target/xtensa: avoid integer overflow in next_page PC check
[qemu/ar7.git] / exec.c
blobc7fcefa851b22555f1148635daa489eb00ba2bd3
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
107 #endif
109 #ifdef TARGET_PAGE_BITS_VARY
110 int target_page_bits;
111 bool target_page_bits_decided;
112 #endif
114 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 __thread CPUState *current_cpu;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount;
123 uintptr_t qemu_host_page_size;
124 intptr_t qemu_host_page_mask;
126 bool set_preferred_target_page_bits(int bits)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
139 target_page_bits = bits;
141 #endif
142 return true;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
153 target_page_bits_decided = true;
154 #endif
157 typedef struct PhysPageEntry PhysPageEntry;
159 struct PhysPageEntry {
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
161 uint32_t skip : 6;
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
163 uint32_t ptr : 26;
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
171 #define P_L2_BITS 9
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node[P_L2_SIZE];
178 typedef struct PhysPageMap {
179 struct rcu_head rcu;
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187 } PhysPageMap;
189 struct AddressSpaceDispatch {
190 MemoryRegionSection *mru_section;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map;
195 PhysPageMap map;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t {
200 MemoryRegion iomem;
201 FlatView *fv;
202 hwaddr base;
203 uint16_t sub_section[];
204 } subpage_t;
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener *listener);
215 static MemoryRegion io_mem_watch;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
231 struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
237 #endif
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
243 static unsigned alloc_hint = 16;
244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
248 alloc_hint = map->nodes_nb_alloc;
252 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
254 unsigned i;
255 uint32_t ret;
256 PhysPageEntry e;
257 PhysPageEntry *p;
259 ret = map->nodes_nb++;
260 p = map->nodes[ret];
261 assert(ret != PHYS_MAP_NODE_NIL);
262 assert(ret != map->nodes_nb_alloc);
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
266 for (i = 0; i < P_L2_SIZE; ++i) {
267 memcpy(&p[i], &e, sizeof(e));
269 return ret;
272 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
274 int level)
276 PhysPageEntry *p;
277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
280 lp->ptr = phys_map_node_alloc(map, level == 0);
282 p = map->nodes[lp->ptr];
283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
285 while (*nb && lp < &p[P_L2_SIZE]) {
286 if ((*index & (step - 1)) == 0 && *nb >= step) {
287 lp->skip = 0;
288 lp->ptr = leaf;
289 *index += step;
290 *nb -= step;
291 } else {
292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
294 ++lp;
298 static void phys_page_set(AddressSpaceDispatch *d,
299 hwaddr index, hwaddr nb,
300 uint16_t leaf)
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
331 phys_page_compact(&p[i], nodes);
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
340 assert(valid_ptr < P_L2_SIZE);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
361 void address_space_dispatch_compact(AddressSpaceDispatch *d)
363 if (d->phys_map.skip) {
364 phys_page_compact(&d->phys_map, d->map.nodes);
368 static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section->size) ||
375 range_covers_byte(section->offset_within_address_space,
376 int128_getlo(section->size), addr);
379 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
384 hwaddr index = addr >> TARGET_PAGE_BITS;
385 int i;
387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
389 return &sections[PHYS_SECTION_UNASSIGNED];
391 p = nodes[lp.ptr];
392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
395 if (section_covers_addr(&sections[lp.ptr], addr)) {
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
402 bool memory_region_is_unassigned(MemoryRegion *mr)
404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
405 && mr != &io_mem_watch;
408 /* Called from RCU critical section */
409 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
410 hwaddr addr,
411 bool resolve_subpage)
413 MemoryRegionSection *section = atomic_read(&d->mru_section);
414 subpage_t *subpage;
416 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
417 !section_covers_addr(section, addr)) {
418 section = phys_page_find(d, addr);
419 atomic_set(&d->mru_section, section);
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425 return section;
428 /* Called from RCU critical section */
429 static MemoryRegionSection *
430 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
431 hwaddr *plen, bool resolve_subpage)
433 MemoryRegionSection *section;
434 MemoryRegion *mr;
435 Int128 diff;
437 section = address_space_lookup_region(d, addr, resolve_subpage);
438 /* Compute offset within MemoryRegionSection */
439 addr -= section->offset_within_address_space;
441 /* Compute offset within MemoryRegion */
442 *xlat = addr + section->offset_within_region;
444 mr = section->mr;
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
451 * here.
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
457 if (memory_region_is_ram(mr)) {
458 diff = int128_sub(section->size, int128_make64(addr));
459 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
461 return section;
465 * flatview_do_translate - translate an address in FlatView
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
480 * This function is called from RCU critical section
482 static MemoryRegionSection flatview_do_translate(FlatView *fv,
483 hwaddr addr,
484 hwaddr *xlat,
485 hwaddr *plen_out,
486 hwaddr *page_mask_out,
487 bool is_write,
488 bool is_mmio,
489 AddressSpace **target_as)
491 IOMMUTLBEntry iotlb;
492 MemoryRegionSection *section;
493 IOMMUMemoryRegion *iommu_mr;
494 IOMMUMemoryRegionClass *imrc;
495 hwaddr page_mask = (hwaddr)(-1);
496 hwaddr plen = (hwaddr)(-1);
498 if (plen_out) {
499 plen = *plen_out;
502 for (;;) {
503 section = address_space_translate_internal(
504 flatview_to_dispatch(fv), addr, &addr,
505 &plen, is_mmio);
507 iommu_mr = memory_region_get_iommu(section->mr);
508 if (!iommu_mr) {
509 break;
511 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
513 iotlb = imrc->translate(iommu_mr, addr, is_write ?
514 IOMMU_WO : IOMMU_RO);
515 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
516 | (addr & iotlb.addr_mask));
517 page_mask &= iotlb.addr_mask;
518 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
519 if (!(iotlb.perm & (1 << is_write))) {
520 goto translate_fail;
523 fv = address_space_to_flatview(iotlb.target_as);
524 *target_as = iotlb.target_as;
527 *xlat = addr;
529 if (page_mask == (hwaddr)(-1)) {
530 /* Not behind an IOMMU, use default page size. */
531 page_mask = ~TARGET_PAGE_MASK;
534 if (page_mask_out) {
535 *page_mask_out = page_mask;
538 if (plen_out) {
539 *plen_out = plen;
542 return *section;
544 translate_fail:
545 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
548 /* Called from RCU critical section */
549 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
550 bool is_write)
552 MemoryRegionSection section;
553 hwaddr xlat, page_mask;
556 * This can never be MMIO, and we don't really care about plen,
557 * but page mask.
559 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
560 NULL, &page_mask, is_write, false, &as);
562 /* Illegal translation */
563 if (section.mr == &io_mem_unassigned) {
564 goto iotlb_fail;
567 /* Convert memory region offset into address space offset */
568 xlat += section.offset_within_address_space -
569 section.offset_within_region;
571 return (IOMMUTLBEntry) {
572 .target_as = as,
573 .iova = addr & ~page_mask,
574 .translated_addr = xlat & ~page_mask,
575 .addr_mask = page_mask,
576 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
577 .perm = IOMMU_RW,
580 iotlb_fail:
581 return (IOMMUTLBEntry) {0};
584 /* Called from RCU critical section */
585 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
586 hwaddr *plen, bool is_write)
588 MemoryRegion *mr;
589 MemoryRegionSection section;
590 AddressSpace *as = NULL;
592 /* This can be MMIO, so setup MMIO bit. */
593 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
594 is_write, true, &as);
595 mr = section.mr;
597 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
598 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
599 *plen = MIN(page, *plen);
602 return mr;
605 /* Called from RCU critical section */
606 MemoryRegionSection *
607 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
608 hwaddr *xlat, hwaddr *plen)
610 MemoryRegionSection *section;
611 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
613 section = address_space_translate_internal(d, addr, xlat, plen, false);
615 assert(!memory_region_is_iommu(section->mr));
616 return section;
618 #endif
620 #if !defined(CONFIG_USER_ONLY)
622 static int cpu_common_post_load(void *opaque, int version_id)
624 CPUState *cpu = opaque;
626 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
627 version_id is increased. */
628 cpu->interrupt_request &= ~0x01;
629 tlb_flush(cpu);
631 /* loadvm has just updated the content of RAM, bypassing the
632 * usual mechanisms that ensure we flush TBs for writes to
633 * memory we've translated code from. So we must flush all TBs,
634 * which will now be stale.
636 tb_flush(cpu);
638 return 0;
641 static int cpu_common_pre_load(void *opaque)
643 CPUState *cpu = opaque;
645 cpu->exception_index = -1;
647 return 0;
650 static bool cpu_common_exception_index_needed(void *opaque)
652 CPUState *cpu = opaque;
654 return tcg_enabled() && cpu->exception_index != -1;
657 static const VMStateDescription vmstate_cpu_common_exception_index = {
658 .name = "cpu_common/exception_index",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .needed = cpu_common_exception_index_needed,
662 .fields = (VMStateField[]) {
663 VMSTATE_INT32(exception_index, CPUState),
664 VMSTATE_END_OF_LIST()
668 static bool cpu_common_crash_occurred_needed(void *opaque)
670 CPUState *cpu = opaque;
672 return cpu->crash_occurred;
675 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
676 .name = "cpu_common/crash_occurred",
677 .version_id = 1,
678 .minimum_version_id = 1,
679 .needed = cpu_common_crash_occurred_needed,
680 .fields = (VMStateField[]) {
681 VMSTATE_BOOL(crash_occurred, CPUState),
682 VMSTATE_END_OF_LIST()
686 const VMStateDescription vmstate_cpu_common = {
687 .name = "cpu_common",
688 .version_id = 1,
689 .minimum_version_id = 1,
690 .pre_load = cpu_common_pre_load,
691 .post_load = cpu_common_post_load,
692 .fields = (VMStateField[]) {
693 VMSTATE_UINT32(halted, CPUState),
694 VMSTATE_UINT32(interrupt_request, CPUState),
695 VMSTATE_END_OF_LIST()
697 .subsections = (const VMStateDescription*[]) {
698 &vmstate_cpu_common_exception_index,
699 &vmstate_cpu_common_crash_occurred,
700 NULL
704 #endif
706 CPUState *qemu_get_cpu(int index)
708 CPUState *cpu;
710 CPU_FOREACH(cpu) {
711 if (cpu->cpu_index == index) {
712 return cpu;
716 return NULL;
719 #if !defined(CONFIG_USER_ONLY)
720 void cpu_address_space_init(CPUState *cpu, int asidx,
721 const char *prefix, MemoryRegion *mr)
723 CPUAddressSpace *newas;
724 AddressSpace *as = g_new0(AddressSpace, 1);
725 char *as_name;
727 assert(mr);
728 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
729 address_space_init(as, mr, as_name);
730 g_free(as_name);
732 /* Target code should have set num_ases before calling us */
733 assert(asidx < cpu->num_ases);
735 if (asidx == 0) {
736 /* address space 0 gets the convenience alias */
737 cpu->as = as;
740 /* KVM cannot currently support multiple address spaces. */
741 assert(asidx == 0 || !kvm_enabled());
743 if (!cpu->cpu_ases) {
744 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
747 newas = &cpu->cpu_ases[asidx];
748 newas->cpu = cpu;
749 newas->as = as;
750 if (tcg_enabled()) {
751 newas->tcg_as_listener.commit = tcg_commit;
752 memory_listener_register(&newas->tcg_as_listener, as);
756 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
758 /* Return the AddressSpace corresponding to the specified index */
759 return cpu->cpu_ases[asidx].as;
761 #endif
763 void cpu_exec_unrealizefn(CPUState *cpu)
765 CPUClass *cc = CPU_GET_CLASS(cpu);
767 cpu_list_remove(cpu);
769 if (cc->vmsd != NULL) {
770 vmstate_unregister(NULL, cc->vmsd, cpu);
772 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
773 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
777 Property cpu_common_props[] = {
778 #ifndef CONFIG_USER_ONLY
779 /* Create a memory property for softmmu CPU object,
780 * so users can wire up its memory. (This can't go in qom/cpu.c
781 * because that file is compiled only once for both user-mode
782 * and system builds.) The default if no link is set up is to use
783 * the system address space.
785 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
786 MemoryRegion *),
787 #endif
788 DEFINE_PROP_END_OF_LIST(),
791 void cpu_exec_initfn(CPUState *cpu)
793 cpu->as = NULL;
794 cpu->num_ases = 0;
796 #ifndef CONFIG_USER_ONLY
797 cpu->thread_id = qemu_get_thread_id();
798 cpu->memory = system_memory;
799 object_ref(OBJECT(cpu->memory));
800 #endif
803 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
805 CPUClass *cc = CPU_GET_CLASS(cpu);
806 static bool tcg_target_initialized;
808 cpu_list_add(cpu);
810 if (tcg_enabled() && !tcg_target_initialized) {
811 tcg_target_initialized = true;
812 cc->tcg_initialize();
815 #ifndef CONFIG_USER_ONLY
816 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
817 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
819 if (cc->vmsd != NULL) {
820 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
822 #endif
825 const char *parse_cpu_model(const char *cpu_model)
827 ObjectClass *oc;
828 CPUClass *cc;
829 gchar **model_pieces;
830 const char *cpu_type;
832 model_pieces = g_strsplit(cpu_model, ",", 2);
834 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
835 if (oc == NULL) {
836 error_report("unable to find CPU model '%s'", model_pieces[0]);
837 g_strfreev(model_pieces);
838 exit(EXIT_FAILURE);
841 cpu_type = object_class_get_name(oc);
842 cc = CPU_CLASS(oc);
843 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
844 g_strfreev(model_pieces);
845 return cpu_type;
848 #if defined(CONFIG_USER_ONLY)
849 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
851 mmap_lock();
852 tb_lock();
853 tb_invalidate_phys_page_range(pc, pc + 1, 0);
854 tb_unlock();
855 mmap_unlock();
857 #else
858 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
860 MemTxAttrs attrs;
861 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
862 int asidx = cpu_asidx_from_attrs(cpu, attrs);
863 if (phys != -1) {
864 /* Locks grabbed by tb_invalidate_phys_addr */
865 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
866 phys | (pc & ~TARGET_PAGE_MASK));
869 #endif
871 #if defined(CONFIG_USER_ONLY)
872 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
877 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
878 int flags)
880 return -ENOSYS;
883 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
887 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
888 int flags, CPUWatchpoint **watchpoint)
890 return -ENOSYS;
892 #else
893 /* Add a watchpoint. */
894 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
895 int flags, CPUWatchpoint **watchpoint)
897 CPUWatchpoint *wp;
899 /* forbid ranges which are empty or run off the end of the address space */
900 if (len == 0 || (addr + len - 1) < addr) {
901 error_report("tried to set invalid watchpoint at %"
902 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
903 return -EINVAL;
905 wp = g_malloc(sizeof(*wp));
907 wp->vaddr = addr;
908 wp->len = len;
909 wp->flags = flags;
911 /* keep all GDB-injected watchpoints in front */
912 if (flags & BP_GDB) {
913 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
914 } else {
915 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
918 tlb_flush_page(cpu, addr);
920 if (watchpoint)
921 *watchpoint = wp;
922 return 0;
925 /* Remove a specific watchpoint. */
926 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
927 int flags)
929 CPUWatchpoint *wp;
931 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
932 if (addr == wp->vaddr && len == wp->len
933 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
934 cpu_watchpoint_remove_by_ref(cpu, wp);
935 return 0;
938 return -ENOENT;
941 /* Remove a specific watchpoint by reference. */
942 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
944 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
946 tlb_flush_page(cpu, watchpoint->vaddr);
948 g_free(watchpoint);
951 /* Remove all matching watchpoints. */
952 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
954 CPUWatchpoint *wp, *next;
956 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
957 if (wp->flags & mask) {
958 cpu_watchpoint_remove_by_ref(cpu, wp);
963 /* Return true if this watchpoint address matches the specified
964 * access (ie the address range covered by the watchpoint overlaps
965 * partially or completely with the address range covered by the
966 * access).
968 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
969 vaddr addr,
970 vaddr len)
972 /* We know the lengths are non-zero, but a little caution is
973 * required to avoid errors in the case where the range ends
974 * exactly at the top of the address space and so addr + len
975 * wraps round to zero.
977 vaddr wpend = wp->vaddr + wp->len - 1;
978 vaddr addrend = addr + len - 1;
980 return !(addr > wpend || wp->vaddr > addrend);
983 #endif
985 /* Add a breakpoint. */
986 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
987 CPUBreakpoint **breakpoint)
989 CPUBreakpoint *bp;
991 bp = g_malloc(sizeof(*bp));
993 bp->pc = pc;
994 bp->flags = flags;
996 /* keep all GDB-injected breakpoints in front */
997 if (flags & BP_GDB) {
998 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
999 } else {
1000 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1003 breakpoint_invalidate(cpu, pc);
1005 if (breakpoint) {
1006 *breakpoint = bp;
1008 return 0;
1011 /* Remove a specific breakpoint. */
1012 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1014 CPUBreakpoint *bp;
1016 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1017 if (bp->pc == pc && bp->flags == flags) {
1018 cpu_breakpoint_remove_by_ref(cpu, bp);
1019 return 0;
1022 return -ENOENT;
1025 /* Remove a specific breakpoint by reference. */
1026 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1028 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1030 breakpoint_invalidate(cpu, breakpoint->pc);
1032 g_free(breakpoint);
1035 /* Remove all matching breakpoints. */
1036 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1038 CPUBreakpoint *bp, *next;
1040 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1041 if (bp->flags & mask) {
1042 cpu_breakpoint_remove_by_ref(cpu, bp);
1047 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1048 CPU loop after each instruction */
1049 void cpu_single_step(CPUState *cpu, int enabled)
1051 if (cpu->singlestep_enabled != enabled) {
1052 cpu->singlestep_enabled = enabled;
1053 if (kvm_enabled()) {
1054 kvm_update_guest_debug(cpu, 0);
1055 } else {
1056 /* must flush all the translated code to avoid inconsistencies */
1057 /* XXX: only flush what is necessary */
1058 tb_flush(cpu);
1063 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1065 va_list ap;
1066 va_list ap2;
1068 va_start(ap, fmt);
1069 va_copy(ap2, ap);
1070 fprintf(stderr, "qemu: fatal: ");
1071 vfprintf(stderr, fmt, ap);
1072 fprintf(stderr, "\n");
1073 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1074 if (qemu_log_separate()) {
1075 qemu_log_lock();
1076 qemu_log("qemu: fatal: ");
1077 qemu_log_vprintf(fmt, ap2);
1078 qemu_log("\n");
1079 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1080 qemu_log_flush();
1081 qemu_log_unlock();
1082 qemu_log_close();
1084 va_end(ap2);
1085 va_end(ap);
1086 replay_finish();
1087 #if defined(CONFIG_USER_ONLY)
1089 struct sigaction act;
1090 sigfillset(&act.sa_mask);
1091 act.sa_handler = SIG_DFL;
1092 sigaction(SIGABRT, &act, NULL);
1094 #endif
1095 abort();
1098 #if !defined(CONFIG_USER_ONLY)
1099 /* Called from RCU critical section */
1100 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1102 RAMBlock *block;
1104 block = atomic_rcu_read(&ram_list.mru_block);
1105 if (block && addr - block->offset < block->max_length) {
1106 return block;
1108 RAMBLOCK_FOREACH(block) {
1109 if (addr - block->offset < block->max_length) {
1110 goto found;
1114 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1115 abort();
1117 found:
1118 /* It is safe to write mru_block outside the iothread lock. This
1119 * is what happens:
1121 * mru_block = xxx
1122 * rcu_read_unlock()
1123 * xxx removed from list
1124 * rcu_read_lock()
1125 * read mru_block
1126 * mru_block = NULL;
1127 * call_rcu(reclaim_ramblock, xxx);
1128 * rcu_read_unlock()
1130 * atomic_rcu_set is not needed here. The block was already published
1131 * when it was placed into the list. Here we're just making an extra
1132 * copy of the pointer.
1134 ram_list.mru_block = block;
1135 return block;
1138 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1140 CPUState *cpu;
1141 ram_addr_t start1;
1142 RAMBlock *block;
1143 ram_addr_t end;
1145 end = TARGET_PAGE_ALIGN(start + length);
1146 start &= TARGET_PAGE_MASK;
1148 rcu_read_lock();
1149 block = qemu_get_ram_block(start);
1150 assert(block == qemu_get_ram_block(end - 1));
1151 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1152 CPU_FOREACH(cpu) {
1153 tlb_reset_dirty(cpu, start1, length);
1155 rcu_read_unlock();
1158 /* Note: start and end must be within the same ram block. */
1159 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1160 ram_addr_t length,
1161 unsigned client)
1163 DirtyMemoryBlocks *blocks;
1164 unsigned long end, page;
1165 bool dirty = false;
1167 if (length == 0) {
1168 return false;
1171 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1172 page = start >> TARGET_PAGE_BITS;
1174 rcu_read_lock();
1176 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1178 while (page < end) {
1179 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1180 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1181 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1183 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1184 offset, num);
1185 page += num;
1188 rcu_read_unlock();
1190 if (dirty && tcg_enabled()) {
1191 tlb_reset_dirty_range_all(start, length);
1194 return dirty;
1197 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1198 (ram_addr_t start, ram_addr_t length, unsigned client)
1200 DirtyMemoryBlocks *blocks;
1201 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1202 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1203 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1204 DirtyBitmapSnapshot *snap;
1205 unsigned long page, end, dest;
1207 snap = g_malloc0(sizeof(*snap) +
1208 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1209 snap->start = first;
1210 snap->end = last;
1212 page = first >> TARGET_PAGE_BITS;
1213 end = last >> TARGET_PAGE_BITS;
1214 dest = 0;
1216 rcu_read_lock();
1218 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1220 while (page < end) {
1221 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1222 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1223 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1225 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1226 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1227 offset >>= BITS_PER_LEVEL;
1229 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1230 blocks->blocks[idx] + offset,
1231 num);
1232 page += num;
1233 dest += num >> BITS_PER_LEVEL;
1236 rcu_read_unlock();
1238 if (tcg_enabled()) {
1239 tlb_reset_dirty_range_all(start, length);
1242 return snap;
1245 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1246 ram_addr_t start,
1247 ram_addr_t length)
1249 unsigned long page, end;
1251 assert(start >= snap->start);
1252 assert(start + length <= snap->end);
1254 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1255 page = (start - snap->start) >> TARGET_PAGE_BITS;
1257 while (page < end) {
1258 if (test_bit(page, snap->dirty)) {
1259 return true;
1261 page++;
1263 return false;
1266 /* Called from RCU critical section */
1267 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1268 MemoryRegionSection *section,
1269 target_ulong vaddr,
1270 hwaddr paddr, hwaddr xlat,
1271 int prot,
1272 target_ulong *address)
1274 hwaddr iotlb;
1275 CPUWatchpoint *wp;
1277 if (memory_region_is_ram(section->mr)) {
1278 /* Normal RAM. */
1279 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1280 if (!section->readonly) {
1281 iotlb |= PHYS_SECTION_NOTDIRTY;
1282 } else {
1283 iotlb |= PHYS_SECTION_ROM;
1285 } else {
1286 AddressSpaceDispatch *d;
1288 d = flatview_to_dispatch(section->fv);
1289 iotlb = section - d->map.sections;
1290 iotlb += xlat;
1293 /* Make accesses to pages with watchpoints go via the
1294 watchpoint trap routines. */
1295 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1296 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1297 /* Avoid trapping reads of pages with a write breakpoint. */
1298 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1299 iotlb = PHYS_SECTION_WATCH + paddr;
1300 *address |= TLB_MMIO;
1301 break;
1306 return iotlb;
1308 #endif /* defined(CONFIG_USER_ONLY) */
1310 #if !defined(CONFIG_USER_ONLY)
1312 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1313 uint16_t section);
1314 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1316 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1317 qemu_anon_ram_alloc;
1320 * Set a custom physical guest memory alloator.
1321 * Accelerators with unusual needs may need this. Hopefully, we can
1322 * get rid of it eventually.
1324 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1326 phys_mem_alloc = alloc;
1329 static uint16_t phys_section_add(PhysPageMap *map,
1330 MemoryRegionSection *section)
1332 /* The physical section number is ORed with a page-aligned
1333 * pointer to produce the iotlb entries. Thus it should
1334 * never overflow into the page-aligned value.
1336 assert(map->sections_nb < TARGET_PAGE_SIZE);
1338 if (map->sections_nb == map->sections_nb_alloc) {
1339 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1340 map->sections = g_renew(MemoryRegionSection, map->sections,
1341 map->sections_nb_alloc);
1343 map->sections[map->sections_nb] = *section;
1344 memory_region_ref(section->mr);
1345 return map->sections_nb++;
1348 static void phys_section_destroy(MemoryRegion *mr)
1350 bool have_sub_page = mr->subpage;
1352 memory_region_unref(mr);
1354 if (have_sub_page) {
1355 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1356 object_unref(OBJECT(&subpage->iomem));
1357 g_free(subpage);
1361 static void phys_sections_free(PhysPageMap *map)
1363 while (map->sections_nb > 0) {
1364 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1365 phys_section_destroy(section->mr);
1367 g_free(map->sections);
1368 g_free(map->nodes);
1371 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1373 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1374 subpage_t *subpage;
1375 hwaddr base = section->offset_within_address_space
1376 & TARGET_PAGE_MASK;
1377 MemoryRegionSection *existing = phys_page_find(d, base);
1378 MemoryRegionSection subsection = {
1379 .offset_within_address_space = base,
1380 .size = int128_make64(TARGET_PAGE_SIZE),
1382 hwaddr start, end;
1384 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1386 if (!(existing->mr->subpage)) {
1387 subpage = subpage_init(fv, base);
1388 subsection.fv = fv;
1389 subsection.mr = &subpage->iomem;
1390 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1391 phys_section_add(&d->map, &subsection));
1392 } else {
1393 subpage = container_of(existing->mr, subpage_t, iomem);
1395 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1396 end = start + int128_get64(section->size) - 1;
1397 subpage_register(subpage, start, end,
1398 phys_section_add(&d->map, section));
1402 static void register_multipage(FlatView *fv,
1403 MemoryRegionSection *section)
1405 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1406 hwaddr start_addr = section->offset_within_address_space;
1407 uint16_t section_index = phys_section_add(&d->map, section);
1408 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1409 TARGET_PAGE_BITS));
1411 assert(num_pages);
1412 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1415 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1417 MemoryRegionSection now = *section, remain = *section;
1418 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1420 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1421 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1422 - now.offset_within_address_space;
1424 now.size = int128_min(int128_make64(left), now.size);
1425 register_subpage(fv, &now);
1426 } else {
1427 now.size = int128_zero();
1429 while (int128_ne(remain.size, now.size)) {
1430 remain.size = int128_sub(remain.size, now.size);
1431 remain.offset_within_address_space += int128_get64(now.size);
1432 remain.offset_within_region += int128_get64(now.size);
1433 now = remain;
1434 if (int128_lt(remain.size, page_size)) {
1435 register_subpage(fv, &now);
1436 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1437 now.size = page_size;
1438 register_subpage(fv, &now);
1439 } else {
1440 now.size = int128_and(now.size, int128_neg(page_size));
1441 register_multipage(fv, &now);
1446 void qemu_flush_coalesced_mmio_buffer(void)
1448 if (kvm_enabled())
1449 kvm_flush_coalesced_mmio_buffer();
1452 void qemu_mutex_lock_ramlist(void)
1454 qemu_mutex_lock(&ram_list.mutex);
1457 void qemu_mutex_unlock_ramlist(void)
1459 qemu_mutex_unlock(&ram_list.mutex);
1462 void ram_block_dump(Monitor *mon)
1464 RAMBlock *block;
1465 char *psize;
1467 rcu_read_lock();
1468 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1469 "Block Name", "PSize", "Offset", "Used", "Total");
1470 RAMBLOCK_FOREACH(block) {
1471 psize = size_to_str(block->page_size);
1472 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1473 " 0x%016" PRIx64 "\n", block->idstr, psize,
1474 (uint64_t)block->offset,
1475 (uint64_t)block->used_length,
1476 (uint64_t)block->max_length);
1477 g_free(psize);
1479 rcu_read_unlock();
1482 #ifdef __linux__
1484 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1485 * may or may not name the same files / on the same filesystem now as
1486 * when we actually open and map them. Iterate over the file
1487 * descriptors instead, and use qemu_fd_getpagesize().
1489 static int find_max_supported_pagesize(Object *obj, void *opaque)
1491 long *hpsize_min = opaque;
1493 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1494 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1496 if (hpsize < *hpsize_min) {
1497 *hpsize_min = hpsize;
1501 return 0;
1504 long qemu_getrampagesize(void)
1506 long hpsize = LONG_MAX;
1507 long mainrampagesize;
1508 Object *memdev_root;
1510 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1512 /* it's possible we have memory-backend objects with
1513 * hugepage-backed RAM. these may get mapped into system
1514 * address space via -numa parameters or memory hotplug
1515 * hooks. we want to take these into account, but we
1516 * also want to make sure these supported hugepage
1517 * sizes are applicable across the entire range of memory
1518 * we may boot from, so we take the min across all
1519 * backends, and assume normal pages in cases where a
1520 * backend isn't backed by hugepages.
1522 memdev_root = object_resolve_path("/objects", NULL);
1523 if (memdev_root) {
1524 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1526 if (hpsize == LONG_MAX) {
1527 /* No additional memory regions found ==> Report main RAM page size */
1528 return mainrampagesize;
1531 /* If NUMA is disabled or the NUMA nodes are not backed with a
1532 * memory-backend, then there is at least one node using "normal" RAM,
1533 * so if its page size is smaller we have got to report that size instead.
1535 if (hpsize > mainrampagesize &&
1536 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1537 static bool warned;
1538 if (!warned) {
1539 error_report("Huge page support disabled (n/a for main memory).");
1540 warned = true;
1542 return mainrampagesize;
1545 return hpsize;
1547 #else
1548 long qemu_getrampagesize(void)
1550 return getpagesize();
1552 #endif
1554 #ifdef __linux__
1555 static int64_t get_file_size(int fd)
1557 int64_t size = lseek(fd, 0, SEEK_END);
1558 if (size < 0) {
1559 return -errno;
1561 return size;
1564 static int file_ram_open(const char *path,
1565 const char *region_name,
1566 bool *created,
1567 Error **errp)
1569 char *filename;
1570 char *sanitized_name;
1571 char *c;
1572 int fd = -1;
1574 *created = false;
1575 for (;;) {
1576 fd = open(path, O_RDWR);
1577 if (fd >= 0) {
1578 /* @path names an existing file, use it */
1579 break;
1581 if (errno == ENOENT) {
1582 /* @path names a file that doesn't exist, create it */
1583 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1584 if (fd >= 0) {
1585 *created = true;
1586 break;
1588 } else if (errno == EISDIR) {
1589 /* @path names a directory, create a file there */
1590 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1591 sanitized_name = g_strdup(region_name);
1592 for (c = sanitized_name; *c != '\0'; c++) {
1593 if (*c == '/') {
1594 *c = '_';
1598 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1599 sanitized_name);
1600 g_free(sanitized_name);
1602 fd = mkstemp(filename);
1603 if (fd >= 0) {
1604 unlink(filename);
1605 g_free(filename);
1606 break;
1608 g_free(filename);
1610 if (errno != EEXIST && errno != EINTR) {
1611 error_setg_errno(errp, errno,
1612 "can't open backing store %s for guest RAM",
1613 path);
1614 return -1;
1617 * Try again on EINTR and EEXIST. The latter happens when
1618 * something else creates the file between our two open().
1622 return fd;
1625 static void *file_ram_alloc(RAMBlock *block,
1626 ram_addr_t memory,
1627 int fd,
1628 bool truncate,
1629 Error **errp)
1631 void *area;
1633 block->page_size = qemu_fd_getpagesize(fd);
1634 if (block->mr->align % block->page_size) {
1635 error_setg(errp, "alignment 0x%" PRIx64
1636 " must be multiples of page size 0x%zx",
1637 block->mr->align, block->page_size);
1638 return NULL;
1640 block->mr->align = MAX(block->page_size, block->mr->align);
1641 #if defined(__s390x__)
1642 if (kvm_enabled()) {
1643 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1645 #endif
1647 if (memory < block->page_size) {
1648 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1649 "or larger than page size 0x%zx",
1650 memory, block->page_size);
1651 return NULL;
1654 memory = ROUND_UP(memory, block->page_size);
1657 * ftruncate is not supported by hugetlbfs in older
1658 * hosts, so don't bother bailing out on errors.
1659 * If anything goes wrong with it under other filesystems,
1660 * mmap will fail.
1662 * Do not truncate the non-empty backend file to avoid corrupting
1663 * the existing data in the file. Disabling shrinking is not
1664 * enough. For example, the current vNVDIMM implementation stores
1665 * the guest NVDIMM labels at the end of the backend file. If the
1666 * backend file is later extended, QEMU will not be able to find
1667 * those labels. Therefore, extending the non-empty backend file
1668 * is disabled as well.
1670 if (truncate && ftruncate(fd, memory)) {
1671 perror("ftruncate");
1674 area = qemu_ram_mmap(fd, memory, block->mr->align,
1675 block->flags & RAM_SHARED);
1676 if (area == MAP_FAILED) {
1677 error_setg_errno(errp, errno,
1678 "unable to map backing store for guest RAM");
1679 return NULL;
1682 if (mem_prealloc) {
1683 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1684 if (errp && *errp) {
1685 qemu_ram_munmap(area, memory);
1686 return NULL;
1690 block->fd = fd;
1691 return area;
1693 #endif
1695 /* Allocate space within the ram_addr_t space that governs the
1696 * dirty bitmaps.
1697 * Called with the ramlist lock held.
1699 static ram_addr_t find_ram_offset(ram_addr_t size)
1701 RAMBlock *block, *next_block;
1702 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1704 assert(size != 0); /* it would hand out same offset multiple times */
1706 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1707 return 0;
1710 RAMBLOCK_FOREACH(block) {
1711 ram_addr_t candidate, next = RAM_ADDR_MAX;
1713 /* Align blocks to start on a 'long' in the bitmap
1714 * which makes the bitmap sync'ing take the fast path.
1716 candidate = block->offset + block->max_length;
1717 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1719 /* Search for the closest following block
1720 * and find the gap.
1722 RAMBLOCK_FOREACH(next_block) {
1723 if (next_block->offset >= candidate) {
1724 next = MIN(next, next_block->offset);
1728 /* If it fits remember our place and remember the size
1729 * of gap, but keep going so that we might find a smaller
1730 * gap to fill so avoiding fragmentation.
1732 if (next - candidate >= size && next - candidate < mingap) {
1733 offset = candidate;
1734 mingap = next - candidate;
1737 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1740 if (offset == RAM_ADDR_MAX) {
1741 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1742 (uint64_t)size);
1743 abort();
1746 trace_find_ram_offset(size, offset);
1748 return offset;
1751 unsigned long last_ram_page(void)
1753 RAMBlock *block;
1754 ram_addr_t last = 0;
1756 rcu_read_lock();
1757 RAMBLOCK_FOREACH(block) {
1758 last = MAX(last, block->offset + block->max_length);
1760 rcu_read_unlock();
1761 return last >> TARGET_PAGE_BITS;
1764 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1766 int ret;
1768 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1769 if (!machine_dump_guest_core(current_machine)) {
1770 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1771 if (ret) {
1772 perror("qemu_madvise");
1773 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1774 "but dump_guest_core=off specified\n");
1779 const char *qemu_ram_get_idstr(RAMBlock *rb)
1781 return rb->idstr;
1784 bool qemu_ram_is_shared(RAMBlock *rb)
1786 return rb->flags & RAM_SHARED;
1789 /* Note: Only set at the start of postcopy */
1790 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1792 return rb->flags & RAM_UF_ZEROPAGE;
1795 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1797 rb->flags |= RAM_UF_ZEROPAGE;
1800 /* Called with iothread lock held. */
1801 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1803 RAMBlock *block;
1805 assert(new_block);
1806 assert(!new_block->idstr[0]);
1808 if (dev) {
1809 char *id = qdev_get_dev_path(dev);
1810 if (id) {
1811 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1812 g_free(id);
1815 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1817 rcu_read_lock();
1818 RAMBLOCK_FOREACH(block) {
1819 if (block != new_block &&
1820 !strcmp(block->idstr, new_block->idstr)) {
1821 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1822 new_block->idstr);
1823 abort();
1826 rcu_read_unlock();
1829 /* Called with iothread lock held. */
1830 void qemu_ram_unset_idstr(RAMBlock *block)
1832 /* FIXME: arch_init.c assumes that this is not called throughout
1833 * migration. Ignore the problem since hot-unplug during migration
1834 * does not work anyway.
1836 if (block) {
1837 memset(block->idstr, 0, sizeof(block->idstr));
1841 size_t qemu_ram_pagesize(RAMBlock *rb)
1843 return rb->page_size;
1846 /* Returns the largest size of page in use */
1847 size_t qemu_ram_pagesize_largest(void)
1849 RAMBlock *block;
1850 size_t largest = 0;
1852 RAMBLOCK_FOREACH(block) {
1853 largest = MAX(largest, qemu_ram_pagesize(block));
1856 return largest;
1859 static int memory_try_enable_merging(void *addr, size_t len)
1861 if (!machine_mem_merge(current_machine)) {
1862 /* disabled by the user */
1863 return 0;
1866 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1869 /* Only legal before guest might have detected the memory size: e.g. on
1870 * incoming migration, or right after reset.
1872 * As memory core doesn't know how is memory accessed, it is up to
1873 * resize callback to update device state and/or add assertions to detect
1874 * misuse, if necessary.
1876 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1878 assert(block);
1880 newsize = HOST_PAGE_ALIGN(newsize);
1882 if (block->used_length == newsize) {
1883 return 0;
1886 if (!(block->flags & RAM_RESIZEABLE)) {
1887 error_setg_errno(errp, EINVAL,
1888 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1889 " in != 0x" RAM_ADDR_FMT, block->idstr,
1890 newsize, block->used_length);
1891 return -EINVAL;
1894 if (block->max_length < newsize) {
1895 error_setg_errno(errp, EINVAL,
1896 "Length too large: %s: 0x" RAM_ADDR_FMT
1897 " > 0x" RAM_ADDR_FMT, block->idstr,
1898 newsize, block->max_length);
1899 return -EINVAL;
1902 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1903 block->used_length = newsize;
1904 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1905 DIRTY_CLIENTS_ALL);
1906 memory_region_set_size(block->mr, newsize);
1907 if (block->resized) {
1908 block->resized(block->idstr, newsize, block->host);
1910 return 0;
1913 /* Called with ram_list.mutex held */
1914 static void dirty_memory_extend(ram_addr_t old_ram_size,
1915 ram_addr_t new_ram_size)
1917 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1918 DIRTY_MEMORY_BLOCK_SIZE);
1919 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1920 DIRTY_MEMORY_BLOCK_SIZE);
1921 int i;
1923 /* Only need to extend if block count increased */
1924 if (new_num_blocks <= old_num_blocks) {
1925 return;
1928 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1929 DirtyMemoryBlocks *old_blocks;
1930 DirtyMemoryBlocks *new_blocks;
1931 int j;
1933 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1934 new_blocks = g_malloc(sizeof(*new_blocks) +
1935 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1937 if (old_num_blocks) {
1938 memcpy(new_blocks->blocks, old_blocks->blocks,
1939 old_num_blocks * sizeof(old_blocks->blocks[0]));
1942 for (j = old_num_blocks; j < new_num_blocks; j++) {
1943 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1946 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1948 if (old_blocks) {
1949 g_free_rcu(old_blocks, rcu);
1954 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1956 RAMBlock *block;
1957 RAMBlock *last_block = NULL;
1958 ram_addr_t old_ram_size, new_ram_size;
1959 Error *err = NULL;
1961 old_ram_size = last_ram_page();
1963 qemu_mutex_lock_ramlist();
1964 new_block->offset = find_ram_offset(new_block->max_length);
1966 if (!new_block->host) {
1967 if (xen_enabled()) {
1968 xen_ram_alloc(new_block->offset, new_block->max_length,
1969 new_block->mr, &err);
1970 if (err) {
1971 error_propagate(errp, err);
1972 qemu_mutex_unlock_ramlist();
1973 return;
1975 } else {
1976 new_block->host = phys_mem_alloc(new_block->max_length,
1977 &new_block->mr->align, shared);
1978 if (!new_block->host) {
1979 error_setg_errno(errp, errno,
1980 "cannot set up guest memory '%s'",
1981 memory_region_name(new_block->mr));
1982 qemu_mutex_unlock_ramlist();
1983 return;
1985 memory_try_enable_merging(new_block->host, new_block->max_length);
1989 new_ram_size = MAX(old_ram_size,
1990 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1991 if (new_ram_size > old_ram_size) {
1992 dirty_memory_extend(old_ram_size, new_ram_size);
1994 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1995 * QLIST (which has an RCU-friendly variant) does not have insertion at
1996 * tail, so save the last element in last_block.
1998 RAMBLOCK_FOREACH(block) {
1999 last_block = block;
2000 if (block->max_length < new_block->max_length) {
2001 break;
2004 if (block) {
2005 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2006 } else if (last_block) {
2007 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2008 } else { /* list is empty */
2009 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2011 ram_list.mru_block = NULL;
2013 /* Write list before version */
2014 smp_wmb();
2015 ram_list.version++;
2016 qemu_mutex_unlock_ramlist();
2018 cpu_physical_memory_set_dirty_range(new_block->offset,
2019 new_block->used_length,
2020 DIRTY_CLIENTS_ALL);
2022 if (new_block->host) {
2023 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2024 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2025 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2026 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2027 ram_block_notify_add(new_block->host, new_block->max_length);
2031 #ifdef __linux__
2032 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2033 bool share, int fd,
2034 Error **errp)
2036 RAMBlock *new_block;
2037 Error *local_err = NULL;
2038 int64_t file_size;
2040 if (xen_enabled()) {
2041 error_setg(errp, "-mem-path not supported with Xen");
2042 return NULL;
2045 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2046 error_setg(errp,
2047 "host lacks kvm mmu notifiers, -mem-path unsupported");
2048 return NULL;
2051 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2053 * file_ram_alloc() needs to allocate just like
2054 * phys_mem_alloc, but we haven't bothered to provide
2055 * a hook there.
2057 error_setg(errp,
2058 "-mem-path not supported with this accelerator");
2059 return NULL;
2062 size = HOST_PAGE_ALIGN(size);
2063 file_size = get_file_size(fd);
2064 if (file_size > 0 && file_size < size) {
2065 error_setg(errp, "backing store %s size 0x%" PRIx64
2066 " does not match 'size' option 0x" RAM_ADDR_FMT,
2067 mem_path, file_size, size);
2068 return NULL;
2071 new_block = g_malloc0(sizeof(*new_block));
2072 new_block->mr = mr;
2073 new_block->used_length = size;
2074 new_block->max_length = size;
2075 new_block->flags = share ? RAM_SHARED : 0;
2076 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2077 if (!new_block->host) {
2078 g_free(new_block);
2079 return NULL;
2082 ram_block_add(new_block, &local_err, share);
2083 if (local_err) {
2084 g_free(new_block);
2085 error_propagate(errp, local_err);
2086 return NULL;
2088 return new_block;
2093 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2094 bool share, const char *mem_path,
2095 Error **errp)
2097 int fd;
2098 bool created;
2099 RAMBlock *block;
2101 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2102 if (fd < 0) {
2103 return NULL;
2106 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2107 if (!block) {
2108 if (created) {
2109 unlink(mem_path);
2111 close(fd);
2112 return NULL;
2115 return block;
2117 #endif
2119 static
2120 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2121 void (*resized)(const char*,
2122 uint64_t length,
2123 void *host),
2124 void *host, bool resizeable, bool share,
2125 MemoryRegion *mr, Error **errp)
2127 RAMBlock *new_block;
2128 Error *local_err = NULL;
2130 size = HOST_PAGE_ALIGN(size);
2131 max_size = HOST_PAGE_ALIGN(max_size);
2132 new_block = g_malloc0(sizeof(*new_block));
2133 new_block->mr = mr;
2134 new_block->resized = resized;
2135 new_block->used_length = size;
2136 new_block->max_length = max_size;
2137 assert(max_size >= size);
2138 new_block->fd = -1;
2139 new_block->page_size = getpagesize();
2140 new_block->host = host;
2141 if (host) {
2142 new_block->flags |= RAM_PREALLOC;
2144 if (resizeable) {
2145 new_block->flags |= RAM_RESIZEABLE;
2147 ram_block_add(new_block, &local_err, share);
2148 if (local_err) {
2149 g_free(new_block);
2150 error_propagate(errp, local_err);
2151 return NULL;
2153 return new_block;
2156 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2157 MemoryRegion *mr, Error **errp)
2159 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2160 false, mr, errp);
2163 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2164 MemoryRegion *mr, Error **errp)
2166 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2167 share, mr, errp);
2170 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2171 void (*resized)(const char*,
2172 uint64_t length,
2173 void *host),
2174 MemoryRegion *mr, Error **errp)
2176 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2177 false, mr, errp);
2180 static void reclaim_ramblock(RAMBlock *block)
2182 if (block->flags & RAM_PREALLOC) {
2184 } else if (xen_enabled()) {
2185 xen_invalidate_map_cache_entry(block->host);
2186 #ifndef _WIN32
2187 } else if (block->fd >= 0) {
2188 qemu_ram_munmap(block->host, block->max_length);
2189 close(block->fd);
2190 #endif
2191 } else {
2192 qemu_anon_ram_free(block->host, block->max_length);
2194 g_free(block);
2197 void qemu_ram_free(RAMBlock *block)
2199 if (!block) {
2200 return;
2203 if (block->host) {
2204 ram_block_notify_remove(block->host, block->max_length);
2207 qemu_mutex_lock_ramlist();
2208 QLIST_REMOVE_RCU(block, next);
2209 ram_list.mru_block = NULL;
2210 /* Write list before version */
2211 smp_wmb();
2212 ram_list.version++;
2213 call_rcu(block, reclaim_ramblock, rcu);
2214 qemu_mutex_unlock_ramlist();
2217 #ifndef _WIN32
2218 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2220 RAMBlock *block;
2221 ram_addr_t offset;
2222 int flags;
2223 void *area, *vaddr;
2225 RAMBLOCK_FOREACH(block) {
2226 offset = addr - block->offset;
2227 if (offset < block->max_length) {
2228 vaddr = ramblock_ptr(block, offset);
2229 if (block->flags & RAM_PREALLOC) {
2231 } else if (xen_enabled()) {
2232 abort();
2233 } else {
2234 flags = MAP_FIXED;
2235 if (block->fd >= 0) {
2236 flags |= (block->flags & RAM_SHARED ?
2237 MAP_SHARED : MAP_PRIVATE);
2238 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2239 flags, block->fd, offset);
2240 } else {
2242 * Remap needs to match alloc. Accelerators that
2243 * set phys_mem_alloc never remap. If they did,
2244 * we'd need a remap hook here.
2246 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2248 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2249 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2250 flags, -1, 0);
2252 if (area != vaddr) {
2253 error_report("Could not remap addr: "
2254 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2255 length, addr);
2256 exit(1);
2258 memory_try_enable_merging(vaddr, length);
2259 qemu_ram_setup_dump(vaddr, length);
2264 #endif /* !_WIN32 */
2266 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2267 * This should not be used for general purpose DMA. Use address_space_map
2268 * or address_space_rw instead. For local memory (e.g. video ram) that the
2269 * device owns, use memory_region_get_ram_ptr.
2271 * Called within RCU critical section.
2273 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2275 RAMBlock *block = ram_block;
2277 if (block == NULL) {
2278 block = qemu_get_ram_block(addr);
2279 addr -= block->offset;
2282 if (xen_enabled() && block->host == NULL) {
2283 /* We need to check if the requested address is in the RAM
2284 * because we don't want to map the entire memory in QEMU.
2285 * In that case just map until the end of the page.
2287 if (block->offset == 0) {
2288 return xen_map_cache(addr, 0, 0, false);
2291 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2293 return ramblock_ptr(block, addr);
2296 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2297 * but takes a size argument.
2299 * Called within RCU critical section.
2301 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2302 hwaddr *size, bool lock)
2304 RAMBlock *block = ram_block;
2305 if (*size == 0) {
2306 return NULL;
2309 if (block == NULL) {
2310 block = qemu_get_ram_block(addr);
2311 addr -= block->offset;
2313 *size = MIN(*size, block->max_length - addr);
2315 if (xen_enabled() && block->host == NULL) {
2316 /* We need to check if the requested address is in the RAM
2317 * because we don't want to map the entire memory in QEMU.
2318 * In that case just map the requested area.
2320 if (block->offset == 0) {
2321 return xen_map_cache(addr, *size, lock, lock);
2324 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2327 return ramblock_ptr(block, addr);
2330 /* Return the offset of a hostpointer within a ramblock */
2331 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2333 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2334 assert((uintptr_t)host >= (uintptr_t)rb->host);
2335 assert(res < rb->max_length);
2337 return res;
2341 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2342 * in that RAMBlock.
2344 * ptr: Host pointer to look up
2345 * round_offset: If true round the result offset down to a page boundary
2346 * *ram_addr: set to result ram_addr
2347 * *offset: set to result offset within the RAMBlock
2349 * Returns: RAMBlock (or NULL if not found)
2351 * By the time this function returns, the returned pointer is not protected
2352 * by RCU anymore. If the caller is not within an RCU critical section and
2353 * does not hold the iothread lock, it must have other means of protecting the
2354 * pointer, such as a reference to the region that includes the incoming
2355 * ram_addr_t.
2357 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2358 ram_addr_t *offset)
2360 RAMBlock *block;
2361 uint8_t *host = ptr;
2363 if (xen_enabled()) {
2364 ram_addr_t ram_addr;
2365 rcu_read_lock();
2366 ram_addr = xen_ram_addr_from_mapcache(ptr);
2367 block = qemu_get_ram_block(ram_addr);
2368 if (block) {
2369 *offset = ram_addr - block->offset;
2371 rcu_read_unlock();
2372 return block;
2375 rcu_read_lock();
2376 block = atomic_rcu_read(&ram_list.mru_block);
2377 if (block && block->host && host - block->host < block->max_length) {
2378 goto found;
2381 RAMBLOCK_FOREACH(block) {
2382 /* This case append when the block is not mapped. */
2383 if (block->host == NULL) {
2384 continue;
2386 if (host - block->host < block->max_length) {
2387 goto found;
2391 rcu_read_unlock();
2392 return NULL;
2394 found:
2395 *offset = (host - block->host);
2396 if (round_offset) {
2397 *offset &= TARGET_PAGE_MASK;
2399 rcu_read_unlock();
2400 return block;
2404 * Finds the named RAMBlock
2406 * name: The name of RAMBlock to find
2408 * Returns: RAMBlock (or NULL if not found)
2410 RAMBlock *qemu_ram_block_by_name(const char *name)
2412 RAMBlock *block;
2414 RAMBLOCK_FOREACH(block) {
2415 if (!strcmp(name, block->idstr)) {
2416 return block;
2420 return NULL;
2423 /* Some of the softmmu routines need to translate from a host pointer
2424 (typically a TLB entry) back to a ram offset. */
2425 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2427 RAMBlock *block;
2428 ram_addr_t offset;
2430 block = qemu_ram_block_from_host(ptr, false, &offset);
2431 if (!block) {
2432 return RAM_ADDR_INVALID;
2435 return block->offset + offset;
2438 /* Called within RCU critical section. */
2439 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2440 CPUState *cpu,
2441 vaddr mem_vaddr,
2442 ram_addr_t ram_addr,
2443 unsigned size)
2445 ndi->cpu = cpu;
2446 ndi->ram_addr = ram_addr;
2447 ndi->mem_vaddr = mem_vaddr;
2448 ndi->size = size;
2449 ndi->locked = false;
2451 assert(tcg_enabled());
2452 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2453 ndi->locked = true;
2454 tb_lock();
2455 tb_invalidate_phys_page_fast(ram_addr, size);
2459 /* Called within RCU critical section. */
2460 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2462 if (ndi->locked) {
2463 tb_unlock();
2466 /* Set both VGA and migration bits for simplicity and to remove
2467 * the notdirty callback faster.
2469 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2470 DIRTY_CLIENTS_NOCODE);
2471 /* we remove the notdirty callback only if the code has been
2472 flushed */
2473 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2474 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2478 /* Called within RCU critical section. */
2479 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2480 uint64_t val, unsigned size)
2482 NotDirtyInfo ndi;
2484 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2485 ram_addr, size);
2487 switch (size) {
2488 case 1:
2489 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2490 break;
2491 case 2:
2492 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2493 break;
2494 case 4:
2495 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2496 break;
2497 case 8:
2498 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2499 break;
2500 default:
2501 abort();
2503 memory_notdirty_write_complete(&ndi);
2506 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2507 unsigned size, bool is_write)
2509 return is_write;
2512 static const MemoryRegionOps notdirty_mem_ops = {
2513 .write = notdirty_mem_write,
2514 .valid.accepts = notdirty_mem_accepts,
2515 .endianness = DEVICE_NATIVE_ENDIAN,
2516 .valid = {
2517 .min_access_size = 1,
2518 .max_access_size = 8,
2519 .unaligned = false,
2521 .impl = {
2522 .min_access_size = 1,
2523 .max_access_size = 8,
2524 .unaligned = false,
2528 /* Generate a debug exception if a watchpoint has been hit. */
2529 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2531 CPUState *cpu = current_cpu;
2532 CPUClass *cc = CPU_GET_CLASS(cpu);
2533 target_ulong vaddr;
2534 CPUWatchpoint *wp;
2536 assert(tcg_enabled());
2537 if (cpu->watchpoint_hit) {
2538 /* We re-entered the check after replacing the TB. Now raise
2539 * the debug interrupt so that is will trigger after the
2540 * current instruction. */
2541 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2542 return;
2544 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2545 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2546 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2547 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2548 && (wp->flags & flags)) {
2549 if (flags == BP_MEM_READ) {
2550 wp->flags |= BP_WATCHPOINT_HIT_READ;
2551 } else {
2552 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2554 wp->hitaddr = vaddr;
2555 wp->hitattrs = attrs;
2556 if (!cpu->watchpoint_hit) {
2557 if (wp->flags & BP_CPU &&
2558 !cc->debug_check_watchpoint(cpu, wp)) {
2559 wp->flags &= ~BP_WATCHPOINT_HIT;
2560 continue;
2562 cpu->watchpoint_hit = wp;
2564 /* Both tb_lock and iothread_mutex will be reset when
2565 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2566 * back into the cpu_exec main loop.
2568 tb_lock();
2569 tb_check_watchpoint(cpu);
2570 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2571 cpu->exception_index = EXCP_DEBUG;
2572 cpu_loop_exit(cpu);
2573 } else {
2574 /* Force execution of one insn next time. */
2575 cpu->cflags_next_tb = 1 | curr_cflags();
2576 cpu_loop_exit_noexc(cpu);
2579 } else {
2580 wp->flags &= ~BP_WATCHPOINT_HIT;
2585 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2586 so these check for a hit then pass through to the normal out-of-line
2587 phys routines. */
2588 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2589 unsigned size, MemTxAttrs attrs)
2591 MemTxResult res;
2592 uint64_t data;
2593 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2594 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2596 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2597 switch (size) {
2598 case 1:
2599 data = address_space_ldub(as, addr, attrs, &res);
2600 break;
2601 case 2:
2602 data = address_space_lduw(as, addr, attrs, &res);
2603 break;
2604 case 4:
2605 data = address_space_ldl(as, addr, attrs, &res);
2606 break;
2607 case 8:
2608 data = address_space_ldq(as, addr, attrs, &res);
2609 break;
2610 default: abort();
2612 *pdata = data;
2613 return res;
2616 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2617 uint64_t val, unsigned size,
2618 MemTxAttrs attrs)
2620 MemTxResult res;
2621 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2622 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2624 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2625 switch (size) {
2626 case 1:
2627 address_space_stb(as, addr, val, attrs, &res);
2628 break;
2629 case 2:
2630 address_space_stw(as, addr, val, attrs, &res);
2631 break;
2632 case 4:
2633 address_space_stl(as, addr, val, attrs, &res);
2634 break;
2635 case 8:
2636 address_space_stq(as, addr, val, attrs, &res);
2637 break;
2638 default: abort();
2640 return res;
2643 static const MemoryRegionOps watch_mem_ops = {
2644 .read_with_attrs = watch_mem_read,
2645 .write_with_attrs = watch_mem_write,
2646 .endianness = DEVICE_NATIVE_ENDIAN,
2647 .valid = {
2648 .min_access_size = 1,
2649 .max_access_size = 8,
2650 .unaligned = false,
2652 .impl = {
2653 .min_access_size = 1,
2654 .max_access_size = 8,
2655 .unaligned = false,
2659 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2660 MemTxAttrs attrs, uint8_t *buf, int len);
2661 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2662 const uint8_t *buf, int len);
2663 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2664 bool is_write);
2666 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2667 unsigned len, MemTxAttrs attrs)
2669 subpage_t *subpage = opaque;
2670 uint8_t buf[8];
2671 MemTxResult res;
2673 #if defined(DEBUG_SUBPAGE)
2674 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2675 subpage, len, addr);
2676 #endif
2677 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2678 if (res) {
2679 return res;
2681 switch (len) {
2682 case 1:
2683 *data = ldub_p(buf);
2684 return MEMTX_OK;
2685 case 2:
2686 *data = lduw_p(buf);
2687 return MEMTX_OK;
2688 case 4:
2689 *data = ldl_p(buf);
2690 return MEMTX_OK;
2691 case 8:
2692 *data = ldq_p(buf);
2693 return MEMTX_OK;
2694 default:
2695 abort();
2699 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2700 uint64_t value, unsigned len, MemTxAttrs attrs)
2702 subpage_t *subpage = opaque;
2703 uint8_t buf[8];
2705 #if defined(DEBUG_SUBPAGE)
2706 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2707 " value %"PRIx64"\n",
2708 __func__, subpage, len, addr, value);
2709 #endif
2710 switch (len) {
2711 case 1:
2712 stb_p(buf, value);
2713 break;
2714 case 2:
2715 stw_p(buf, value);
2716 break;
2717 case 4:
2718 stl_p(buf, value);
2719 break;
2720 case 8:
2721 stq_p(buf, value);
2722 break;
2723 default:
2724 abort();
2726 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2729 static bool subpage_accepts(void *opaque, hwaddr addr,
2730 unsigned len, bool is_write)
2732 subpage_t *subpage = opaque;
2733 #if defined(DEBUG_SUBPAGE)
2734 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2735 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2736 #endif
2738 return flatview_access_valid(subpage->fv, addr + subpage->base,
2739 len, is_write);
2742 static const MemoryRegionOps subpage_ops = {
2743 .read_with_attrs = subpage_read,
2744 .write_with_attrs = subpage_write,
2745 .impl.min_access_size = 1,
2746 .impl.max_access_size = 8,
2747 .valid.min_access_size = 1,
2748 .valid.max_access_size = 8,
2749 .valid.accepts = subpage_accepts,
2750 .endianness = DEVICE_NATIVE_ENDIAN,
2753 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2754 uint16_t section)
2756 int idx, eidx;
2758 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2759 return -1;
2760 idx = SUBPAGE_IDX(start);
2761 eidx = SUBPAGE_IDX(end);
2762 #if defined(DEBUG_SUBPAGE)
2763 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2764 __func__, mmio, start, end, idx, eidx, section);
2765 #endif
2766 for (; idx <= eidx; idx++) {
2767 mmio->sub_section[idx] = section;
2770 return 0;
2773 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2775 subpage_t *mmio;
2777 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2778 mmio->fv = fv;
2779 mmio->base = base;
2780 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2781 NULL, TARGET_PAGE_SIZE);
2782 mmio->iomem.subpage = true;
2783 #if defined(DEBUG_SUBPAGE)
2784 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2785 mmio, base, TARGET_PAGE_SIZE);
2786 #endif
2787 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2789 return mmio;
2792 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2794 assert(fv);
2795 MemoryRegionSection section = {
2796 .fv = fv,
2797 .mr = mr,
2798 .offset_within_address_space = 0,
2799 .offset_within_region = 0,
2800 .size = int128_2_64(),
2803 return phys_section_add(map, &section);
2806 static void readonly_mem_write(void *opaque, hwaddr addr,
2807 uint64_t val, unsigned size)
2809 /* Ignore any write to ROM. */
2812 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2813 unsigned size, bool is_write)
2815 return is_write;
2818 /* This will only be used for writes, because reads are special cased
2819 * to directly access the underlying host ram.
2821 static const MemoryRegionOps readonly_mem_ops = {
2822 .write = readonly_mem_write,
2823 .valid.accepts = readonly_mem_accepts,
2824 .endianness = DEVICE_NATIVE_ENDIAN,
2825 .valid = {
2826 .min_access_size = 1,
2827 .max_access_size = 8,
2828 .unaligned = false,
2830 .impl = {
2831 .min_access_size = 1,
2832 .max_access_size = 8,
2833 .unaligned = false,
2837 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2839 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2840 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2841 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2842 MemoryRegionSection *sections = d->map.sections;
2844 return sections[index & ~TARGET_PAGE_MASK].mr;
2847 static void io_mem_init(void)
2849 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2850 NULL, NULL, UINT64_MAX);
2851 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2852 NULL, UINT64_MAX);
2854 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2855 * which can be called without the iothread mutex.
2857 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2858 NULL, UINT64_MAX);
2859 memory_region_clear_global_locking(&io_mem_notdirty);
2861 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2862 NULL, UINT64_MAX);
2865 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2867 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2868 uint16_t n;
2870 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2871 assert(n == PHYS_SECTION_UNASSIGNED);
2872 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2873 assert(n == PHYS_SECTION_NOTDIRTY);
2874 n = dummy_section(&d->map, fv, &io_mem_rom);
2875 assert(n == PHYS_SECTION_ROM);
2876 n = dummy_section(&d->map, fv, &io_mem_watch);
2877 assert(n == PHYS_SECTION_WATCH);
2879 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2881 return d;
2884 void address_space_dispatch_free(AddressSpaceDispatch *d)
2886 phys_sections_free(&d->map);
2887 g_free(d);
2890 static void tcg_commit(MemoryListener *listener)
2892 CPUAddressSpace *cpuas;
2893 AddressSpaceDispatch *d;
2895 /* since each CPU stores ram addresses in its TLB cache, we must
2896 reset the modified entries */
2897 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2898 cpu_reloading_memory_map();
2899 /* The CPU and TLB are protected by the iothread lock.
2900 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2901 * may have split the RCU critical section.
2903 d = address_space_to_dispatch(cpuas->as);
2904 atomic_rcu_set(&cpuas->memory_dispatch, d);
2905 tlb_flush(cpuas->cpu);
2908 static void memory_map_init(void)
2910 system_memory = g_malloc(sizeof(*system_memory));
2912 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2913 address_space_init(&address_space_memory, system_memory, "memory");
2915 system_io = g_malloc(sizeof(*system_io));
2916 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2917 65536);
2918 address_space_init(&address_space_io, system_io, "I/O");
2921 MemoryRegion *get_system_memory(void)
2923 return system_memory;
2926 MemoryRegion *get_system_io(void)
2928 return system_io;
2931 #endif /* !defined(CONFIG_USER_ONLY) */
2933 /* physical memory access (slow version, mainly for debug) */
2934 #if defined(CONFIG_USER_ONLY)
2935 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2936 uint8_t *buf, int len, int is_write)
2938 int l, flags;
2939 target_ulong page;
2940 void * p;
2942 while (len > 0) {
2943 page = addr & TARGET_PAGE_MASK;
2944 l = (page + TARGET_PAGE_SIZE) - addr;
2945 if (l > len)
2946 l = len;
2947 flags = page_get_flags(page);
2948 if (!(flags & PAGE_VALID))
2949 return -1;
2950 if (is_write) {
2951 if (!(flags & PAGE_WRITE))
2952 return -1;
2953 /* XXX: this code should not depend on lock_user */
2954 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2955 return -1;
2956 memcpy(p, buf, l);
2957 unlock_user(p, addr, l);
2958 } else {
2959 if (!(flags & PAGE_READ))
2960 return -1;
2961 /* XXX: this code should not depend on lock_user */
2962 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2963 return -1;
2964 memcpy(buf, p, l);
2965 unlock_user(p, addr, 0);
2967 len -= l;
2968 buf += l;
2969 addr += l;
2971 return 0;
2974 #else
2976 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2977 hwaddr length)
2979 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2980 addr += memory_region_get_ram_addr(mr);
2982 /* No early return if dirty_log_mask is or becomes 0, because
2983 * cpu_physical_memory_set_dirty_range will still call
2984 * xen_modified_memory.
2986 if (dirty_log_mask) {
2987 dirty_log_mask =
2988 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2990 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2991 assert(tcg_enabled());
2992 tb_lock();
2993 tb_invalidate_phys_range(addr, addr + length);
2994 tb_unlock();
2995 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2997 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3000 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3002 unsigned access_size_max = mr->ops->valid.max_access_size;
3004 /* Regions are assumed to support 1-4 byte accesses unless
3005 otherwise specified. */
3006 if (access_size_max == 0) {
3007 access_size_max = 4;
3010 /* Bound the maximum access by the alignment of the address. */
3011 if (!mr->ops->impl.unaligned) {
3012 unsigned align_size_max = addr & -addr;
3013 if (align_size_max != 0 && align_size_max < access_size_max) {
3014 access_size_max = align_size_max;
3018 /* Don't attempt accesses larger than the maximum. */
3019 if (l > access_size_max) {
3020 l = access_size_max;
3022 l = pow2floor(l);
3024 return l;
3027 static bool prepare_mmio_access(MemoryRegion *mr)
3029 bool unlocked = !qemu_mutex_iothread_locked();
3030 bool release_lock = false;
3032 if (unlocked && mr->global_locking) {
3033 qemu_mutex_lock_iothread();
3034 unlocked = false;
3035 release_lock = true;
3037 if (mr->flush_coalesced_mmio) {
3038 if (unlocked) {
3039 qemu_mutex_lock_iothread();
3041 qemu_flush_coalesced_mmio_buffer();
3042 if (unlocked) {
3043 qemu_mutex_unlock_iothread();
3047 return release_lock;
3050 /* Called within RCU critical section. */
3051 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3052 MemTxAttrs attrs,
3053 const uint8_t *buf,
3054 int len, hwaddr addr1,
3055 hwaddr l, MemoryRegion *mr)
3057 uint8_t *ptr;
3058 uint64_t val;
3059 MemTxResult result = MEMTX_OK;
3060 bool release_lock = false;
3062 for (;;) {
3063 if (!memory_access_is_direct(mr, true)) {
3064 release_lock |= prepare_mmio_access(mr);
3065 l = memory_access_size(mr, l, addr1);
3066 /* XXX: could force current_cpu to NULL to avoid
3067 potential bugs */
3068 switch (l) {
3069 case 8:
3070 /* 64 bit write access */
3071 val = ldq_p(buf);
3072 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3073 attrs);
3074 break;
3075 case 4:
3076 /* 32 bit write access */
3077 val = (uint32_t)ldl_p(buf);
3078 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3079 attrs);
3080 break;
3081 case 2:
3082 /* 16 bit write access */
3083 val = lduw_p(buf);
3084 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3085 attrs);
3086 break;
3087 case 1:
3088 /* 8 bit write access */
3089 val = ldub_p(buf);
3090 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3091 attrs);
3092 break;
3093 default:
3094 abort();
3096 } else {
3097 /* RAM case */
3098 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3099 memcpy(ptr, buf, l);
3100 invalidate_and_set_dirty(mr, addr1, l);
3103 if (release_lock) {
3104 qemu_mutex_unlock_iothread();
3105 release_lock = false;
3108 len -= l;
3109 buf += l;
3110 addr += l;
3112 if (!len) {
3113 break;
3116 l = len;
3117 mr = flatview_translate(fv, addr, &addr1, &l, true);
3120 return result;
3123 /* Called from RCU critical section. */
3124 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3125 const uint8_t *buf, int len)
3127 hwaddr l;
3128 hwaddr addr1;
3129 MemoryRegion *mr;
3130 MemTxResult result = MEMTX_OK;
3132 l = len;
3133 mr = flatview_translate(fv, addr, &addr1, &l, true);
3134 result = flatview_write_continue(fv, addr, attrs, buf, len,
3135 addr1, l, mr);
3137 return result;
3140 /* Called within RCU critical section. */
3141 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3142 MemTxAttrs attrs, uint8_t *buf,
3143 int len, hwaddr addr1, hwaddr l,
3144 MemoryRegion *mr)
3146 uint8_t *ptr;
3147 uint64_t val;
3148 MemTxResult result = MEMTX_OK;
3149 bool release_lock = false;
3151 for (;;) {
3152 if (!memory_access_is_direct(mr, false)) {
3153 /* I/O case */
3154 release_lock |= prepare_mmio_access(mr);
3155 l = memory_access_size(mr, l, addr1);
3156 switch (l) {
3157 case 8:
3158 /* 64 bit read access */
3159 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3160 attrs);
3161 stq_p(buf, val);
3162 break;
3163 case 4:
3164 /* 32 bit read access */
3165 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3166 attrs);
3167 stl_p(buf, val);
3168 break;
3169 case 2:
3170 /* 16 bit read access */
3171 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3172 attrs);
3173 stw_p(buf, val);
3174 break;
3175 case 1:
3176 /* 8 bit read access */
3177 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3178 attrs);
3179 stb_p(buf, val);
3180 break;
3181 default:
3182 abort();
3184 } else {
3185 /* RAM case */
3186 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3187 memcpy(buf, ptr, l);
3190 if (release_lock) {
3191 qemu_mutex_unlock_iothread();
3192 release_lock = false;
3195 len -= l;
3196 buf += l;
3197 addr += l;
3199 if (!len) {
3200 break;
3203 l = len;
3204 mr = flatview_translate(fv, addr, &addr1, &l, false);
3207 return result;
3210 /* Called from RCU critical section. */
3211 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3212 MemTxAttrs attrs, uint8_t *buf, int len)
3214 hwaddr l;
3215 hwaddr addr1;
3216 MemoryRegion *mr;
3218 l = len;
3219 mr = flatview_translate(fv, addr, &addr1, &l, false);
3220 return flatview_read_continue(fv, addr, attrs, buf, len,
3221 addr1, l, mr);
3224 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3225 MemTxAttrs attrs, uint8_t *buf, int len)
3227 MemTxResult result = MEMTX_OK;
3228 FlatView *fv;
3230 if (len > 0) {
3231 rcu_read_lock();
3232 fv = address_space_to_flatview(as);
3233 result = flatview_read(fv, addr, attrs, buf, len);
3234 rcu_read_unlock();
3237 return result;
3240 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3241 MemTxAttrs attrs,
3242 const uint8_t *buf, int len)
3244 MemTxResult result = MEMTX_OK;
3245 FlatView *fv;
3247 if (len > 0) {
3248 rcu_read_lock();
3249 fv = address_space_to_flatview(as);
3250 result = flatview_write(fv, addr, attrs, buf, len);
3251 rcu_read_unlock();
3254 return result;
3257 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3258 uint8_t *buf, int len, bool is_write)
3260 if (is_write) {
3261 return address_space_write(as, addr, attrs, buf, len);
3262 } else {
3263 return address_space_read_full(as, addr, attrs, buf, len);
3267 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3268 int len, int is_write)
3270 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3271 buf, len, is_write);
3274 enum write_rom_type {
3275 WRITE_DATA,
3276 FLUSH_CACHE,
3279 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3280 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3282 hwaddr l;
3283 uint8_t *ptr;
3284 hwaddr addr1;
3285 MemoryRegion *mr;
3287 rcu_read_lock();
3288 while (len > 0) {
3289 l = len;
3290 mr = address_space_translate(as, addr, &addr1, &l, true);
3292 if (!(memory_region_is_ram(mr) ||
3293 memory_region_is_romd(mr))) {
3294 l = memory_access_size(mr, l, addr1);
3295 } else {
3296 /* ROM/RAM case */
3297 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3298 switch (type) {
3299 case WRITE_DATA:
3300 memcpy(ptr, buf, l);
3301 invalidate_and_set_dirty(mr, addr1, l);
3302 break;
3303 case FLUSH_CACHE:
3304 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3305 break;
3308 len -= l;
3309 buf += l;
3310 addr += l;
3312 rcu_read_unlock();
3315 /* used for ROM loading : can write in RAM and ROM */
3316 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3317 const uint8_t *buf, int len)
3319 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3322 void cpu_flush_icache_range(hwaddr start, int len)
3325 * This function should do the same thing as an icache flush that was
3326 * triggered from within the guest. For TCG we are always cache coherent,
3327 * so there is no need to flush anything. For KVM / Xen we need to flush
3328 * the host's instruction cache at least.
3330 if (tcg_enabled()) {
3331 return;
3334 cpu_physical_memory_write_rom_internal(&address_space_memory,
3335 start, NULL, len, FLUSH_CACHE);
3338 typedef struct {
3339 MemoryRegion *mr;
3340 void *buffer;
3341 hwaddr addr;
3342 hwaddr len;
3343 bool in_use;
3344 } BounceBuffer;
3346 static BounceBuffer bounce;
3348 typedef struct MapClient {
3349 QEMUBH *bh;
3350 QLIST_ENTRY(MapClient) link;
3351 } MapClient;
3353 QemuMutex map_client_list_lock;
3354 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3355 = QLIST_HEAD_INITIALIZER(map_client_list);
3357 static void cpu_unregister_map_client_do(MapClient *client)
3359 QLIST_REMOVE(client, link);
3360 g_free(client);
3363 static void cpu_notify_map_clients_locked(void)
3365 MapClient *client;
3367 while (!QLIST_EMPTY(&map_client_list)) {
3368 client = QLIST_FIRST(&map_client_list);
3369 qemu_bh_schedule(client->bh);
3370 cpu_unregister_map_client_do(client);
3374 void cpu_register_map_client(QEMUBH *bh)
3376 MapClient *client = g_malloc(sizeof(*client));
3378 qemu_mutex_lock(&map_client_list_lock);
3379 client->bh = bh;
3380 QLIST_INSERT_HEAD(&map_client_list, client, link);
3381 if (!atomic_read(&bounce.in_use)) {
3382 cpu_notify_map_clients_locked();
3384 qemu_mutex_unlock(&map_client_list_lock);
3387 void cpu_exec_init_all(void)
3389 qemu_mutex_init(&ram_list.mutex);
3390 /* The data structures we set up here depend on knowing the page size,
3391 * so no more changes can be made after this point.
3392 * In an ideal world, nothing we did before we had finished the
3393 * machine setup would care about the target page size, and we could
3394 * do this much later, rather than requiring board models to state
3395 * up front what their requirements are.
3397 finalize_target_page_bits();
3398 io_mem_init();
3399 memory_map_init();
3400 qemu_mutex_init(&map_client_list_lock);
3403 void cpu_unregister_map_client(QEMUBH *bh)
3405 MapClient *client;
3407 qemu_mutex_lock(&map_client_list_lock);
3408 QLIST_FOREACH(client, &map_client_list, link) {
3409 if (client->bh == bh) {
3410 cpu_unregister_map_client_do(client);
3411 break;
3414 qemu_mutex_unlock(&map_client_list_lock);
3417 static void cpu_notify_map_clients(void)
3419 qemu_mutex_lock(&map_client_list_lock);
3420 cpu_notify_map_clients_locked();
3421 qemu_mutex_unlock(&map_client_list_lock);
3424 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3425 bool is_write)
3427 MemoryRegion *mr;
3428 hwaddr l, xlat;
3430 while (len > 0) {
3431 l = len;
3432 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3433 if (!memory_access_is_direct(mr, is_write)) {
3434 l = memory_access_size(mr, l, addr);
3435 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3436 return false;
3440 len -= l;
3441 addr += l;
3443 return true;
3446 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3447 int len, bool is_write)
3449 FlatView *fv;
3450 bool result;
3452 rcu_read_lock();
3453 fv = address_space_to_flatview(as);
3454 result = flatview_access_valid(fv, addr, len, is_write);
3455 rcu_read_unlock();
3456 return result;
3459 static hwaddr
3460 flatview_extend_translation(FlatView *fv, hwaddr addr,
3461 hwaddr target_len,
3462 MemoryRegion *mr, hwaddr base, hwaddr len,
3463 bool is_write)
3465 hwaddr done = 0;
3466 hwaddr xlat;
3467 MemoryRegion *this_mr;
3469 for (;;) {
3470 target_len -= len;
3471 addr += len;
3472 done += len;
3473 if (target_len == 0) {
3474 return done;
3477 len = target_len;
3478 this_mr = flatview_translate(fv, addr, &xlat,
3479 &len, is_write);
3480 if (this_mr != mr || xlat != base + done) {
3481 return done;
3486 /* Map a physical memory region into a host virtual address.
3487 * May map a subset of the requested range, given by and returned in *plen.
3488 * May return NULL if resources needed to perform the mapping are exhausted.
3489 * Use only for reads OR writes - not for read-modify-write operations.
3490 * Use cpu_register_map_client() to know when retrying the map operation is
3491 * likely to succeed.
3493 void *address_space_map(AddressSpace *as,
3494 hwaddr addr,
3495 hwaddr *plen,
3496 bool is_write)
3498 hwaddr len = *plen;
3499 hwaddr l, xlat;
3500 MemoryRegion *mr;
3501 void *ptr;
3502 FlatView *fv;
3504 if (len == 0) {
3505 return NULL;
3508 l = len;
3509 rcu_read_lock();
3510 fv = address_space_to_flatview(as);
3511 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3513 if (!memory_access_is_direct(mr, is_write)) {
3514 if (atomic_xchg(&bounce.in_use, true)) {
3515 rcu_read_unlock();
3516 return NULL;
3518 /* Avoid unbounded allocations */
3519 l = MIN(l, TARGET_PAGE_SIZE);
3520 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3521 bounce.addr = addr;
3522 bounce.len = l;
3524 memory_region_ref(mr);
3525 bounce.mr = mr;
3526 if (!is_write) {
3527 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3528 bounce.buffer, l);
3531 rcu_read_unlock();
3532 *plen = l;
3533 return bounce.buffer;
3537 memory_region_ref(mr);
3538 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3539 l, is_write);
3540 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3541 rcu_read_unlock();
3543 return ptr;
3546 /* Unmaps a memory region previously mapped by address_space_map().
3547 * Will also mark the memory as dirty if is_write == 1. access_len gives
3548 * the amount of memory that was actually read or written by the caller.
3550 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3551 int is_write, hwaddr access_len)
3553 if (buffer != bounce.buffer) {
3554 MemoryRegion *mr;
3555 ram_addr_t addr1;
3557 mr = memory_region_from_host(buffer, &addr1);
3558 assert(mr != NULL);
3559 if (is_write) {
3560 invalidate_and_set_dirty(mr, addr1, access_len);
3562 if (xen_enabled()) {
3563 xen_invalidate_map_cache_entry(buffer);
3565 memory_region_unref(mr);
3566 return;
3568 if (is_write) {
3569 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3570 bounce.buffer, access_len);
3572 qemu_vfree(bounce.buffer);
3573 bounce.buffer = NULL;
3574 memory_region_unref(bounce.mr);
3575 atomic_mb_set(&bounce.in_use, false);
3576 cpu_notify_map_clients();
3579 void *cpu_physical_memory_map(hwaddr addr,
3580 hwaddr *plen,
3581 int is_write)
3583 return address_space_map(&address_space_memory, addr, plen, is_write);
3586 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3587 int is_write, hwaddr access_len)
3589 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3592 #define ARG1_DECL AddressSpace *as
3593 #define ARG1 as
3594 #define SUFFIX
3595 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3596 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3597 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3598 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3599 #define RCU_READ_LOCK(...) rcu_read_lock()
3600 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3601 #include "memory_ldst.inc.c"
3603 int64_t address_space_cache_init(MemoryRegionCache *cache,
3604 AddressSpace *as,
3605 hwaddr addr,
3606 hwaddr len,
3607 bool is_write)
3609 cache->len = len;
3610 cache->as = as;
3611 cache->xlat = addr;
3612 return len;
3615 void address_space_cache_invalidate(MemoryRegionCache *cache,
3616 hwaddr addr,
3617 hwaddr access_len)
3621 void address_space_cache_destroy(MemoryRegionCache *cache)
3623 cache->as = NULL;
3626 #define ARG1_DECL MemoryRegionCache *cache
3627 #define ARG1 cache
3628 #define SUFFIX _cached
3629 #define TRANSLATE(addr, ...) \
3630 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3631 #define IS_DIRECT(mr, is_write) true
3632 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3633 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3634 #define RCU_READ_LOCK() rcu_read_lock()
3635 #define RCU_READ_UNLOCK() rcu_read_unlock()
3636 #include "memory_ldst.inc.c"
3638 /* virtual memory access for debug (includes writing to ROM) */
3639 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3640 uint8_t *buf, int len, int is_write)
3642 int l;
3643 hwaddr phys_addr;
3644 target_ulong page;
3646 cpu_synchronize_state(cpu);
3647 while (len > 0) {
3648 int asidx;
3649 MemTxAttrs attrs;
3651 page = addr & TARGET_PAGE_MASK;
3652 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3653 asidx = cpu_asidx_from_attrs(cpu, attrs);
3654 /* if no physical page mapped, return an error */
3655 if (phys_addr == -1)
3656 return -1;
3657 l = (page + TARGET_PAGE_SIZE) - addr;
3658 if (l > len)
3659 l = len;
3660 phys_addr += (addr & ~TARGET_PAGE_MASK);
3661 if (is_write) {
3662 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3663 phys_addr, buf, l);
3664 } else {
3665 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3666 MEMTXATTRS_UNSPECIFIED,
3667 buf, l, 0);
3669 len -= l;
3670 buf += l;
3671 addr += l;
3673 return 0;
3677 * Allows code that needs to deal with migration bitmaps etc to still be built
3678 * target independent.
3680 size_t qemu_target_page_size(void)
3682 return TARGET_PAGE_SIZE;
3685 int qemu_target_page_bits(void)
3687 return TARGET_PAGE_BITS;
3690 int qemu_target_page_bits_min(void)
3692 return TARGET_PAGE_BITS_MIN;
3694 #endif
3697 * A helper function for the _utterly broken_ virtio device model to find out if
3698 * it's running on a big endian machine. Don't do this at home kids!
3700 bool target_words_bigendian(void);
3701 bool target_words_bigendian(void)
3703 #if defined(TARGET_WORDS_BIGENDIAN)
3704 return true;
3705 #else
3706 return false;
3707 #endif
3710 #ifndef CONFIG_USER_ONLY
3711 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3713 MemoryRegion*mr;
3714 hwaddr l = 1;
3715 bool res;
3717 rcu_read_lock();
3718 mr = address_space_translate(&address_space_memory,
3719 phys_addr, &phys_addr, &l, false);
3721 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3722 rcu_read_unlock();
3723 return res;
3726 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3728 RAMBlock *block;
3729 int ret = 0;
3731 rcu_read_lock();
3732 RAMBLOCK_FOREACH(block) {
3733 ret = func(block->idstr, block->host, block->offset,
3734 block->used_length, opaque);
3735 if (ret) {
3736 break;
3739 rcu_read_unlock();
3740 return ret;
3744 * Unmap pages of memory from start to start+length such that
3745 * they a) read as 0, b) Trigger whatever fault mechanism
3746 * the OS provides for postcopy.
3747 * The pages must be unmapped by the end of the function.
3748 * Returns: 0 on success, none-0 on failure
3751 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3753 int ret = -1;
3755 uint8_t *host_startaddr = rb->host + start;
3757 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3758 error_report("ram_block_discard_range: Unaligned start address: %p",
3759 host_startaddr);
3760 goto err;
3763 if ((start + length) <= rb->used_length) {
3764 bool need_madvise, need_fallocate;
3765 uint8_t *host_endaddr = host_startaddr + length;
3766 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3767 error_report("ram_block_discard_range: Unaligned end address: %p",
3768 host_endaddr);
3769 goto err;
3772 errno = ENOTSUP; /* If we are missing MADVISE etc */
3774 /* The logic here is messy;
3775 * madvise DONTNEED fails for hugepages
3776 * fallocate works on hugepages and shmem
3778 need_madvise = (rb->page_size == qemu_host_page_size);
3779 need_fallocate = rb->fd != -1;
3780 if (need_fallocate) {
3781 /* For a file, this causes the area of the file to be zero'd
3782 * if read, and for hugetlbfs also causes it to be unmapped
3783 * so a userfault will trigger.
3785 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3786 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3787 start, length);
3788 if (ret) {
3789 ret = -errno;
3790 error_report("ram_block_discard_range: Failed to fallocate "
3791 "%s:%" PRIx64 " +%zx (%d)",
3792 rb->idstr, start, length, ret);
3793 goto err;
3795 #else
3796 ret = -ENOSYS;
3797 error_report("ram_block_discard_range: fallocate not available/file"
3798 "%s:%" PRIx64 " +%zx (%d)",
3799 rb->idstr, start, length, ret);
3800 goto err;
3801 #endif
3803 if (need_madvise) {
3804 /* For normal RAM this causes it to be unmapped,
3805 * for shared memory it causes the local mapping to disappear
3806 * and to fall back on the file contents (which we just
3807 * fallocate'd away).
3809 #if defined(CONFIG_MADVISE)
3810 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3811 if (ret) {
3812 ret = -errno;
3813 error_report("ram_block_discard_range: Failed to discard range "
3814 "%s:%" PRIx64 " +%zx (%d)",
3815 rb->idstr, start, length, ret);
3816 goto err;
3818 #else
3819 ret = -ENOSYS;
3820 error_report("ram_block_discard_range: MADVISE not available"
3821 "%s:%" PRIx64 " +%zx (%d)",
3822 rb->idstr, start, length, ret);
3823 goto err;
3824 #endif
3826 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3827 need_madvise, need_fallocate, ret);
3828 } else {
3829 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3830 "/%zx/" RAM_ADDR_FMT")",
3831 rb->idstr, start, length, rb->used_length);
3834 err:
3835 return ret;
3838 #endif
3840 void page_size_init(void)
3842 /* NOTE: we can always suppose that qemu_host_page_size >=
3843 TARGET_PAGE_SIZE */
3844 if (qemu_host_page_size == 0) {
3845 qemu_host_page_size = qemu_real_host_page_size;
3847 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3848 qemu_host_page_size = TARGET_PAGE_SIZE;
3850 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3853 #if !defined(CONFIG_USER_ONLY)
3855 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3856 int start, int end, int skip, int ptr)
3858 if (start == end - 1) {
3859 mon(f, "\t%3d ", start);
3860 } else {
3861 mon(f, "\t%3d..%-3d ", start, end - 1);
3863 mon(f, " skip=%d ", skip);
3864 if (ptr == PHYS_MAP_NODE_NIL) {
3865 mon(f, " ptr=NIL");
3866 } else if (!skip) {
3867 mon(f, " ptr=#%d", ptr);
3868 } else {
3869 mon(f, " ptr=[%d]", ptr);
3871 mon(f, "\n");
3874 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3875 int128_sub((size), int128_one())) : 0)
3877 void mtree_print_dispatch(fprintf_function mon, void *f,
3878 AddressSpaceDispatch *d, MemoryRegion *root)
3880 int i;
3882 mon(f, " Dispatch\n");
3883 mon(f, " Physical sections\n");
3885 for (i = 0; i < d->map.sections_nb; ++i) {
3886 MemoryRegionSection *s = d->map.sections + i;
3887 const char *names[] = { " [unassigned]", " [not dirty]",
3888 " [ROM]", " [watch]" };
3890 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3892 s->offset_within_address_space,
3893 s->offset_within_address_space + MR_SIZE(s->mr->size),
3894 s->mr->name ? s->mr->name : "(noname)",
3895 i < ARRAY_SIZE(names) ? names[i] : "",
3896 s->mr == root ? " [ROOT]" : "",
3897 s == d->mru_section ? " [MRU]" : "",
3898 s->mr->is_iommu ? " [iommu]" : "");
3900 if (s->mr->alias) {
3901 mon(f, " alias=%s", s->mr->alias->name ?
3902 s->mr->alias->name : "noname");
3904 mon(f, "\n");
3907 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3908 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3909 for (i = 0; i < d->map.nodes_nb; ++i) {
3910 int j, jprev;
3911 PhysPageEntry prev;
3912 Node *n = d->map.nodes + i;
3914 mon(f, " [%d]\n", i);
3916 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3917 PhysPageEntry *pe = *n + j;
3919 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3920 continue;
3923 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3925 jprev = j;
3926 prev = *pe;
3929 if (jprev != ARRAY_SIZE(*n)) {
3930 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3935 #endif