu(env);
3836 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3838 if (!u32p) {
3839 return;
3842 u32p += env->pmsav7.rnr[M_REG_NS];
3843 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3844 *u32p = value;
3847 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3848 uint64_t value)
3850 ARMCPU *cpu = env_archcpu(env);
3851 uint32_t nrgs = cpu->pmsav7_dregion;
3853 if (value >= nrgs) {
3854 qemu_log_mask(LOG_GUEST_ERROR,
3855 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3856 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3857 return;
3860 raw_write(env, ri, value);
3863 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3864 /* Reset for all these registers is handled in arm_cpu_reset(),
3865 * because the PMSAv7 is also used by M-profile CPUs, which do
3866 * not register cpregs but still need the state to be reset.
3868 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3869 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3870 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3871 .readfn = pmsav7_read, .writefn = pmsav7_write,
3872 .resetfn = arm_cp_reset_ignore },
3873 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3874 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3875 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3876 .readfn = pmsav7_read, .writefn = pmsav7_write,
3877 .resetfn = arm_cp_reset_ignore },
3878 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3879 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3880 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3881 .readfn = pmsav7_read, .writefn = pmsav7_write,
3882 .resetfn = arm_cp_reset_ignore },
3883 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3884 .access = PL1_RW,
3885 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3886 .writefn = pmsav7_rgnr_write,
3887 .resetfn = arm_cp_reset_ignore },
3888 REGINFO_SENTINEL
3891 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3892 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3893 .access = PL1_RW, .type = ARM_CP_ALIAS,
3894 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3895 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3896 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3897 .access = PL1_RW, .type = ARM_CP_ALIAS,
3898 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3899 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3900 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3901 .access = PL1_RW,
3902 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3903 .resetvalue = 0, },
3904 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3905 .access = PL1_RW,
3906 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3907 .resetvalue = 0, },
3908 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3909 .access = PL1_RW,
3910 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3911 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3912 .access = PL1_RW,
3913 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3914 /* Protection region base and size registers */
3915 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3916 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3917 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3918 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3919 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3920 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3921 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3922 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3923 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3924 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3925 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3926 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3927 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3928 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3929 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3930 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3931 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3932 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3933 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3934 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3935 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3936 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3937 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3938 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3939 REGINFO_SENTINEL
3942 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3943 uint64_t value)
3945 TCR *tcr = raw_ptr(env, ri);
3946 int maskshift = extract32(value, 0, 3);
3948 if (!arm_feature(env, ARM_FEATURE_V8)) {
3949 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3950 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3951 * using Long-desciptor translation table format */
3952 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3953 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3954 /* In an implementation that includes the Security Extensions
3955 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3956 * Short-descriptor translation table format.
3958 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3959 } else {
3960 value &= TTBCR_N;
3964 /* Update the masks corresponding to the TCR bank being written
3965 * Note that we always calculate mask and base_mask, but
3966 * they are only used for short-descriptor tables (ie if EAE is 0);
3967 * for long-descriptor tables the TCR fields are used differently
3968 * and the mask and base_mask values are meaningless.
3970 tcr->raw_tcr = value;
3971 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3972 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3975 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3976 uint64_t value)
3978 ARMCPU *cpu = env_archcpu(env);
3979 TCR *tcr = raw_ptr(env, ri);
3981 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3982 /* With LPAE the TTBCR could result in a change of ASID
3983 * via the TTBCR.A1 bit, so do a TLB flush.
3985 tlb_flush(CPU(cpu));
3987 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3988 value = deposit64(tcr->raw_tcr, 0, 32, value);
3989 vmsa_ttbcr_raw_write(env, ri, value);
3992 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3994 TCR *tcr = raw_ptr(env, ri);
3996 /* Reset both the TCR as well as the masks corresponding to the bank of
3997 * the TCR being reset.
3999 tcr->raw_tcr = 0;
4000 tcr->mask = 0;
4001 tcr->base_mask = 0xffffc000u;
4004 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4005 uint64_t value)
4007 ARMCPU *cpu = env_archcpu(env);
4008 TCR *tcr = raw_ptr(env, ri);
4010 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4011 tlb_flush(CPU(cpu));
4012 tcr->raw_tcr = value;
4015 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4016 uint64_t value)
4018 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4019 if (cpreg_field_is_64bit(ri) &&
4020 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4021 ARMCPU *cpu = env_archcpu(env);
4022 tlb_flush(CPU(cpu));
4024 raw_write(env, ri, value);
4027 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4028 uint64_t value)
4031 * If we are running with E2&0 regime, then an ASID is active.
4032 * Flush if that might be changing. Note we're not checking
4033 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4034 * holds the active ASID, only checking the field that might.
4036 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4037 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4038 uint16_t mask = ARMMMUIdxBit_E20_2 |
4039 ARMMMUIdxBit_E20_2_PAN |
4040 ARMMMUIdxBit_E20_0;
4042 if (arm_is_secure_below_el3(env)) {
4043 mask >>= ARM_MMU_IDX_A_NS;
4046 tlb_flush_by_mmuidx(env_cpu(env), mask);
4048 raw_write(env, ri, value);
4051 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4052 uint64_t value)
4054 ARMCPU *cpu = env_archcpu(env);
4055 CPUState *cs = CPU(cpu);
4058 * A change in VMID to the stage2 page table (Stage2) invalidates
4059 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4061 if (raw_read(env, ri) != value) {
4062 uint16_t mask = ARMMMUIdxBit_E10_1 |
4063 ARMMMUIdxBit_E10_1_PAN |
4064 ARMMMUIdxBit_E10_0;
4066 if (arm_is_secure_below_el3(env)) {
4067 mask >>= ARM_MMU_IDX_A_NS;
4070 tlb_flush_by_mmuidx(cs, mask);
4071 raw_write(env, ri, value);
4075 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4076 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4077 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4078 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4079 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4080 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4081 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4082 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4083 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4084 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4085 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4086 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4087 offsetof(CPUARMState, cp15.dfar_ns) } },
4088 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4089 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4090 .access = PL1_RW, .accessfn = access_tvm_trvm,
4091 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4092 .resetvalue = 0, },
4093 REGINFO_SENTINEL
4096 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4097 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4098 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4099 .access = PL1_RW, .accessfn = access_tvm_trvm,
4100 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4101 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4102 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4103 .access = PL1_RW, .accessfn = access_tvm_trvm,
4104 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4105 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4106 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4107 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4108 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4109 .access = PL1_RW, .accessfn = access_tvm_trvm,
4110 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4111 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4112 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4113 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4114 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4115 .access = PL1_RW, .accessfn = access_tvm_trvm,
4116 .writefn = vmsa_tcr_el12_write,
4117 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4118 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4119 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4120 .access = PL1_RW, .accessfn = access_tvm_trvm,
4121 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4122 .raw_writefn = vmsa_ttbcr_raw_write,
4123 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
4124 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
4125 offsetof(CPUARMState, cp15.tcr_el[1])} },
4126 REGINFO_SENTINEL
4129 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4130 * qemu tlbs nor adjusting cached masks.
4132 static const ARMCPRegInfo ttbcr2_reginfo = {
4133 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4134 .access = PL1_RW, .accessfn = access_tvm_trvm,
4135 .type = ARM_CP_ALIAS,
4136 .bank_fieldoffsets = {
4137 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
4138 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
4142 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4143 uint64_t value)
4145 env->cp15.c15_ticonfig = value & 0xe7;
4146 /* The OS_TYPE bit in this register changes the reported CPUID! */
4147 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4148 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4151 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4152 uint64_t value)
4154 env->cp15.c15_threadid = value & 0xffff;
4157 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4158 uint64_t value)
4160 /* Wait-for-interrupt (deprecated) */
4161 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4164 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4165 uint64_t value)
4167 /* On OMAP there are registers indicating the max/min index of dcache lines
4168 * containing a dirty line; cache flush operations have to reset these.
4170 env->cp15.c15_i_max = 0x000;
4171 env->cp15.c15_i_min = 0xff0;
4174 static const ARMCPRegInfo omap_cp_reginfo[] = {
4175 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4176 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4177 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4178 .resetvalue = 0, },
4179 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4180 .access = PL1_RW, .type = ARM_CP_NOP },
4181 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4182 .access = PL1_RW,
4183 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4184 .writefn = omap_ticonfig_write },
4185 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4186 .access = PL1_RW,
4187 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4188 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4189 .access = PL1_RW, .resetvalue = 0xff0,
4190 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4191 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4192 .access = PL1_RW,
4193 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4194 .writefn = omap_threadid_write },
4195 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4196 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4197 .type = ARM_CP_NO_RAW,
4198 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4199 /* TODO: Peripheral port remap register:
4200 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4201 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4202 * when MMU is off.
4204 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4205 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4206 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4207 .writefn = omap_cachemaint_write },
4208 { .name = "C9", .cp = 15, .crn = 9,
4209 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4210 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4211 REGINFO_SENTINEL
4214 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4215 uint64_t value)
4217 env->cp15.c15_cpar = value & 0x3fff;
4220 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4221 { .name = "XSCALE_CPAR",
4222 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4223 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4224 .writefn = xscale_cpar_write, },
4225 { .name = "XSCALE_AUXCR",
4226 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4227 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4228 .resetvalue = 0, },
4229 /* XScale specific cache-lockdown: since we have no cache we NOP these
4230 * and hope the guest does not really rely on cache behaviour.
4232 { .name = "XSCALE_LOCK_ICACHE_LINE",
4233 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4234 .access = PL1_W, .type = ARM_CP_NOP },
4235 { .name = "XSCALE_UNLOCK_ICACHE",
4236 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4237 .access = PL1_W, .type = ARM_CP_NOP },
4238 { .name = "XSCALE_DCACHE_LOCK",
4239 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4240 .access = PL1_RW, .type = ARM_CP_NOP },
4241 { .name = "XSCALE_UNLOCK_DCACHE",
4242 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4243 .access = PL1_W, .type = ARM_CP_NOP },
4244 REGINFO_SENTINEL
4247 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4248 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4249 * implementation of this implementation-defined space.
4250 * Ideally this should eventually disappear in favour of actually
4251 * implementing the correct behaviour for all cores.
4253 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4254 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4255 .access = PL1_RW,
4256 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4257 .resetvalue = 0 },
4258 REGINFO_SENTINEL
4261 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4262 /* Cache status: RAZ because we have no cache so it's always clean */
4263 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4264 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4265 .resetvalue = 0 },
4266 REGINFO_SENTINEL
4269 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4270 /* We never have a a block transfer operation in progress */
4271 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4272 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4273 .resetvalue = 0 },
4274 /* The cache ops themselves: these all NOP for QEMU */
4275 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4276 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4277 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4278 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4279 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4280 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4281 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4282 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4283 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4284 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4285 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4286 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4287 REGINFO_SENTINEL
4290 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4291 /* The cache test-and-clean instructions always return (1 << 30)
4292 * to indicate that there are no dirty cache lines.
4294 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4295 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4296 .resetvalue = (1 << 30) },
4297 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4298 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4299 .resetvalue = (1 << 30) },
4300 REGINFO_SENTINEL
4303 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4304 /* Ignore ReadBuffer accesses */
4305 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4306 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4307 .access = PL1_RW, .resetvalue = 0,
4308 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4309 REGINFO_SENTINEL
4312 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4314 unsigned int cur_el = arm_current_el(env);
4316 if (arm_is_el2_enabled(env) && cur_el == 1) {
4317 return env->cp15.vpidr_el2;
4319 return raw_read(env, ri);
4322 static uint64_t mpidr_read_val(CPUARMState *env)
4324 ARMCPU *cpu = env_archcpu(env);
4325 uint64_t mpidr = cpu->mp_affinity;
4327 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4328 mpidr |= (1U << 31);
4329 /* Cores which are uniprocessor (non-coherent)
4330 * but still implement the MP extensions set
4331 * bit 30. (For instance, Cortex-R5).
4333 if (cpu->mp_is_up) {
4334 mpidr |= (1u << 30);
4337 return mpidr;
4340 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4342 unsigned int cur_el = arm_current_el(env);
4344 if (arm_is_el2_enabled(env) && cur_el == 1) {
4345 return env->cp15.vmpidr_el2;
4347 return mpidr_read_val(env);
4350 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4351 /* NOP AMAIR0/1 */
4352 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4353 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4354 .access = PL1_RW, .accessfn = access_tvm_trvm,
4355 .type = ARM_CP_CONST, .resetvalue = 0 },
4356 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4357 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4358 .access = PL1_RW, .accessfn = access_tvm_trvm,
4359 .type = ARM_CP_CONST, .resetvalue = 0 },
4360 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4361 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4362 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4363 offsetof(CPUARMState, cp15.par_ns)} },
4364 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4365 .access = PL1_RW, .accessfn = access_tvm_trvm,
4366 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4367 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4368 offsetof(CPUARMState, cp15.ttbr0_ns) },
4369 .writefn = vmsa_ttbr_write, },
4370 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4371 .access = PL1_RW, .accessfn = access_tvm_trvm,
4372 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4373 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4374 offsetof(CPUARMState, cp15.ttbr1_ns) },
4375 .writefn = vmsa_ttbr_write, },
4376 REGINFO_SENTINEL
4379 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4381 return vfp_get_fpcr(env);
4384 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4385 uint64_t value)
4387 vfp_set_fpcr(env, value);
4390 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4392 return vfp_get_fpsr(env);
4395 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4396 uint64_t value)
4398 vfp_set_fpsr(env, value);
4401 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4402 bool isread)
4404 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4405 return CP_ACCESS_TRAP;
4407 return CP_ACCESS_OK;
4410 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4411 uint64_t value)
4413 env->daif = value & PSTATE_DAIF;
4416 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4418 return env->pstate & PSTATE_PAN;
4421 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4422 uint64_t value)
4424 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4427 static const ARMCPRegInfo pan_reginfo = {
4428 .name = "PAN", .state = ARM_CP_STATE_AA64,
4429 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4430 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4431 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4434 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4436 return env->pstate & PSTATE_UAO;
4439 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4440 uint64_t value)
4442 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4445 static const ARMCPRegInfo uao_reginfo = {
4446 .name = "UAO", .state = ARM_CP_STATE_AA64,
4447 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4448 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4449 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4452 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4454 return env->pstate & PSTATE_DIT;
4457 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4458 uint64_t value)
4460 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4463 static const ARMCPRegInfo dit_reginfo = {
4464 .name = "DIT", .state = ARM_CP_STATE_AA64,
4465 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4466 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4467 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4470 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4472 return env->pstate & PSTATE_SSBS;
4475 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4476 uint64_t value)
4478 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4481 static const ARMCPRegInfo ssbs_reginfo = {
4482 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4483 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4484 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4485 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4488 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4489 const ARMCPRegInfo *ri,
4490 bool isread)
4492 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4493 switch (arm_current_el(env)) {
4494 case 0:
4495 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4496 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4497 return CP_ACCESS_TRAP;
4499 /* fall through */
4500 case 1:
4501 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4502 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4503 return CP_ACCESS_TRAP_EL2;
4505 break;
4507 return CP_ACCESS_OK;
4510 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4511 const ARMCPRegInfo *ri,
4512 bool isread)
4514 /* Cache invalidate/clean to Point of Unification... */
4515 switch (arm_current_el(env)) {
4516 case 0:
4517 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4518 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4519 return CP_ACCESS_TRAP;
4521 /* fall through */
4522 case 1:
4523 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4524 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4525 return CP_ACCESS_TRAP_EL2;
4527 break;
4529 return CP_ACCESS_OK;
4532 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4533 * Page D4-1736 (DDI0487A.b)
4536 static int vae1_tlbmask(CPUARMState *env)
4538 uint64_t hcr = arm_hcr_el2_eff(env);
4539 uint16_t mask;
4541 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4542 mask = ARMMMUIdxBit_E20_2 |
4543 ARMMMUIdxBit_E20_2_PAN |
4544 ARMMMUIdxBit_E20_0;
4545 } else {
4546 mask = ARMMMUIdxBit_E10_1 |
4547 ARMMMUIdxBit_E10_1_PAN |
4548 ARMMMUIdxBit_E10_0;
4551 if (arm_is_secure_below_el3(env)) {
4552 mask >>= ARM_MMU_IDX_A_NS;
4555 return mask;
4558 /* Return 56 if TBI is enabled, 64 otherwise. */
4559 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4560 uint64_t addr)
4562 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4563 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4564 int select = extract64(addr, 55, 1);
4566 return (tbi >> select) & 1 ? 56 : 64;
4569 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4571 uint64_t hcr = arm_hcr_el2_eff(env);
4572 ARMMMUIdx mmu_idx;
4574 /* Only the regime of the mmu_idx below is significant. */
4575 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4576 mmu_idx = ARMMMUIdx_E20_0;
4577 } else {
4578 mmu_idx = ARMMMUIdx_E10_0;
4581 if (arm_is_secure_below_el3(env)) {
4582 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4585 return tlbbits_for_regime(env, mmu_idx, addr);
4588 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4589 uint64_t value)
4591 CPUState *cs = env_cpu(env);
4592 int mask = vae1_tlbmask(env);
4594 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4597 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4598 uint64_t value)
4600 CPUState *cs = env_cpu(env);
4601 int mask = vae1_tlbmask(env);
4603 if (tlb_force_broadcast(env)) {
4604 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4605 } else {
4606 tlb_flush_by_mmuidx(cs, mask);
4610 static int alle1_tlbmask(CPUARMState *env)
4613 * Note that the 'ALL' scope must invalidate both stage 1 and
4614 * stage 2 translations, whereas most other scopes only invalidate
4615 * stage 1 translations.
4617 if (arm_is_secure_below_el3(env)) {
4618 return ARMMMUIdxBit_SE10_1 |
4619 ARMMMUIdxBit_SE10_1_PAN |
4620 ARMMMUIdxBit_SE10_0;
4621 } else {
4622 return ARMMMUIdxBit_E10_1 |
4623 ARMMMUIdxBit_E10_1_PAN |
4624 ARMMMUIdxBit_E10_0;
4628 static int e2_tlbmask(CPUARMState *env)
4630 if (arm_is_secure_below_el3(env)) {
4631 return ARMMMUIdxBit_SE20_0 |
4632 ARMMMUIdxBit_SE20_2 |
4633 ARMMMUIdxBit_SE20_2_PAN |
4634 ARMMMUIdxBit_SE2;
4635 } else {
4636 return ARMMMUIdxBit_E20_0 |
4637 ARMMMUIdxBit_E20_2 |
4638 ARMMMUIdxBit_E20_2_PAN |
4639 ARMMMUIdxBit_E2;
4643 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4644 uint64_t value)
4646 CPUState *cs = env_cpu(env);
4647 int mask = alle1_tlbmask(env);
4649 tlb_flush_by_mmuidx(cs, mask);
4652 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4653 uint64_t value)
4655 CPUState *cs = env_cpu(env);
4656 int mask = e2_tlbmask(env);
4658 tlb_flush_by_mmuidx(cs, mask);
4661 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4662 uint64_t value)
4664 ARMCPU *cpu = env_archcpu(env);
4665 CPUState *cs = CPU(cpu);
4667 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4670 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4671 uint64_t value)
4673 CPUState *cs = env_cpu(env);
4674 int mask = alle1_tlbmask(env);
4676 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4679 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680 uint64_t value)
4682 CPUState *cs = env_cpu(env);
4683 int mask = e2_tlbmask(env);
4685 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4688 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4689 uint64_t value)
4691 CPUState *cs = env_cpu(env);
4693 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4696 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4697 uint64_t value)
4699 /* Invalidate by VA, EL2
4700 * Currently handles both VAE2 and VALE2, since we don't support
4701 * flush-last-level-only.
4703 CPUState *cs = env_cpu(env);
4704 int mask = e2_tlbmask(env);
4705 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4707 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4710 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4711 uint64_t value)
4713 /* Invalidate by VA, EL3
4714 * Currently handles both VAE3 and VALE3, since we don't support
4715 * flush-last-level-only.
4717 ARMCPU *cpu = env_archcpu(env);
4718 CPUState *cs = CPU(cpu);
4719 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4721 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4724 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4725 uint64_t value)
4727 CPUState *cs = env_cpu(env);
4728 int mask = vae1_tlbmask(env);
4729 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4730 int bits = vae1_tlbbits(env, pageaddr);
4732 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4735 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4736 uint64_t value)
4738 /* Invalidate by VA, EL1&0 (AArch64 version).
4739 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4740 * since we don't support flush-for-specific-ASID-only or
4741 * flush-last-level-only.
4743 CPUState *cs = env_cpu(env);
4744 int mask = vae1_tlbmask(env);
4745 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4746 int bits = vae1_tlbbits(env, pageaddr);
4748 if (tlb_force_broadcast(env)) {
4749 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4750 } else {
4751 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4755 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4756 uint64_t value)
4758 CPUState *cs = env_cpu(env);
4759 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4760 bool secure = arm_is_secure_below_el3(env);
4761 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4762 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4763 pageaddr);
4765 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4768 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4769 uint64_t value)
4771 CPUState *cs = env_cpu(env);
4772 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4773 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4775 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4776 ARMMMUIdxBit_SE3, bits);
4779 #ifdef TARGET_AARCH64
4780 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4781 uint64_t value)
4783 unsigned int page_shift;
4784 unsigned int page_size_granule;
4785 uint64_t num;
4786 uint64_t scale;
4787 uint64_t exponent;
4788 uint64_t length;
4790 num = extract64(value, 39, 4);
4791 scale = extract64(value, 44, 2);
4792 page_size_granule = extract64(value, 46, 2);
4794 page_shift = page_size_granule * 2 + 12;
4796 if (page_size_granule == 0) {
4797 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4798 page_size_granule);
4799 return 0;
4802 exponent = (5 * scale) + 1;
4803 length = (num + 1) << (exponent + page_shift);
4805 return length;
4808 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4809 bool two_ranges)
4811 /* TODO: ARMv8.7 FEAT_LPA2 */
4812 uint64_t pageaddr;
4814 if (two_ranges) {
4815 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4816 } else {
4817 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4820 return pageaddr;
4823 static void do_rvae_write(CPUARMState *env, uint64_t value,
4824 int idxmap, bool synced)
4826 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4827 bool two_ranges = regime_has_2_ranges(one_idx);
4828 uint64_t baseaddr, length;
4829 int bits;
4831 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4832 length = tlbi_aa64_range_get_length(env, value);
4833 bits = tlbbits_for_regime(env, one_idx, baseaddr);
4835 if (synced) {
4836 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4837 baseaddr,
4838 length,
4839 idxmap,
4840 bits);
4841 } else {
4842 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4843 length, idxmap, bits);
4847 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4848 const ARMCPRegInfo *ri,
4849 uint64_t value)
4852 * Invalidate by VA range, EL1&0.
4853 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4854 * since we don't support flush-for-specific-ASID-only or
4855 * flush-last-level-only.
4858 do_rvae_write(env, value, vae1_tlbmask(env),
4859 tlb_force_broadcast(env));
4862 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4863 const ARMCPRegInfo *ri,
4864 uint64_t value)
4867 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4868 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4869 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4870 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4871 * shareable specific flushes.
4874 do_rvae_write(env, value, vae1_tlbmask(env), true);
4877 static int vae2_tlbmask(CPUARMState *env)
4879 return (arm_is_secure_below_el3(env)
4880 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4883 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4884 const ARMCPRegInfo *ri,
4885 uint64_t value)
4888 * Invalidate by VA range, EL2.
4889 * Currently handles all of RVAE2 and RVALE2,
4890 * since we don't support flush-for-specific-ASID-only or
4891 * flush-last-level-only.
4894 do_rvae_write(env, value, vae2_tlbmask(env),
4895 tlb_force_broadcast(env));
4900 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4901 const ARMCPRegInfo *ri,
4902 uint64_t value)
4905 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4906 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4907 * since we don't support flush-for-specific-ASID-only,
4908 * flush-last-level-only or inner/outer shareable specific flushes.
4911 do_rvae_write(env, value, vae2_tlbmask(env), true);
4915 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4916 const ARMCPRegInfo *ri,
4917 uint64_t value)
4920 * Invalidate by VA range, EL3.
4921 * Currently handles all of RVAE3 and RVALE3,
4922 * since we don't support flush-for-specific-ASID-only or
4923 * flush-last-level-only.
4926 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4927 tlb_force_broadcast(env));
4930 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4931 const ARMCPRegInfo *ri,
4932 uint64_t value)
4935 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4936 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4937 * since we don't support flush-for-specific-ASID-only,
4938 * flush-last-level-only or inner/outer specific flushes.
4941 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4943 #endif
4945 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4946 bool isread)
4948 int cur_el = arm_current_el(env);
4950 if (cur_el < 2) {
4951 uint64_t hcr = arm_hcr_el2_eff(env);
4953 if (cur_el == 0) {
4954 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4955 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4956 return CP_ACCESS_TRAP_EL2;
4958 } else {
4959 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4960 return CP_ACCESS_TRAP;
4962 if (hcr & HCR_TDZ) {
4963 return CP_ACCESS_TRAP_EL2;
4966 } else if (hcr & HCR_TDZ) {
4967 return CP_ACCESS_TRAP_EL2;
4970 return CP_ACCESS_OK;
4973 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4975 ARMCPU *cpu = env_archcpu(env);
4976 int dzp_bit = 1 << 4;
4978 /* DZP indicates whether DC ZVA access is allowed */
4979 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4980 dzp_bit = 0;
4982 return cpu->dcz_blocksize | dzp_bit;
4985 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4986 bool isread)
4988 if (!(env->pstate & PSTATE_SP)) {
4989 /* Access to SP_EL0 is undefined if it's being used as
4990 * the stack pointer.
4992 return CP_ACCESS_TRAP_UNCATEGORIZED;
4994 return CP_ACCESS_OK;
4997 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4999 return env->pstate & PSTATE_SP;
5002 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5004 update_spsel(env, val);
5007 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5008 uint64_t value)
5010 ARMCPU *cpu = env_archcpu(env);
5012 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5013 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5014 value &= ~SCTLR_M;
5017 /* ??? Lots of these bits are not implemented. */
5019 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5020 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5021 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5022 } else {
5023 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5024 SCTLR_ATA0 | SCTLR_ATA);
5028 if (raw_read(env, ri) == value) {
5029 /* Skip the TLB flush if nothing actually changed; Linux likes
5030 * to do a lot of pointless SCTLR writes.
5032 return;
5035 raw_write(env, ri, value);
5037 /* This may enable/disable the MMU, so do a TLB flush. */
5038 tlb_flush(CPU(cpu));
5040 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5042 * Normally we would always end the TB on an SCTLR write; see the
5043 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5044 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5045 * of hflags from the translator, so do it here.
5047 arm_rebuild_hflags(env);
5051 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
5052 bool isread)
5054 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
5055 return CP_ACCESS_TRAP_FP_EL2;
5057 if (env->cp15.cptr_el[3] & CPTR_TFP) {
5058 return CP_ACCESS_TRAP_FP_EL3;
5060 return CP_ACCESS_OK;
5063 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5064 uint64_t value)
5066 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
5069 static const ARMCPRegInfo v8_cp_reginfo[] = {
5070 /* Minimal set of EL0-visible registers. This will need to be expanded
5071 * significantly for system emulation of AArch64 CPUs.
5073 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5074 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5075 .access = PL0_RW, .type = ARM_CP_NZCV },
5076 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5077 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5078 .type = ARM_CP_NO_RAW,
5079 .access = PL0_RW, .accessfn = aa64_daif_access,
5080 .fieldoffset = offsetof(CPUARMState, daif),
5081 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5082 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5083 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5084 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5085 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5086 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5087 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5088 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5089 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5090 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5091 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5092 .access = PL0_R, .type = ARM_CP_NO_RAW,
5093 .readfn = aa64_dczid_read },
5094 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5095 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5096 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5097 #ifndef CONFIG_USER_ONLY
5098 /* Avoid overhead of an access check that always passes in user-mode */
5099 .accessfn = aa64_zva_access,
5100 #endif
5102 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5103 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5104 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5105 /* Cache ops: all NOPs since we don't emulate caches */
5106 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5107 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5108 .access = PL1_W, .type = ARM_CP_NOP,
5109 .accessfn = aa64_cacheop_pou_access },
5110 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5111 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5112 .access = PL1_W, .type = ARM_CP_NOP,
5113 .accessfn = aa64_cacheop_pou_access },
5114 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5116 .access = PL0_W, .type = ARM_CP_NOP,
5117 .accessfn = aa64_cacheop_pou_access },
5118 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5119 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5120 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5121 .type = ARM_CP_NOP },
5122 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5123 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5124 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5125 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5126 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5127 .access = PL0_W, .type = ARM_CP_NOP,
5128 .accessfn = aa64_cacheop_poc_access },
5129 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5130 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5131 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5132 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5133 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5134 .access = PL0_W, .type = ARM_CP_NOP,
5135 .accessfn = aa64_cacheop_pou_access },
5136 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5138 .access = PL0_W, .type = ARM_CP_NOP,
5139 .accessfn = aa64_cacheop_poc_access },
5140 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5141 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5142 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5143 /* TLBI operations */
5144 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5145 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5146 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5147 .writefn = tlbi_aa64_vmalle1is_write },
5148 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5149 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5150 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5151 .writefn = tlbi_aa64_vae1is_write },
5152 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5153 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5154 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5155 .writefn = tlbi_aa64_vmalle1is_write },
5156 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5157 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5158 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5159 .writefn = tlbi_aa64_vae1is_write },
5160 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5161 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5162 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5163 .writefn = tlbi_aa64_vae1is_write },
5164 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5165 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5166 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5167 .writefn = tlbi_aa64_vae1is_write },
5168 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5169 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5170 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5171 .writefn = tlbi_aa64_vmalle1_write },
5172 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5173 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5174 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5175 .writefn = tlbi_aa64_vae1_write },
5176 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5177 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5178 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5179 .writefn = tlbi_aa64_vmalle1_write },
5180 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5181 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5182 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5183 .writefn = tlbi_aa64_vae1_write },
5184 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5185 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5186 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5187 .writefn = tlbi_aa64_vae1_write },
5188 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5189 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5190 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5191 .writefn = tlbi_aa64_vae1_write },
5192 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5194 .access = PL2_W, .type = ARM_CP_NOP },
5195 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5197 .access = PL2_W, .type = ARM_CP_NOP },
5198 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5199 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5200 .access = PL2_W, .type = ARM_CP_NO_RAW,
5201 .writefn = tlbi_aa64_alle1is_write },
5202 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5203 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5204 .access = PL2_W, .type = ARM_CP_NO_RAW,
5205 .writefn = tlbi_aa64_alle1is_write },
5206 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5207 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5208 .access = PL2_W, .type = ARM_CP_NOP },
5209 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5210 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5211 .access = PL2_W, .type = ARM_CP_NOP },
5212 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5213 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5214 .access = PL2_W, .type = ARM_CP_NO_RAW,
5215 .writefn = tlbi_aa64_alle1_write },
5216 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5217 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5218 .access = PL2_W, .type = ARM_CP_NO_RAW,
5219 .writefn = tlbi_aa64_alle1is_write },
5220 #ifndef CONFIG_USER_ONLY
5221 /* 64 bit address translation operations */
5222 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5223 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5224 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5225 .writefn = ats_write64 },
5226 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5227 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5228 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5229 .writefn = ats_write64 },
5230 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5231 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5232 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5233 .writefn = ats_write64 },
5234 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5235 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5236 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5237 .writefn = ats_write64 },
5238 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5239 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5240 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5241 .writefn = ats_write64 },
5242 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5243 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5244 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5245 .writefn = ats_write64 },
5246 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5247 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5248 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5249 .writefn = ats_write64 },
5250 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5251 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5252 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5253 .writefn = ats_write64 },
5254 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5255 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5256 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5257 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5258 .writefn = ats_write64 },
5259 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5260 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5261 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5262 .writefn = ats_write64 },
5263 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5264 .type = ARM_CP_ALIAS,
5265 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5266 .access = PL1_RW, .resetvalue = 0,
5267 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5268 .writefn = par_write },
5269 #endif
5270 /* TLB invalidate last level of translation table walk */
5271 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5273 .writefn = tlbimva_is_write },
5274 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5276 .writefn = tlbimvaa_is_write },
5277 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5279 .writefn = tlbimva_write },
5280 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5282 .writefn = tlbimvaa_write },
5283 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5284 .type = ARM_CP_NO_RAW, .access = PL2_W,
5285 .writefn = tlbimva_hyp_write },
5286 { .name = "TLBIMVALHIS",
5287 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5288 .type = ARM_CP_NO_RAW, .access = PL2_W,
5289 .writefn = tlbimva_hyp_is_write },
5290 { .name = "TLBIIPAS2",
5291 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5292 .type = ARM_CP_NOP, .access = PL2_W },
5293 { .name = "TLBIIPAS2IS",
5294 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5295 .type = ARM_CP_NOP, .access = PL2_W },
5296 { .name = "TLBIIPAS2L",
5297 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5298 .type = ARM_CP_NOP, .access = PL2_W },
5299 { .name = "TLBIIPAS2LIS",
5300 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5301 .type = ARM_CP_NOP, .access = PL2_W },
5302 /* 32 bit cache operations */
5303 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5304 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5305 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5306 .type = ARM_CP_NOP, .access = PL1_W },
5307 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5308 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5309 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5310 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5311 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5312 .type = ARM_CP_NOP, .access = PL1_W },
5313 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5314 .type = ARM_CP_NOP, .access = PL1_W },
5315 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5316 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5317 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5318 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5319 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5320 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5321 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5322 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5323 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5324 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5325 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5326 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5327 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5328 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5329 /* MMU Domain access control / MPU write buffer control */
5330 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5331 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5332 .writefn = dacr_write, .raw_writefn = raw_write,
5333 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5334 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5335 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5336 .type = ARM_CP_ALIAS,
5337 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5338 .access = PL1_RW,
5339 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5340 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5341 .type = ARM_CP_ALIAS,
5342 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5343 .access = PL1_RW,
5344 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5345 /* We rely on the access checks not allowing the guest to write to the
5346 * state field when SPSel indicates that it's being used as the stack
5347 * pointer.
5349 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5350 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5351 .access = PL1_RW, .accessfn = sp_el0_access,
5352 .type = ARM_CP_ALIAS,
5353 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5354 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5355 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5356 .access = PL2_RW, .type = ARM_CP_ALIAS,
5357 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5358 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5359 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5360 .type = ARM_CP_NO_RAW,
5361 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5362 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5363 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5364 .type = ARM_CP_ALIAS,
5365 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5366 .access = PL2_RW, .accessfn = fpexc32_access },
5367 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5368 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5369 .access = PL2_RW, .resetvalue = 0,
5370 .writefn = dacr_write, .raw_writefn = raw_write,
5371 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5372 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5373 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5374 .access = PL2_RW, .resetvalue = 0,
5375 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5376 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5377 .type = ARM_CP_ALIAS,
5378 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5379 .access = PL2_RW,
5380 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5381 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5382 .type = ARM_CP_ALIAS,
5383 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5384 .access = PL2_RW,
5385 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5386 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5387 .type = ARM_CP_ALIAS,
5388 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5389 .access = PL2_RW,
5390 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5391 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5392 .type = ARM_CP_ALIAS,
5393 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5394 .access = PL2_RW,
5395 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5396 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5397 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5398 .resetvalue = 0,
5399 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5400 { .name = "SDCR", .type = ARM_CP_ALIAS,
5401 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5402 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5403 .writefn = sdcr_write,
5404 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5405 REGINFO_SENTINEL
5408 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5409 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5410 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5411 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5412 .access = PL2_RW,
5413 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5414 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5415 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5416 .access = PL2_RW,
5417 .type = ARM_CP_CONST, .resetvalue = 0 },
5418 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5419 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5420 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5421 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5422 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5423 .access = PL2_RW,
5424 .type = ARM_CP_CONST, .resetvalue = 0 },
5425 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5426 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5427 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5428 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5429 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5430 .access = PL2_RW, .type = ARM_CP_CONST,
5431 .resetvalue = 0 },
5432 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5433 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5434 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5435 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5436 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5437 .access = PL2_RW, .type = ARM_CP_CONST,
5438 .resetvalue = 0 },
5439 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5440 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5441 .access = PL2_RW, .type = ARM_CP_CONST,
5442 .resetvalue = 0 },
5443 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5444 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5445 .access = PL2_RW, .type = ARM_CP_CONST,
5446 .resetvalue = 0 },
5447 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5448 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5449 .access = PL2_RW, .type = ARM_CP_CONST,
5450 .resetvalue = 0 },
5451 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5452 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5453 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5454 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5455 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5456 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5457 .type = ARM_CP_CONST, .resetvalue = 0 },
5458 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5459 .cp = 15, .opc1 = 6, .crm = 2,
5460 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5461 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5462 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5463 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5464 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5465 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5466 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5467 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5468 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5469 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5470 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5471 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5472 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5473 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5474 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5475 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5476 .resetvalue = 0 },
5477 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5478 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5479 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5480 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5481 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5482 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5483 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5484 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5485 .resetvalue = 0 },
5486 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5487 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5488 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5489 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5490 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5491 .resetvalue = 0 },
5492 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5493 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5494 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5495 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5496 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5498 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5499 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5500 .access = PL2_RW, .accessfn = access_tda,
5501 .type = ARM_CP_CONST, .resetvalue = 0 },
5502 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5503 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5504 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5505 .type = ARM_CP_CONST, .resetvalue = 0 },
5506 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5507 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5508 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5509 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5510 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5511 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5512 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5513 .type = ARM_CP_CONST,
5514 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5515 .access = PL2_RW, .resetvalue = 0 },
5516 REGINFO_SENTINEL
5519 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5520 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5521 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5522 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5523 .access = PL2_RW,
5524 .type = ARM_CP_CONST, .resetvalue = 0 },
5525 REGINFO_SENTINEL
5528 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5530 ARMCPU *cpu = env_archcpu(env);
5532 if (arm_feature(env, ARM_FEATURE_V8)) {
5533 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5534 } else {
5535 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5538 if (arm_feature(env, ARM_FEATURE_EL3)) {
5539 valid_mask &= ~HCR_HCD;
5540 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5541 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5542 * However, if we're using the SMC PSCI conduit then QEMU is
5543 * effectively acting like EL3 firmware and so the guest at
5544 * EL2 should retain the ability to prevent EL1 from being
5545 * able to make SMC calls into the ersatz firmware, so in
5546 * that case HCR.TSC should be read/write.
5548 valid_mask &= ~HCR_TSC;
5551 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5552 if (cpu_isar_feature(aa64_vh, cpu)) {
5553 valid_mask |= HCR_E2H;
5555 if (cpu_isar_feature(aa64_lor, cpu)) {
5556 valid_mask |= HCR_TLOR;
5558 if (cpu_isar_feature(aa64_pauth, cpu)) {
5559 valid_mask |= HCR_API | HCR_APK;
5561 if (cpu_isar_feature(aa64_mte, cpu)) {
5562 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5566 /* Clear RES0 bits. */
5567 value &= valid_mask;
5570 * These bits change the MMU setup:
5571 * HCR_VM enables stage 2 translation
5572 * HCR_PTW forbids certain page-table setups
5573 * HCR_DC disables stage1 and enables stage2 translation
5574 * HCR_DCT enables tagging on (disabled) stage1 translation
5576 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5577 tlb_flush(CPU(cpu));
5579 env->cp15.hcr_el2 = value;
5582 * Updates to VI and VF require us to update the status of
5583 * virtual interrupts, which are the logical OR of these bits
5584 * and the state of the input lines from the GIC. (This requires
5585 * that we have the iothread lock, which is done by marking the
5586 * reginfo structs as ARM_CP_IO.)
5587 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5588 * possible for it to be taken immediately, because VIRQ and
5589 * VFIQ are masked unless running at EL0 or EL1, and HCR
5590 * can only be written at EL2.
5592 g_assert(qemu_mutex_iothread_locked());
5593 arm_cpu_update_virq(cpu);
5594 arm_cpu_update_vfiq(cpu);
5597 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5599 do_hcr_write(env, value, 0);
5602 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5603 uint64_t value)
5605 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5606 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5607 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5610 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5611 uint64_t value)
5613 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5614 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5615 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5619 * Return the effective value of HCR_EL2.
5620 * Bits that are not included here:
5621 * RW (read from SCR_EL3.RW as needed)
5623 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5625 uint64_t ret = env->cp15.hcr_el2;
5627 if (!arm_is_el2_enabled(env)) {
5629 * "This register has no effect if EL2 is not enabled in the
5630 * current Security state". This is ARMv8.4-SecEL2 speak for
5631 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5633 * Prior to that, the language was "In an implementation that
5634 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5635 * as if this field is 0 for all purposes other than a direct
5636 * read or write access of HCR_EL2". With lots of enumeration
5637 * on a per-field basis. In current QEMU, this is condition
5638 * is arm_is_secure_below_el3.
5640 * Since the v8.4 language applies to the entire register, and
5641 * appears to be backward compatible, use that.
5643 return 0;
5647 * For a cpu that supports both aarch64 and aarch32, we can set bits
5648 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5649 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5651 if (!arm_el_is_aa64(env, 2)) {
5652 uint64_t aa32_valid;
5655 * These bits are up-to-date as of ARMv8.6.
5656 * For HCR, it's easiest to list just the 2 bits that are invalid.
5657 * For HCR2, list those that are valid.
5659 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5660 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5661 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5662 ret &= aa32_valid;
5665 if (ret & HCR_TGE) {
5666 /* These bits are up-to-date as of ARMv8.6. */
5667 if (ret & HCR_E2H) {
5668 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5669 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5670 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5671 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5672 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5673 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5674 } else {
5675 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5677 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5678 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5679 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5680 HCR_TLOR);
5683 return ret;
5686 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5687 uint64_t value)
5690 * For A-profile AArch32 EL3, if NSACR.CP10
5691 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5693 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5694 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5695 value &= ~(0x3 << 10);
5696 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5698 env->cp15.cptr_el[2] = value;
5701 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5704 * For A-profile AArch32 EL3, if NSACR.CP10
5705 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5707 uint64_t value = env->cp15.cptr_el[2];
5709 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5710 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5711 value |= 0x3 << 10;
5713 return value;
5716 static const ARMCPRegInfo el2_cp_reginfo[] = {
5717 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5718 .type = ARM_CP_IO,
5719 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5720 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5721 .writefn = hcr_write },
5722 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5723 .type = ARM_CP_ALIAS | ARM_CP_IO,
5724 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5725 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5726 .writefn = hcr_writelow },
5727 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5728 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5729 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5730 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5731 .type = ARM_CP_ALIAS,
5732 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5733 .access = PL2_RW,
5734 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5735 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5736 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5737 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5738 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5739 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5740 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5741 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5742 .type = ARM_CP_ALIAS,
5743 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5744 .access = PL2_RW,
5745 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5746 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5747 .type = ARM_CP_ALIAS,
5748 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5749 .access = PL2_RW,
5750 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5751 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5752 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5753 .access = PL2_RW, .writefn = vbar_write,
5754 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5755 .resetvalue = 0 },
5756 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5757 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5758 .access = PL3_RW, .type = ARM_CP_ALIAS,
5759 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5760 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5761 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5762 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5763 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5764 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5765 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5766 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5767 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5768 .resetvalue = 0 },
5769 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5770 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5771 .access = PL2_RW, .type = ARM_CP_ALIAS,
5772 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5773 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5774 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5775 .access = PL2_RW, .type = ARM_CP_CONST,
5776 .resetvalue = 0 },
5777 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5778 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5779 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5780 .access = PL2_RW, .type = ARM_CP_CONST,
5781 .resetvalue = 0 },
5782 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5783 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5784 .access = PL2_RW, .type = ARM_CP_CONST,
5785 .resetvalue = 0 },
5786 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5787 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5788 .access = PL2_RW, .type = ARM_CP_CONST,
5789 .resetvalue = 0 },
5790 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5791 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5792 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5793 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5794 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5795 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5796 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5797 .type = ARM_CP_ALIAS,
5798 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5799 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5800 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5801 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5802 .access = PL2_RW,
5803 /* no .writefn needed as this can't cause an ASID change;
5804 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5806 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5807 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5808 .cp = 15, .opc1 = 6, .crm = 2,
5809 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5810 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5811 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5812 .writefn = vttbr_write },
5813 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5814 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5815 .access = PL2_RW, .writefn = vttbr_write,
5816 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5817 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5818 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5819 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5820 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5821 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5822 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5823 .access = PL2_RW, .resetvalue = 0,
5824 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5825 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5826 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5827 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5828 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5829 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5830 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5831 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5832 { .name = "TLBIALLNSNH",
5833 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5834 .type = ARM_CP_NO_RAW, .access = PL2_W,
5835 .writefn = tlbiall_nsnh_write },
5836 { .name = "TLBIALLNSNHIS",
5837 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5838 .type = ARM_CP_NO_RAW, .access = PL2_W,
5839 .writefn = tlbiall_nsnh_is_write },
5840 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5841 .type = ARM_CP_NO_RAW, .access = PL2_W,
5842 .writefn = tlbiall_hyp_write },
5843 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5844 .type = ARM_CP_NO_RAW, .access = PL2_W,
5845 .writefn = tlbiall_hyp_is_write },
5846 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5847 .type = ARM_CP_NO_RAW, .access = PL2_W,
5848 .writefn = tlbimva_hyp_write },
5849 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5850 .type = ARM_CP_NO_RAW, .access = PL2_W,
5851 .writefn = tlbimva_hyp_is_write },
5852 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5853 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5854 .type = ARM_CP_NO_RAW, .access = PL2_W,
5855 .writefn = tlbi_aa64_alle2_write },
5856 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5857 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5858 .type = ARM_CP_NO_RAW, .access = PL2_W,
5859 .writefn = tlbi_aa64_vae2_write },
5860 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5861 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5862 .access = PL2_W, .type = ARM_CP_NO_RAW,
5863 .writefn = tlbi_aa64_vae2_write },
5864 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5865 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5866 .access = PL2_W, .type = ARM_CP_NO_RAW,
5867 .writefn = tlbi_aa64_alle2is_write },
5868 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5870 .type = ARM_CP_NO_RAW, .access = PL2_W,
5871 .writefn = tlbi_aa64_vae2is_write },
5872 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5874 .access = PL2_W, .type = ARM_CP_NO_RAW,
5875 .writefn = tlbi_aa64_vae2is_write },
5876 #ifndef CONFIG_USER_ONLY
5877 /* Unlike the other EL2-related AT operations, these must
5878 * UNDEF from EL3 if EL2 is not implemented, which is why we
5879 * define them here rather than with the rest of the AT ops.
5881 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5882 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5883 .access = PL2_W, .accessfn = at_s1e2_access,
5884 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5885 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5886 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5887 .access = PL2_W, .accessfn = at_s1e2_access,
5888 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5889 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5890 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5891 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5892 * to behave as if SCR.NS was 1.
5894 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5895 .access = PL2_W,
5896 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5897 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5898 .access = PL2_W,
5899 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5900 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5901 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5902 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5903 * reset values as IMPDEF. We choose to reset to 3 to comply with
5904 * both ARMv7 and ARMv8.
5906 .access = PL2_RW, .resetvalue = 3,
5907 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5908 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5909 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5910 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5911 .writefn = gt_cntvoff_write,
5912 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5913 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5914 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5915 .writefn = gt_cntvoff_write,
5916 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5917 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5918 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5919 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5920 .type = ARM_CP_IO, .access = PL2_RW,
5921 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5922 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5923 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5924 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5925 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5926 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5927 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5928 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5929 .resetfn = gt_hyp_timer_reset,
5930 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5931 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5932 .type = ARM_CP_IO,
5933 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5934 .access = PL2_RW,
5935 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5936 .resetvalue = 0,
5937 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5938 #endif
5939 /* The only field of MDCR_EL2 that has a defined architectural reset value
5940 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5942 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5943 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5944 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5945 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5946 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5947 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5948 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5949 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5950 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5951 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5952 .access = PL2_RW,
5953 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5954 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5955 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5956 .access = PL2_RW,
5957 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5958 REGINFO_SENTINEL
5961 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5962 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5963 .type = ARM_CP_ALIAS | ARM_CP_IO,
5964 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5965 .access = PL2_RW,
5966 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5967 .writefn = hcr_writehigh },
5968 REGINFO_SENTINEL
5971 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5972 bool isread)
5974 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5975 return CP_ACCESS_OK;
5977 return CP_ACCESS_TRAP_UNCATEGORIZED;
5980 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5981 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5982 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5983 .access = PL2_RW, .accessfn = sel2_access,
5984 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5985 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5986 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5987 .access = PL2_RW, .accessfn = sel2_access,
5988 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5989 REGINFO_SENTINEL
5992 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5993 bool isread)
5995 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5996 * At Secure EL1 it traps to EL3 or EL2.
5998 if (arm_current_el(env) == 3) {
5999 return CP_ACCESS_OK;
6001 if (arm_is_secure_below_el3(env)) {
6002 if (env->cp15.scr_el3 & SCR_EEL2) {
6003 return CP_ACCESS_TRAP_EL2;
6005 return CP_ACCESS_TRAP_EL3;
6007 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6008 if (isread) {
6009 return CP_ACCESS_OK;
6011 return CP_ACCESS_TRAP_UNCATEGORIZED;
6014 static const ARMCPRegInfo el3_cp_reginfo[] = {
6015 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6016 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6017 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6018 .resetfn = scr_reset, .writefn = scr_write },
6019 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6020 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6021 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6022 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6023 .writefn = scr_write },
6024 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6025 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6026 .access = PL3_RW, .resetvalue = 0,
6027 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6028 { .name = "SDER",
6029 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6030 .access = PL3_RW, .resetvalue = 0,
6031 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6032 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6033 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6034 .writefn = vbar_write, .resetvalue = 0,
6035 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6036 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6037 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6038 .access = PL3_RW, .resetvalue = 0,
6039 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6040 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6041 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6042 .access = PL3_RW,
6043 /* no .writefn needed as this can't cause an ASID change;
6044 * we must provide a .raw_writefn and .resetfn because we handle
6045 * reset and migration for the AArch32 TTBCR(S), which might be
6046 * using mask and base_mask.
6048 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
6049 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6050 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6051 .type = ARM_CP_ALIAS,
6052 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6053 .access = PL3_RW,
6054 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6055 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6056 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6057 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6058 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6059 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6060 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6061 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6062 .type = ARM_CP_ALIAS,
6063 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6064 .access = PL3_RW,
6065 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6066 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6067 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6068 .access = PL3_RW, .writefn = vbar_write,
6069 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6070 .resetvalue = 0 },
6071 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6072 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6073 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6074 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6075 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6076 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6077 .access = PL3_RW, .resetvalue = 0,
6078 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6079 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6080 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6081 .access = PL3_RW, .type = ARM_CP_CONST,
6082 .resetvalue = 0 },
6083 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6084 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6085 .access = PL3_RW, .type = ARM_CP_CONST,
6086 .resetvalue = 0 },
6087 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6088 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6089 .access = PL3_RW, .type = ARM_CP_CONST,
6090 .resetvalue = 0 },
6091 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6092 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6093 .access = PL3_W, .type = ARM_CP_NO_RAW,
6094 .writefn = tlbi_aa64_alle3is_write },
6095 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6096 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6097 .access = PL3_W, .type = ARM_CP_NO_RAW,
6098 .writefn = tlbi_aa64_vae3is_write },
6099 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6100 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6101 .access = PL3_W, .type = ARM_CP_NO_RAW,
6102 .writefn = tlbi_aa64_vae3is_write },
6103 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6104 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6105 .access = PL3_W, .type = ARM_CP_NO_RAW,
6106 .writefn = tlbi_aa64_alle3_write },
6107 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6108 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6109 .access = PL3_W, .type = ARM_CP_NO_RAW,
6110 .writefn = tlbi_aa64_vae3_write },
6111 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6112 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6113 .access = PL3_W, .type = ARM_CP_NO_RAW,
6114 .writefn = tlbi_aa64_vae3_write },
6115 REGINFO_SENTINEL
6118 #ifndef CONFIG_USER_ONLY
6119 /* Test if system register redirection is to occur in the current state. */
6120 static bool redirect_for_e2h(CPUARMState *env)
6122 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6125 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6127 CPReadFn *readfn;
6129 if (redirect_for_e2h(env)) {
6130 /* Switch to the saved EL2 version of the register. */
6131 ri = ri->opaque;
6132 readfn = ri->readfn;
6133 } else {
6134 readfn = ri->orig_readfn;
6136 if (readfn == NULL) {
6137 readfn = raw_read;
6139 return readfn(env, ri);
6142 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6143 uint64_t value)
6145 CPWriteFn *writefn;
6147 if (redirect_for_e2h(env)) {
6148 /* Switch to the saved EL2 version of the register. */
6149 ri = ri->opaque;
6150 writefn = ri->writefn;
6151 } else {
6152 writefn = ri->orig_writefn;
6154 if (writefn == NULL) {
6155 writefn = raw_write;
6157 writefn(env, ri, value);
6160 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6162 struct E2HAlias {
6163 uint32_t src_key, dst_key, new_key;
6164 const char *src_name, *dst_name, *new_name;
6165 bool (*feature)(const ARMISARegisters *id);
6168 #define K(op0, op1, crn, crm, op2) \
6169 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6171 static const struct E2HAlias aliases[] = {
6172 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6173 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6174 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6175 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6176 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6177 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6178 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6179 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6180 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6181 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6182 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6183 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6184 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6185 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6186 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6187 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6188 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6189 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6190 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6191 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6192 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6193 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6194 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6195 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6196 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6197 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6198 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6199 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6200 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6201 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6202 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6203 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6206 * Note that redirection of ZCR is mentioned in the description
6207 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6208 * not in the summary table.
6210 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6211 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6213 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6214 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6216 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6217 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6219 #undef K
6221 size_t i;
6223 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6224 const struct E2HAlias *a = &aliases[i];
6225 ARMCPRegInfo *src_reg, *dst_reg;
6227 if (a->feature && !a->feature(&cpu->isar)) {
6228 continue;
6231 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6232 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6233 g_assert(src_reg != NULL);
6234 g_assert(dst_reg != NULL);
6236 /* Cross-compare names to detect typos in the keys. */
6237 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6238 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6240 /* None of the core system registers use opaque; we will. */
6241 g_assert(src_reg->opaque == NULL);
6243 /* Create alias before redirection so we dup the right data. */
6244 if (a->new_key) {
6245 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6246 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6247 bool ok;
6249 new_reg->name = a->new_name;
6250 new_reg->type |= ARM_CP_ALIAS;
6251 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6252 new_reg->access &= PL2_RW | PL3_RW;
6254 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6255 g_assert(ok);
6258 src_reg->opaque = dst_reg;
6259 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6260 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6261 if (!src_reg->raw_readfn) {
6262 src_reg->raw_readfn = raw_read;
6264 if (!src_reg->raw_writefn) {
6265 src_reg->raw_writefn = raw_write;
6267 src_reg->readfn = el2_e2h_read;
6268 src_reg->writefn = el2_e2h_write;
6271 #endif
6273 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6274 bool isread)
6276 int cur_el = arm_current_el(env);
6278 if (cur_el < 2) {
6279 uint64_t hcr = arm_hcr_el2_eff(env);
6281 if (cur_el == 0) {
6282 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6283 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6284 return CP_ACCESS_TRAP_EL2;
6286 } else {
6287 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6288 return CP_ACCESS_TRAP;
6290 if (hcr & HCR_TID2) {
6291 return CP_ACCESS_TRAP_EL2;
6294 } else if (hcr & HCR_TID2) {
6295 return CP_ACCESS_TRAP_EL2;
6299 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6300 return CP_ACCESS_TRAP_EL2;
6303 return CP_ACCESS_OK;
6306 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6307 uint64_t value)
6309 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6310 * read via a bit in OSLSR_EL1.
6312 int oslock;
6314 if (ri->state == ARM_CP_STATE_AA32) {
6315 oslock = (value == 0xC5ACCE55);
6316 } else {
6317 oslock = value & 1;
6320 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6323 static const ARMCPRegInfo debug_cp_reginfo[] = {
6324 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6325 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6326 * unlike DBGDRAR it is never accessible from EL0.
6327 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6328 * accessor.
6330 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6331 .access = PL0_R, .accessfn = access_tdra,
6332 .type = ARM_CP_CONST, .resetvalue = 0 },
6333 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6334 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6335 .access = PL1_R, .accessfn = access_tdra,
6336 .type = ARM_CP_CONST, .resetvalue = 0 },
6337 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6338 .access = PL0_R, .accessfn = access_tdra,
6339 .type = ARM_CP_CONST, .resetvalue = 0 },
6340 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6341 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6342 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6343 .access = PL1_RW, .accessfn = access_tda,
6344 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6345 .resetvalue = 0 },
6347 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
6348 * Debug Communication Channel is not implemented.
6350 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6351 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6352 .access = PL0_R, .accessfn = access_tda,
6353 .type = ARM_CP_CONST, .resetvalue = 0 },
6355 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
6356 * it is unlikely a guest will care.
6357 * We don't implement the configurable EL0 access.
6359 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6360 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6361 .type = ARM_CP_ALIAS,
6362 .access = PL1_R, .accessfn = access_tda,
6363 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6364 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6365 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6366 .access = PL1_W, .type = ARM_CP_NO_RAW,
6367 .accessfn = access_tdosa,
6368 .writefn = oslar_write },
6369 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6370 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6371 .access = PL1_R, .resetvalue = 10,
6372 .accessfn = access_tdosa,
6373 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6374 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6375 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6376 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6377 .access = PL1_RW, .accessfn = access_tdosa,
6378 .type = ARM_CP_NOP },
6379 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6380 * implement vector catch debug events yet.
6382 { .name = "DBGVCR",
6383 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6384 .access = PL1_RW, .accessfn = access_tda,
6385 .type = ARM_CP_NOP },
6386 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6387 * to save and restore a 32-bit guest's DBGVCR)
6389 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6390 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6391 .access = PL2_RW, .accessfn = access_tda,
6392 .type = ARM_CP_NOP },
6393 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6394 * Channel but Linux may try to access this register. The 32-bit
6395 * alias is DBGDCCINT.
6397 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6398 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6399 .access = PL1_RW, .accessfn = access_tda,
6400 .type = ARM_CP_NOP },
6401 REGINFO_SENTINEL
6404 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6405 /* 64 bit access versions of the (dummy) debug registers */
6406 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6407 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6408 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6409 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6410 REGINFO_SENTINEL
6413 /* Return the exception level to which exceptions should be taken
6414 * via SVEAccessTrap. If an exception should be routed through
6415 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6416 * take care of raising that exception.
6417 * C.f. the ARM pseudocode function CheckSVEEnabled.
6419 int sve_exception_el(CPUARMState *env, int el)
6421 #ifndef CONFIG_USER_ONLY
6422 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6424 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6425 bool disabled = false;
6427 /* The CPACR.ZEN controls traps to EL1:
6428 * 0, 2 : trap EL0 and EL1 accesses
6429 * 1 : trap only EL0 accesses
6430 * 3 : trap no accesses
6432 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6433 disabled = true;
6434 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6435 disabled = el == 0;
6437 if (disabled) {
6438 /* route_to_el2 */
6439 return hcr_el2 & HCR_TGE ? 2 : 1;
6442 /* Check CPACR.FPEN. */
6443 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6444 disabled = true;
6445 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6446 disabled = el == 0;
6448 if (disabled) {
6449 return 0;
6453 /* CPTR_EL2. Since TZ and TFP are positive,
6454 * they will be zero when EL2 is not present.
6456 if (el <= 2 && arm_is_el2_enabled(env)) {
6457 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6458 return 2;
6460 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6461 return 0;
6465 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6466 if (arm_feature(env, ARM_FEATURE_EL3)
6467 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6468 return 3;
6470 #endif
6471 return 0;
6474 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6476 uint32_t end_len;
6478 start_len = MIN(start_len, ARM_MAX_VQ - 1);
6479 end_len = start_len;
6481 if (!test_bit(start_len, cpu->sve_vq_map)) {
6482 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6483 assert(end_len < start_len);
6485 return end_len;
6489 * Given that SVE is enabled, return the vector length for EL.
6491 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6493 ARMCPU *cpu = env_archcpu(env);
6494 uint32_t zcr_len = cpu->sve_max_vq - 1;
6496 if (el <= 1) {
6497 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6499 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6500 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6502 if (arm_feature(env, ARM_FEATURE_EL3)) {
6503 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6506 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6509 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6510 uint64_t value)
6512 int cur_el = arm_current_el(env);
6513 int old_len = sve_zcr_len_for_el(env, cur_el);
6514 int new_len;
6516 /* Bits other than [3:0] are RAZ/WI. */
6517 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6518 raw_write(env, ri, value & 0xf);
6521 * Because we arrived here, we know both FP and SVE are enabled;
6522 * otherwise we would have trapped access to the ZCR_ELn register.
6524 new_len = sve_zcr_len_for_el(env, cur_el);
6525 if (new_len < old_len) {
6526 aarch64_sve_narrow_vq(env, new_len + 1);
6530 static const ARMCPRegInfo zcr_el1_reginfo = {
6531 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6532 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6533 .access = PL1_RW, .type = ARM_CP_SVE,
6534 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6535 .writefn = zcr_write, .raw_writefn = raw_write
6538 static const ARMCPRegInfo zcr_el2_reginfo = {
6539 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6540 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6541 .access = PL2_RW, .type = ARM_CP_SVE,
6542 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6543 .writefn = zcr_write, .raw_writefn = raw_write
6546 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6547 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6548 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6549 .access = PL2_RW, .type = ARM_CP_SVE,
6550 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6553 static const ARMCPRegInfo zcr_el3_reginfo = {
6554 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6555 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6556 .access = PL3_RW, .type = ARM_CP_SVE,
6557 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6558 .writefn = zcr_write, .raw_writefn = raw_write
6561 void hw_watchpoint_update(ARMCPU *cpu, int n)
6563 CPUARMState *env = &cpu->env;
6564 vaddr len = 0;
6565 vaddr wvr = env->cp15.dbgwvr[n];
6566 uint64_t wcr = env->cp15.dbgwcr[n];
6567 int mask;
6568 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6570 if (env->cpu_watchpoint[n]) {
6571 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6572 env->cpu_watchpoint[n] = NULL;
6575 if (!extract64(wcr, 0, 1)) {
6576 /* E bit clear : watchpoint disabled */
6577 return;
6580 switch (extract64(wcr, 3, 2)) {
6581 case 0:
6582 /* LSC 00 is reserved and must behave as if the wp is disabled */
6583 return;
6584 case 1:
6585 flags |= BP_MEM_READ;
6586 break;
6587 case 2:
6588 flags |= BP_MEM_WRITE;
6589 break;
6590 case 3:
6591 flags |= BP_MEM_ACCESS;
6592 break;
6595 /* Attempts to use both MASK and BAS fields simultaneously are
6596 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6597 * thus generating a watchpoint for every byte in the masked region.
6599 mask = extract64(wcr, 24, 4);
6600 if (mask == 1 || mask == 2) {
6601 /* Reserved values of MASK; we must act as if the mask value was
6602 * some non-reserved value, or as if the watchpoint were disabled.
6603 * We choose the latter.
6605 return;
6606 } else if (mask) {
6607 /* Watchpoint covers an aligned area up to 2GB in size */
6608 len = 1ULL << mask;
6609 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6610 * whether the watchpoint fires when the unmasked bits match; we opt
6611 * to generate the exceptions.
6613 wvr &= ~(len - 1);
6614 } else {
6615 /* Watchpoint covers bytes defined by the byte address select bits */
6616 int bas = extract64(wcr, 5, 8);
6617 int basstart;
6619 if (extract64(wvr, 2, 1)) {
6620 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6621 * ignored, and BAS[3:0] define which bytes to watch.
6623 bas &= 0xf;
6626 if (bas == 0) {
6627 /* This must act as if the watchpoint is disabled */
6628 return;
6631 /* The BAS bits are supposed to be programmed to indicate a contiguous
6632 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6633 * we fire for each byte in the word/doubleword addressed by the WVR.
6634 * We choose to ignore any non-zero bits after the first range of 1s.
6636 basstart = ctz32(bas);
6637 len = cto32(bas >> basstart);
6638 wvr += basstart;
6641 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6642 &env->cpu_watchpoint[n]);
6645 void hw_watchpoint_update_all(ARMCPU *cpu)
6647 int i;
6648 CPUARMState *env = &cpu->env;
6650 /* Completely clear out existing QEMU watchpoints and our array, to
6651 * avoid possible stale entries following migration load.
6653 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6654 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6656 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6657 hw_watchpoint_update(cpu, i);
6661 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6662 uint64_t value)
6664 ARMCPU *cpu = env_archcpu(env);
6665 int i = ri->crm;
6667 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6668 * register reads and behaves as if values written are sign extended.
6669 * Bits [1:0] are RES0.
6671 value = sextract64(value, 0, 49) & ~3ULL;
6673 raw_write(env, ri, value);
6674 hw_watchpoint_update(cpu, i);
6677 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6678 uint64_t value)
6680 ARMCPU *cpu = env_archcpu(env);
6681 int i = ri->crm;
6683 raw_write(env, ri, value);
6684 hw_watchpoint_update(cpu, i);
6687 void hw_breakpoint_update(ARMCPU *cpu, int n)
6689 CPUARMState *env = &cpu->env;
6690 uint64_t bvr = env->cp15.dbgbvr[n];
6691 uint64_t bcr = env->cp15.dbgbcr[n];
6692 vaddr addr;
6693 int bt;
6694 int flags = BP_CPU;
6696 if (env->cpu_breakpoint[n]) {
6697 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6698 env->cpu_breakpoint[n] = NULL;
6701 if (!extract64(bcr, 0, 1)) {
6702 /* E bit clear : watchpoint disabled */
6703 return;
6706 bt = extract64(bcr, 20, 4);
6708 switch (bt) {
6709 case 4: /* unlinked address mismatch (reserved if AArch64) */
6710 case 5: /* linked address mismatch (reserved if AArch64) */
6711 qemu_log_mask(LOG_UNIMP,
6712 "arm: address mismatch breakpoint types not implemented\n");
6713 return;
6714 case 0: /* unlinked address match */
6715 case 1: /* linked address match */
6717 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6718 * we behave as if the register was sign extended. Bits [1:0] are
6719 * RES0. The BAS field is used to allow setting breakpoints on 16
6720 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6721 * a bp will fire if the addresses covered by the bp and the addresses
6722 * covered by the insn overlap but the insn doesn't start at the
6723 * start of the bp address range. We choose to require the insn and
6724 * the bp to have the same address. The constraints on writing to
6725 * BAS enforced in dbgbcr_write mean we have only four cases:
6726 * 0b0000 => no breakpoint
6727 * 0b0011 => breakpoint on addr
6728 * 0b1100 => breakpoint on addr + 2
6729 * 0b1111 => breakpoint on addr
6730 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6732 int bas = extract64(bcr, 5, 4);
6733 addr = sextract64(bvr, 0, 49) & ~3ULL;
6734 if (bas == 0) {
6735 return;
6737 if (bas == 0xc) {
6738 addr += 2;
6740 break;
6742 case 2: /* unlinked context ID match */
6743 case 8: /* unlinked VMID match (reserved if no EL2) */
6744 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6745 qemu_log_mask(LOG_UNIMP,
6746 "arm: unlinked context breakpoint types not implemented\n");
6747 return;
6748 case 9: /* linked VMID match (reserved if no EL2) */
6749 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6750 case 3: /* linked context ID match */
6751 default:
6752 /* We must generate no events for Linked context matches (unless
6753 * they are linked to by some other bp/wp, which is handled in
6754 * updates for the linking bp/wp). We choose to also generate no events
6755 * for reserved values.
6757 return;
6760 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6763 void hw_breakpoint_update_all(ARMCPU *cpu)
6765 int i;
6766 CPUARMState *env = &cpu->env;
6768 /* Completely clear out existing QEMU breakpoints and our array, to
6769 * avoid possible stale entries following migration load.
6771 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6772 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6774 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6775 hw_breakpoint_update(cpu, i);
6779 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6780 uint64_t value)
6782 ARMCPU *cpu = env_archcpu(env);
6783 int i = ri->crm;
6785 raw_write(env, ri, value);
6786 hw_breakpoint_update(cpu, i);
6789 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6790 uint64_t value)
6792 ARMCPU *cpu = env_archcpu(env);
6793 int i = ri->crm;
6795 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6796 * copy of BAS[0].
6798 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6799 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6801 raw_write(env, ri, value);
6802 hw_breakpoint_update(cpu, i);
6805 static void define_debug_regs(ARMCPU *cpu)
6807 /* Define v7 and v8 architectural debug registers.
6808 * These are just dummy implementations for now.
6810 int i;
6811 int wrps, brps, ctx_cmps;
6814 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6815 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
6816 * the register must not exist for this cpu.
6818 if (cpu->isar.dbgdidr != 0) {
6819 ARMCPRegInfo dbgdidr = {
6820 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6821 .opc1 = 0, .opc2 = 0,
6822 .access = PL0_R, .accessfn = access_tda,
6823 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6825 define_one_arm_cp_reg(cpu, &dbgdidr);
6828 /* Note that all these register fields hold "number of Xs minus 1". */
6829 brps = arm_num_brps(cpu);
6830 wrps = arm_num_wrps(cpu);
6831 ctx_cmps = arm_num_ctx_cmps(cpu);
6833 assert(ctx_cmps <= brps);
6835 define_arm_cp_regs(cpu, debug_cp_reginfo);
6837 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6838 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6841 for (i = 0; i < brps; i++) {
6842 ARMCPRegInfo dbgregs[] = {
6843 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6844 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6845 .access = PL1_RW, .accessfn = access_tda,
6846 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6847 .writefn = dbgbvr_write, .raw_writefn = raw_write
6849 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6850 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6851 .access = PL1_RW, .accessfn = access_tda,
6852 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6853 .writefn = dbgbcr_write, .raw_writefn = raw_write
6855 REGINFO_SENTINEL
6857 define_arm_cp_regs(cpu, dbgregs);
6860 for (i = 0; i < wrps; i++) {
6861 ARMCPRegInfo dbgregs[] = {
6862 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6863 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6864 .access = PL1_RW, .accessfn = access_tda,
6865 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6866 .writefn = dbgwvr_write, .raw_writefn = raw_write
6868 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6869 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6870 .access = PL1_RW, .accessfn = access_tda,
6871 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6872 .writefn = dbgwcr_write, .raw_writefn = raw_write
6874 REGINFO_SENTINEL
6876 define_arm_cp_regs(cpu, dbgregs);
6880 static void define_pmu_regs(ARMCPU *cpu)
6883 * v7 performance monitor control register: same implementor
6884 * field as main ID register, and we implement four counters in
6885 * addition to the cycle count register.
6887 unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6888 ARMCPRegInfo pmcr = {
6889 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6890 .access = PL0_RW,
6891 .type = ARM_CP_IO | ARM_CP_ALIAS,
6892 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6893 .accessfn = pmreg_access, .writefn = pmcr_write,
6894 .raw_writefn = raw_write,
6896 ARMCPRegInfo pmcr64 = {
6897 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6898 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6899 .access = PL0_RW, .accessfn = pmreg_access,
6900 .type = ARM_CP_IO,
6901 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6902 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6903 PMCRLC,
6904 .writefn = pmcr_write, .raw_writefn = raw_write,
6906 define_one_arm_cp_reg(cpu, &pmcr);
6907 define_one_arm_cp_reg(cpu, &pmcr64);
6908 for (i = 0; i < pmcrn; i++) {
6909 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6910 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6911 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6912 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6913 ARMCPRegInfo pmev_regs[] = {
6914 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6915 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6916 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6917 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6918 .accessfn = pmreg_access },
6919 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6920 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6921 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6922 .type = ARM_CP_IO,
6923 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6924 .raw_readfn = pmevcntr_rawread,
6925 .raw_writefn = pmevcntr_rawwrite },
6926 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6927 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6928 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6929 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6930 .accessfn = pmreg_access },
6931 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6932 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6933 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6934 .type = ARM_CP_IO,
6935 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6936 .raw_writefn = pmevtyper_rawwrite },
6937 REGINFO_SENTINEL
6939 define_arm_cp_regs(cpu, pmev_regs);
6940 g_free(pmevcntr_name);
6941 g_free(pmevcntr_el0_name);
6942 g_free(pmevtyper_name);
6943 g_free(pmevtyper_el0_name);
6945 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6946 ARMCPRegInfo v81_pmu_regs[] = {
6947 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6948 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6949 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6950 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6951 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6952 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6953 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6954 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6955 REGINFO_SENTINEL
6957 define_arm_cp_regs(cpu, v81_pmu_regs);
6959 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6960 static const ARMCPRegInfo v84_pmmir = {
6961 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6962 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6963 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6964 .resetvalue = 0
6966 define_one_arm_cp_reg(cpu, &v84_pmmir);
6970 /* We don't know until after realize whether there's a GICv3
6971 * attached, and that is what registers the gicv3 sysregs.
6972 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6973 * at runtime.
6975 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6977 ARMCPU *cpu = env_archcpu(env);
6978 uint64_t pfr1 = cpu->isar.id_pfr1;
6980 if (env->gicv3state) {
6981 pfr1 |= 1 << 28;
6983 return pfr1;
6986 #ifndef CONFIG_USER_ONLY
6987 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6989 ARMCPU *cpu = env_archcpu(env);
6990 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6992 if (env->gicv3state) {
6993 pfr0 |= 1 << 24;
6995 return pfr0;
6997 #endif
6999 /* Shared logic between LORID and the rest of the LOR* registers.
7000 * Secure state exclusion has already been dealt with.
7002 static CPAccessResult access_lor_ns(CPUARMState *env,
7003 const ARMCPRegInfo *ri, bool isread)
7005 int el = arm_current_el(env);
7007 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7008 return CP_ACCESS_TRAP_EL2;
7010 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7011 return CP_ACCESS_TRAP_EL3;
7013 return CP_ACCESS_OK;
7016 static CPAccessResult access_lor_other(CPUARMState *env,
7017 const ARMCPRegInfo *ri, bool isread)
7019 if (arm_is_secure_below_el3(env)) {
7020 /* Access denied in secure mode. */
7021 return CP_ACCESS_TRAP;
7023 return access_lor_ns(env, ri, isread);
7027 * A trivial implementation of ARMv8.1-LOR leaves all of these
7028 * registers fixed at 0, which indicates that there are zero
7029 * supported Limited Ordering regions.
7031 static const ARMCPRegInfo lor_reginfo[] = {
7032 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7033 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7034 .access = PL1_RW, .accessfn = access_lor_other,
7035 .type = ARM_CP_CONST, .resetvalue = 0 },
7036 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7037 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7038 .access = PL1_RW, .accessfn = access_lor_other,
7039 .type = ARM_CP_CONST, .resetvalue = 0 },
7040 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7041 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7042 .access = PL1_RW, .accessfn = access_lor_other,
7043 .type = ARM_CP_CONST, .resetvalue = 0 },
7044 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7045 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7046 .access = PL1_RW, .accessfn = access_lor_other,
7047 .type = ARM_CP_CONST, .resetvalue = 0 },
7048 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7049 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7050 .access = PL1_R, .accessfn = access_lor_ns,
7051 .type = ARM_CP_CONST, .resetvalue = 0 },
7052 REGINFO_SENTINEL
7055 #ifdef TARGET_AARCH64
7056 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7057 bool isread)
7059 int el = arm_current_el(env);
7061 if (el < 2 &&
7062 arm_feature(env, ARM_FEATURE_EL2) &&
7063 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7064 return CP_ACCESS_TRAP_EL2;
7066 if (el < 3 &&
7067 arm_feature(env, ARM_FEATURE_EL3) &&
7068 !(env->cp15.scr_el3 & SCR_APK)) {
7069 return CP_ACCESS_TRAP_EL3;
7071 return CP_ACCESS_OK;
7074 static const ARMCPRegInfo pauth_reginfo[] = {
7075 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7076 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7077 .access = PL1_RW, .accessfn = access_pauth,
7078 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7079 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7080 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7081 .access = PL1_RW, .accessfn = access_pauth,
7082 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7083 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7084 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7085 .access = PL1_RW, .accessfn = access_pauth,
7086 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7087 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7089 .access = PL1_RW, .accessfn = access_pauth,
7090 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7091 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7092 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7093 .access = PL1_RW, .accessfn = access_pauth,
7094 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7095 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7096 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7097 .access = PL1_RW, .accessfn = access_pauth,
7098 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7099 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7100 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7101 .access = PL1_RW, .accessfn = access_pauth,
7102 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7103 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7104 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7105 .access = PL1_RW, .accessfn = access_pauth,
7106 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7107 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7108 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7109 .access = PL1_RW, .accessfn = access_pauth,
7110 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7111 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7112 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7113 .access = PL1_RW, .accessfn = access_pauth,
7114 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7115 REGINFO_SENTINEL
7118 static const ARMCPRegInfo tlbirange_reginfo[] = {
7119 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7120 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7121 .access = PL1_W, .type = ARM_CP_NO_RAW,
7122 .writefn = tlbi_aa64_rvae1is_write },
7123 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7124 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7125 .access = PL1_W, .type = ARM_CP_NO_RAW,
7126 .writefn = tlbi_aa64_rvae1is_write },
7127 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7128 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7129 .access = PL1_W, .type = ARM_CP_NO_RAW,
7130 .writefn = tlbi_aa64_rvae1is_write },
7131 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7132 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7133 .access = PL1_W, .type = ARM_CP_NO_RAW,
7134 .writefn = tlbi_aa64_rvae1is_write },
7135 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7136 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7137 .access = PL1_W, .type = ARM_CP_NO_RAW,
7138 .writefn = tlbi_aa64_rvae1is_write },
7139 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7140 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7141 .access = PL1_W, .type = ARM_CP_NO_RAW,
7142 .writefn = tlbi_aa64_rvae1is_write },
7143 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7144 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7145 .access = PL1_W, .type = ARM_CP_NO_RAW,
7146 .writefn = tlbi_aa64_rvae1is_write },
7147 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7148 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7149 .access = PL1_W, .type = ARM_CP_NO_RAW,
7150 .writefn = tlbi_aa64_rvae1is_write },
7151 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7152 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7153 .access = PL1_W, .type = ARM_CP_NO_RAW,
7154 .writefn = tlbi_aa64_rvae1_write },
7155 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7156 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7157 .access = PL1_W, .type = ARM_CP_NO_RAW,
7158 .writefn = tlbi_aa64_rvae1_write },
7159 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7160 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7161 .access = PL1_W, .type = ARM_CP_NO_RAW,
7162 .writefn = tlbi_aa64_rvae1_write },
7163 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7164 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7165 .access = PL1_W, .type = ARM_CP_NO_RAW,
7166 .writefn = tlbi_aa64_rvae1_write },
7167 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7168 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7169 .access = PL2_W, .type = ARM_CP_NOP },
7170 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7171 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7172 .access = PL2_W, .type = ARM_CP_NOP },
7173 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7174 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7175 .access = PL2_W, .type = ARM_CP_NO_RAW,
7176 .writefn = tlbi_aa64_rvae2is_write },
7177 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7178 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7179 .access = PL2_W, .type = ARM_CP_NO_RAW,
7180 .writefn = tlbi_aa64_rvae2is_write },
7181 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7182 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7183 .access = PL2_W, .type = ARM_CP_NOP },
7184 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7185 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7186 .access = PL2_W, .type = ARM_CP_NOP },
7187 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7188 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7189 .access = PL2_W, .type = ARM_CP_NO_RAW,
7190 .writefn = tlbi_aa64_rvae2is_write },
7191 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7192 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7193 .access = PL2_W, .type = ARM_CP_NO_RAW,
7194 .writefn = tlbi_aa64_rvae2is_write },
7195 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7197 .access = PL2_W, .type = ARM_CP_NO_RAW,
7198 .writefn = tlbi_aa64_rvae2_write },
7199 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7200 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7201 .access = PL2_W, .type = ARM_CP_NO_RAW,
7202 .writefn = tlbi_aa64_rvae2_write },
7203 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7204 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7205 .access = PL3_W, .type = ARM_CP_NO_RAW,
7206 .writefn = tlbi_aa64_rvae3is_write },
7207 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7208 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7209 .access = PL3_W, .type = ARM_CP_NO_RAW,
7210 .writefn = tlbi_aa64_rvae3is_write },
7211 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7212 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7213 .access = PL3_W, .type = ARM_CP_NO_RAW,
7214 .writefn = tlbi_aa64_rvae3is_write },
7215 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7216 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7217 .access = PL3_W, .type = ARM_CP_NO_RAW,
7218 .writefn = tlbi_aa64_rvae3is_write },
7219 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7220 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7221 .access = PL3_W, .type = ARM_CP_NO_RAW,
7222 .writefn = tlbi_aa64_rvae3_write },
7223 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7224 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7225 .access = PL3_W, .type = ARM_CP_NO_RAW,
7226 .writefn = tlbi_aa64_rvae3_write },
7227 REGINFO_SENTINEL
7230 static const ARMCPRegInfo tlbios_reginfo[] = {
7231 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7232 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7233 .access = PL1_W, .type = ARM_CP_NO_RAW,
7234 .writefn = tlbi_aa64_vmalle1is_write },
7235 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7236 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7237 .access = PL1_W, .type = ARM_CP_NO_RAW,
7238 .writefn = tlbi_aa64_vmalle1is_write },
7239 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7240 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7241 .access = PL2_W, .type = ARM_CP_NO_RAW,
7242 .writefn = tlbi_aa64_alle2is_write },
7243 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7244 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7245 .access = PL2_W, .type = ARM_CP_NO_RAW,
7246 .writefn = tlbi_aa64_alle1is_write },
7247 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7248 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7249 .access = PL2_W, .type = ARM_CP_NO_RAW,
7250 .writefn = tlbi_aa64_alle1is_write },
7251 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7252 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7253 .access = PL2_W, .type = ARM_CP_NOP },
7254 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7255 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7256 .access = PL2_W, .type = ARM_CP_NOP },
7257 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7258 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7259 .access = PL2_W, .type = ARM_CP_NOP },
7260 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7261 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7262 .access = PL2_W, .type = ARM_CP_NOP },
7263 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7264 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7265 .access = PL3_W, .type = ARM_CP_NO_RAW,
7266 .writefn = tlbi_aa64_alle3is_write },
7267 REGINFO_SENTINEL
7270 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7272 Error *err = NULL;
7273 uint64_t ret;
7275 /* Success sets NZCV = 0000. */
7276 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7278 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7280 * ??? Failed, for unknown reasons in the crypto subsystem.
7281 * The best we can do is log the reason and return the
7282 * timed-out indication to the guest. There is no reason
7283 * we know to expect this failure to be transitory, so the
7284 * guest may well hang retrying the operation.
7286 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7287 ri->name, error_get_pretty(err));
7288 error_free(err);
7290 env->ZF = 0; /* NZCF = 0100 */
7291 return 0;
7293 return ret;
7296 /* We do not support re-seeding, so the two registers operate the same. */
7297 static const ARMCPRegInfo rndr_reginfo[] = {
7298 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7299 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7300 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7301 .access = PL0_R, .readfn = rndr_readfn },
7302 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7303 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7304 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7305 .access = PL0_R, .readfn = rndr_readfn },
7306 REGINFO_SENTINEL
7309 #ifndef CONFIG_USER_ONLY
7310 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7311 uint64_t value)
7313 ARMCPU *cpu = env_archcpu(env);
7314 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7315 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7316 uint64_t vaddr_in = (uint64_t) value;
7317 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7318 void *haddr;
7319 int mem_idx = cpu_mmu_index(env, false);
7321 /* This won't be crossing page boundaries */
7322 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7323 if (haddr) {
7325 ram_addr_t offset;
7326 MemoryRegion *mr;
7328 /* RCU lock is already being held */
7329 mr = memory_region_from_host(haddr, &offset);
7331 if (mr) {
7332 memory_region_writeback(mr, offset, dline_size);
7337 static const ARMCPRegInfo dcpop_reg[] = {
7338 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7339 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7340 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7341 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7342 REGINFO_SENTINEL
7345 static const ARMCPRegInfo dcpodp_reg[] = {
7346 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7347 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7348 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7349 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7350 REGINFO_SENTINEL
7352 #endif /*CONFIG_USER_ONLY*/
7354 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7355 bool isread)
7357 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7358 return CP_ACCESS_TRAP_EL2;
7361 return CP_ACCESS_OK;
7364 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7365 bool isread)
7367 int el = arm_current_el(env);
7369 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7370 uint64_t hcr = arm_hcr_el2_eff(env);
7371 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7372 return CP_ACCESS_TRAP_EL2;
7375 if (el < 3 &&
7376 arm_feature(env, ARM_FEATURE_EL3) &&
7377 !(env->cp15.scr_el3 & SCR_ATA)) {
7378 return CP_ACCESS_TRAP_EL3;
7380 return CP_ACCESS_OK;
7383 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7385 return env->pstate & PSTATE_TCO;
7388 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7390 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7393 static const ARMCPRegInfo mte_reginfo[] = {
7394 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7395 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7396 .access = PL1_RW, .accessfn = access_mte,
7397 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7398 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7399 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7400 .access = PL1_RW, .accessfn = access_mte,
7401 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7402 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7403 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7404 .access = PL2_RW, .accessfn = access_mte,
7405 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7406 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7407 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7408 .access = PL3_RW,
7409 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7410 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7411 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7412 .access = PL1_RW, .accessfn = access_mte,
7413 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7414 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7415 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7416 .access = PL1_RW, .accessfn = access_mte,
7417 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7418 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7419 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7420 .access = PL1_R, .accessfn = access_aa64_tid5,
7421 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7422 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7423 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7424 .type = ARM_CP_NO_RAW,
7425 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7426 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7427 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7428 .type = ARM_CP_NOP, .access = PL1_W,
7429 .accessfn = aa64_cacheop_poc_access },
7430 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7431 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7432 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7433 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7434 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7435 .type = ARM_CP_NOP, .access = PL1_W,
7436 .accessfn = aa64_cacheop_poc_access },
7437 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7438 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7439 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7440 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7441 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7442 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7443 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7444 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7445 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7446 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7447 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7448 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7449 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7450 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7451 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7452 REGINFO_SENTINEL
7455 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7456 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7457 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7458 .type = ARM_CP_CONST, .access = PL0_RW, },
7459 REGINFO_SENTINEL
7462 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7463 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7464 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7465 .type = ARM_CP_NOP, .access = PL0_W,
7466 .accessfn = aa64_cacheop_poc_access },
7467 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7468 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7469 .type = ARM_CP_NOP, .access = PL0_W,
7470 .accessfn = aa64_cacheop_poc_access },
7471 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7472 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7473 .type = ARM_CP_NOP, .access = PL0_W,
7474 .accessfn = aa64_cacheop_poc_access },
7475 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7476 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7477 .type = ARM_CP_NOP, .access = PL0_W,
7478 .accessfn = aa64_cacheop_poc_access },
7479 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7481 .type = ARM_CP_NOP, .access = PL0_W,
7482 .accessfn = aa64_cacheop_poc_access },
7483 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7484 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7485 .type = ARM_CP_NOP, .access = PL0_W,
7486 .accessfn = aa64_cacheop_poc_access },
7487 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7488 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7489 .type = ARM_CP_NOP, .access = PL0_W,
7490 .accessfn = aa64_cacheop_poc_access },
7491 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7492 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7493 .type = ARM_CP_NOP, .access = PL0_W,
7494 .accessfn = aa64_cacheop_poc_access },
7495 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7496 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7497 .access = PL0_W, .type = ARM_CP_DC_GVA,
7498 #ifndef CONFIG_USER_ONLY
7499 /* Avoid overhead of an access check that always passes in user-mode */
7500 .accessfn = aa64_zva_access,
7501 #endif
7503 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7504 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7505 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7506 #ifndef CONFIG_USER_ONLY
7507 /* Avoid overhead of an access check that always passes in user-mode */
7508 .accessfn = aa64_zva_access,
7509 #endif
7511 REGINFO_SENTINEL
7514 #endif
7516 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7517 bool isread)
7519 int el = arm_current_el(env);
7521 if (el == 0) {
7522 uint64_t sctlr = arm_sctlr(env, el);
7523 if (!(sctlr & SCTLR_EnRCTX)) {
7524 return CP_ACCESS_TRAP;
7526 } else if (el == 1) {
7527 uint64_t hcr = arm_hcr_el2_eff(env);
7528 if (hcr & HCR_NV) {
7529 return CP_ACCESS_TRAP_EL2;
7532 return CP_ACCESS_OK;
7535 static const ARMCPRegInfo predinv_reginfo[] = {
7536 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7537 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7538 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7539 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7540 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7541 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7542 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7543 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7544 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7546 * Note the AArch32 opcodes have a different OPC1.
7548 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7549 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7550 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7551 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7552 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7553 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7554 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7555 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7556 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7557 REGINFO_SENTINEL
7560 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7562 /* Read the high 32 bits of the current CCSIDR */
7563 return extract64(ccsidr_read(env, ri), 32, 32);
7566 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7567 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7568 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7569 .access = PL1_R,
7570 .accessfn = access_aa64_tid2,
7571 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7572 REGINFO_SENTINEL
7575 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7576 bool isread)
7578 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7579 return CP_ACCESS_TRAP_EL2;
7582 return CP_ACCESS_OK;
7585 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7586 bool isread)
7588 if (arm_feature(env, ARM_FEATURE_V8)) {
7589 return access_aa64_tid3(env, ri, isread);
7592 return CP_ACCESS_OK;
7595 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7596 bool isread)
7598 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7599 return CP_ACCESS_TRAP_EL2;
7602 return CP_ACCESS_OK;
7605 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7606 const ARMCPRegInfo *ri, bool isread)
7609 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7610 * in v7A, not in v8A.
7612 if (!arm_feature(env, ARM_FEATURE_V8) &&
7613 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7614 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7615 return CP_ACCESS_TRAP_EL2;
7617 return CP_ACCESS_OK;
7620 static const ARMCPRegInfo jazelle_regs[] = {
7621 { .name = "JIDR",
7622 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7623 .access = PL1_R, .accessfn = access_jazelle,
7624 .type = ARM_CP_CONST, .resetvalue = 0 },
7625 { .name = "JOSCR",
7626 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7627 .accessfn = access_joscr_jmcr,
7628 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7629 { .name = "JMCR",
7630 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7631 .accessfn = access_joscr_jmcr,
7632 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7633 REGINFO_SENTINEL
7636 static const ARMCPRegInfo vhe_reginfo[] = {
7637 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7638 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7639 .access = PL2_RW,
7640 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7641 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7642 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7643 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7644 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7645 #ifndef CONFIG_USER_ONLY
7646 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7647 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7648 .fieldoffset =
7649 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7650 .type = ARM_CP_IO, .access = PL2_RW,
7651 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7652 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7653 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7654 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7655 .resetfn = gt_hv_timer_reset,
7656 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7657 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7658 .type = ARM_CP_IO,
7659 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7660 .access = PL2_RW,
7661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7662 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7663 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7664 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7665 .type = ARM_CP_IO | ARM_CP_ALIAS,
7666 .access = PL2_RW, .accessfn = e2h_access,
7667 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7668 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7669 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7670 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7671 .type = ARM_CP_IO | ARM_CP_ALIAS,
7672 .access = PL2_RW, .accessfn = e2h_access,
7673 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7674 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7675 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7676 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7677 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7678 .access = PL2_RW, .accessfn = e2h_access,
7679 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7680 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7681 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7682 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7683 .access = PL2_RW, .accessfn = e2h_access,
7684 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7685 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7686 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7687 .type = ARM_CP_IO | ARM_CP_ALIAS,
7688 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7689 .access = PL2_RW, .accessfn = e2h_access,
7690 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7691 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7692 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7693 .type = ARM_CP_IO | ARM_CP_ALIAS,
7694 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7695 .access = PL2_RW, .accessfn = e2h_access,
7696 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7697 #endif
7698 REGINFO_SENTINEL
7701 #ifndef CONFIG_USER_ONLY
7702 static const ARMCPRegInfo ats1e1_reginfo[] = {
7703 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7704 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7705 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7706 .writefn = ats_write64 },
7707 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7708 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7709 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7710 .writefn = ats_write64 },
7711 REGINFO_SENTINEL
7714 static const ARMCPRegInfo ats1cp_reginfo[] = {
7715 { .name = "ATS1CPRP",
7716 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7717 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7718 .writefn = ats_write },
7719 { .name = "ATS1CPWP",
7720 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7721 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7722 .writefn = ats_write },
7723 REGINFO_SENTINEL
7725 #endif
7728 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7729 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7730 * is non-zero, which is never for ARMv7, optionally in ARMv8
7731 * and mandatorily for ARMv8.2 and up.
7732 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7733 * implementation is RAZ/WI we can ignore this detail, as we
7734 * do for ACTLR.
7736 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7737 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7738 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7739 .access = PL1_RW, .accessfn = access_tacr,
7740 .type = ARM_CP_CONST, .resetvalue = 0 },
7741 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7742 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7743 .access = PL2_RW, .type = ARM_CP_CONST,
7744 .resetvalue = 0 },
7745 REGINFO_SENTINEL
7748 void register_cp_regs_for_features(ARMCPU *cpu)
7750 /* Register all the coprocessor registers based on feature bits */
7751 CPUARMState *env = &cpu->env;
7752 if (arm_feature(env, ARM_FEATURE_M)) {
7753 /* M profile has no coprocessor registers */
7754 return;
7757 define_arm_cp_regs(cpu, cp_reginfo);
7758 if (!arm_feature(env, ARM_FEATURE_V8)) {
7759 /* Must go early as it is full of wildcards that may be
7760 * overridden by later definitions.
7762 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7765 if (arm_feature(env, ARM_FEATURE_V6)) {
7766 /* The ID registers all have impdef reset values */
7767 ARMCPRegInfo v6_idregs[] = {
7768 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7770 .access = PL1_R, .type = ARM_CP_CONST,
7771 .accessfn = access_aa32_tid3,
7772 .resetvalue = cpu->isar.id_pfr0 },
7773 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7774 * the value of the GIC field until after we define these regs.
7776 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7778 .access = PL1_R, .type = ARM_CP_NO_RAW,
7779 .accessfn = access_aa32_tid3,
7780 .readfn = id_pfr1_read,
7781 .writefn = arm_cp_write_ignore },
7782 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7784 .access = PL1_R, .type = ARM_CP_CONST,
7785 .accessfn = access_aa32_tid3,
7786 .resetvalue = cpu->isar.id_dfr0 },
7787 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7789 .access = PL1_R, .type = ARM_CP_CONST,
7790 .accessfn = access_aa32_tid3,
7791 .resetvalue = cpu->id_afr0 },
7792 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7794 .access = PL1_R, .type = ARM_CP_CONST,
7795 .accessfn = access_aa32_tid3,
7796 .resetvalue = cpu->isar.id_mmfr0 },
7797 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7799 .access = PL1_R, .type = ARM_CP_CONST,
7800 .accessfn = access_aa32_tid3,
7801 .resetvalue = cpu->isar.id_mmfr1 },
7802 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7804 .access = PL1_R, .type = ARM_CP_CONST,
7805 .accessfn = access_aa32_tid3,
7806 .resetvalue = cpu->isar.id_mmfr2 },
7807 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7809 .access = PL1_R, .type = ARM_CP_CONST,
7810 .accessfn = access_aa32_tid3,
7811 .resetvalue = cpu->isar.id_mmfr3 },
7812 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7813 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7814 .access = PL1_R, .type = ARM_CP_CONST,
7815 .accessfn = access_aa32_tid3,
7816 .resetvalue = cpu->isar.id_isar0 },
7817 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7819 .access = PL1_R, .type = ARM_CP_CONST,
7820 .accessfn = access_aa32_tid3,
7821 .resetvalue = cpu->isar.id_isar1 },
7822 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7824 .access = PL1_R, .type = ARM_CP_CONST,
7825 .accessfn = access_aa32_tid3,
7826 .resetvalue = cpu->isar.id_isar2 },
7827 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7829 .access = PL1_R, .type = ARM_CP_CONST,
7830 .accessfn = access_aa32_tid3,
7831 .resetvalue = cpu->isar.id_isar3 },
7832 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7833 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7834 .access = PL1_R, .type = ARM_CP_CONST,
7835 .accessfn = access_aa32_tid3,
7836 .resetvalue = cpu->isar.id_isar4 },
7837 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7839 .access = PL1_R, .type = ARM_CP_CONST,
7840 .accessfn = access_aa32_tid3,
7841 .resetvalue = cpu->isar.id_isar5 },
7842 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7844 .access = PL1_R, .type = ARM_CP_CONST,
7845 .accessfn = access_aa32_tid3,
7846 .resetvalue = cpu->isar.id_mmfr4 },
7847 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7849 .access = PL1_R, .type = ARM_CP_CONST,
7850 .accessfn = access_aa32_tid3,
7851 .resetvalue = cpu->isar.id_isar6 },
7852 REGINFO_SENTINEL
7854 define_arm_cp_regs(cpu, v6_idregs);
7855 define_arm_cp_regs(cpu, v6_cp_reginfo);
7856 } else {
7857 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7859 if (arm_feature(env, ARM_FEATURE_V6K)) {
7860 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7862 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7863 !arm_feature(env, ARM_FEATURE_PMSA)) {
7864 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7866 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7867 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7869 if (arm_feature(env, ARM_FEATURE_V7)) {
7870 ARMCPRegInfo clidr = {
7871 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7872 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7873 .access = PL1_R, .type = ARM_CP_CONST,
7874 .accessfn = access_aa64_tid2,
7875 .resetvalue = cpu->clidr
7877 define_one_arm_cp_reg(cpu, &clidr);
7878 define_arm_cp_regs(cpu, v7_cp_reginfo);
7879 define_debug_regs(cpu);
7880 define_pmu_regs(cpu);
7881 } else {
7882 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7884 if (arm_feature(env, ARM_FEATURE_V8)) {
7885 /* AArch64 ID registers, which all have impdef reset values.
7886 * Note that within the ID register ranges the unused slots
7887 * must all RAZ, not UNDEF; future architecture versions may
7888 * define new registers here.
7890 ARMCPRegInfo v8_idregs[] = {
7892 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7893 * emulation because we don't know the right value for the
7894 * GIC field until after we define these regs.
7896 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7898 .access = PL1_R,
7899 #ifdef CONFIG_USER_ONLY
7900 .type = ARM_CP_CONST,
7901 .resetvalue = cpu->isar.id_aa64pfr0
7902 #else
7903 .type = ARM_CP_NO_RAW,
7904 .accessfn = access_aa64_tid3,
7905 .readfn = id_aa64pfr0_read,
7906 .writefn = arm_cp_write_ignore
7907 #endif
7909 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7911 .access = PL1_R, .type = ARM_CP_CONST,
7912 .accessfn = access_aa64_tid3,
7913 .resetvalue = cpu->isar.id_aa64pfr1},
7914 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7915 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7916 .access = PL1_R, .type = ARM_CP_CONST,
7917 .accessfn = access_aa64_tid3,
7918 .resetvalue = 0 },
7919 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7921 .access = PL1_R, .type = ARM_CP_CONST,
7922 .accessfn = access_aa64_tid3,
7923 .resetvalue = 0 },
7924 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7925 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7926 .access = PL1_R, .type = ARM_CP_CONST,
7927 .accessfn = access_aa64_tid3,
7928 .resetvalue = cpu->isar.id_aa64zfr0 },
7929 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7931 .access = PL1_R, .type = ARM_CP_CONST,
7932 .accessfn = access_aa64_tid3,
7933 .resetvalue = 0 },
7934 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7935 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7936 .access = PL1_R, .type = ARM_CP_CONST,
7937 .accessfn = access_aa64_tid3,
7938 .resetvalue = 0 },
7939 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7940 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7941 .access = PL1_R, .type = ARM_CP_CONST,
7942 .accessfn = access_aa64_tid3,
7943 .resetvalue = 0 },
7944 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7945 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7946 .access = PL1_R, .type = ARM_CP_CONST,
7947 .accessfn = access_aa64_tid3,
7948 .resetvalue = cpu->isar.id_aa64dfr0 },
7949 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7951 .access = PL1_R, .type = ARM_CP_CONST,
7952 .accessfn = access_aa64_tid3,
7953 .resetvalue = cpu->isar.id_aa64dfr1 },
7954 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7956 .access = PL1_R, .type = ARM_CP_CONST,
7957 .accessfn = access_aa64_tid3,
7958 .resetvalue = 0 },
7959 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7961 .access = PL1_R, .type = ARM_CP_CONST,
7962 .accessfn = access_aa64_tid3,
7963 .resetvalue = 0 },
7964 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7965 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7966 .access = PL1_R, .type = ARM_CP_CONST,
7967 .accessfn = access_aa64_tid3,
7968 .resetvalue = cpu->id_aa64afr0 },
7969 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7971 .access = PL1_R, .type = ARM_CP_CONST,
7972 .accessfn = access_aa64_tid3,
7973 .resetvalue = cpu->id_aa64afr1 },
7974 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7976 .access = PL1_R, .type = ARM_CP_CONST,
7977 .accessfn = access_aa64_tid3,
7978 .resetvalue = 0 },
7979 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7981 .access = PL1_R, .type = ARM_CP_CONST,
7982 .accessfn = access_aa64_tid3,
7983 .resetvalue = 0 },
7984 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7986 .access = PL1_R, .type = ARM_CP_CONST,
7987 .accessfn = access_aa64_tid3,
7988 .resetvalue = cpu->isar.id_aa64isar0 },
7989 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7991 .access = PL1_R, .type = ARM_CP_CONST,
7992 .accessfn = access_aa64_tid3,
7993 .resetvalue = cpu->isar.id_aa64isar1 },
7994 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7995 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7996 .access = PL1_R, .type = ARM_CP_CONST,
7997 .accessfn = access_aa64_tid3,
7998 .resetvalue = 0 },
7999 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8001 .access = PL1_R, .type = ARM_CP_CONST,
8002 .accessfn = access_aa64_tid3,
8003 .resetvalue = 0 },
8004 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8006 .access = PL1_R, .type = ARM_CP_CONST,
8007 .accessfn = access_aa64_tid3,
8008 .resetvalue = 0 },
8009 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8011 .access = PL1_R, .type = ARM_CP_CONST,
8012 .accessfn = access_aa64_tid3,
8013 .resetvalue = 0 },
8014 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8016 .access = PL1_R, .type = ARM_CP_CONST,
8017 .accessfn = access_aa64_tid3,
8018 .resetvalue = 0 },
8019 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8021 .access = PL1_R, .type = ARM_CP_CONST,
8022 .accessfn = access_aa64_tid3,
8023 .resetvalue = 0 },
8024 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8026 .access = PL1_R, .type = ARM_CP_CONST,
8027 .accessfn = access_aa64_tid3,
8028 .resetvalue = cpu->isar.id_aa64mmfr0 },
8029 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8031 .access = PL1_R, .type = ARM_CP_CONST,
8032 .accessfn = access_aa64_tid3,
8033 .resetvalue = cpu->isar.id_aa64mmfr1 },
8034 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8036 .access = PL1_R, .type = ARM_CP_CONST,
8037 .accessfn = access_aa64_tid3,
8038 .resetvalue = cpu->isar.id_aa64mmfr2 },
8039 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8041 .access = PL1_R, .type = ARM_CP_CONST,
8042 .accessfn = access_aa64_tid3,
8043 .resetvalue = 0 },
8044 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8046 .access = PL1_R, .type = ARM_CP_CONST,
8047 .accessfn = access_aa64_tid3,
8048 .resetvalue = 0 },
8049 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8051 .access = PL1_R, .type = ARM_CP_CONST,
8052 .accessfn = access_aa64_tid3,
8053 .resetvalue = 0 },
8054 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8055 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8056 .access = PL1_R, .type = ARM_CP_CONST,
8057 .accessfn = access_aa64_tid3,
8058 .resetvalue = 0 },
8059 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8061 .access = PL1_R, .type = ARM_CP_CONST,
8062 .accessfn = access_aa64_tid3,
8063 .resetvalue = 0 },
8064 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8066 .access = PL1_R, .type = ARM_CP_CONST,
8067 .accessfn = access_aa64_tid3,
8068 .resetvalue = cpu->isar.mvfr0 },
8069 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8071 .access = PL1_R, .type = ARM_CP_CONST,
8072 .accessfn = access_aa64_tid3,
8073 .resetvalue = cpu->isar.mvfr1 },
8074 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8076 .access = PL1_R, .type = ARM_CP_CONST,
8077 .accessfn = access_aa64_tid3,
8078 .resetvalue = cpu->isar.mvfr2 },
8079 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8081 .access = PL1_R, .type = ARM_CP_CONST,
8082 .accessfn = access_aa64_tid3,
8083 .resetvalue = 0 },
8084 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8086 .access = PL1_R, .type = ARM_CP_CONST,
8087 .accessfn = access_aa64_tid3,
8088 .resetvalue = cpu->isar.id_pfr2 },
8089 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8091 .access = PL1_R, .type = ARM_CP_CONST,
8092 .accessfn = access_aa64_tid3,
8093 .resetvalue = 0 },
8094 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8096 .access = PL1_R, .type = ARM_CP_CONST,
8097 .accessfn = access_aa64_tid3,
8098 .resetvalue = 0 },
8099 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8100 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8101 .access = PL1_R, .type = ARM_CP_CONST,
8102 .accessfn = access_aa64_tid3,
8103 .resetvalue = 0 },
8104 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8105 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8106 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8107 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8108 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8109 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8110 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8111 .resetvalue = cpu->pmceid0 },
8112 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8113 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8114 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8115 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8116 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8117 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8118 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8119 .resetvalue = cpu->pmceid1 },
8120 REGINFO_SENTINEL
8122 #ifdef CONFIG_USER_ONLY
8123 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8124 { .name = "ID_AA64PFR0_EL1",
8125 .exported_bits = 0x000f000f00ff0000,
8126 .fixed_bits = 0x0000000000000011 },
8127 { .name = "ID_AA64PFR1_EL1",
8128 .exported_bits = 0x00000000000000f0 },
8129 { .name = "ID_AA64PFR*_EL1_RESERVED",
8130 .is_glob = true },
8131 { .name = "ID_AA64ZFR0_EL1" },
8132 { .name = "ID_AA64MMFR0_EL1",
8133 .fixed_bits = 0x00000000ff000000 },
8134 { .name = "ID_AA64MMFR1_EL1" },
8135 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8136 .is_glob = true },
8137 { .name = "ID_AA64DFR0_EL1",
8138 .fixed_bits = 0x0000000000000006 },
8139 { .name = "ID_AA64DFR1_EL1" },
8140 { .name = "ID_AA64DFR*_EL1_RESERVED",
8141 .is_glob = true },
8142 { .name = "ID_AA64AFR*",
8143 .is_glob = true },
8144 { .name = "ID_AA64ISAR0_EL1",
8145 .exported_bits = 0x00fffffff0fffff0 },
8146 { .name = "ID_AA64ISAR1_EL1",
8147 .exported_bits = 0x000000f0ffffffff },
8148 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8149 .is_glob = true },
8150 REGUSERINFO_SENTINEL
8152 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8153 #endif
8154 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8155 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8156 !arm_feature(env, ARM_FEATURE_EL2)) {
8157 ARMCPRegInfo rvbar = {
8158 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
8159 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8160 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
8162 define_one_arm_cp_reg(cpu, &rvbar);
8164 define_arm_cp_regs(cpu, v8_idregs);
8165 define_arm_cp_regs(cpu, v8_cp_reginfo);
8167 if (arm_feature(env, ARM_FEATURE_EL2)) {
8168 uint64_t vmpidr_def = mpidr_read_val(env);
8169 ARMCPRegInfo vpidr_regs[] = {
8170 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8171 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8172 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8173 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
8174 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8175 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8176 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8177 .access = PL2_RW, .resetvalue = cpu->midr,
8178 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8179 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8180 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8181 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8182 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
8183 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8184 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8185 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8186 .access = PL2_RW,
8187 .resetvalue = vmpidr_def,
8188 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8189 REGINFO_SENTINEL
8191 define_arm_cp_regs(cpu, vpidr_regs);
8192 define_arm_cp_regs(cpu, el2_cp_reginfo);
8193 if (arm_feature(env, ARM_FEATURE_V8)) {
8194 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8196 if (cpu_isar_feature(aa64_sel2, cpu)) {
8197 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8199 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8200 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8201 ARMCPRegInfo rvbar = {
8202 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8203 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8204 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
8206 define_one_arm_cp_reg(cpu, &rvbar);
8208 } else {
8209 /* If EL2 is missing but higher ELs are enabled, we need to
8210 * register the no_el2 reginfos.
8212 if (arm_feature(env, ARM_FEATURE_EL3)) {
8213 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8214 * of MIDR_EL1 and MPIDR_EL1.
8216 ARMCPRegInfo vpidr_regs[] = {
8217 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8218 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8219 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8220 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8221 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8222 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8223 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8224 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8225 .type = ARM_CP_NO_RAW,
8226 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8227 REGINFO_SENTINEL
8229 define_arm_cp_regs(cpu, vpidr_regs);
8230 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8231 if (arm_feature(env, ARM_FEATURE_V8)) {
8232 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8236 if (arm_feature(env, ARM_FEATURE_EL3)) {
8237 define_arm_cp_regs(cpu, el3_cp_reginfo);
8238 ARMCPRegInfo el3_regs[] = {
8239 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8240 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8241 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8242 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8243 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8244 .access = PL3_RW,
8245 .raw_writefn = raw_write, .writefn = sctlr_write,
8246 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8247 .resetvalue = cpu->reset_sctlr },
8248 REGINFO_SENTINEL
8251 define_arm_cp_regs(cpu, el3_regs);
8253 /* The behaviour of NSACR is sufficiently various that we don't
8254 * try to describe it in a single reginfo:
8255 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8256 * reads as constant 0xc00 from NS EL1 and NS EL2
8257 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8258 * if v7 without EL3, register doesn't exist
8259 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8261 if (arm_feature(env, ARM_FEATURE_EL3)) {
8262 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8263 ARMCPRegInfo nsacr = {
8264 .name = "NSACR", .type = ARM_CP_CONST,
8265 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8266 .access = PL1_RW, .accessfn = nsacr_access,
8267 .resetvalue = 0xc00
8269 define_one_arm_cp_reg(cpu, &nsacr);
8270 } else {
8271 ARMCPRegInfo nsacr = {
8272 .name = "NSACR",
8273 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8274 .access = PL3_RW | PL1_R,
8275 .resetvalue = 0,
8276 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8278 define_one_arm_cp_reg(cpu, &nsacr);
8280 } else {
8281 if (arm_feature(env, ARM_FEATURE_V8)) {
8282 ARMCPRegInfo nsacr = {
8283 .name = "NSACR", .type = ARM_CP_CONST,
8284 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8285 .access = PL1_R,
8286 .resetvalue = 0xc00
8288 define_one_arm_cp_reg(cpu, &nsacr);
8292 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8293 if (arm_feature(env, ARM_FEATURE_V6)) {
8294 /* PMSAv6 not implemented */
8295 assert(arm_feature(env, ARM_FEATURE_V7));
8296 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8297 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8298 } else {
8299 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8301 } else {
8302 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8303 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8304 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8305 if (cpu_isar_feature(aa32_hpd, cpu)) {
8306 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8309 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8310 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8312 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8313 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8315 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8316 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8318 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8319 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8321 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8322 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8324 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8325 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8327 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8328 define_arm_cp_regs(cpu, omap_cp_reginfo);
8330 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8331 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8333 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8334 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8336 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8337 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8339 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8340 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8342 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8343 define_arm_cp_regs(cpu, jazelle_regs);
8345 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8346 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8347 * be read-only (ie write causes UNDEF exception).
8350 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8351 /* Pre-v8 MIDR space.
8352 * Note that the MIDR isn't a simple constant register because
8353 * of the TI925 behaviour where writes to another register can
8354 * cause the MIDR value to change.
8356 * Unimplemented registers in the c15 0 0 0 space default to
8357 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8358 * and friends override accordingly.
8360 { .name = "MIDR",
8361 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8362 .access = PL1_R, .resetvalue = cpu->midr,
8363 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8364 .readfn = midr_read,
8365 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8366 .type = ARM_CP_OVERRIDE },
8367 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8368 { .name = "DUMMY",
8369 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8370 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8371 { .name = "DUMMY",
8372 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8373 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8374 { .name = "DUMMY",
8375 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8376 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8377 { .name = "DUMMY",
8378 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8379 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8380 { .name = "DUMMY",
8381 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8382 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8383 REGINFO_SENTINEL
8385 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8386 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8388 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8389 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8390 .readfn = midr_read },
8391 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8392 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8393 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8394 .access = PL1_R, .resetvalue = cpu->midr },
8395 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8396 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8397 .access = PL1_R, .resetvalue = cpu->midr },
8398 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8400 .access = PL1_R,
8401 .accessfn = access_aa64_tid1,
8402 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8403 REGINFO_SENTINEL
8405 ARMCPRegInfo id_cp_reginfo[] = {
8406 /* These are common to v8 and pre-v8 */
8407 { .name = "CTR",
8408 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8409 .access = PL1_R, .accessfn = ctr_el0_access,
8410 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8411 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8412 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8413 .access = PL0_R, .accessfn = ctr_el0_access,
8414 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8415 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8416 { .name = "TCMTR",
8417 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8418 .access = PL1_R,
8419 .accessfn = access_aa32_tid1,
8420 .type = ARM_CP_CONST, .resetvalue = 0 },
8421 REGINFO_SENTINEL
8423 /* TLBTR is specific to VMSA */
8424 ARMCPRegInfo id_tlbtr_reginfo = {
8425 .name = "TLBTR",
8426 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8427 .access = PL1_R,
8428 .accessfn = access_aa32_tid1,
8429 .type = ARM_CP_CONST, .resetvalue = 0,
8431 /* MPUIR is specific to PMSA V6+ */
8432 ARMCPRegInfo id_mpuir_reginfo = {
8433 .name = "MPUIR",
8434 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8435 .access = PL1_R, .type = ARM_CP_CONST,
8436 .resetvalue = cpu->pmsav7_dregion << 8
8438 ARMCPRegInfo crn0_wi_reginfo = {
8439 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8440 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8441 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8443 #ifdef CONFIG_USER_ONLY
8444 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8445 { .name = "MIDR_EL1",
8446 .exported_bits = 0x00000000ffffffff },
8447 { .name = "REVIDR_EL1" },
8448 REGUSERINFO_SENTINEL
8450 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8451 #endif
8452 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8453 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8454 ARMCPRegInfo *r;
8455 /* Register the blanket "writes ignored" value first to cover the
8456 * whole space. Then update the specific ID registers to allow write
8457 * access, so that they ignore writes rather than causing them to
8458 * UNDEF.
8460 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8461 for (r = id_pre_v8_midr_cp_reginfo;
8462 r->type != ARM_CP_SENTINEL; r++) {
8463 r->access = PL1_RW;
8465 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8466 r->access = PL1_RW;
8468 id_mpuir_reginfo.access = PL1_RW;
8469 id_tlbtr_reginfo.access = PL1_RW;
8471 if (arm_feature(env, ARM_FEATURE_V8)) {
8472 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8473 } else {
8474 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8476 define_arm_cp_regs(cpu, id_cp_reginfo);
8477 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8478 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8479 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8480 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8484 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8485 ARMCPRegInfo mpidr_cp_reginfo[] = {
8486 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8487 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8488 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8489 REGINFO_SENTINEL
8491 #ifdef CONFIG_USER_ONLY
8492 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8493 { .name = "MPIDR_EL1",
8494 .fixed_bits = 0x0000000080000000 },
8495 REGUSERINFO_SENTINEL
8497 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8498 #endif
8499 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8502 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8503 ARMCPRegInfo auxcr_reginfo[] = {
8504 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8505 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8506 .access = PL1_RW, .accessfn = access_tacr,
8507 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8508 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8509 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8510 .access = PL2_RW, .type = ARM_CP_CONST,
8511 .resetvalue = 0 },
8512 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8513 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8514 .access = PL3_RW, .type = ARM_CP_CONST,
8515 .resetvalue = 0 },
8516 REGINFO_SENTINEL
8518 define_arm_cp_regs(cpu, auxcr_reginfo);
8519 if (cpu_isar_feature(aa32_ac2, cpu)) {
8520 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8524 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8526 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8527 * There are two flavours:
8528 * (1) older 32-bit only cores have a simple 32-bit CBAR
8529 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8530 * 32-bit register visible to AArch32 at a different encoding
8531 * to the "flavour 1" register and with the bits rearranged to
8532 * be able to squash a 64-bit address into the 32-bit view.
8533 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8534 * in future if we support AArch32-only configs of some of the
8535 * AArch64 cores we might need to add a specific feature flag
8536 * to indicate cores with "flavour 2" CBAR.
8538 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8539 /* 32 bit view is [31:18] 0...0 [43:32]. */
8540 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8541 | extract64(cpu->reset_cbar, 32, 12);
8542 ARMCPRegInfo cbar_reginfo[] = {
8543 { .name = "CBAR",
8544 .type = ARM_CP_CONST,
8545 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8546 .access = PL1_R, .resetvalue = cbar32 },
8547 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8548 .type = ARM_CP_CONST,
8549 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8550 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8551 REGINFO_SENTINEL
8553 /* We don't implement a r/w 64 bit CBAR currently */
8554 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8555 define_arm_cp_regs(cpu, cbar_reginfo);
8556 } else {
8557 ARMCPRegInfo cbar = {
8558 .name = "CBAR",
8559 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8560 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8561 .fieldoffset = offsetof(CPUARMState,
8562 cp15.c15_config_base_address)
8564 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8565 cbar.access = PL1_R;
8566 cbar.fieldoffset = 0;
8567 cbar.type = ARM_CP_CONST;
8569 define_one_arm_cp_reg(cpu, &cbar);
8573 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8574 ARMCPRegInfo vbar_cp_reginfo[] = {
8575 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8576 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8577 .access = PL1_RW, .writefn = vbar_write,
8578 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8579 offsetof(CPUARMState, cp15.vbar_ns) },
8580 .resetvalue = 0 },
8581 REGINFO_SENTINEL
8583 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8586 /* Generic registers whose values depend on the implementation */
8588 ARMCPRegInfo sctlr = {
8589 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8590 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8591 .access = PL1_RW, .accessfn = access_tvm_trvm,
8592 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8593 offsetof(CPUARMState, cp15.sctlr_ns) },
8594 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8595 .raw_writefn = raw_write,
8597 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8598 /* Normally we would always end the TB on an SCTLR write, but Linux
8599 * arch/arm/mach-pxa/sleep.S expects two instructions following
8600 * an MMU enable to execute from cache. Imitate this behaviour.
8602 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8604 define_one_arm_cp_reg(cpu, &sctlr);
8607 if (cpu_isar_feature(aa64_lor, cpu)) {
8608 define_arm_cp_regs(cpu, lor_reginfo);
8610 if (cpu_isar_feature(aa64_pan, cpu)) {
8611 define_one_arm_cp_reg(cpu, &pan_reginfo);
8613 #ifndef CONFIG_USER_ONLY
8614 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8615 define_arm_cp_regs(cpu, ats1e1_reginfo);
8617 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8618 define_arm_cp_regs(cpu, ats1cp_reginfo);
8620 #endif
8621 if (cpu_isar_feature(aa64_uao, cpu)) {
8622 define_one_arm_cp_reg(cpu, &uao_reginfo);
8625 if (cpu_isar_feature(aa64_dit, cpu)) {
8626 define_one_arm_cp_reg(cpu, &dit_reginfo);
8628 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8629 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8632 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8633 define_arm_cp_regs(cpu, vhe_reginfo);
8636 if (cpu_isar_feature(aa64_sve, cpu)) {
8637 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8638 if (arm_feature(env, ARM_FEATURE_EL2)) {
8639 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8640 } else {
8641 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8643 if (arm_feature(env, ARM_FEATURE_EL3)) {
8644 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8648 #ifdef TARGET_AARCH64
8649 if (cpu_isar_feature(aa64_pauth, cpu)) {
8650 define_arm_cp_regs(cpu, pauth_reginfo);
8652 if (cpu_isar_feature(aa64_rndr, cpu)) {
8653 define_arm_cp_regs(cpu, rndr_reginfo);
8655 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8656 define_arm_cp_regs(cpu, tlbirange_reginfo);
8658 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8659 define_arm_cp_regs(cpu, tlbios_reginfo);
8661 #ifndef CONFIG_USER_ONLY
8662 /* Data Cache clean instructions up to PoP */
8663 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8664 define_one_arm_cp_reg(cpu, dcpop_reg);
8666 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8667 define_one_arm_cp_reg(cpu, dcpodp_reg);
8670 #endif /*CONFIG_USER_ONLY*/
8673 * If full MTE is enabled, add all of the system registers.
8674 * If only "instructions available at EL0" are enabled,
8675 * then define only a RAZ/WI version of PSTATE.TCO.
8677 if (cpu_isar_feature(aa64_mte, cpu)) {
8678 define_arm_cp_regs(cpu, mte_reginfo);
8679 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8680 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8681 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8682 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8684 #endif
8686 if (cpu_isar_feature(any_predinv, cpu)) {
8687 define_arm_cp_regs(cpu, predinv_reginfo);
8690 if (cpu_isar_feature(any_ccidx, cpu)) {
8691 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8694 #ifndef CONFIG_USER_ONLY
8696 * Register redirections and aliases must be done last,
8697 * after the registers from the other extensions have been defined.
8699 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8700 define_arm_vh_e2h_redirects_aliases(cpu);
8702 #endif
8705 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8707 CPUState *cs = CPU(cpu);
8708 CPUARMState *env = &cpu->env;
8710 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8712 * The lower part of each SVE register aliases to the FPU
8713 * registers so we don't need to include both.
8715 #ifdef TARGET_AARCH64
8716 if (isar_feature_aa64_sve(&cpu->isar)) {
8717 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8718 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8719 "sve-registers.xml", 0);
8720 } else
8721 #endif
8723 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8724 aarch64_fpu_gdb_set_reg,
8725 34, "aarch64-fpu.xml", 0);
8727 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8728 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8729 51, "arm-neon.xml", 0);
8730 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8731 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8732 35, "arm-vfp3.xml", 0);
8733 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8734 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8735 19, "arm-vfp.xml", 0);
8737 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8738 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8739 "system-registers.xml", 0);
8743 /* Sort alphabetically by type name, except for "any". */
8744 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8746 ObjectClass *class_a = (ObjectClass *)a;
8747 ObjectClass *class_b = (ObjectClass *)b;
8748 const char *name_a, *name_b;
8750 name_a = object_class_get_name(class_a);
8751 name_b = object_class_get_name(class_b);
8752 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8753 return 1;
8754 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8755 return -1;
8756 } else {
8757 return strcmp(name_a, name_b);
8761 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8763 ObjectClass *oc = data;
8764 const char *typename;
8765 char *name;
8767 typename = object_class_get_name(oc);
8768 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8769 qemu_printf(" %s\n", name);
8770 g_free(name);
8773 void arm_cpu_list(void)
8775 GSList *list;
8777 list = object_class_get_list(TYPE_ARM_CPU, false);
8778 list = g_slist_sort(list, arm_cpu_list_compare);
8779 qemu_printf("Available CPUs:\n");
8780 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8781 g_slist_free(list);
8784 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8786 ObjectClass *oc = data;
8787 CpuDefinitionInfoList **cpu_list = user_data;
8788 CpuDefinitionInfo *info;
8789 const char *typename;
8791 typename = object_class_get_name(oc);
8792 info = g_malloc0(sizeof(*info));
8793 info->name = g_strndup(typename,
8794 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8795 info->q_typename = g_strdup(typename);
8797 QAPI_LIST_PREPEND(*cpu_list, info);
8800 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8802 CpuDefinitionInfoList *cpu_list = NULL;
8803 GSList *list;
8805 list = object_class_get_list(TYPE_ARM_CPU, false);
8806 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8807 g_slist_free(list);
8809 return cpu_list;
8812 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8813 void *opaque, int state, int secstate,
8814 int crm, int opc1, int opc2,
8815 const char *name)
8817 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8818 * add a single reginfo struct to the hash table.
8820 uint32_t *key = g_new(uint32_t, 1);
8821 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8822 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8823 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8825 r2->name = g_strdup(name);
8826 /* Reset the secure state to the specific incoming state. This is
8827 * necessary as the register may have been defined with both states.
8829 r2->secure = secstate;
8831 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8832 /* Register is banked (using both entries in array).
8833 * Overwriting fieldoffset as the array is only used to define
8834 * banked registers but later only fieldoffset is used.
8836 r2->fieldoffset = r->bank_fieldoffsets[ns];
8839 if (state == ARM_CP_STATE_AA32) {
8840 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8841 /* If the register is banked then we don't need to migrate or
8842 * reset the 32-bit instance in certain cases:
8844 * 1) If the register has both 32-bit and 64-bit instances then we
8845 * can count on the 64-bit instance taking care of the
8846 * non-secure bank.
8847 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8848 * taking care of the secure bank. This requires that separate
8849 * 32 and 64-bit definitions are provided.
8851 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8852 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8853 r2->type |= ARM_CP_ALIAS;
8855 } else if ((secstate != r->secure) && !ns) {
8856 /* The register is not banked so we only want to allow migration of
8857 * the non-secure instance.
8859 r2->type |= ARM_CP_ALIAS;
8862 if (r->state == ARM_CP_STATE_BOTH) {
8863 /* We assume it is a cp15 register if the .cp field is left unset.
8865 if (r2->cp == 0) {
8866 r2->cp = 15;
8869 #ifdef HOST_WORDS_BIGENDIAN
8870 if (r2->fieldoffset) {
8871 r2->fieldoffset += sizeof(uint32_t);
8873 #endif
8876 if (state == ARM_CP_STATE_AA64) {
8877 /* To allow abbreviation of ARMCPRegInfo
8878 * definitions, we treat cp == 0 as equivalent to
8879 * the value for "standard guest-visible sysreg".
8880 * STATE_BOTH definitions are also always "standard
8881 * sysreg" in their AArch64 view (the .cp value may
8882 * be non-zero for the benefit of the AArch32 view).
8884 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8885 r2->cp = CP_REG_ARM64_SYSREG_CP;
8887 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8888 r2->opc0, opc1, opc2);
8889 } else {
8890 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8892 if (opaque) {
8893 r2->opaque = opaque;
8895 /* reginfo passed to helpers is correct for the actual access,
8896 * and is never ARM_CP_STATE_BOTH:
8898 r2->state = state;
8899 /* Make sure reginfo passed to helpers for wildcarded regs
8900 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8902 r2->crm = crm;
8903 r2->opc1 = opc1;
8904 r2->opc2 = opc2;
8905 /* By convention, for wildcarded registers only the first
8906 * entry is used for migration; the others are marked as
8907 * ALIAS so we don't try to transfer the register
8908 * multiple times. Special registers (ie NOP/WFI) are
8909 * never migratable and not even raw-accessible.
8911 if ((r->type & ARM_CP_SPECIAL)) {
8912 r2->type |= ARM_CP_NO_RAW;
8914 if (((r->crm == CP_ANY) && crm != 0) ||
8915 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8916 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8917 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8920 /* Check that raw accesses are either forbidden or handled. Note that
8921 * we can't assert this earlier because the setup of fieldoffset for
8922 * banked registers has to be done first.
8924 if (!(r2->type & ARM_CP_NO_RAW)) {
8925 assert(!raw_accessors_invalid(r2));
8928 /* Overriding of an existing definition must be explicitly
8929 * requested.
8931 if (!(r->type & ARM_CP_OVERRIDE)) {
8932 ARMCPRegInfo *oldreg;
8933 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8934 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8935 fprintf(stderr, "Register redefined: cp=%d %d bit "
8936 "crn=%d crm=%d opc1=%d opc2=%d, "
8937 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8938 r2->crn, r2->crm, r2->opc1, r2->opc2,
8939 oldreg->name, r2->name);
8940 g_assert_not_reached();
8943 g_hash_table_insert(cpu->cp_regs, key, r2);
8947 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8948 const ARMCPRegInfo *r, void *opaque)
8950 /* Define implementations of coprocessor registers.
8951 * We store these in a hashtable because typically
8952 * there are less than 150 registers in a space which
8953 * is 16*16*16*8*8 = 262144 in size.
8954 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8955 * If a register is defined twice then the second definition is
8956 * used, so this can be used to define some generic registers and
8957 * then override them with implementation specific variations.
8958 * At least one of the original and the second definition should
8959 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8960 * against accidental use.
8962 * The state field defines whether the register is to be
8963 * visible in the AArch32 or AArch64 execution state. If the
8964 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8965 * reginfo structure for the AArch32 view, which sees the lower
8966 * 32 bits of the 64 bit register.
8968 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8969 * be wildcarded. AArch64 registers are always considered to be 64
8970 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8971 * the register, if any.
8973 int crm, opc1, opc2, state;
8974 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8975 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8976 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8977 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8978 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8979 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8980 /* 64 bit registers have only CRm and Opc1 fields */
8981 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8982 /* op0 only exists in the AArch64 encodings */
8983 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8984 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8985 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8987 * This API is only for Arm's system coprocessors (14 and 15) or
8988 * (M-profile or v7A-and-earlier only) for implementation defined
8989 * coprocessors in the range 0..7. Our decode assumes this, since
8990 * 8..13 can be used for other insns including VFP and Neon. See
8991 * valid_cp() in translate.c. Assert here that we haven't tried
8992 * to use an invalid coprocessor number.
8994 switch (r->state) {
8995 case ARM_CP_STATE_BOTH:
8996 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8997 if (r->cp == 0) {
8998 break;
9000 /* fall through */
9001 case ARM_CP_STATE_AA32:
9002 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9003 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9004 assert(r->cp >= 14 && r->cp <= 15);
9005 } else {
9006 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9008 break;
9009 case ARM_CP_STATE_AA64:
9010 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9011 break;
9012 default:
9013 g_assert_not_reached();
9015 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
9016 * encodes a minimum access level for the register. We roll this
9017 * runtime check into our general permission check code, so check
9018 * here that the reginfo's specified permissions are strict enough
9019 * to encompass the generic architectural permission check.
9021 if (r->state != ARM_CP_STATE_AA32) {
9022 int mask = 0;
9023 switch (r->opc1) {
9024 case 0:
9025 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9026 mask = PL0U_R | PL1_RW;
9027 break;
9028 case 1: case 2:
9029 /* min_EL EL1 */
9030 mask = PL1_RW;
9031 break;
9032 case 3:
9033 /* min_EL EL0 */
9034 mask = PL0_RW;
9035 break;
9036 case 4:
9037 case 5:
9038 /* min_EL EL2 */
9039 mask = PL2_RW;
9040 break;
9041 case 6:
9042 /* min_EL EL3 */
9043 mask = PL3_RW;
9044 break;
9045 case 7:
9046 /* min_EL EL1, secure mode only (we don't check the latter) */
9047 mask = PL1_RW;
9048 break;
9049 default:
9050 /* broken reginfo with out-of-range opc1 */
9051 assert(false);
9052 break;
9054 /* assert our permissions are not too lax (stricter is fine) */
9055 assert((r->access & ~mask) == 0);
9058 /* Check that the register definition has enough info to handle
9059 * reads and writes if they are permitted.
9061 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
9062 if (r->access & PL3_R) {
9063 assert((r->fieldoffset ||
9064 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9065 r->readfn);
9067 if (r->access & PL3_W) {
9068 assert((r->fieldoffset ||
9069 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9070 r->writefn);
9073 /* Bad type field probably means missing sentinel at end of reg list */
9074 assert(cptype_valid(r->type));
9075 for (crm = crmmin; crm <= crmmax; crm++) {
9076 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9077 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9078 for (state = ARM_CP_STATE_AA32;
9079 state <= ARM_CP_STATE_AA64; state++) {
9080 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9081 continue;
9083 if (state == ARM_CP_STATE_AA32) {
9084 /* Under AArch32 CP registers can be common
9085 * (same for secure and non-secure world) or banked.
9087 char *name;
9089 switch (r->secure) {
9090 case ARM_CP_SECSTATE_S:
9091 case ARM_CP_SECSTATE_NS:
9092 add_cpreg_to_hashtable(cpu, r, opaque, state,
9093 r->secure, crm, opc1, opc2,
9094 r->name);
9095 break;
9096 default:
9097 name = g_strdup_printf("%s_S", r->name);
9098 add_cpreg_to_hashtable(cpu, r, opaque, state,
9099 ARM_CP_SECSTATE_S,
9100 crm, opc1, opc2, name);
9101 g_free(name);
9102 add_cpreg_to_hashtable(cpu, r, opaque, state,
9103 ARM_CP_SECSTATE_NS,
9104 crm, opc1, opc2, r->name);
9105 break;
9107 } else {
9108 /* AArch64 registers get mapped to non-secure instance
9109 * of AArch32 */
9110 add_cpreg_to_hashtable(cpu, r, opaque, state,
9111 ARM_CP_SECSTATE_NS,
9112 crm, opc1, opc2, r->name);
9120 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
9121 const ARMCPRegInfo *regs, void *opaque)
9123 /* Define a whole list of registers */
9124 const ARMCPRegInfo *r;
9125 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9126 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
9131 * Modify ARMCPRegInfo for access from userspace.
9133 * This is a data driven modification directed by
9134 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9135 * user-space cannot alter any values and dynamic values pertaining to
9136 * execution state are hidden from user space view anyway.
9138 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
9140 const ARMCPRegUserSpaceInfo *m;
9141 ARMCPRegInfo *r;
9143 for (m = mods; m->name; m++) {
9144 GPatternSpec *pat = NULL;
9145 if (m->is_glob) {
9146 pat = g_pattern_spec_new(m->name);
9148 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9149 if (pat && g_pattern_match_string(pat, r->name)) {
9150 r->type = ARM_CP_CONST;
9151 r->access = PL0U_R;
9152 r->resetvalue = 0;
9153 /* continue */
9154 } else if (strcmp(r->name, m->name) == 0) {
9155 r->type = ARM_CP_CONST;
9156 r->access = PL0U_R;
9157 r->resetvalue &= m->exported_bits;
9158 r->resetvalue |= m->fixed_bits;
9159 break;
9162 if (pat) {
9163 g_pattern_spec_free(pat);
9168 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9170 return g_hash_table_lookup(cpregs, &encoded_cp);
9173 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9174 uint64_t value)
9176 /* Helper coprocessor write function for write-ignore registers */
9179 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9181 /* Helper coprocessor write function for read-as-zero registers */
9182 return 0;
9185 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9187 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9190 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9192 /* Return true if it is not valid for us to switch to
9193 * this CPU mode (ie all the UNPREDICTABLE cases in
9194 * the ARM ARM CPSRWriteByInstr pseudocode).
9197 /* Changes to or from Hyp via MSR and CPS are illegal. */
9198 if (write_type == CPSRWriteByInstr &&
9199 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9200 mode == ARM_CPU_MODE_HYP)) {
9201 return 1;
9204 switch (mode) {
9205 case ARM_CPU_MODE_USR:
9206 return 0;
9207 case ARM_CPU_MODE_SYS:
9208 case ARM_CPU_MODE_SVC:
9209 case ARM_CPU_MODE_ABT:
9210 case ARM_CPU_MODE_UND:
9211 case ARM_CPU_MODE_IRQ:
9212 case ARM_CPU_MODE_FIQ:
9213 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9214 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9216 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9217 * and CPS are treated as illegal mode changes.
9219 if (write_type == CPSRWriteByInstr &&
9220 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9221 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9222 return 1;
9224 return 0;
9225 case ARM_CPU_MODE_HYP:
9226 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9227 case ARM_CPU_MODE_MON:
9228 return arm_current_el(env) < 3;
9229 default:
9230 return 1;
9234 uint32_t cpsr_read(CPUARMState *env)
9236 int ZF;
9237 ZF = (env->ZF == 0);
9238 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9239 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9240 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9241 | ((env->condexec_bits & 0xfc) << 8)
9242 | (env->GE << 16) | (env->daif & CPSR_AIF);
9245 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9246 CPSRWriteType write_type)
9248 uint32_t changed_daif;
9249 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9250 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9252 if (mask & CPSR_NZCV) {
9253 env->ZF = (~val) & CPSR_Z;
9254 env->NF = val;
9255 env->CF = (val >> 29) & 1;
9256 env->VF = (val << 3) & 0x80000000;
9258 if (mask & CPSR_Q)
9259 env->QF = ((val & CPSR_Q) != 0);
9260 if (mask & CPSR_T)
9261 env->thumb = ((val & CPSR_T) != 0);
9262 if (mask & CPSR_IT_0_1) {
9263 env->condexec_bits &= ~3;
9264 env->condexec_bits |= (val >> 25) & 3;
9266 if (mask & CPSR_IT_2_7) {
9267 env->condexec_bits &= 3;
9268 env->condexec_bits |= (val >> 8) & 0xfc;
9270 if (mask & CPSR_GE) {
9271 env->GE = (val >> 16) & 0xf;
9274 /* In a V7 implementation that includes the security extensions but does
9275 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9276 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9277 * bits respectively.
9279 * In a V8 implementation, it is permitted for privileged software to
9280 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9282 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9283 arm_feature(env, ARM_FEATURE_EL3) &&
9284 !arm_feature(env, ARM_FEATURE_EL2) &&
9285 !arm_is_secure(env)) {
9287 changed_daif = (env->daif ^ val) & mask;
9289 if (changed_daif & CPSR_A) {
9290 /* Check to see if we are allowed to change the masking of async
9291 * abort exceptions from a non-secure state.
9293 if (!(env->cp15.scr_el3 & SCR_AW)) {
9294 qemu_log_mask(LOG_GUEST_ERROR,
9295 "Ignoring attempt to switch CPSR_A flag from "
9296 "non-secure world with SCR.AW bit clear\n");
9297 mask &= ~CPSR_A;
9301 if (changed_daif & CPSR_F) {
9302 /* Check to see if we are allowed to change the masking of FIQ
9303 * exceptions from a non-secure state.
9305 if (!(env->cp15.scr_el3 & SCR_FW)) {
9306 qemu_log_mask(LOG_GUEST_ERROR,
9307 "Ignoring attempt to switch CPSR_F flag from "
9308 "non-secure world with SCR.FW bit clear\n");
9309 mask &= ~CPSR_F;
9312 /* Check whether non-maskable FIQ (NMFI) support is enabled.
9313 * If this bit is set software is not allowed to mask
9314 * FIQs, but is allowed to set CPSR_F to 0.
9316 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9317 (val & CPSR_F)) {
9318 qemu_log_mask(LOG_GUEST_ERROR,
9319 "Ignoring attempt to enable CPSR_F flag "
9320 "(non-maskable FIQ [NMFI] support enabled)\n");
9321 mask &= ~CPSR_F;
9326 env->daif &= ~(CPSR_AIF & mask);
9327 env->daif |= val & CPSR_AIF & mask;
9329 if (write_type != CPSRWriteRaw &&
9330 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9331 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9332 /* Note that we can only get here in USR mode if this is a
9333 * gdb stub write; for this case we follow the architectural
9334 * behaviour for guest writes in USR mode of ignoring an attempt
9335 * to switch mode. (Those are caught by translate.c for writes
9336 * triggered by guest instructions.)
9338 mask &= ~CPSR_M;
9339 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9340 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9341 * v7, and has defined behaviour in v8:
9342 * + leave CPSR.M untouched
9343 * + allow changes to the other CPSR fields
9344 * + set PSTATE.IL
9345 * For user changes via the GDB stub, we don't set PSTATE.IL,
9346 * as this would be unnecessarily harsh for a user error.
9348 mask &= ~CPSR_M;
9349 if (write_type != CPSRWriteByGDBStub &&
9350 arm_feature(env, ARM_FEATURE_V8)) {
9351 mask |= CPSR_IL;
9352 val |= CPSR_IL;
9354 qemu_log_mask(LOG_GUEST_ERROR,
9355 "Illegal AArch32 mode switch attempt from %s to %s\n",
9356 aarch32_mode_name(env->uncached_cpsr),
9357 aarch32_mode_name(val));
9358 } else {
9359 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9360 write_type == CPSRWriteExceptionReturn ?
9361 "Exception return from AArch32" :
9362 "AArch32 mode switch from",
9363 aarch32_mode_name(env->uncached_cpsr),
9364 aarch32_mode_name(val), env->regs[15]);
9365 switch_mode(env, val & CPSR_M);
9368 mask &= ~CACHED_CPSR_BITS;
9369 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9370 if (rebuild_hflags) {
9371 arm_rebuild_hflags(env);
9375 /* Sign/zero extend */
9376 uint32_t HELPER(sxtb16)(uint32_t x)
9378 uint32_t res;
9379 res = (uint16_t)(int8_t)x;
9380 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9381 return res;
9384 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9387 * Take a division-by-zero exception if necessary; otherwise return
9388 * to get the usual non-trapping division behaviour (result of 0)
9390 if (arm_feature(env, ARM_FEATURE_M)
9391 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9392 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9396 uint32_t HELPER(uxtb16)(uint32_t x)
9398 uint32_t res;
9399 res = (uint16_t)(uint8_t)x;
9400 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9401 return res;
9404 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9406 if (den == 0) {
9407 handle_possible_div0_trap(env, GETPC());
9408 return 0;
9410 if (num == INT_MIN && den == -1) {
9411 return INT_MIN;
9413 return num / den;
9416 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9418 if (den == 0) {
9419 handle_possible_div0_trap(env, GETPC());
9420 return 0;
9422 return num / den;
9425 uint32_t HELPER(rbit)(uint32_t x)
9427 return revbit32(x);
9430 #ifdef CONFIG_USER_ONLY
9432 static void switch_mode(CPUARMState *env, int mode)
9434 ARMCPU *cpu = env_archcpu(env);
9436 if (mode != ARM_CPU_MODE_USR) {
9437 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9441 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9442 uint32_t cur_el, bool secure)
9444 return 1;
9447 void aarch64_sync_64_to_32(CPUARMState *env)
9449 g_assert_not_reached();
9452 #else
9454 static void switch_mode(CPUARMState *env, int mode)
9456 int old_mode;
9457 int i;
9459 old_mode = env->uncached_cpsr & CPSR_M;
9460 if (mode == old_mode)
9461 return;
9463 if (old_mode == ARM_CPU_MODE_FIQ) {
9464 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9465 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9466 } else if (mode == ARM_CPU_MODE_FIQ) {
9467 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9468 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9471 i = bank_number(old_mode);
9472 env->banked_r13[i] = env->regs[13];
9473 env->banked_spsr[i] = env->spsr;
9475 i = bank_number(mode);
9476 env->regs[13] = env->banked_r13[i];
9477 env->spsr = env->banked_spsr[i];
9479 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9480 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9483 /* Physical Interrupt Target EL Lookup Table
9485 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9487 * The below multi-dimensional table is used for looking up the target
9488 * exception level given numerous condition criteria. Specifically, the
9489 * target EL is based on SCR and HCR routing controls as well as the
9490 * currently executing EL and secure state.
9492 * Dimensions:
9493 * target_el_table[2][2][2][2][2][4]
9494 * | | | | | +--- Current EL
9495 * | | | | +------ Non-secure(0)/Secure(1)
9496 * | | | +--------- HCR mask override
9497 * | | +------------ SCR exec state control
9498 * | +--------------- SCR mask override
9499 * +------------------ 32-bit(0)/64-bit(1) EL3
9501 * The table values are as such:
9502 * 0-3 = EL0-EL3
9503 * -1 = Cannot occur
9505 * The ARM ARM target EL table includes entries indicating that an "exception
9506 * is not taken". The two cases where this is applicable are:
9507 * 1) An exception is taken from EL3 but the SCR does not have the exception
9508 * routed to EL3.
9509 * 2) An exception is taken from EL2 but the HCR does not have the exception
9510 * routed to EL2.
9511 * In these two cases, the below table contain a target of EL1. This value is
9512 * returned as it is expected that the consumer of the table data will check
9513 * for "target EL >= current EL" to ensure the exception is not taken.
9515 * SCR HCR
9516 * 64 EA AMO From
9517 * BIT IRQ IMO Non-secure Secure
9518 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9520 static const int8_t target_el_table[2][2][2][2][2][4] = {
9521 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9522 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9523 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9524 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9525 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9526 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9527 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9528 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9529 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9530 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9531 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9532 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9533 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9534 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9535 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9536 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9540 * Determine the target EL for physical exceptions
9542 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9543 uint32_t cur_el, bool secure)
9545 CPUARMState *env = cs->env_ptr;
9546 bool rw;
9547 bool scr;
9548 bool hcr;
9549 int target_el;
9550 /* Is the highest EL AArch64? */
9551 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9552 uint64_t hcr_el2;
9554 if (arm_feature(env, ARM_FEATURE_EL3)) {
9555 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9556 } else {
9557 /* Either EL2 is the highest EL (and so the EL2 register width
9558 * is given by is64); or there is no EL2 or EL3, in which case
9559 * the value of 'rw' does not affect the table lookup anyway.
9561 rw = is64;
9564 hcr_el2 = arm_hcr_el2_eff(env);
9565 switch (excp_idx) {
9566 case EXCP_IRQ:
9567 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9568 hcr = hcr_el2 & HCR_IMO;
9569 break;
9570 case EXCP_FIQ:
9571 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9572 hcr = hcr_el2 & HCR_FMO;
9573 break;
9574 default:
9575 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9576 hcr = hcr_el2 & HCR_AMO;
9577 break;
9581 * For these purposes, TGE and AMO/IMO/FMO both force the
9582 * interrupt to EL2. Fold TGE into the bit extracted above.
9584 hcr |= (hcr_el2 & HCR_TGE) != 0;
9586 /* Perform a table-lookup for the target EL given the current state */
9587 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9589 assert(target_el > 0);
9591 return target_el;
9594 void arm_log_exception(int idx)
9596 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9597 const char *exc = NULL;
9598 static const char * const excnames[] = {
9599 [EXCP_UDEF] = "Undefined Instruction",
9600 [EXCP_SWI] = "SVC",
9601 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9602 [EXCP_DATA_ABORT] = "Data Abort",
9603 [EXCP_IRQ] = "IRQ",
9604 [EXCP_FIQ] = "FIQ",
9605 [EXCP_BKPT] = "Breakpoint",
9606 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9607 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9608 [EXCP_HVC] = "Hypervisor Call",
9609 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9610 [EXCP_SMC] = "Secure Monitor Call",
9611 [EXCP_VIRQ] = "Virtual IRQ",
9612 [EXCP_VFIQ] = "Virtual FIQ",
9613 [EXCP_SEMIHOST] = "Semihosting call",
9614 [EXCP_NOCP] = "v7M NOCP UsageFault",
9615 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9616 [EXCP_STKOF] = "v8M STKOF UsageFault",
9617 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9618 [EXCP_LSERR] = "v8M LSERR UsageFault",
9619 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9620 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9623 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9624 exc = excnames[idx];
9626 if (!exc) {
9627 exc = "unknown";
9629 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9634 * Function used to synchronize QEMU's AArch64 register set with AArch32
9635 * register set. This is necessary when switching between AArch32 and AArch64
9636 * execution state.
9638 void aarch64_sync_32_to_64(CPUARMState *env)
9640 int i;
9641 uint32_t mode = env->uncached_cpsr & CPSR_M;
9643 /* We can blanket copy R[0:7] to X[0:7] */
9644 for (i = 0; i < 8; i++) {
9645 env->xregs[i] = env->regs[i];
9649 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9650 * Otherwise, they come from the banked user regs.
9652 if (mode == ARM_CPU_MODE_FIQ) {
9653 for (i = 8; i < 13; i++) {
9654 env->xregs[i] = env->usr_regs[i - 8];
9656 } else {
9657 for (i = 8; i < 13; i++) {
9658 env->xregs[i] = env->regs[i];
9663 * Registers x13-x23 are the various mode SP and FP registers. Registers
9664 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9665 * from the mode banked register.
9667 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9668 env->xregs[13] = env->regs[13];
9669 env->xregs[14] = env->regs[14];
9670 } else {
9671 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9672 /* HYP is an exception in that it is copied from r14 */
9673 if (mode == ARM_CPU_MODE_HYP) {
9674 env->xregs[14] = env->regs[14];
9675 } else {
9676 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9680 if (mode == ARM_CPU_MODE_HYP) {
9681 env->xregs[15] = env->regs[13];
9682 } else {
9683 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9686 if (mode == ARM_CPU_MODE_IRQ) {
9687 env->xregs[16] = env->regs[14];
9688 env->xregs[17] = env->regs[13];
9689 } else {
9690 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9691 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9694 if (mode == ARM_CPU_MODE_SVC) {
9695 env->xregs[18] = env->regs[14];
9696 env->xregs[19] = env->regs[13];
9697 } else {
9698 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9699 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9702 if (mode == ARM_CPU_MODE_ABT) {
9703 env->xregs[20] = env->regs[14];
9704 env->xregs[21] = env->regs[13];
9705 } else {
9706 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9707 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9710 if (mode == ARM_CPU_MODE_UND) {
9711 env->xregs[22] = env->regs[14];
9712 env->xregs[23] = env->regs[13];
9713 } else {
9714 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9715 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9719 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9720 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9721 * FIQ bank for r8-r14.
9723 if (mode == ARM_CPU_MODE_FIQ) {
9724 for (i = 24; i < 31; i++) {
9725 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9727 } else {
9728 for (i = 24; i < 29; i++) {
9729 env->xregs[i] = env->fiq_regs[i - 24];
9731 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9732 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9735 env->pc = env->regs[15];
9739 * Function used to synchronize QEMU's AArch32 register set with AArch64
9740 * register set. This is necessary when switching between AArch32 and AArch64
9741 * execution state.
9743 void aarch64_sync_64_to_32(CPUARMState *env)
9745 int i;
9746 uint32_t mode = env->uncached_cpsr & CPSR_M;
9748 /* We can blanket copy X[0:7] to R[0:7] */
9749 for (i = 0; i < 8; i++) {
9750 env->regs[i] = env->xregs[i];
9754 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9755 * Otherwise, we copy x8-x12 into the banked user regs.
9757 if (mode == ARM_CPU_MODE_FIQ) {
9758 for (i = 8; i < 13; i++) {
9759 env->usr_regs[i - 8] = env->xregs[i];
9761 } else {
9762 for (i = 8; i < 13; i++) {
9763 env->regs[i] = env->xregs[i];
9768 * Registers r13 & r14 depend on the current mode.
9769 * If we are in a given mode, we copy the corresponding x registers to r13
9770 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9771 * for the mode.
9773 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9774 env->regs[13] = env->xregs[13];
9775 env->regs[14] = env->xregs[14];
9776 } else {
9777 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9780 * HYP is an exception in that it does not have its own banked r14 but
9781 * shares the USR r14
9783 if (mode == ARM_CPU_MODE_HYP) {
9784 env->regs[14] = env->xregs[14];
9785 } else {
9786 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9790 if (mode == ARM_CPU_MODE_HYP) {
9791 env->regs[13] = env->xregs[15];
9792 } else {
9793 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9796 if (mode == ARM_CPU_MODE_IRQ) {
9797 env->regs[14] = env->xregs[16];
9798 env->regs[13] = env->xregs[17];
9799 } else {
9800 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9801 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9804 if (mode == ARM_CPU_MODE_SVC) {
9805 env->regs[14] = env->xregs[18];
9806 env->regs[13] = env->xregs[19];
9807 } else {
9808 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9809 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9812 if (mode == ARM_CPU_MODE_ABT) {
9813 env->regs[14] = env->xregs[20];
9814 env->regs[13] = env->xregs[21];
9815 } else {
9816 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9817 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9820 if (mode == ARM_CPU_MODE_UND) {
9821 env->regs[14] = env->xregs[22];
9822 env->regs[13] = env->xregs[23];
9823 } else {
9824 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9825 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9828 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9829 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9830 * FIQ bank for r8-r14.
9832 if (mode == ARM_CPU_MODE_FIQ) {
9833 for (i = 24; i < 31; i++) {
9834 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9836 } else {
9837 for (i = 24; i < 29; i++) {
9838 env->fiq_regs[i - 24] = env->xregs[i];
9840 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9841 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9844 env->regs[15] = env->pc;
9847 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9848 uint32_t mask, uint32_t offset,
9849 uint32_t newpc)
9851 int new_el;
9853 /* Change the CPU state so as to actually take the exception. */
9854 switch_mode(env, new_mode);
9857 * For exceptions taken to AArch32 we must clear the SS bit in both
9858 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9860 env->pstate &= ~PSTATE_SS;
9861 env->spsr = cpsr_read(env);
9862 /* Clear IT bits. */
9863 env->condexec_bits = 0;
9864 /* Switch to the new mode, and to the correct instruction set. */
9865 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9867 /* This must be after mode switching. */
9868 new_el = arm_current_el(env);
9870 /* Set new mode endianness */
9871 env->uncached_cpsr &= ~CPSR_E;
9872 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9873 env->uncached_cpsr |= CPSR_E;
9875 /* J and IL must always be cleared for exception entry */
9876 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9877 env->daif |= mask;
9879 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9880 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9881 env->uncached_cpsr |= CPSR_SSBS;
9882 } else {
9883 env->uncached_cpsr &= ~CPSR_SSBS;
9887 if (new_mode == ARM_CPU_MODE_HYP) {
9888 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9889 env->elr_el[2] = env->regs[15];
9890 } else {
9891 /* CPSR.PAN is normally preserved preserved unless... */
9892 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9893 switch (new_el) {
9894 case 3:
9895 if (!arm_is_secure_below_el3(env)) {
9896 /* ... the target is EL3, from non-secure state. */
9897 env->uncached_cpsr &= ~CPSR_PAN;
9898 break;
9900 /* ... the target is EL3, from secure state ... */
9901 /* fall through */
9902 case 1:
9903 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9904 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9905 env->uncached_cpsr |= CPSR_PAN;
9907 break;
9911 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9912 * and we should just guard the thumb mode on V4
9914 if (arm_feature(env, ARM_FEATURE_V4T)) {
9915 env->thumb =
9916 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9918 env->regs[14] = env->regs[15] + offset;
9920 env->regs[15] = newpc;
9921 arm_rebuild_hflags(env);
9924 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9927 * Handle exception entry to Hyp mode; this is sufficiently
9928 * different to entry to other AArch32 modes that we handle it
9929 * separately here.
9931 * The vector table entry used is always the 0x14 Hyp mode entry point,
9932 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9933 * The offset applied to the preferred return address is always zero
9934 * (see DDI0487C.a section G1.12.3).
9935 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9937 uint32_t addr, mask;
9938 ARMCPU *cpu = ARM_CPU(cs);
9939 CPUARMState *env = &cpu->env;
9941 switch (cs->exception_index) {
9942 case EXCP_UDEF:
9943 addr = 0x04;
9944 break;
9945 case EXCP_SWI:
9946 addr = 0x14;
9947 break;
9948 case EXCP_BKPT:
9949 /* Fall through to prefetch abort. */
9950 case EXCP_PREFETCH_ABORT:
9951 env->cp15.ifar_s = env->exception.vaddress;
9952 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9953 (uint32_t)env->exception.vaddress);
9954 addr = 0x0c;
9955 break;
9956 case EXCP_DATA_ABORT:
9957 env->cp15.dfar_s = env->exception.vaddress;
9958 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9959 (uint32_t)env->exception.vaddress);
9960 addr = 0x10;
9961 break;
9962 case EXCP_IRQ:
9963 addr = 0x18;
9964 break;
9965 case EXCP_FIQ:
9966 addr = 0x1c;
9967 break;
9968 case EXCP_HVC:
9969 addr = 0x08;
9970 break;
9971 case EXCP_HYP_TRAP:
9972 addr = 0x14;
9973 break;
9974 default:
9975 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9978 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9979 if (!arm_feature(env, ARM_FEATURE_V8)) {
9981 * QEMU syndrome values are v8-style. v7 has the IL bit
9982 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9983 * If this is a v7 CPU, squash the IL bit in those cases.
9985 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9986 (cs->exception_index == EXCP_DATA_ABORT &&
9987 !(env->exception.syndrome & ARM_EL_ISV)) ||
9988 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9989 env->exception.syndrome &= ~ARM_EL_IL;
9992 env->cp15.esr_el[2] = env->exception.syndrome;
9995 if (arm_current_el(env) != 2 && addr < 0x14) {
9996 addr = 0x14;
9999 mask = 0;
10000 if (!(env->cp15.scr_el3 & SCR_EA)) {
10001 mask |= CPSR_A;
10003 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10004 mask |= CPSR_I;
10006 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10007 mask |= CPSR_F;
10010 addr += env->cp15.hvbar;
10012 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10015 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10017 ARMCPU *cpu = ARM_CPU(cs);
10018 CPUARMState *env = &cpu->env;
10019 uint32_t addr;
10020 uint32_t mask;
10021 int new_mode;
10022 uint32_t offset;
10023 uint32_t moe;
10025 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10026 switch (syn_get_ec(env->exception.syndrome)) {
10027 case EC_BREAKPOINT:
10028 case EC_BREAKPOINT_SAME_EL:
10029 moe = 1;
10030 break;
10031 case EC_WATCHPOINT:
10032 case EC_WATCHPOINT_SAME_EL:
10033 moe = 10;
10034 break;
10035 case EC_AA32_BKPT:
10036 moe = 3;
10037 break;
10038 case EC_VECTORCATCH:
10039 moe = 5;
10040 break;
10041 default:
10042 moe = 0;
10043 break;
10046 if (moe) {
10047 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10050 if (env->exception.target_el == 2) {
10051 arm_cpu_do_interrupt_aarch32_hyp(cs);
10052 return;
10055 switch (cs->exception_index) {
10056 case EXCP_UDEF:
10057 new_mode = ARM_CPU_MODE_UND;
10058 addr = 0x04;
10059 mask = CPSR_I;
10060 if (env->thumb)
10061 offset = 2;
10062 else
10063 offset = 4;
10064 break;
10065 case EXCP_SWI:
10066 new_mode = ARM_CPU_MODE_SVC;
10067 addr = 0x08;
10068 mask = CPSR_I;
10069 /* The PC already points to the next instruction. */
10070 offset = 0;
10071 break;
10072 case EXCP_BKPT:
10073 /* Fall through to prefetch abort. */
10074 case EXCP_PREFETCH_ABORT:
10075 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10076 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10077 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10078 env->exception.fsr, (uint32_t)env->exception.vaddress);
10079 new_mode = ARM_CPU_MODE_ABT;
10080 addr = 0x0c;
10081 mask = CPSR_A | CPSR_I;
10082 offset = 4;
10083 break;
10084 case EXCP_DATA_ABORT:
10085 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10086 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10087 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10088 env->exception.fsr,
10089 (uint32_t)env->exception.vaddress);
10090 new_mode = ARM_CPU_MODE_ABT;
10091 addr = 0x10;
10092 mask = CPSR_A | CPSR_I;
10093 offset = 8;
10094 break;
10095 case EXCP_IRQ:
10096 new_mode = ARM_CPU_MODE_IRQ;
10097 addr = 0x18;
10098 /* Disable IRQ and imprecise data aborts. */
10099 mask = CPSR_A | CPSR_I;
10100 offset = 4;
10101 if (env->cp15.scr_el3 & SCR_IRQ) {
10102 /* IRQ routed to monitor mode */
10103 new_mode = ARM_CPU_MODE_MON;
10104 mask |= CPSR_F;
10106 break;
10107 case EXCP_FIQ:
10108 new_mode = ARM_CPU_MODE_FIQ;
10109 addr = 0x1c;
10110 /* Disable FIQ, IRQ and imprecise data aborts. */
10111 mask = CPSR_A | CPSR_I | CPSR_F;
10112 if (env->cp15.scr_el3 & SCR_FIQ) {
10113 /* FIQ routed to monitor mode */
10114 new_mode = ARM_CPU_MODE_MON;
10116 offset = 4;
10117 break;
10118 case EXCP_VIRQ:
10119 new_mode = ARM_CPU_MODE_IRQ;
10120 addr = 0x18;
10121 /* Disable IRQ and imprecise data aborts. */
10122 mask = CPSR_A | CPSR_I;
10123 offset = 4;
10124 break;
10125 case EXCP_VFIQ:
10126 new_mode = ARM_CPU_MODE_FIQ;
10127 addr = 0x1c;
10128 /* Disable FIQ, IRQ and imprecise data aborts. */
10129 mask = CPSR_A | CPSR_I | CPSR_F;
10130 offset = 4;
10131 break;
10132 case EXCP_SMC:
10133 new_mode = ARM_CPU_MODE_MON;
10134 addr = 0x08;
10135 mask = CPSR_A | CPSR_I | CPSR_F;
10136 offset = 0;
10137 break;
10138 default:
10139 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10140 return; /* Never happens. Keep compiler happy. */
10143 if (new_mode == ARM_CPU_MODE_MON) {
10144 addr += env->cp15.mvbar;
10145 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10146 /* High vectors. When enabled, base address cannot be remapped. */
10147 addr += 0xffff0000;
10148 } else {
10149 /* ARM v7 architectures provide a vector base address register to remap
10150 * the interrupt vector table.
10151 * This register is only followed in non-monitor mode, and is banked.
10152 * Note: only bits 31:5 are valid.
10154 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10157 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10158 env->cp15.scr_el3 &= ~SCR_NS;
10161 take_aarch32_exception(env, new_mode, mask, offset, addr);
10164 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10167 * Return the register number of the AArch64 view of the AArch32
10168 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10169 * be that of the AArch32 mode the exception came from.
10171 int mode = env->uncached_cpsr & CPSR_M;
10173 switch (aarch32_reg) {
10174 case 0 ... 7:
10175 return aarch32_reg;
10176 case 8 ... 12:
10177 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10178 case 13:
10179 switch (mode) {
10180 case ARM_CPU_MODE_USR:
10181 case ARM_CPU_MODE_SYS:
10182 return 13;
10183 case ARM_CPU_MODE_HYP:
10184 return 15;
10185 case ARM_CPU_MODE_IRQ:
10186 return 17;
10187 case ARM_CPU_MODE_SVC:
10188 return 19;
10189 case ARM_CPU_MODE_ABT:
10190 return 21;
10191 case ARM_CPU_MODE_UND:
10192 return 23;
10193 case ARM_CPU_MODE_FIQ:
10194 return 29;
10195 default:
10196 g_assert_not_reached();
10198 case 14:
10199 switch (mode) {
10200 case ARM_CPU_MODE_USR:
10201 case ARM_CPU_MODE_SYS:
10202 case ARM_CPU_MODE_HYP:
10203 return 14;
10204 case ARM_CPU_MODE_IRQ:
10205 return 16;
10206 case ARM_CPU_MODE_SVC:
10207 return 18;
10208 case ARM_CPU_MODE_ABT:
10209 return 20;
10210 case ARM_CPU_MODE_UND:
10211 return 22;
10212 case ARM_CPU_MODE_FIQ:
10213 return 30;
10214 default:
10215 g_assert_not_reached();
10217 case 15:
10218 return 31;
10219 default:
10220 g_assert_not_reached();
10224 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10226 uint32_t ret = cpsr_read(env);
10228 /* Move DIT to the correct location for SPSR_ELx */
10229 if (ret & CPSR_DIT) {
10230 ret &= ~CPSR_DIT;
10231 ret |= PSTATE_DIT;
10233 /* Merge PSTATE.SS into SPSR_ELx */
10234 ret |= env->pstate & PSTATE_SS;
10236 return ret;
10239 /* Handle exception entry to a target EL which is using AArch64 */
10240 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10242 ARMCPU *cpu = ARM_CPU(cs);
10243 CPUARMState *env = &cpu->env;
10244 unsigned int new_el = env->exception.target_el;
10245 target_ulong addr = env->cp15.vbar_el[new_el];
10246 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10247 unsigned int old_mode;
10248 unsigned int cur_el = arm_current_el(env);
10249 int rt;
10252 * Note that new_el can never be 0. If cur_el is 0, then
10253 * el0_a64 is is_a64(), else el0_a64 is ignored.
10255 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10257 if (cur_el < new_el) {
10258 /* Entry vector offset depends on whether the implemented EL
10259 * immediately lower than the target level is using AArch32 or AArch64
10261 bool is_aa64;
10262 uint64_t hcr;
10264 switch (new_el) {
10265 case 3:
10266 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10267 break;
10268 case 2:
10269 hcr = arm_hcr_el2_eff(env);
10270 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10271 is_aa64 = (hcr & HCR_RW) != 0;
10272 break;
10274 /* fall through */
10275 case 1:
10276 is_aa64 = is_a64(env);
10277 break;
10278 default:
10279 g_assert_not_reached();
10282 if (is_aa64) {
10283 addr += 0x400;
10284 } else {
10285 addr += 0x600;
10287 } else if (pstate_read(env) & PSTATE_SP) {
10288 addr += 0x200;
10291 switch (cs->exception_index) {
10292 case EXCP_PREFETCH_ABORT:
10293 case EXCP_DATA_ABORT:
10294 env->cp15.far_el[new_el] = env->exception.vaddress;
10295 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10296 env->cp15.far_el[new_el]);
10297 /* fall through */
10298 case EXCP_BKPT:
10299 case EXCP_UDEF:
10300 case EXCP_SWI:
10301 case EXCP_HVC:
10302 case EXCP_HYP_TRAP:
10303 case EXCP_SMC:
10304 switch (syn_get_ec(env->exception.syndrome)) {
10305 case EC_ADVSIMDFPACCESSTRAP:
10307 * QEMU internal FP/SIMD syndromes from AArch32 include the
10308 * TA and coproc fields which are only exposed if the exception
10309 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10310 * AArch64 format syndrome.
10312 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10313 break;
10314 case EC_CP14RTTRAP:
10315 case EC_CP15RTTRAP:
10316 case EC_CP14DTTRAP:
10318 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10319 * the raw register field from the insn; when taking this to
10320 * AArch64 we must convert it to the AArch64 view of the register
10321 * number. Notice that we read a 4-bit AArch32 register number and
10322 * write back a 5-bit AArch64 one.
10324 rt = extract32(env->exception.syndrome, 5, 4);
10325 rt = aarch64_regnum(env, rt);
10326 env->exception.syndrome = deposit32(env->exception.syndrome,
10327 5, 5, rt);
10328 break;
10329 case EC_CP15RRTTRAP:
10330 case EC_CP14RRTTRAP:
10331 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10332 rt = extract32(env->exception.syndrome, 5, 4);
10333 rt = aarch64_regnum(env, rt);
10334 env->exception.syndrome = deposit32(env->exception.syndrome,
10335 5, 5, rt);
10336 rt = extract32(env->exception.syndrome, 10, 4);
10337 rt = aarch64_regnum(env, rt);
10338 env->exception.syndrome = deposit32(env->exception.syndrome,
10339 10, 5, rt);
10340 break;
10342 env->cp15.esr_el[new_el] = env->exception.syndrome;
10343 break;
10344 case EXCP_IRQ:
10345 case EXCP_VIRQ:
10346 addr += 0x80;
10347 break;
10348 case EXCP_FIQ:
10349 case EXCP_VFIQ:
10350 addr += 0x100;
10351 break;
10352 default:
10353 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10356 if (is_a64(env)) {
10357 old_mode = pstate_read(env);
10358 aarch64_save_sp(env, arm_current_el(env));
10359 env->elr_el[new_el] = env->pc;
10360 } else {
10361 old_mode = cpsr_read_for_spsr_elx(env);
10362 env->elr_el[new_el] = env->regs[15];
10364 aarch64_sync_32_to_64(env);
10366 env->condexec_bits = 0;
10368 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10370 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10371 env->elr_el[new_el]);
10373 if (cpu_isar_feature(aa64_pan, cpu)) {
10374 /* The value of PSTATE.PAN is normally preserved, except when ... */
10375 new_mode |= old_mode & PSTATE_PAN;
10376 switch (new_el) {
10377 case 2:
10378 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10379 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10380 != (HCR_E2H | HCR_TGE)) {
10381 break;
10383 /* fall through */
10384 case 1:
10385 /* ... the target is EL1 ... */
10386 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10387 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10388 new_mode |= PSTATE_PAN;
10390 break;
10393 if (cpu_isar_feature(aa64_mte, cpu)) {
10394 new_mode |= PSTATE_TCO;
10397 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10398 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10399 new_mode |= PSTATE_SSBS;
10400 } else {
10401 new_mode &= ~PSTATE_SSBS;
10405 pstate_write(env, PSTATE_DAIF | new_mode);
10406 env->aarch64 = 1;
10407 aarch64_restore_sp(env, new_el);
10408 helper_rebuild_hflags_a64(env, new_el);
10410 env->pc = addr;
10412 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10413 new_el, env->pc, pstate_read(env));
10417 * Do semihosting call and set the appropriate return value. All the
10418 * permission and validity checks have been done at translate time.
10420 * We only see semihosting exceptions in TCG only as they are not
10421 * trapped to the hypervisor in KVM.
10423 #ifdef CONFIG_TCG
10424 static void handle_semihosting(CPUState *cs)
10426 ARMCPU *cpu = ARM_CPU(cs);
10427 CPUARMState *env = &cpu->env;
10429 if (is_a64(env)) {
10430 qemu_log_mask(CPU_LOG_INT,
10431 "...handling as semihosting call 0x%" PRIx64 "\n",
10432 env->xregs[0]);
10433 env->xregs[0] = do_common_semihosting(cs);
10434 env->pc += 4;
10435 } else {
10436 qemu_log_mask(CPU_LOG_INT,
10437 "...handling as semihosting call 0x%x\n",
10438 env->regs[0]);
10439 env->regs[0] = do_common_semihosting(cs);
10440 env->regs[15] += env->thumb ? 2 : 4;
10443 #endif
10445 /* Handle a CPU exception for A and R profile CPUs.
10446 * Do any appropriate logging, handle PSCI calls, and then hand off
10447 * to the AArch64-entry or AArch32-entry function depending on the
10448 * target exception level's register width.
10450 * Note: this is used for both TCG (as the do_interrupt tcg op),
10451 * and KVM to re-inject guest debug exceptions, and to
10452 * inject a Synchronous-External-Abort.
10454 void arm_cpu_do_interrupt(CPUState *cs)
10456 ARMCPU *cpu = ARM_CPU(cs);
10457 CPUARMState *env = &cpu->env;
10458 unsigned int new_el = env->exception.target_el;
10460 assert(!arm_feature(env, ARM_FEATURE_M));
10462 arm_log_exception(cs->exception_index);
10463 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10464 new_el);
10465 if (qemu_loglevel_mask(CPU_LOG_INT)
10466 && !excp_is_internal(cs->exception_index)) {
10467 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10468 syn_get_ec(env->exception.syndrome),
10469 env->exception.syndrome);
10472 if (arm_is_psci_call(cpu, cs->exception_index)) {
10473 arm_handle_psci_call(cpu);
10474 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10475 return;
10479 * Semihosting semantics depend on the register width of the code
10480 * that caused the exception, not the target exception level, so
10481 * must be handled here.
10483 #ifdef CONFIG_TCG
10484 if (cs->exception_index == EXCP_SEMIHOST) {
10485 handle_semihosting(cs);
10486 return;
10488 #endif
10490 /* Hooks may change global state so BQL should be held, also the
10491 * BQL needs to be held for any modification of
10492 * cs->interrupt_request.
10494 g_assert(qemu_mutex_iothread_locked());
10496 arm_call_pre_el_change_hook(cpu);
10498 assert(!excp_is_internal(cs->exception_index));
10499 if (arm_el_is_aa64(env, new_el)) {
10500 arm_cpu_do_interrupt_aarch64(cs);
10501 } else {
10502 arm_cpu_do_interrupt_aarch32(cs);
10505 arm_call_el_change_hook(cpu);
10507 if (!kvm_enabled()) {
10508 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10511 #endif /* !CONFIG_USER_ONLY */
10513 uint64_t arm_sctlr(CPUARMState *env, int el)
10515 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10516 if (el == 0) {
10517 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10518 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10519 ? 2 : 1;
10521 return env->cp15.sctlr_el[el];
10524 /* Return the SCTLR value which controls this address translation regime */
10525 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10527 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10530 #ifndef CONFIG_USER_ONLY
10532 /* Return true if the specified stage of address translation is disabled */
10533 static inline bool regime_translation_disabled(CPUARMState *env,
10534 ARMMMUIdx mmu_idx)
10536 uint64_t hcr_el2;
10538 if (arm_feature(env, ARM_FEATURE_M)) {
10539 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10540 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10541 case R_V7M_MPU_CTRL_ENABLE_MASK:
10542 /* Enabled, but not for HardFault and NMI */
10543 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10544 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10545 /* Enabled for all cases */
10546 return false;
10547 case 0:
10548 default:
10549 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10550 * we warned about that in armv7m_nvic.c when the guest set it.
10552 return true;
10556 hcr_el2 = arm_hcr_el2_eff(env);
10558 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10559 /* HCR.DC means HCR.VM behaves as 1 */
10560 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10563 if (hcr_el2 & HCR_TGE) {
10564 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10565 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10566 return true;
10570 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10571 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10572 return true;
10575 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10578 static inline bool regime_translation_big_endian(CPUARMState *env,
10579 ARMMMUIdx mmu_idx)
10581 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10584 /* Return the TTBR associated with this translation regime */
10585 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10586 int ttbrn)
10588 if (mmu_idx == ARMMMUIdx_Stage2) {
10589 return env->cp15.vttbr_el2;
10591 if (mmu_idx == ARMMMUIdx_Stage2_S) {
10592 return env->cp15.vsttbr_el2;
10594 if (ttbrn == 0) {
10595 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10596 } else {
10597 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10601 #endif /* !CONFIG_USER_ONLY */
10603 /* Convert a possible stage1+2 MMU index into the appropriate
10604 * stage 1 MMU index
10606 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10608 switch (mmu_idx) {
10609 case ARMMMUIdx_SE10_0:
10610 return ARMMMUIdx_Stage1_SE0;
10611 case ARMMMUIdx_SE10_1:
10612 return ARMMMUIdx_Stage1_SE1;
10613 case ARMMMUIdx_SE10_1_PAN:
10614 return ARMMMUIdx_Stage1_SE1_PAN;
10615 case ARMMMUIdx_E10_0:
10616 return ARMMMUIdx_Stage1_E0;
10617 case ARMMMUIdx_E10_1:
10618 return ARMMMUIdx_Stage1_E1;
10619 case ARMMMUIdx_E10_1_PAN:
10620 return ARMMMUIdx_Stage1_E1_PAN;
10621 default:
10622 return mmu_idx;
10626 /* Return true if the translation regime is using LPAE format page tables */
10627 static inline bool regime_using_lpae_format(CPUARMState *env,
10628 ARMMMUIdx mmu_idx)
10630 int el = regime_el(env, mmu_idx);
10631 if (el == 2 || arm_el_is_aa64(env, el)) {
10632 return true;
10634 if (arm_feature(env, ARM_FEATURE_LPAE)
10635 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10636 return true;
10638 return false;
10641 /* Returns true if the stage 1 translation regime is using LPAE format page
10642 * tables. Used when raising alignment exceptions, whose FSR changes depending
10643 * on whether the long or short descriptor format is in use. */
10644 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10646 mmu_idx = stage_1_mmu_idx(mmu_idx);
10648 return regime_using_lpae_format(env, mmu_idx);
10651 #ifndef CONFIG_USER_ONLY
10652 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10654 switch (mmu_idx) {
10655 case ARMMMUIdx_SE10_0:
10656 case ARMMMUIdx_E20_0:
10657 case ARMMMUIdx_SE20_0:
10658 case ARMMMUIdx_Stage1_E0:
10659 case ARMMMUIdx_Stage1_SE0:
10660 case ARMMMUIdx_MUser:
10661 case ARMMMUIdx_MSUser:
10662 case ARMMMUIdx_MUserNegPri:
10663 case ARMMMUIdx_MSUserNegPri:
10664 return true;
10665 default:
10666 return false;
10667 case ARMMMUIdx_E10_0:
10668 case ARMMMUIdx_E10_1:
10669 case ARMMMUIdx_E10_1_PAN:
10670 g_assert_not_reached();
10674 /* Translate section/page access permissions to page
10675 * R/W protection flags
10677 * @env: CPUARMState
10678 * @mmu_idx: MMU index indicating required translation regime
10679 * @ap: The 3-bit access permissions (AP[2:0])
10680 * @domain_prot: The 2-bit domain access permissions
10682 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10683 int ap, int domain_prot)
10685 bool is_user = regime_is_user(env, mmu_idx);
10687 if (domain_prot == 3) {
10688 return PAGE_READ | PAGE_WRITE;
10691 switch (ap) {
10692 case 0:
10693 if (arm_feature(env, ARM_FEATURE_V7)) {
10694 return 0;
10696 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10697 case SCTLR_S:
10698 return is_user ? 0 : PAGE_READ;
10699 case SCTLR_R:
10700 return PAGE_READ;
10701 default:
10702 return 0;
10704 case 1:
10705 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10706 case 2:
10707 if (is_user) {
10708 return PAGE_READ;
10709 } else {
10710 return PAGE_READ | PAGE_WRITE;
10712 case 3:
10713 return PAGE_READ | PAGE_WRITE;
10714 case 4: /* Reserved. */
10715 return 0;
10716 case 5:
10717 return is_user ? 0 : PAGE_READ;
10718 case 6:
10719 return PAGE_READ;
10720 case 7:
10721 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10722 return 0;
10724 return PAGE_READ;
10725 default:
10726 g_assert_not_reached();
10730 /* Translate section/page access permissions to page
10731 * R/W protection flags.
10733 * @ap: The 2-bit simple AP (AP[2:1])
10734 * @is_user: TRUE if accessing from PL0
10736 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10738 switch (ap) {
10739 case 0:
10740 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10741 case 1:
10742 return PAGE_READ | PAGE_WRITE;
10743 case 2:
10744 return is_user ? 0 : PAGE_READ;
10745 case 3:
10746 return PAGE_READ;
10747 default:
10748 g_assert_not_reached();
10752 static inline int
10753 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10755 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10758 /* Translate S2 section/page access permissions to protection flags
10760 * @env: CPUARMState
10761 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10762 * @xn: XN (execute-never) bits
10763 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10765 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10767 int prot = 0;
10769 if (s2ap & 1) {
10770 prot |= PAGE_READ;
10772 if (s2ap & 2) {
10773 prot |= PAGE_WRITE;
10776 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10777 switch (xn) {
10778 case 0:
10779 prot |= PAGE_EXEC;
10780 break;
10781 case 1:
10782 if (s1_is_el0) {
10783 prot |= PAGE_EXEC;
10785 break;
10786 case 2:
10787 break;
10788 case 3:
10789 if (!s1_is_el0) {
10790 prot |= PAGE_EXEC;
10792 break;
10793 default:
10794 g_assert_not_reached();
10796 } else {
10797 if (!extract32(xn, 1, 1)) {
10798 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10799 prot |= PAGE_EXEC;
10803 return prot;
10806 /* Translate section/page access permissions to protection flags
10808 * @env: CPUARMState
10809 * @mmu_idx: MMU index indicating required translation regime
10810 * @is_aa64: TRUE if AArch64
10811 * @ap: The 2-bit simple AP (AP[2:1])
10812 * @ns: NS (non-secure) bit
10813 * @xn: XN (execute-never) bit
10814 * @pxn: PXN (privileged execute-never) bit
10816 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10817 int ap, int ns, int xn, int pxn)
10819 bool is_user = regime_is_user(env, mmu_idx);
10820 int prot_rw, user_rw;
10821 bool have_wxn;
10822 int wxn = 0;
10824 assert(mmu_idx != ARMMMUIdx_Stage2);
10825 assert(mmu_idx != ARMMMUIdx_Stage2_S);
10827 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10828 if (is_user) {
10829 prot_rw = user_rw;
10830 } else {
10831 if (user_rw && regime_is_pan(env, mmu_idx)) {
10832 /* PAN forbids data accesses but doesn't affect insn fetch */
10833 prot_rw = 0;
10834 } else {
10835 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10839 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10840 return prot_rw;
10843 /* TODO have_wxn should be replaced with
10844 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10845 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10846 * compatible processors have EL2, which is required for [U]WXN.
10848 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10850 if (have_wxn) {
10851 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10854 if (is_aa64) {
10855 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10856 xn = pxn || (user_rw & PAGE_WRITE);
10858 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10859 switch (regime_el(env, mmu_idx)) {
10860 case 1:
10861 case 3:
10862 if (is_user) {
10863 xn = xn || !(user_rw & PAGE_READ);
10864 } else {
10865 int uwxn = 0;
10866 if (have_wxn) {
10867 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10869 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10870 (uwxn && (user_rw & PAGE_WRITE));
10872 break;
10873 case 2:
10874 break;
10876 } else {
10877 xn = wxn = 0;
10880 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10881 return prot_rw;
10883 return prot_rw | PAGE_EXEC;
10886 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10887 uint32_t *table, uint32_t address)
10889 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10890 TCR *tcr = regime_tcr(env, mmu_idx);
10892 if (address & tcr->mask) {
10893 if (tcr->raw_tcr & TTBCR_PD1) {
10894 /* Translation table walk disabled for TTBR1 */
10895 return false;
10897 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10898 } else {
10899 if (tcr->raw_tcr & TTBCR_PD0) {
10900 /* Translation table walk disabled for TTBR0 */
10901 return false;
10903 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10905 *table |= (address >> 18) & 0x3ffc;
10906 return true;
10909 /* Translate a S1 pagetable walk through S2 if needed. */
10910 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10911 hwaddr addr, bool *is_secure,
10912 ARMMMUFaultInfo *fi)
10914 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10915 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10916 target_ulong s2size;
10917 hwaddr s2pa;
10918 int s2prot;
10919 int ret;
10920 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10921 : ARMMMUIdx_Stage2;
10922 ARMCacheAttrs cacheattrs = {};
10923 MemTxAttrs txattrs = {};
10925 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10926 &s2pa, &txattrs, &s2prot, &s2size, fi,
10927 &cacheattrs);
10928 if (ret) {
10929 assert(fi->type != ARMFault_None);
10930 fi->s2addr = addr;
10931 fi->stage2 = true;
10932 fi->s1ptw = true;
10933 fi->s1ns = !*is_secure;
10934 return ~0;
10936 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10937 (cacheattrs.attrs & 0xf0) == 0) {
10939 * PTW set and S1 walk touched S2 Device memory:
10940 * generate Permission fault.
10942 fi->type = ARMFault_Permission;
10943 fi->s2addr = addr;
10944 fi->stage2 = true;
10945 fi->s1ptw = true;
10946 fi->s1ns = !*is_secure;
10947 return ~0;
10950 if (arm_is_secure_below_el3(env)) {
10951 /* Check if page table walk is to secure or non-secure PA space. */
10952 if (*is_secure) {
10953 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10954 } else {
10955 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10957 } else {
10958 assert(!*is_secure);
10961 addr = s2pa;
10963 return addr;
10966 /* All loads done in the course of a page table walk go through here. */
10967 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10968 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10970 ARMCPU *cpu = ARM_CPU(cs);
10971 CPUARMState *env = &cpu->env;
10972 MemTxAttrs attrs = {};
10973 MemTxResult result = MEMTX_OK;
10974 AddressSpace *as;
10975 uint32_t data;
10977 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10978 attrs.secure = is_secure;
10979 as = arm_addressspace(cs, attrs);
10980 if (fi->s1ptw) {
10981 return 0;
10983 if (regime_translation_big_endian(env, mmu_idx)) {
10984 data = address_space_ldl_be(as, addr, attrs, &result);
10985 } else {
10986 data = address_space_ldl_le(as, addr, attrs, &result);
10988 if (result == MEMTX_OK) {
10989 return data;
10991 fi->type = ARMFault_SyncExternalOnWalk;
10992 fi->ea = arm_extabort_type(result);
10993 return 0;
10996 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10997 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10999 ARMCPU *cpu = ARM_CPU(cs);
11000 CPUARMState *env = &cpu->env;
11001 MemTxAttrs attrs = {};
11002 MemTxResult result = MEMTX_OK;
11003 AddressSpace *as;
11004 uint64_t data;
11006 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
11007 attrs.secure = is_secure;
11008 as = arm_addressspace(cs, attrs);
11009 if (fi->s1ptw) {
11010 return 0;
11012 if (regime_translation_big_endian(env, mmu_idx)) {
11013 data = address_space_ldq_be(as, addr, attrs, &result);
11014 } else {
11015 data = address_space_ldq_le(as, addr, attrs, &result);
11017 if (result == MEMTX_OK) {
11018 return data;
11020 fi->type = ARMFault_SyncExternalOnWalk;
11021 fi->ea = arm_extabort_type(result);
11022 return 0;
11025 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
11026 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11027 hwaddr *phys_ptr, int *prot,
11028 target_ulong *page_size,
11029 ARMMMUFaultInfo *fi)
11031 CPUState *cs = env_cpu(env);
11032 int level = 1;
11033 uint32_t table;
11034 uint32_t desc;
11035 int type;
11036 int ap;
11037 int domain = 0;
11038 int domain_prot;
11039 hwaddr phys_addr;
11040 uint32_t dacr;
11042 /* Pagetable walk. */
11043 /* Lookup l1 descriptor. */
11044 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11045 /* Section translation fault if page walk is disabled by PD0 or PD1 */
11046 fi->type = ARMFault_Translation;
11047 goto do_fault;
11049 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11050 mmu_idx, fi);
11051 if (fi->type != ARMFault_None) {
11052 goto do_fault;
11054 type = (desc & 3);
11055 domain = (desc >> 5) & 0x0f;
11056 if (regime_el(env, mmu_idx) == 1) {
11057 dacr = env->cp15.dacr_ns;
11058 } else {
11059 dacr = env->cp15.dacr_s;
11061 domain_prot = (dacr >> (domain * 2)) & 3;
11062 if (type == 0) {
11063 /* Section translation fault. */
11064 fi->type = ARMFault_Translation;
11065 goto do_fault;
11067 if (type != 2) {
11068 level = 2;
11070 if (domain_prot == 0 || domain_prot == 2) {
11071 fi->type = ARMFault_Domain;
11072 goto do_fault;
11074 if (type == 2) {
11075 /* 1Mb section. */
11076 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11077 ap = (desc >> 10) & 3;
11078 *page_size = 1024 * 1024;
11079 } else {
11080 /* Lookup l2 entry. */
11081 if (type == 1) {
11082 /* Coarse pagetable. */
11083 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11084 } else {
11085 /* Fine pagetable. */
11086 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11088 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11089 mmu_idx, fi);
11090 if (fi->type != ARMFault_None) {
11091 goto do_fault;
11093 switch (desc & 3) {
11094 case 0: /* Page translation fault. */
11095 fi->type = ARMFault_Translation;
11096 goto do_fault;
11097 case 1: /* 64k page. */
11098 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11099 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11100 *page_size = 0x10000;
11101 break;
11102 case 2: /* 4k page. */
11103 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11104 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11105 *page_size = 0x1000;
11106 break;
11107 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11108 if (type == 1) {
11109 /* ARMv6/XScale extended small page format */
11110 if (arm_feature(env, ARM_FEATURE_XSCALE)
11111 || arm_feature(env, ARM_FEATURE_V6)) {
11112 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11113 *page_size = 0x1000;
11114 } else {
11115 /* UNPREDICTABLE in ARMv5; we choose to take a
11116 * page translation fault.
11118 fi->type = ARMFault_Translation;
11119 goto do_fault;
11121 } else {
11122 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11123 *page_size = 0x400;
11125 ap = (desc >> 4) & 3;
11126 break;
11127 default:
11128 /* Never happens, but compiler isn't smart enough to tell. */
11129 abort();
11132 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11133 *prot |= *prot ? PAGE_EXEC : 0;
11134 if (!(*prot & (1 << access_type))) {
11135 /* Access permission fault. */
11136 fi->type = ARMFault_Permission;
11137 goto do_fault;
11139 *phys_ptr = phys_addr;
11140 return false;
11141 do_fault:
11142 fi->domain = domain;
11143 fi->level = level;
11144 return true;
11147 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11148 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11149 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11150 target_ulong *page_size, ARMMMUFaultInfo *fi)
11152 CPUState *cs = env_cpu(env);
11153 ARMCPU *cpu = env_archcpu(env);
11154 int level = 1;
11155 uint32_t table;
11156 uint32_t desc;
11157 uint32_t xn;
11158 uint32_t pxn = 0;
11159 int type;
11160 int ap;
11161 int domain = 0;
11162 int domain_prot;
11163 hwaddr phys_addr;
11164 uint32_t dacr;
11165 bool ns;
11167 /* Pagetable walk. */
11168 /* Lookup l1 descriptor. */
11169 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11170 /* Section translation fault if page walk is disabled by PD0 or PD1 */
11171 fi->type = ARMFault_Translation;
11172 goto do_fault;
11174 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11175 mmu_idx, fi);
11176 if (fi->type != ARMFault_None) {
11177 goto do_fault;
11179 type = (desc & 3);
11180 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
11181 /* Section translation fault, or attempt to use the encoding
11182 * which is Reserved on implementations without PXN.
11184 fi->type = ARMFault_Translation;
11185 goto do_fault;
11187 if ((type == 1) || !(desc & (1 << 18))) {
11188 /* Page or Section. */
11189 domain = (desc >> 5) & 0x0f;
11191 if (regime_el(env, mmu_idx) == 1) {
11192 dacr = env->cp15.dacr_ns;
11193 } else {
11194 dacr = env->cp15.dacr_s;
11196 if (type == 1) {
11197 level = 2;
11199 domain_prot = (dacr >> (domain * 2)) & 3;
11200 if (domain_prot == 0 || domain_prot == 2) {
11201 /* Section or Page domain fault */
11202 fi->type = ARMFault_Domain;
11203 goto do_fault;
11205 if (type != 1) {
11206 if (desc & (1 << 18)) {
11207 /* Supersection. */
11208 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11209 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11210 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11211 *page_size = 0x1000000;
11212 } else {
11213 /* Section. */
11214 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11215 *page_size = 0x100000;
11217 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11218 xn = desc & (1 << 4);
11219 pxn = desc & 1;
11220 ns = extract32(desc, 19, 1);
11221 } else {
11222 if (cpu_isar_feature(aa32_pxn, cpu)) {
11223 pxn = (desc >> 2) & 1;
11225 ns = extract32(desc, 3, 1);
11226 /* Lookup l2 entry. */
11227 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11228 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11229 mmu_idx, fi);
11230 if (fi->type != ARMFault_None) {
11231 goto do_fault;
11233 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11234 switch (desc & 3) {
11235 case 0: /* Page translation fault. */
11236 fi->type = ARMFault_Translation;
11237 goto do_fault;
11238 case 1: /* 64k page. */
11239 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11240 xn = desc & (1 << 15);
11241 *page_size = 0x10000;
11242 break;
11243 case 2: case 3: /* 4k page. */
11244 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11245 xn = desc & 1;
11246 *page_size = 0x1000;
11247 break;
11248 default:
11249 /* Never happens, but compiler isn't smart enough to tell. */
11250 abort();
11253 if (domain_prot == 3) {
11254 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11255 } else {
11256 if (pxn && !regime_is_user(env, mmu_idx)) {
11257 xn = 1;
11259 if (xn && access_type == MMU_INST_FETCH) {
11260 fi->type = ARMFault_Permission;
11261 goto do_fault;
11264 if (arm_feature(env, ARM_FEATURE_V6K) &&
11265 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11266 /* The simplified model uses AP[0] as an access control bit. */
11267 if ((ap & 1) == 0) {
11268 /* Access flag fault. */
11269 fi->type = ARMFault_AccessFlag;
11270 goto do_fault;
11272 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11273 } else {
11274 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11276 if (*prot && !xn) {
11277 *prot |= PAGE_EXEC;
11279 if (!(*prot & (1 << access_type))) {
11280 /* Access permission fault. */
11281 fi->type = ARMFault_Permission;
11282 goto do_fault;
11285 if (ns) {
11286 /* The NS bit will (as required by the architecture) have no effect if
11287 * the CPU doesn't support TZ or this is a non-secure translation
11288 * regime, because the attribute will already be non-secure.
11290 attrs->secure = false;
11292 *phys_ptr = phys_addr;
11293 return false;
11294 do_fault:
11295 fi->domain = domain;
11296 fi->level = level;
11297 return true;
11301 * check_s2_mmu_setup
11302 * @cpu: ARMCPU
11303 * @is_aa64: True if the translation regime is in AArch64 state
11304 * @startlevel: Suggested starting level
11305 * @inputsize: Bitsize of IPAs
11306 * @stride: Page-table stride (See the ARM ARM)
11308 * Returns true if the suggested S2 translation parameters are OK and
11309 * false otherwise.
11311 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11312 int inputsize, int stride)
11314 const int grainsize = stride + 3;
11315 int startsizecheck;
11317 /* Negative levels are never allowed. */
11318 if (level < 0) {
11319 return false;
11322 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11323 if (startsizecheck < 1 || startsizecheck > stride + 4) {
11324 return false;
11327 if (is_aa64) {
11328 CPUARMState *env = &cpu->env;
11329 unsigned int pamax = arm_pamax(cpu);
11331 switch (stride) {
11332 case 13: /* 64KB Pages. */
11333 if (level == 0 || (level == 1 && pamax <= 42)) {
11334 return false;
11336 break;
11337 case 11: /* 16KB Pages. */
11338 if (level == 0 || (level == 1 && pamax <= 40)) {
11339 return false;
11341 break;
11342 case 9: /* 4KB Pages. */
11343 if (level == 0 && pamax <= 42) {
11344 return false;
11346 break;
11347 default:
11348 g_assert_not_reached();
11351 /* Inputsize checks. */
11352 if (inputsize > pamax &&
11353 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11354 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
11355 return false;
11357 } else {
11358 /* AArch32 only supports 4KB pages. Assert on that. */
11359 assert(stride == 9);
11361 if (level == 0) {
11362 return false;
11365 return true;
11368 /* Translate from the 4-bit stage 2 representation of
11369 * memory attributes (without cache-allocation hints) to
11370 * the 8-bit representation of the stage 1 MAIR registers
11371 * (which includes allocation hints).
11373 * ref: shared/translation/attrs/S2AttrDecode()
11374 * .../S2ConvertAttrsHints()
11376 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11378 uint8_t hiattr = extract32(s2attrs, 2, 2);
11379 uint8_t loattr = extract32(s2attrs, 0, 2);
11380 uint8_t hihint = 0, lohint = 0;
11382 if (hiattr != 0) { /* normal memory */
11383 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11384 hiattr = loattr = 1; /* non-cacheable */
11385 } else {
11386 if (hiattr != 1) { /* Write-through or write-back */
11387 hihint = 3; /* RW allocate */
11389 if (loattr != 1) { /* Write-through or write-back */
11390 lohint = 3; /* RW allocate */
11395 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11397 #endif /* !CONFIG_USER_ONLY */
11399 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11401 if (regime_has_2_ranges(mmu_idx)) {
11402 return extract64(tcr, 37, 2);
11403 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11404 return 0; /* VTCR_EL2 */
11405 } else {
11406 /* Replicate the single TBI bit so we always have 2 bits. */
11407 return extract32(tcr, 20, 1) * 3;
11411 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11413 if (regime_has_2_ranges(mmu_idx)) {
11414 return extract64(tcr, 51, 2);
11415 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11416 return 0; /* VTCR_EL2 */
11417 } else {
11418 /* Replicate the single TBID bit so we always have 2 bits. */
11419 return extract32(tcr, 29, 1) * 3;
11423 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11425 if (regime_has_2_ranges(mmu_idx)) {
11426 return extract64(tcr, 57, 2);
11427 } else {
11428 /* Replicate the single TCMA bit so we always have 2 bits. */
11429 return extract32(tcr, 30, 1) * 3;
11433 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11434 ARMMMUIdx mmu_idx, bool data)
11436 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11437 bool epd, hpd, using16k, using64k;
11438 int select, tsz, tbi, max_tsz;
11440 if (!regime_has_2_ranges(mmu_idx)) {
11441 select = 0;
11442 tsz = extract32(tcr, 0, 6);
11443 using64k = extract32(tcr, 14, 1);
11444 using16k = extract32(tcr, 15, 1);
11445 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11446 /* VTCR_EL2 */
11447 hpd = false;
11448 } else {
11449 hpd = extract32(tcr, 24, 1);
11451 epd = false;
11452 } else {
11454 * Bit 55 is always between the two regions, and is canonical for
11455 * determining if address tagging is enabled.
11457 select = extract64(va, 55, 1);
11458 if (!select) {
11459 tsz = extract32(tcr, 0, 6);
11460 epd = extract32(tcr, 7, 1);
11461 using64k = extract32(tcr, 14, 1);
11462 using16k = extract32(tcr, 15, 1);
11463 hpd = extract64(tcr, 41, 1);
11464 } else {
11465 int tg = extract32(tcr, 30, 2);
11466 using16k = tg == 1;
11467 using64k = tg == 3;
11468 tsz = extract32(tcr, 16, 6);
11469 epd = extract32(tcr, 23, 1);
11470 hpd = extract64(tcr, 42, 1);
11474 if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11475 max_tsz = 48 - using64k;
11476 } else {
11477 max_tsz = 39;
11480 tsz = MIN(tsz, max_tsz);
11481 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
11483 /* Present TBI as a composite with TBID. */
11484 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11485 if (!data) {
11486 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11488 tbi = (tbi >> select) & 1;
11490 return (ARMVAParameters) {
11491 .tsz = tsz,
11492 .select = select,
11493 .tbi = tbi,
11494 .epd = epd,
11495 .hpd = hpd,
11496 .using16k = using16k,
11497 .using64k = using64k,
11501 #ifndef CONFIG_USER_ONLY
11502 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11503 ARMMMUIdx mmu_idx)
11505 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11506 uint32_t el = regime_el(env, mmu_idx);
11507 int select, tsz;
11508 bool epd, hpd;
11510 assert(mmu_idx != ARMMMUIdx_Stage2_S);
11512 if (mmu_idx == ARMMMUIdx_Stage2) {
11513 /* VTCR */
11514 bool sext = extract32(tcr, 4, 1);
11515 bool sign = extract32(tcr, 3, 1);
11518 * If the sign-extend bit is not the same as t0sz[3], the result
11519 * is unpredictable. Flag this as a guest error.
11521 if (sign != sext) {
11522 qemu_log_mask(LOG_GUEST_ERROR,
11523 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11525 tsz = sextract32(tcr, 0, 4) + 8;
11526 select = 0;
11527 hpd = false;
11528 epd = false;
11529 } else if (el == 2) {
11530 /* HTCR */
11531 tsz = extract32(tcr, 0, 3);
11532 select = 0;
11533 hpd = extract64(tcr, 24, 1);
11534 epd = false;
11535 } else {
11536 int t0sz = extract32(tcr, 0, 3);
11537 int t1sz = extract32(tcr, 16, 3);
11539 if (t1sz == 0) {
11540 select = va > (0xffffffffu >> t0sz);
11541 } else {
11542 /* Note that we will detect errors later. */
11543 select = va >= ~(0xffffffffu >> t1sz);
11545 if (!select) {
11546 tsz = t0sz;
11547 epd = extract32(tcr, 7, 1);
11548 hpd = extract64(tcr, 41, 1);
11549 } else {
11550 tsz = t1sz;
11551 epd = extract32(tcr, 23, 1);
11552 hpd = extract64(tcr, 42, 1);
11554 /* For aarch32, hpd0 is not enabled without t2e as well. */
11555 hpd &= extract32(tcr, 6, 1);
11558 return (ARMVAParameters) {
11559 .tsz = tsz,
11560 .select = select,
11561 .epd = epd,
11562 .hpd = hpd,
11567 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11569 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11570 * prot and page_size may not be filled in, and the populated fsr value provides
11571 * information on why the translation aborted, in the format of a long-format
11572 * DFSR/IFSR fault register, with the following caveats:
11573 * * the WnR bit is never set (the caller must do this).
11575 * @env: CPUARMState
11576 * @address: virtual address to get physical address for
11577 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11578 * @mmu_idx: MMU index indicating required translation regime
11579 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11580 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
11581 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11582 * @phys_ptr: set to the physical address corresponding to the virtual address
11583 * @attrs: set to the memory transaction attributes to use
11584 * @prot: set to the permissions for the page containing phys_ptr
11585 * @page_size_ptr: set to the size of the page containing phys_ptr
11586 * @fi: set to fault info if the translation fails
11587 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11589 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11590 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11591 bool s1_is_el0,
11592 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11593 target_ulong *page_size_ptr,
11594 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11596 ARMCPU *cpu = env_archcpu(env);
11597 CPUState *cs = CPU(cpu);
11598 /* Read an LPAE long-descriptor translation table. */
11599 ARMFaultType fault_type = ARMFault_Translation;
11600 uint32_t level;
11601 ARMVAParameters param;
11602 uint64_t ttbr;
11603 hwaddr descaddr, indexmask, indexmask_grainsize;
11604 uint32_t tableattrs;
11605 target_ulong page_size;
11606 uint32_t attrs;
11607 int32_t stride;
11608 int addrsize, inputsize;
11609 TCR *tcr = regime_tcr(env, mmu_idx);
11610 int ap, ns, xn, pxn;
11611 uint32_t el = regime_el(env, mmu_idx);
11612 uint64_t descaddrmask;
11613 bool aarch64 = arm_el_is_aa64(env, el);
11614 bool guarded = false;
11616 /* TODO: This code does not support shareability levels. */
11617 if (aarch64) {
11618 param = aa64_va_parameters(env, address, mmu_idx,
11619 access_type != MMU_INST_FETCH);
11620 level = 0;
11621 addrsize = 64 - 8 * param.tbi;
11622 inputsize = 64 - param.tsz;
11623 } else {
11624 param = aa32_va_parameters(env, address, mmu_idx);
11625 level = 1;
11626 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11627 inputsize = addrsize - param.tsz;
11631 * We determined the region when collecting the parameters, but we
11632 * have not yet validated that the address is valid for the region.
11633 * Extract the top bits and verify that they all match select.
11635 * For aa32, if inputsize == addrsize, then we have selected the
11636 * region by exclusion in aa32_va_parameters and there is no more
11637 * validation to do here.
11639 if (inputsize < addrsize) {
11640 target_ulong top_bits = sextract64(address, inputsize,
11641 addrsize - inputsize);
11642 if (-top_bits != param.select) {
11643 /* The gap between the two regions is a Translation fault */
11644 fault_type = ARMFault_Translation;
11645 goto do_fault;
11649 if (param.using64k) {
11650 stride = 13;
11651 } else if (param.using16k) {
11652 stride = 11;
11653 } else {
11654 stride = 9;
11657 /* Note that QEMU ignores shareability and cacheability attributes,
11658 * so we don't need to do anything with the SH, ORGN, IRGN fields
11659 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11660 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11661 * implement any ASID-like capability so we can ignore it (instead
11662 * we will always flush the TLB any time the ASID is changed).
11664 ttbr = regime_ttbr(env, mmu_idx, param.select);
11666 /* Here we should have set up all the parameters for the translation:
11667 * inputsize, ttbr, epd, stride, tbi
11670 if (param.epd) {
11671 /* Translation table walk disabled => Translation fault on TLB miss
11672 * Note: This is always 0 on 64-bit EL2 and EL3.
11674 goto do_fault;
11677 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11678 /* The starting level depends on the virtual address size (which can
11679 * be up to 48 bits) and the translation granule size. It indicates
11680 * the number of strides (stride bits at a time) needed to
11681 * consume the bits of the input address. In the pseudocode this is:
11682 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11683 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11684 * our 'stride + 3' and 'stride' is our 'stride'.
11685 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11686 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11687 * = 4 - (inputsize - 4) / stride;
11689 level = 4 - (inputsize - 4) / stride;
11690 } else {
11691 /* For stage 2 translations the starting level is specified by the
11692 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11694 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11695 uint32_t startlevel;
11696 bool ok;
11698 if (!aarch64 || stride == 9) {
11699 /* AArch32 or 4KB pages */
11700 startlevel = 2 - sl0;
11702 if (cpu_isar_feature(aa64_st, cpu)) {
11703 startlevel &= 3;
11705 } else {
11706 /* 16KB or 64KB pages */
11707 startlevel = 3 - sl0;
11710 /* Check that the starting level is valid. */
11711 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11712 inputsize, stride);
11713 if (!ok) {
11714 fault_type = ARMFault_Translation;
11715 goto do_fault;
11717 level = startlevel;
11720 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11721 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11723 /* Now we can extract the actual base address from the TTBR */
11724 descaddr = extract64(ttbr, 0, 48);
11726 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11727 * and also to mask out CnP (bit 0) which could validly be non-zero.
11729 descaddr &= ~indexmask;
11731 /* The address field in the descriptor goes up to bit 39 for ARMv7
11732 * but up to bit 47 for ARMv8, but we use the descaddrmask
11733 * up to bit 39 for AArch32, because we don't need other bits in that case
11734 * to construct next descriptor address (anyway they should be all zeroes).
11736 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11737 ~indexmask_grainsize;
11739 /* Secure accesses start with the page table in secure memory and
11740 * can be downgraded to non-secure at any step. Non-secure accesses
11741 * remain non-secure. We implement this by just ORing in the NSTable/NS
11742 * bits at each step.
11744 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11745 for (;;) {
11746 uint64_t descriptor;
11747 bool nstable;
11749 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11750 descaddr &= ~7ULL;
11751 nstable = extract32(tableattrs, 4, 1);
11752 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11753 if (fi->type != ARMFault_None) {
11754 goto do_fault;
11757 if (!(descriptor & 1) ||
11758 (!(descriptor & 2) && (level == 3))) {
11759 /* Invalid, or the Reserved level 3 encoding */
11760 goto do_fault;
11762 descaddr = descriptor & descaddrmask;
11764 if ((descriptor & 2) && (level < 3)) {
11765 /* Table entry. The top five bits are attributes which may
11766 * propagate down through lower levels of the table (and
11767 * which are all arranged so that 0 means "no effect", so
11768 * we can gather them up by ORing in the bits at each level).
11770 tableattrs |= extract64(descriptor, 59, 5);
11771 level++;
11772 indexmask = indexmask_grainsize;
11773 continue;
11775 /* Block entry at level 1 or 2, or page entry at level 3.
11776 * These are basically the same thing, although the number
11777 * of bits we pull in from the vaddr varies.
11779 page_size = (1ULL << ((stride * (4 - level)) + 3));
11780 descaddr |= (address & (page_size - 1));
11781 /* Extract attributes from the descriptor */
11782 attrs = extract64(descriptor, 2, 10)
11783 | (extract64(descriptor, 52, 12) << 10);
11785 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11786 /* Stage 2 table descriptors do not include any attribute fields */
11787 break;
11789 /* Merge in attributes from table descriptors */
11790 attrs |= nstable << 3; /* NS */
11791 guarded = extract64(descriptor, 50, 1); /* GP */
11792 if (param.hpd) {
11793 /* HPD disables all the table attributes except NSTable. */
11794 break;
11796 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11797 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11798 * means "force PL1 access only", which means forcing AP[1] to 0.
11800 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11801 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11802 break;
11804 /* Here descaddr is the final physical address, and attributes
11805 * are all in attrs.
11807 fault_type = ARMFault_AccessFlag;
11808 if ((attrs & (1 << 8)) == 0) {
11809 /* Access flag */
11810 goto do_fault;
11813 ap = extract32(attrs, 4, 2);
11815 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11816 ns = mmu_idx == ARMMMUIdx_Stage2;
11817 xn = extract32(attrs, 11, 2);
11818 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11819 } else {
11820 ns = extract32(attrs, 3, 1);
11821 xn = extract32(attrs, 12, 1);
11822 pxn = extract32(attrs, 11, 1);
11823 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11826 fault_type = ARMFault_Permission;
11827 if (!(*prot & (1 << access_type))) {
11828 goto do_fault;
11831 if (ns) {
11832 /* The NS bit will (as required by the architecture) have no effect if
11833 * the CPU doesn't support TZ or this is a non-secure translation
11834 * regime, because the attribute will already be non-secure.
11836 txattrs->secure = false;
11838 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11839 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11840 arm_tlb_bti_gp(txattrs) = true;
11843 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11844 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11845 } else {
11846 /* Index into MAIR registers for cache attributes */
11847 uint8_t attrindx = extract32(attrs, 0, 3);
11848 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11849 assert(attrindx <= 7);
11850 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11852 cacheattrs->shareability = extract32(attrs, 6, 2);
11854 *phys_ptr = descaddr;
11855 *page_size_ptr = page_size;
11856 return false;
11858 do_fault:
11859 fi->type = fault_type;
11860 fi->level = level;
11861 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11862 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11863 mmu_idx == ARMMMUIdx_Stage2_S);
11864 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11865 return true;
11868 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11869 ARMMMUIdx mmu_idx,
11870 int32_t address, int *prot)
11872 if (!arm_feature(env, ARM_FEATURE_M)) {
11873 *prot = PAGE_READ | PAGE_WRITE;
11874 switch (address) {
11875 case 0xF0000000 ... 0xFFFFFFFF:
11876 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11877 /* hivecs execing is ok */
11878 *prot |= PAGE_EXEC;
11880 break;
11881 case 0x00000000 ... 0x7FFFFFFF:
11882 *prot |= PAGE_EXEC;
11883 break;
11885 } else {
11886 /* Default system address map for M profile cores.
11887 * The architecture specifies which regions are execute-never;
11888 * at the MPU level no other checks are defined.
11890 switch (address) {
11891 case 0x00000000 ... 0x1fffffff: /* ROM */
11892 case 0x20000000 ... 0x3fffffff: /* SRAM */
11893 case 0x60000000 ... 0x7fffffff: /* RAM */
11894 case 0x80000000 ... 0x9fffffff: /* RAM */
11895 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11896 break;
11897 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11898 case 0xa0000000 ... 0xbfffffff: /* Device */
11899 case 0xc0000000 ... 0xdfffffff: /* Device */
11900 case 0xe0000000 ... 0xffffffff: /* System */
11901 *prot = PAGE_READ | PAGE_WRITE;
11902 break;
11903 default:
11904 g_assert_not_reached();
11909 static bool pmsav7_use_background_region(ARMCPU *cpu,
11910 ARMMMUIdx mmu_idx, bool is_user)
11912 /* Return true if we should use the default memory map as a
11913 * "background" region if there are no hits against any MPU regions.
11915 CPUARMState *env = &cpu->env;
11917 if (is_user) {
11918 return false;
11921 if (arm_feature(env, ARM_FEATURE_M)) {
11922 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11923 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11924 } else {
11925 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11929 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11931 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11932 return arm_feature(env, ARM_FEATURE_M) &&
11933 extract32(address, 20, 12) == 0xe00;
11936 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11938 /* True if address is in the M profile system region
11939 * 0xe0000000 - 0xffffffff
11941 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11944 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11945 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11946 hwaddr *phys_ptr, int *prot,
11947 target_ulong *page_size,
11948 ARMMMUFaultInfo *fi)
11950 ARMCPU *cpu = env_archcpu(env);
11951 int n;
11952 bool is_user = regime_is_user(env, mmu_idx);
11954 *phys_ptr = address;
11955 *page_size = TARGET_PAGE_SIZE;
11956 *prot = 0;
11958 if (regime_translation_disabled(env, mmu_idx) ||
11959 m_is_ppb_region(env, address)) {
11960 /* MPU disabled or M profile PPB access: use default memory map.
11961 * The other case which uses the default memory map in the
11962 * v7M ARM ARM pseudocode is exception vector reads from the vector
11963 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11964 * which always does a direct read using address_space_ldl(), rather
11965 * than going via this function, so we don't need to check that here.
11967 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11968 } else { /* MPU enabled */
11969 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11970 /* region search */
11971 uint32_t base = env->pmsav7.drbar[n];
11972 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11973 uint32_t rmask;
11974 bool srdis = false;
11976 if (!(env->pmsav7.drsr[n] & 0x1)) {
11977 continue;
11980 if (!rsize) {
11981 qemu_log_mask(LOG_GUEST_ERROR,
11982 "DRSR[%d]: Rsize field cannot be 0\n", n);
11983 continue;
11985 rsize++;
11986 rmask = (1ull << rsize) - 1;
11988 if (base & rmask) {
11989 qemu_log_mask(LOG_GUEST_ERROR,
11990 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11991 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11992 n, base, rmask);
11993 continue;
11996 if (address < base || address > base + rmask) {
11998 * Address not in this region. We must check whether the
11999 * region covers addresses in the same page as our address.
12000 * In that case we must not report a size that covers the
12001 * whole page for a subsequent hit against a different MPU
12002 * region or the background region, because it would result in
12003 * incorrect TLB hits for subsequent accesses to addresses that
12004 * are in this MPU region.
12006 if (ranges_overlap(base, rmask,
12007 address & TARGET_PAGE_MASK,
12008 TARGET_PAGE_SIZE)) {
12009 *page_size = 1;
12011 continue;
12014 /* Region matched */
12016 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
12017 int i, snd;
12018 uint32_t srdis_mask;
12020 rsize -= 3; /* sub region size (power of 2) */
12021 snd = ((address - base) >> rsize) & 0x7;
12022 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
12024 srdis_mask = srdis ? 0x3 : 0x0;
12025 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
12026 /* This will check in groups of 2, 4 and then 8, whether
12027 * the subregion bits are consistent. rsize is incremented
12028 * back up to give the region size, considering consistent
12029 * adjacent subregions as one region. Stop testing if rsize
12030 * is already big enough for an entire QEMU page.
12032 int snd_rounded = snd & ~(i - 1);
12033 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
12034 snd_rounded + 8, i);
12035 if (srdis_mask ^ srdis_multi) {
12036 break;
12038 srdis_mask = (srdis_mask << i) | srdis_mask;
12039 rsize++;
12042 if (srdis) {
12043 continue;
12045 if (rsize < TARGET_PAGE_BITS) {
12046 *page_size = 1 << rsize;
12048 break;
12051 if (n == -1) { /* no hits */
12052 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12053 /* background fault */
12054 fi->type = ARMFault_Background;
12055 return true;
12057 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12058 } else { /* a MPU hit! */
12059 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12060 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12062 if (m_is_system_region(env, address)) {
12063 /* System space is always execute never */
12064 xn = 1;
12067 if (is_user) { /* User mode AP bit decoding */
12068 switch (ap) {
12069 case 0:
12070 case 1:
12071 case 5:
12072 break; /* no access */
12073 case 3:
12074 *prot |= PAGE_WRITE;
12075 /* fall through */
12076 case 2:
12077 case 6:
12078 *prot |= PAGE_READ | PAGE_EXEC;
12079 break;
12080 case 7:
12081 /* for v7M, same as 6; for R profile a reserved value */
12082 if (arm_feature(env, ARM_FEATURE_M)) {
12083 *prot |= PAGE_READ | PAGE_EXEC;
12084 break;
12086 /* fall through */
12087 default:
12088 qemu_log_mask(LOG_GUEST_ERROR,
12089 "DRACR[%d]: Bad value for AP bits: 0x%"
12090 PRIx32 "\n", n, ap);
12092 } else { /* Priv. mode AP bits decoding */
12093 switch (ap) {
12094 case 0:
12095 break; /* no access */
12096 case 1:
12097 case 2:
12098 case 3:
12099 *prot |= PAGE_WRITE;
12100 /* fall through */
12101 case 5:
12102 case 6:
12103 *prot |= PAGE_READ | PAGE_EXEC;
12104 break;
12105 case 7:
12106 /* for v7M, same as 6; for R profile a reserved value */
12107 if (arm_feature(env, ARM_FEATURE_M)) {
12108 *prot |= PAGE_READ | PAGE_EXEC;
12109 break;
12111 /* fall through */
12112 default:
12113 qemu_log_mask(LOG_GUEST_ERROR,
12114 "DRACR[%d]: Bad value for AP bits: 0x%"
12115 PRIx32 "\n", n, ap);
12119 /* execute never */
12120 if (xn) {
12121 *prot &= ~PAGE_EXEC;
12126 fi->type = ARMFault_Permission;
12127 fi->level = 1;
12128 return !(*prot & (1 << access_type));
12131 static bool v8m_is_sau_exempt(CPUARMState *env,
12132 uint32_t address, MMUAccessType access_type)
12134 /* The architecture specifies that certain address ranges are
12135 * exempt from v8M SAU/IDAU checks.
12137 return
12138 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12139 (address >= 0xe0000000 && address <= 0xe0002fff) ||
12140 (address >= 0xe000e000 && address <= 0xe000efff) ||
12141 (address >= 0xe002e000 && address <= 0xe002efff) ||
12142 (address >= 0xe0040000 && address <= 0xe0041fff) ||
12143 (address >= 0xe00ff000 && address <= 0xe00fffff);
12146 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12147 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12148 V8M_SAttributes *sattrs)
12150 /* Look up the security attributes for this address. Compare the
12151 * pseudocode SecurityCheck() function.
12152 * We assume the caller has zero-initialized *sattrs.
12154 ARMCPU *cpu = env_archcpu(env);
12155 int r;
12156 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12157 int idau_region = IREGION_NOTVALID;
12158 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12159 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12161 if (cpu->idau) {
12162 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12163 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12165 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12166 &idau_nsc);
12169 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12170 /* 0xf0000000..0xffffffff is always S for insn fetches */
12171 return;
12174 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12175 sattrs->ns = !regime_is_secure(env, mmu_idx);
12176 return;
12179 if (idau_region != IREGION_NOTVALID) {
12180 sattrs->irvalid = true;
12181 sattrs->iregion = idau_region;
12184 switch (env->sau.ctrl & 3) {
12185 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12186 break;
12187 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12188 sattrs->ns = true;
12189 break;
12190 default: /* SAU.ENABLE == 1 */
12191 for (r = 0; r < cpu->sau_sregion; r++) {
12192 if (env->sau.rlar[r] & 1) {
12193 uint32_t base = env->sau.rbar[r] & ~0x1f;
12194 uint32_t limit = env->sau.rlar[r] | 0x1f;
12196 if (base <= address && limit >= address) {
12197 if (base > addr_page_base || limit < addr_page_limit) {
12198 sattrs->subpage = true;
12200 if (sattrs->srvalid) {
12201 /* If we hit in more than one region then we must report
12202 * as Secure, not NS-Callable, with no valid region
12203 * number info.
12205 sattrs->ns = false;
12206 sattrs->nsc = false;
12207 sattrs->sregion = 0;
12208 sattrs->srvalid = false;
12209 break;
12210 } else {
12211 if (env->sau.rlar[r] & 2) {
12212 sattrs->nsc = true;
12213 } else {
12214 sattrs->ns = true;
12216 sattrs->srvalid = true;
12217 sattrs->sregion = r;
12219 } else {
12221 * Address not in this region. We must check whether the
12222 * region covers addresses in the same page as our address.
12223 * In that case we must not report a size that covers the
12224 * whole page for a subsequent hit against a different MPU
12225 * region or the background region, because it would result
12226 * in incorrect TLB hits for subsequent accesses to
12227 * addresses that are in this MPU region.
12229 if (limit >= base &&
12230 ranges_overlap(base, limit - base + 1,
12231 addr_page_base,
12232 TARGET_PAGE_SIZE)) {
12233 sattrs->subpage = true;
12238 break;
12242 * The IDAU will override the SAU lookup results if it specifies
12243 * higher security than the SAU does.
12245 if (!idau_ns) {
12246 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12247 sattrs->ns = false;
12248 sattrs->nsc = idau_nsc;
12253 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12254 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12255 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12256 int *prot, bool *is_subpage,
12257 ARMMMUFaultInfo *fi, uint32_t *mregion)
12259 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12260 * that a full phys-to-virt translation does).
12261 * mregion is (if not NULL) set to the region number which matched,
12262 * or -1 if no region number is returned (MPU off, address did not
12263 * hit a region, address hit in multiple regions).
12264 * We set is_subpage to true if the region hit doesn't cover the
12265 * entire TARGET_PAGE the address is within.
12267 ARMCPU *cpu = env_archcpu(env);
12268 bool is_user = regime_is_user(env, mmu_idx);
12269 uint32_t secure = regime_is_secure(env, mmu_idx);
12270 int n;
12271 int matchregion = -1;
12272 bool hit = false;
12273 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12274 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12276 *is_subpage = false;
12277 *phys_ptr = address;
12278 *prot = 0;
12279 if (mregion) {
12280 *mregion = -1;
12283 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12284 * was an exception vector read from the vector table (which is always
12285 * done using the default system address map), because those accesses
12286 * are done in arm_v7m_load_vector(), which always does a direct
12287 * read using address_space_ldl(), rather than going via this function.
12289 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12290 hit = true;
12291 } else if (m_is_ppb_region(env, address)) {
12292 hit = true;
12293 } else {
12294 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12295 hit = true;
12298 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12299 /* region search */
12300 /* Note that the base address is bits [31:5] from the register
12301 * with bits [4:0] all zeroes, but the limit address is bits
12302 * [31:5] from the register with bits [4:0] all ones.
12304 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12305 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12307 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12308 /* Region disabled */
12309 continue;
12312 if (address < base || address > limit) {
12314 * Address not in this region. We must check whether the
12315 * region covers addresses in the same page as our address.
12316 * In that case we must not report a size that covers the
12317 * whole page for a subsequent hit against a different MPU
12318 * region or the background region, because it would result in
12319 * incorrect TLB hits for subsequent accesses to addresses that
12320 * are in this MPU region.
12322 if (limit >= base &&
12323 ranges_overlap(base, limit - base + 1,
12324 addr_page_base,
12325 TARGET_PAGE_SIZE)) {
12326 *is_subpage = true;
12328 continue;
12331 if (base > addr_page_base || limit < addr_page_limit) {
12332 *is_subpage = true;
12335 if (matchregion != -1) {
12336 /* Multiple regions match -- always a failure (unlike
12337 * PMSAv7 where highest-numbered-region wins)
12339 fi->type = ARMFault_Permission;
12340 fi->level = 1;
12341 return true;
12344 matchregion = n;
12345 hit = true;
12349 if (!hit) {
12350 /* background fault */
12351 fi->type = ARMFault_Background;
12352 return true;
12355 if (matchregion == -1) {
12356 /* hit using the background region */
12357 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12358 } else {
12359 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12360 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12361 bool pxn = false;
12363 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12364 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12367 if (m_is_system_region(env, address)) {
12368 /* System space is always execute never */
12369 xn = 1;
12372 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12373 if (*prot && !xn && !(pxn && !is_user)) {
12374 *prot |= PAGE_EXEC;
12376 /* We don't need to look the attribute up in the MAIR0/MAIR1
12377 * registers because that only tells us about cacheability.
12379 if (mregion) {
12380 *mregion = matchregion;
12384 fi->type = ARMFault_Permission;
12385 fi->level = 1;
12386 return !(*prot & (1 << access_type));
12390 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12391 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12392 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12393 int *prot, target_ulong *page_size,
12394 ARMMMUFaultInfo *fi)
12396 uint32_t secure = regime_is_secure(env, mmu_idx);
12397 V8M_SAttributes sattrs = {};
12398 bool ret;
12399 bool mpu_is_subpage;
12401 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12402 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12403 if (access_type == MMU_INST_FETCH) {
12404 /* Instruction fetches always use the MMU bank and the
12405 * transaction attribute determined by the fetch address,
12406 * regardless of CPU state. This is painful for QEMU
12407 * to handle, because it would mean we need to encode
12408 * into the mmu_idx not just the (user, negpri) information
12409 * for the current security state but also that for the
12410 * other security state, which would balloon the number
12411 * of mmu_idx values needed alarmingly.
12412 * Fortunately we can avoid this because it's not actually
12413 * possible to arbitrarily execute code from memory with
12414 * the wrong security attribute: it will always generate
12415 * an exception of some kind or another, apart from the
12416 * special case of an NS CPU executing an SG instruction
12417 * in S&NSC memory. So we always just fail the translation
12418 * here and sort things out in the exception handler
12419 * (including possibly emulating an SG instruction).
12421 if (sattrs.ns != !secure) {
12422 if (sattrs.nsc) {
12423 fi->type = ARMFault_QEMU_NSCExec;
12424 } else {
12425 fi->type = ARMFault_QEMU_SFault;
12427 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12428 *phys_ptr = address;
12429 *prot = 0;
12430 return true;
12432 } else {
12433 /* For data accesses we always use the MMU bank indicated
12434 * by the current CPU state, but the security attributes
12435 * might downgrade a secure access to nonsecure.
12437 if (sattrs.ns) {
12438 txattrs->secure = false;
12439 } else if (!secure) {
12440 /* NS access to S memory must fault.
12441 * Architecturally we should first check whether the
12442 * MPU information for this address indicates that we
12443 * are doing an unaligned access to Device memory, which
12444 * should generate a UsageFault instead. QEMU does not
12445 * currently check for that kind of unaligned access though.
12446 * If we added it we would need to do so as a special case
12447 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12449 fi->type = ARMFault_QEMU_SFault;
12450 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12451 *phys_ptr = address;
12452 *prot = 0;
12453 return true;
12458 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12459 txattrs, prot, &mpu_is_subpage, fi, NULL);
12460 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12461 return ret;
12464 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12465 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12466 hwaddr *phys_ptr, int *prot,
12467 ARMMMUFaultInfo *fi)
12469 int n;
12470 uint32_t mask;
12471 uint32_t base;
12472 bool is_user = regime_is_user(env, mmu_idx);
12474 if (regime_translation_disabled(env, mmu_idx)) {
12475 /* MPU disabled. */
12476 *phys_ptr = address;
12477 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12478 return false;
12481 *phys_ptr = address;
12482 for (n = 7; n >= 0; n--) {
12483 base = env->cp15.c6_region[n];
12484 if ((base & 1) == 0) {
12485 continue;
12487 mask = 1 << ((base >> 1) & 0x1f);
12488 /* Keep this shift separate from the above to avoid an
12489 (undefined) << 32. */
12490 mask = (mask << 1) - 1;
12491 if (((base ^ address) & ~mask) == 0) {
12492 break;
12495 if (n < 0) {
12496 fi->type = ARMFault_Background;
12497 return true;
12500 if (access_type == MMU_INST_FETCH) {
12501 mask = env->cp15.pmsav5_insn_ap;
12502 } else {
12503 mask = env->cp15.pmsav5_data_ap;
12505 mask = (mask >> (n * 4)) & 0xf;
12506 switch (mask) {
12507 case 0:
12508 fi->type = ARMFault_Permission;
12509 fi->level = 1;
12510 return true;
12511 case 1:
12512 if (is_user) {
12513 fi->type = ARMFault_Permission;
12514 fi->level = 1;
12515 return true;
12517 *prot = PAGE_READ | PAGE_WRITE;
12518 break;
12519 case 2:
12520 *prot = PAGE_READ;
12521 if (!is_user) {
12522 *prot |= PAGE_WRITE;
12524 break;
12525 case 3:
12526 *prot = PAGE_READ | PAGE_WRITE;
12527 break;
12528 case 5:
12529 if (is_user) {
12530 fi->type = ARMFault_Permission;
12531 fi->level = 1;
12532 return true;
12534 *prot = PAGE_READ;
12535 break;
12536 case 6:
12537 *prot = PAGE_READ;
12538 break;
12539 default:
12540 /* Bad permission. */
12541 fi->type = ARMFault_Permission;
12542 fi->level = 1;
12543 return true;
12545 *prot |= PAGE_EXEC;
12546 return false;
12549 /* Combine either inner or outer cacheability attributes for normal
12550 * memory, according to table D4-42 and pseudocode procedure
12551 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12553 * NB: only stage 1 includes allocation hints (RW bits), leading to
12554 * some asymmetry.
12556 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12558 if (s1 == 4 || s2 == 4) {
12559 /* non-cacheable has precedence */
12560 return 4;
12561 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12562 /* stage 1 write-through takes precedence */
12563 return s1;
12564 } else if (extract32(s2, 2, 2) == 2) {
12565 /* stage 2 write-through takes precedence, but the allocation hint
12566 * is still taken from stage 1
12568 return (2 << 2) | extract32(s1, 0, 2);
12569 } else { /* write-back */
12570 return s1;
12574 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12575 * and CombineS1S2Desc()
12577 * @s1: Attributes from stage 1 walk
12578 * @s2: Attributes from stage 2 walk
12580 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12582 uint8_t s1lo, s2lo, s1hi, s2hi;
12583 ARMCacheAttrs ret;
12584 bool tagged = false;
12586 if (s1.attrs == 0xf0) {
12587 tagged = true;
12588 s1.attrs = 0xff;
12591 s1lo = extract32(s1.attrs, 0, 4);
12592 s2lo = extract32(s2.attrs, 0, 4);
12593 s1hi = extract32(s1.attrs, 4, 4);
12594 s2hi = extract32(s2.attrs, 4, 4);
12596 /* Combine shareability attributes (table D4-43) */
12597 if (s1.shareability == 2 || s2.shareability == 2) {
12598 /* if either are outer-shareable, the result is outer-shareable */
12599 ret.shareability = 2;
12600 } else if (s1.shareability == 3 || s2.shareability == 3) {
12601 /* if either are inner-shareable, the result is inner-shareable */
12602 ret.shareability = 3;
12603 } else {
12604 /* both non-shareable */
12605 ret.shareability = 0;
12608 /* Combine memory type and cacheability attributes */
12609 if (s1hi == 0 || s2hi == 0) {
12610 /* Device has precedence over normal */
12611 if (s1lo == 0 || s2lo == 0) {
12612 /* nGnRnE has precedence over anything */
12613 ret.attrs = 0;
12614 } else if (s1lo == 4 || s2lo == 4) {
12615 /* non-Reordering has precedence over Reordering */
12616 ret.attrs = 4; /* nGnRE */
12617 } else if (s1lo == 8 || s2lo == 8) {
12618 /* non-Gathering has precedence over Gathering */
12619 ret.attrs = 8; /* nGRE */
12620 } else {
12621 ret.attrs = 0xc; /* GRE */
12624 /* Any location for which the resultant memory type is any
12625 * type of Device memory is always treated as Outer Shareable.
12627 ret.shareability = 2;
12628 } else { /* Normal memory */
12629 /* Outer/inner cacheability combine independently */
12630 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12631 | combine_cacheattr_nibble(s1lo, s2lo);
12633 if (ret.attrs == 0x44) {
12634 /* Any location for which the resultant memory type is Normal
12635 * Inner Non-cacheable, Outer Non-cacheable is always treated
12636 * as Outer Shareable.
12638 ret.shareability = 2;
12642 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12643 if (tagged && ret.attrs == 0xff) {
12644 ret.attrs = 0xf0;
12647 return ret;
12651 /* get_phys_addr - get the physical address for this virtual address
12653 * Find the physical address corresponding to the given virtual address,
12654 * by doing a translation table walk on MMU based systems or using the
12655 * MPU state on MPU based systems.
12657 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12658 * prot and page_size may not be filled in, and the populated fsr value provides
12659 * information on why the translation aborted, in the format of a
12660 * DFSR/IFSR fault register, with the following caveats:
12661 * * we honour the short vs long DFSR format differences.
12662 * * the WnR bit is never set (the caller must do this).
12663 * * for PSMAv5 based systems we don't bother to return a full FSR format
12664 * value.
12666 * @env: CPUARMState
12667 * @address: virtual address to get physical address for
12668 * @access_type: 0 for read, 1 for write, 2 for execute
12669 * @mmu_idx: MMU index indicating required translation regime
12670 * @phys_ptr: set to the physical address corresponding to the virtual address
12671 * @attrs: set to the memory transaction attributes to use
12672 * @prot: set to the permissions for the page containing phys_ptr
12673 * @page_size: set to the size of the page containing phys_ptr
12674 * @fi: set to fault info if the translation fails
12675 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12677 bool get_phys_addr(CPUARMState *env, target_ulong address,
12678 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12679 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12680 target_ulong *page_size,
12681 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12683 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12685 if (mmu_idx != s1_mmu_idx) {
12686 /* Call ourselves recursively to do the stage 1 and then stage 2
12687 * translations if mmu_idx is a two-stage regime.
12689 if (arm_feature(env, ARM_FEATURE_EL2)) {
12690 hwaddr ipa;
12691 int s2_prot;
12692 int ret;
12693 ARMCacheAttrs cacheattrs2 = {};
12694 ARMMMUIdx s2_mmu_idx;
12695 bool is_el0;
12697 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12698 attrs, prot, page_size, fi, cacheattrs);
12700 /* If S1 fails or S2 is disabled, return early. */
12701 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12702 *phys_ptr = ipa;
12703 return ret;
12706 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12707 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12709 /* S1 is done. Now do S2 translation. */
12710 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12711 phys_ptr, attrs, &s2_prot,
12712 page_size, fi, &cacheattrs2);
12713 fi->s2addr = ipa;
12714 /* Combine the S1 and S2 perms. */
12715 *prot &= s2_prot;
12717 /* If S2 fails, return early. */
12718 if (ret) {
12719 return ret;
12722 /* Combine the S1 and S2 cache attributes. */
12723 if (arm_hcr_el2_eff(env) & HCR_DC) {
12725 * HCR.DC forces the first stage attributes to
12726 * Normal Non-Shareable,
12727 * Inner Write-Back Read-Allocate Write-Allocate,
12728 * Outer Write-Back Read-Allocate Write-Allocate.
12729 * Do not overwrite Tagged within attrs.
12731 if (cacheattrs->attrs != 0xf0) {
12732 cacheattrs->attrs = 0xff;
12734 cacheattrs->shareability = 0;
12736 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12738 /* Check if IPA translates to secure or non-secure PA space. */
12739 if (arm_is_secure_below_el3(env)) {
12740 if (attrs->secure) {
12741 attrs->secure =
12742 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12743 } else {
12744 attrs->secure =
12745 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12746 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12749 return 0;
12750 } else {
12752 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12754 mmu_idx = stage_1_mmu_idx(mmu_idx);
12758 /* The page table entries may downgrade secure to non-secure, but
12759 * cannot upgrade an non-secure translation regime's attributes
12760 * to secure.
12762 attrs->secure = regime_is_secure(env, mmu_idx);
12763 attrs->user = regime_is_user(env, mmu_idx);
12765 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12766 * In v7 and earlier it affects all stage 1 translations.
12768 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12769 && !arm_feature(env, ARM_FEATURE_V8)) {
12770 if (regime_el(env, mmu_idx) == 3) {
12771 address += env->cp15.fcseidr_s;
12772 } else {
12773 address += env->cp15.fcseidr_ns;
12777 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12778 bool ret;
12779 *page_size = TARGET_PAGE_SIZE;
12781 if (arm_feature(env, ARM_FEATURE_V8)) {
12782 /* PMSAv8 */
12783 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12784 phys_ptr, attrs, prot, page_size, fi);
12785 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12786 /* PMSAv7 */
12787 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12788 phys_ptr, prot, page_size, fi);
12789 } else {
12790 /* Pre-v7 MPU */
12791 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12792 phys_ptr, prot, fi);
12794 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12795 " mmu_idx %u -> %s (prot %c%c%c)\n",
12796 access_type == MMU_DATA_LOAD ? "reading" :
12797 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12798 (uint32_t)address, mmu_idx,
12799 ret ? "Miss" : "Hit",
12800 *prot & PAGE_READ ? 'r' : '-',
12801 *prot & PAGE_WRITE ? 'w' : '-',
12802 *prot & PAGE_EXEC ? 'x' : '-');
12804 return ret;
12807 /* Definitely a real MMU, not an MPU */
12809 if (regime_translation_disabled(env, mmu_idx)) {
12810 uint64_t hcr;
12811 uint8_t memattr;
12814 * MMU disabled. S1 addresses within aa64 translation regimes are
12815 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12817 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12818 int r_el = regime_el(env, mmu_idx);
12819 if (arm_el_is_aa64(env, r_el)) {
12820 int pamax = arm_pamax(env_archcpu(env));
12821 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12822 int addrtop, tbi;
12824 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12825 if (access_type == MMU_INST_FETCH) {
12826 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12828 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12829 addrtop = (tbi ? 55 : 63);
12831 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12832 fi->type = ARMFault_AddressSize;
12833 fi->level = 0;
12834 fi->stage2 = false;
12835 return 1;
12839 * When TBI is disabled, we've just validated that all of the
12840 * bits above PAMax are zero, so logically we only need to
12841 * clear the top byte for TBI. But it's clearer to follow
12842 * the pseudocode set of addrdesc.paddress.
12844 address = extract64(address, 0, 52);
12847 *phys_ptr = address;
12848 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12849 *page_size = TARGET_PAGE_SIZE;
12851 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12852 hcr = arm_hcr_el2_eff(env);
12853 cacheattrs->shareability = 0;
12854 if (hcr & HCR_DC) {
12855 if (hcr & HCR_DCT) {
12856 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
12857 } else {
12858 memattr = 0xff; /* Normal, WB, RWA */
12860 } else if (access_type == MMU_INST_FETCH) {
12861 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12862 memattr = 0xee; /* Normal, WT, RA, NT */
12863 } else {
12864 memattr = 0x44; /* Normal, NC, No */
12866 cacheattrs->shareability = 2; /* outer sharable */
12867 } else {
12868 memattr = 0x00; /* Device, nGnRnE */
12870 cacheattrs->attrs = memattr;
12871 return 0;
12874 if (regime_using_lpae_format(env, mmu_idx)) {
12875 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12876 phys_ptr, attrs, prot, page_size,
12877 fi, cacheattrs);
12878 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12879 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12880 phys_ptr, attrs, prot, page_size, fi);
12881 } else {
12882 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12883 phys_ptr, prot, page_size, fi);
12887 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12888 MemTxAttrs *attrs)
12890 ARMCPU *cpu = ARM_CPU(cs);
12891 CPUARMState *env = &cpu->env;
12892 hwaddr phys_addr;
12893 target_ulong page_size;
12894 int prot;
12895 bool ret;
12896 ARMMMUFaultInfo fi = {};
12897 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12898 ARMCacheAttrs cacheattrs = {};
12900 *attrs = (MemTxAttrs) {};
12902 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12903 attrs, &prot, &page_size, &fi, &cacheattrs);
12905 if (ret) {
12906 return -1;
12908 return phys_addr;
12911 #endif
12913 /* Note that signed overflow is undefined in C. The following routines are
12914 careful to use unsigned types where modulo arithmetic is required.
12915 Failure to do so _will_ break on newer gcc. */
12917 /* Signed saturating arithmetic. */
12919 /* Perform 16-bit signed saturating addition. */
12920 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12922 uint16_t res;
12924 res = a + b;
12925 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12926 if (a & 0x8000)
12927 res = 0x8000;
12928 else
12929 res = 0x7fff;
12931 return res;
12934 /* Perform 8-bit signed saturating addition. */
12935 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12937 uint8_t res;
12939 res = a + b;
12940 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12941 if (a & 0x80)
12942 res = 0x80;
12943 else
12944 res = 0x7f;
12946 return res;
12949 /* Perform 16-bit signed saturating subtraction. */
12950 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12952 uint16_t res;
12954 res = a - b;
12955 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12956 if (a & 0x8000)
12957 res = 0x8000;
12958 else
12959 res = 0x7fff;
12961 return res;
12964 /* Perform 8-bit signed saturating subtraction. */
12965 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12967 uint8_t res;
12969 res = a - b;
12970 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12971 if (a & 0x80)
12972 res = 0x80;
12973 else
12974 res = 0x7f;
12976 return res;
12979 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12980 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12981 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12982 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12983 #define PFX q
12985 #include "op_addsub.h"
12987 /* Unsigned saturating arithmetic. */
12988 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12990 uint16_t res;
12991 res = a + b;
12992 if (res < a)
12993 res = 0xffff;
12994 return res;
12997 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12999 if (a > b)
13000 return a - b;
13001 else
13002 return 0;
13005 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
13007 uint8_t res;
13008 res = a + b;
13009 if (res < a)
13010 res = 0xff;
13011 return res;
13014 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
13016 if (a > b)
13017 return a - b;
13018 else
13019 return 0;
13022 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
13023 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
13024 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
13025 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
13026 #define PFX uq
13028 #include "op_addsub.h"
13030 /* Signed modulo arithmetic. */
13031 #define SARITH16(a, b, n, op) do { \
13032 int32_t sum; \
13033 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
13034 RESULT(sum, n, 16); \
13035 if (sum >= 0) \
13036 ge |= 3 << (n * 2); \
13037 } while(0)
13039 #define SARITH8(a, b, n, op) do { \
13040 int32_t sum; \
13041 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13042 RESULT(sum, n, 8); \
13043 if (sum >= 0) \
13044 ge |= 1 << n; \
13045 } while(0)
13048 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13049 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13050 #define ADD8(a, b, n) SARITH8(a, b, n, +)
13051 #define SUB8(a, b, n) SARITH8(a, b, n, -)
13052 #define PFX s
13053 #define ARITH_GE
13055 #include "op_addsub.h"
13057 /* Unsigned modulo arithmetic. */
13058 #define ADD16(a, b, n) do { \
13059 uint32_t sum; \
13060 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13061 RESULT(sum, n, 16); \
13062 if ((sum >> 16) == 1) \
13063 ge |= 3 << (n * 2); \
13064 } while(0)
13066 #define ADD8(a, b, n) do { \
13067 uint32_t sum; \
13068 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13069 RESULT(sum, n, 8); \
13070 if ((sum >> 8) == 1) \
13071 ge |= 1 << n; \
13072 } while(0)
13074 #define SUB16(a, b, n) do { \
13075 uint32_t sum; \
13076 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13077 RESULT(sum, n, 16); \
13078 if ((sum >> 16) == 0) \
13079 ge |= 3 << (n * 2); \
13080 } while(0)
13082 #define SUB8(a, b, n) do { \
13083 uint32_t sum; \
13084 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13085 RESULT(sum, n, 8); \
13086 if ((sum >> 8) == 0) \
13087 ge |= 1 << n; \
13088 } while(0)
13090 #define PFX u
13091 #define ARITH_GE
13093 #include "op_addsub.h"
13095 /* Halved signed arithmetic. */
13096 #define ADD16(a, b, n) \
13097 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13098 #define SUB16(a, b, n) \
13099 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13100 #define ADD8(a, b, n) \
13101 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13102 #define SUB8(a, b, n) \
13103 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13104 #define PFX sh
13106 #include "op_addsub.h"
13108 /* Halved unsigned arithmetic. */
13109 #define ADD16(a, b, n) \
13110 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13111 #define SUB16(a, b, n) \
13112 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13113 #define ADD8(a, b, n) \
13114 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13115 #define SUB8(a, b, n) \
13116 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13117 #define PFX uh
13119 #include "op_addsub.h"
13121 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13123 if (a > b)
13124 return a - b;
13125 else
13126 return b - a;
13129 /* Unsigned sum of absolute byte differences. */
13130 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13132 uint32_t sum;
13133 sum = do_usad(a, b);
13134 sum += do_usad(a >> 8, b >> 8);
13135 sum += do_usad(a >> 16, b >> 16);
13136 sum += do_usad(a >> 24, b >> 24);
13137 return sum;
13140 /* For ARMv6 SEL instruction. */
13141 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13143 uint32_t mask;
13145 mask = 0;
13146 if (flags & 1)
13147 mask |= 0xff;
13148 if (flags & 2)
13149 mask |= 0xff00;
13150 if (flags & 4)
13151 mask |= 0xff0000;
13152 if (flags & 8)
13153 mask |= 0xff000000;
13154 return (a & mask) | (b & ~mask);
13157 /* CRC helpers.
13158 * The upper bytes of val (above the number specified by 'bytes') must have
13159 * been zeroed out by the caller.
13161 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13163 uint8_t buf[4];
13165 stl_le_p(buf, val);
13167 /* zlib crc32 converts the accumulator and output to one's complement. */
13168 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13171 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13173 uint8_t buf[4];
13175 stl_le_p(buf, val);
13177 /* Linux crc32c converts the output to one's complement. */
13178 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13181 /* Return the exception level to which FP-disabled exceptions should
13182 * be taken, or 0 if FP is enabled.
13184 int fp_exception_el(CPUARMState *env, int cur_el)
13186 #ifndef CONFIG_USER_ONLY
13187 /* CPACR and the CPTR registers don't exist before v6, so FP is
13188 * always accessible
13190 if (!arm_feature(env, ARM_FEATURE_V6)) {
13191 return 0;
13194 if (arm_feature(env, ARM_FEATURE_M)) {
13195 /* CPACR can cause a NOCP UsageFault taken to current security state */
13196 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13197 return 1;
13200 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13201 if (!extract32(env->v7m.nsacr, 10, 1)) {
13202 /* FP insns cause a NOCP UsageFault taken to Secure */
13203 return 3;
13207 return 0;
13210 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13211 * 0, 2 : trap EL0 and EL1/PL1 accesses
13212 * 1 : trap only EL0 accesses
13213 * 3 : trap no accesses
13214 * This register is ignored if E2H+TGE are both set.
13216 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13217 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13219 switch (fpen) {
13220 case 0:
13221 case 2:
13222 if (cur_el == 0 || cur_el == 1) {
13223 /* Trap to PL1, which might be EL1 or EL3 */
13224 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13225 return 3;
13227 return 1;
13229 if (cur_el == 3 && !is_a64(env)) {
13230 /* Secure PL1 running at EL3 */
13231 return 3;
13233 break;
13234 case 1:
13235 if (cur_el == 0) {
13236 return 1;
13238 break;
13239 case 3:
13240 break;
13245 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13246 * to control non-secure access to the FPU. It doesn't have any
13247 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13249 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13250 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13251 if (!extract32(env->cp15.nsacr, 10, 1)) {
13252 /* FP insns act as UNDEF */
13253 return cur_el == 2 ? 2 : 1;
13257 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13258 * check because zero bits in the registers mean "don't trap".
13261 /* CPTR_EL2 : present in v7VE or v8 */
13262 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13263 && arm_is_el2_enabled(env)) {
13264 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13265 return 2;
13268 /* CPTR_EL3 : present in v8 */
13269 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13270 /* Trap all FP ops to EL3 */
13271 return 3;
13273 #endif
13274 return 0;
13277 /* Return the exception level we're running at if this is our mmu_idx */
13278 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13280 if (mmu_idx & ARM_MMU_IDX_M) {
13281 return mmu_idx & ARM_MMU_IDX_M_PRIV;
13284 switch (mmu_idx) {
13285 case ARMMMUIdx_E10_0:
13286 case ARMMMUIdx_E20_0:
13287 case ARMMMUIdx_SE10_0:
13288 case ARMMMUIdx_SE20_0:
13289 return 0;
13290 case ARMMMUIdx_E10_1:
13291 case ARMMMUIdx_E10_1_PAN:
13292 case ARMMMUIdx_SE10_1:
13293 case ARMMMUIdx_SE10_1_PAN:
13294 return 1;
13295 case ARMMMUIdx_E2:
13296 case ARMMMUIdx_E20_2:
13297 case ARMMMUIdx_E20_2_PAN:
13298 case ARMMMUIdx_SE2:
13299 case ARMMMUIdx_SE20_2:
13300 case ARMMMUIdx_SE20_2_PAN:
13301 return 2;
13302 case ARMMMUIdx_SE3:
13303 return 3;
13304 default:
13305 g_assert_not_reached();
13309 #ifndef CONFIG_TCG
13310 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13312 g_assert_not_reached();
13314 #endif
13316 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13318 ARMMMUIdx idx;
13319 uint64_t hcr;
13321 if (arm_feature(env, ARM_FEATURE_M)) {
13322 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13325 /* See ARM pseudo-function ELIsInHost. */
13326 switch (el) {
13327 case 0:
13328 hcr = arm_hcr_el2_eff(env);
13329 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13330 idx = ARMMMUIdx_E20_0;
13331 } else {
13332 idx = ARMMMUIdx_E10_0;
13334 break;
13335 case 1:
13336 if (env->pstate & PSTATE_PAN) {
13337 idx = ARMMMUIdx_E10_1_PAN;
13338 } else {
13339 idx = ARMMMUIdx_E10_1;
13341 break;
13342 case 2:
13343 /* Note that TGE does not apply at EL2. */
13344 if (arm_hcr_el2_eff(env) & HCR_E2H) {
13345 if (env->pstate & PSTATE_PAN) {
13346 idx = ARMMMUIdx_E20_2_PAN;
13347 } else {
13348 idx = ARMMMUIdx_E20_2;
13350 } else {
13351 idx = ARMMMUIdx_E2;
13353 break;
13354 case 3:
13355 return ARMMMUIdx_SE3;
13356 default:
13357 g_assert_not_reached();
13360 if (arm_is_secure_below_el3(env)) {
13361 idx &= ~ARM_MMU_IDX_A_NS;
13364 return idx;
13367 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13369 return arm_mmu_idx_el(env, arm_current_el(env));
13372 #ifndef CONFIG_USER_ONLY
13373 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13375 return stage_1_mmu_idx(arm_mmu_idx(env));
13377 #endif
13379 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13380 ARMMMUIdx mmu_idx,
13381 CPUARMTBFlags flags)
13383 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13384 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13386 if (arm_singlestep_active(env)) {
13387 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13389 return flags;
13392 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13393 ARMMMUIdx mmu_idx,
13394 CPUARMTBFlags flags)
13396 bool sctlr_b = arm_sctlr_b(env);
13398 if (sctlr_b) {
13399 DP_TBFLAG_A32(flags, SCTLR__B, 1);
13401 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13402 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13404 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13406 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13409 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13410 ARMMMUIdx mmu_idx)
13412 CPUARMTBFlags flags = {};
13413 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13415 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13416 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13417 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13420 if (arm_v7m_is_handler_mode(env)) {
13421 DP_TBFLAG_M32(flags, HANDLER, 1);
13425 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13426 * is suppressing them because the requested execution priority
13427 * is less than 0.
13429 if (arm_feature(env, ARM_FEATURE_V8) &&
13430 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13431 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13432 DP_TBFLAG_M32(flags, STACKCHECK, 1);
13435 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13438 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13440 CPUARMTBFlags flags = {};
13442 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13443 return flags;
13446 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13447 ARMMMUIdx mmu_idx)
13449 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13450 int el = arm_current_el(env);
13452 if (arm_sctlr(env, el) & SCTLR_A) {
13453 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13456 if (arm_el_is_aa64(env, 1)) {
13457 DP_TBFLAG_A32(flags, VFPEN, 1);
13460 if (el < 2 && env->cp15.hstr_el2 &&
13461 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13462 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13465 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13468 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13469 ARMMMUIdx mmu_idx)
13471 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13472 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13473 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13474 uint64_t sctlr;
13475 int tbii, tbid;
13477 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13479 /* Get control bits for tagged addresses. */
13480 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13481 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13483 DP_TBFLAG_A64(flags, TBII, tbii);
13484 DP_TBFLAG_A64(flags, TBID, tbid);
13486 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13487 int sve_el = sve_exception_el(env, el);
13488 uint32_t zcr_len;
13491 * If SVE is disabled, but FP is enabled,
13492 * then the effective len is 0.
13494 if (sve_el != 0 && fp_el == 0) {
13495 zcr_len = 0;
13496 } else {
13497 zcr_len = sve_zcr_len_for_el(env, el);
13499 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13500 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13503 sctlr = regime_sctlr(env, stage1);
13505 if (sctlr & SCTLR_A) {
13506 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13509 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13510 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13513 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13515 * In order to save space in flags, we record only whether
13516 * pauth is "inactive", meaning all insns are implemented as
13517 * a nop, or "active" when some action must be performed.
13518 * The decision of which action to take is left to a helper.
13520 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13521 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13525 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13526 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13527 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13528 DP_TBFLAG_A64(flags, BT, 1);
13532 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13533 if (!(env->pstate & PSTATE_UAO)) {
13534 switch (mmu_idx) {
13535 case ARMMMUIdx_E10_1:
13536 case ARMMMUIdx_E10_1_PAN:
13537 case ARMMMUIdx_SE10_1:
13538 case ARMMMUIdx_SE10_1_PAN:
13539 /* TODO: ARMv8.3-NV */
13540 DP_TBFLAG_A64(flags, UNPRIV, 1);
13541 break;
13542 case ARMMMUIdx_E20_2:
13543 case ARMMMUIdx_E20_2_PAN:
13544 case ARMMMUIdx_SE20_2:
13545 case ARMMMUIdx_SE20_2_PAN:
13547 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13548 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13550 if (env->cp15.hcr_el2 & HCR_TGE) {
13551 DP_TBFLAG_A64(flags, UNPRIV, 1);
13553 break;
13554 default:
13555 break;
13559 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13561 * Set MTE_ACTIVE if any access may be Checked, and leave clear
13562 * if all accesses must be Unchecked:
13563 * 1) If no TBI, then there are no tags in the address to check,
13564 * 2) If Tag Check Override, then all accesses are Unchecked,
13565 * 3) If Tag Check Fail == 0, then Checked access have no effect,
13566 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13568 if (allocation_tag_access_enabled(env, el, sctlr)) {
13569 DP_TBFLAG_A64(flags, ATA, 1);
13570 if (tbid
13571 && !(env->pstate & PSTATE_TCO)
13572 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13573 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13576 /* And again for unprivileged accesses, if required. */
13577 if (EX_TBFLAG_A64(flags, UNPRIV)
13578 && tbid
13579 && !(env->pstate & PSTATE_TCO)
13580 && (sctlr & SCTLR_TCF0)
13581 && allocation_tag_access_enabled(env, 0, sctlr)) {
13582 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13584 /* Cache TCMA as well as TBI. */
13585 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13588 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13591 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13593 int el = arm_current_el(env);
13594 int fp_el = fp_exception_el(env, el);
13595 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13597 if (is_a64(env)) {
13598 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13599 } else if (arm_feature(env, ARM_FEATURE_M)) {
13600 return rebuild_hflags_m32(env, fp_el, mmu_idx);
13601 } else {
13602 return rebuild_hflags_a32(env, fp_el, mmu_idx);
13606 void arm_rebuild_hflags(CPUARMState *env)
13608 env->hflags = rebuild_hflags_internal(env);
13612 * If we have triggered a EL state change we can't rely on the
13613 * translator having passed it to us, we need to recompute.
13615 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13617 int el = arm_current_el(env);
13618 int fp_el = fp_exception_el(env, el);
13619 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13621 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13624 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13626 int fp_el = fp_exception_el(env, el);
13627 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13629 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13633 * If we have triggered a EL state change we can't rely on the
13634 * translator having passed it to us, we need to recompute.
13636 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13638 int el = arm_current_el(env);
13639 int fp_el = fp_exception_el(env, el);
13640 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13641 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13644 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13646 int fp_el = fp_exception_el(env, el);
13647 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13649 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13652 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13654 int fp_el = fp_exception_el(env, el);
13655 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13657 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13660 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13662 #ifdef CONFIG_DEBUG_TCG
13663 CPUARMTBFlags c = env->hflags;
13664 CPUARMTBFlags r = rebuild_hflags_internal(env);
13666 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13667 fprintf(stderr, "TCG hflags mismatch "
13668 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13669 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13670 c.flags, c.flags2, r.flags, r.flags2);
13671 abort();
13673 #endif
13676 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13677 target_ulong *cs_base, uint32_t *pflags)
13679 CPUARMTBFlags flags;
13681 assert_hflags_rebuild_correctly(env);
13682 flags = env->hflags;
13684 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13685 *pc = env->pc;
13686 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13687 DP_TBFLAG_A64(flags, BTYPE, env->btype);
13689 } else {
13690 *pc = env->regs[15];
13692 if (arm_feature(env, ARM_FEATURE_M)) {
13693 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13694 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13695 != env->v7m.secure) {
13696 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13699 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13700 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13701 (env->v7m.secure &&
13702 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13704 * ASPEN is set, but FPCA/SFPA indicate that there is no
13705 * active FP context; we must create a new FP context before
13706 * executing any FP insn.
13708 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13711 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13712 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13713 DP_TBFLAG_M32(flags, LSPACT, 1);
13715 } else {
13717 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13718 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13720 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13721 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13722 } else {
13723 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13724 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13726 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13727 DP_TBFLAG_A32(flags, VFPEN, 1);
13731 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13732 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13736 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13737 * states defined in the ARM ARM for software singlestep:
13738 * SS_ACTIVE PSTATE.SS State
13739 * 0 x Inactive (the TB flag for SS is always 0)
13740 * 1 0 Active-pending
13741 * 1 1 Active-not-pending
13742 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13744 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13745 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13748 *pflags = flags.flags;
13749 *cs_base = flags.flags2;
13752 #ifdef TARGET_AARCH64
13754 * The manual says that when SVE is enabled and VQ is widened the
13755 * implementation is allowed to zero the previously inaccessible
13756 * portion of the registers. The corollary to that is that when
13757 * SVE is enabled and VQ is narrowed we are also allowed to zero
13758 * the now inaccessible portion of the registers.
13760 * The intent of this is that no predicate bit beyond VQ is ever set.
13761 * Which means that some operations on predicate registers themselves
13762 * may operate on full uint64_t or even unrolled across the maximum
13763 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13764 * may well be cheaper than conditionals to restrict the operation
13765 * to the relevant portion of a uint16_t[16].
13767 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13769 int i, j;
13770 uint64_t pmask;
13772 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13773 assert(vq <= env_archcpu(env)->sve_max_vq);
13775 /* Zap the high bits of the zregs. */
13776 for (i = 0; i < 32; i++) {
13777 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13780 /* Zap the high bits of the pregs and ffr. */
13781 pmask = 0;
13782 if (vq & 3) {
13783 pmask = ~(-1ULL << (16 * (vq & 3)));
13785 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13786 for (i = 0; i < 17; ++i) {
13787 env->vfp.pregs[i].p[j] &= pmask;
13789 pmask = 0;
13794 * Notice a change in SVE vector size when changing EL.
13796 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13797 int new_el, bool el0_a64)
13799 ARMCPU *cpu = env_archcpu(env);
13800 int old_len, new_len;
13801 bool old_a64, new_a64;
13803 /* Nothing to do if no SVE. */
13804 if (!cpu_isar_feature(aa64_sve, cpu)) {
13805 return;
13808 /* Nothing to do if FP is disabled in either EL. */
13809 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13810 return;
13814 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13815 * at ELx, or not available because the EL is in AArch32 state, then
13816 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13817 * has an effective value of 0".
13819 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13820 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13821 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13822 * we already have the correct register contents when encountering the
13823 * vq0->vq0 transition between EL0->EL1.
13825 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13826 old_len = (old_a64 && !sve_exception_el(env, old_el)
13827 ? sve_zcr_len_for_el(env, old_el) : 0);
13828 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13829 new_len = (new_a64 && !sve_exception_el(env, new_el)
13830 ? sve_zcr_len_for_el(env, new_el) : 0);
13832 /* When changing vector length, clear inaccessible state. */
13833 if (new_len < old_len) {
13834 aarch64_sve_narrow_vq(env, new_len + 1);
13837 #endif