target/arm: Add a timer to predict PMU counter overflow
[qemu/ar7.git] / target / arm / cpu.h
blob63934a200ad1720a35ee4b4f637e16eb41469ea5
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
46 #define EXCP_IRQ 5
47 #define EXCP_FIQ 6
48 #define EXCP_BKPT 7
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_HVC 11 /* HyperVisor Call */
52 #define EXCP_HYP_TRAP 12
53 #define EXCP_SMC 13 /* Secure Monitor Call */
54 #define EXCP_VIRQ 14
55 #define EXCP_VFIQ 15
56 #define EXCP_SEMIHOST 16 /* semihosting call */
57 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 #define ARMV7M_EXCP_RESET 1
63 #define ARMV7M_EXCP_NMI 2
64 #define ARMV7M_EXCP_HARD 3
65 #define ARMV7M_EXCP_MEM 4
66 #define ARMV7M_EXCP_BUS 5
67 #define ARMV7M_EXCP_USAGE 6
68 #define ARMV7M_EXCP_SECURE 7
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
74 /* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
83 enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
89 /* ARM-specific interrupt pending bits. */
90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
94 /* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
103 #else
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
106 #endif
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
119 #define TARGET_INSN_START_EXTRA_WORDS 2
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
129 /* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
144 typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148 } DynamicGDBXMLInfo;
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
153 uint64_t ctl; /* Timer Control register */
154 } ARMGenericTimer;
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
158 #define GTIMER_HYP 2
159 #define GTIMER_SEC 3
160 #define NUM_GTIMERS 4
162 typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166 } TCR;
168 /* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
185 * Hn = regs[n].d[0] bits 15..0
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
191 * Align the data for use with TCG host vector operations.
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ 16
196 #else
197 # define ARM_MAX_VQ 1
198 #endif
200 typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
204 #ifdef TARGET_AARCH64
205 /* In AArch32 mode, predicate registers do not exist at all. */
206 typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
210 /* In AArch32 mode, PAC keys do not exist at all. */
211 typedef struct ARMPACKey {
212 uint64_t lo, hi;
213 } ARMPACKey;
214 #endif
217 typedef struct CPUARMState {
218 /* Regs for current mode. */
219 uint32_t regs[16];
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
236 * DAIF (exception masks) are kept in env->daif
237 * all other bits are stored in their correct places in env->pstate
239 uint32_t pstate;
240 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
242 /* Frequently accessed CPSR bits are stored separately for efficiency.
243 This contains all the other bits. Use cpsr_{read,write} to access
244 the whole CPSR. */
245 uint32_t uncached_cpsr;
246 uint32_t spsr;
248 /* Banked registers. */
249 uint64_t banked_spsr[8];
250 uint32_t banked_r13[8];
251 uint32_t banked_r14[8];
253 /* These hold r8-r12. */
254 uint32_t usr_regs[5];
255 uint32_t fiq_regs[5];
257 /* cpsr flag cache for faster execution */
258 uint32_t CF; /* 0 or 1 */
259 uint32_t VF; /* V is the bit 31. All other bits are undefined */
260 uint32_t NF; /* N is bit 31. All other bits are undefined. */
261 uint32_t ZF; /* Z set if zero. */
262 uint32_t QF; /* 0 or 1 */
263 uint32_t GE; /* cpsr[19:16] */
264 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
265 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
266 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
268 uint64_t elr_el[4]; /* AArch64 exception link regs */
269 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
271 /* System control coprocessor (cp15) */
272 struct {
273 uint32_t c0_cpuid;
274 union { /* Cache size selection */
275 struct {
276 uint64_t _unused_csselr0;
277 uint64_t csselr_ns;
278 uint64_t _unused_csselr1;
279 uint64_t csselr_s;
281 uint64_t csselr_el[4];
283 union { /* System control register. */
284 struct {
285 uint64_t _unused_sctlr;
286 uint64_t sctlr_ns;
287 uint64_t hsctlr;
288 uint64_t sctlr_s;
290 uint64_t sctlr_el[4];
292 uint64_t cpacr_el1; /* Architectural feature access control register */
293 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
294 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
295 uint64_t sder; /* Secure debug enable register. */
296 uint32_t nsacr; /* Non-secure access control register. */
297 union { /* MMU translation table base 0. */
298 struct {
299 uint64_t _unused_ttbr0_0;
300 uint64_t ttbr0_ns;
301 uint64_t _unused_ttbr0_1;
302 uint64_t ttbr0_s;
304 uint64_t ttbr0_el[4];
306 union { /* MMU translation table base 1. */
307 struct {
308 uint64_t _unused_ttbr1_0;
309 uint64_t ttbr1_ns;
310 uint64_t _unused_ttbr1_1;
311 uint64_t ttbr1_s;
313 uint64_t ttbr1_el[4];
315 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
316 /* MMU translation table base control. */
317 TCR tcr_el[4];
318 TCR vtcr_el2; /* Virtualization Translation Control. */
319 uint32_t c2_data; /* MPU data cacheable bits. */
320 uint32_t c2_insn; /* MPU instruction cacheable bits. */
321 union { /* MMU domain access control register
322 * MPU write buffer control.
324 struct {
325 uint64_t dacr_ns;
326 uint64_t dacr_s;
328 struct {
329 uint64_t dacr32_el2;
332 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
333 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
334 uint64_t hcr_el2; /* Hypervisor configuration register */
335 uint64_t scr_el3; /* Secure configuration register. */
336 union { /* Fault status registers. */
337 struct {
338 uint64_t ifsr_ns;
339 uint64_t ifsr_s;
341 struct {
342 uint64_t ifsr32_el2;
345 union {
346 struct {
347 uint64_t _unused_dfsr;
348 uint64_t dfsr_ns;
349 uint64_t hsr;
350 uint64_t dfsr_s;
352 uint64_t esr_el[4];
354 uint32_t c6_region[8]; /* MPU base/size registers. */
355 union { /* Fault address registers. */
356 struct {
357 uint64_t _unused_far0;
358 #ifdef HOST_WORDS_BIGENDIAN
359 uint32_t ifar_ns;
360 uint32_t dfar_ns;
361 uint32_t ifar_s;
362 uint32_t dfar_s;
363 #else
364 uint32_t dfar_ns;
365 uint32_t ifar_ns;
366 uint32_t dfar_s;
367 uint32_t ifar_s;
368 #endif
369 uint64_t _unused_far3;
371 uint64_t far_el[4];
373 uint64_t hpfar_el2;
374 uint64_t hstr_el2;
375 union { /* Translation result. */
376 struct {
377 uint64_t _unused_par_0;
378 uint64_t par_ns;
379 uint64_t _unused_par_1;
380 uint64_t par_s;
382 uint64_t par_el[4];
385 uint32_t c9_insn; /* Cache lockdown registers. */
386 uint32_t c9_data;
387 uint64_t c9_pmcr; /* performance monitor control register */
388 uint64_t c9_pmcnten; /* perf monitor counter enables */
389 uint64_t c9_pmovsr; /* perf monitor overflow status */
390 uint64_t c9_pmuserenr; /* perf monitor user enable */
391 uint64_t c9_pmselr; /* perf monitor counter selection register */
392 uint64_t c9_pminten; /* perf monitor interrupt enables */
393 union { /* Memory attribute redirection */
394 struct {
395 #ifdef HOST_WORDS_BIGENDIAN
396 uint64_t _unused_mair_0;
397 uint32_t mair1_ns;
398 uint32_t mair0_ns;
399 uint64_t _unused_mair_1;
400 uint32_t mair1_s;
401 uint32_t mair0_s;
402 #else
403 uint64_t _unused_mair_0;
404 uint32_t mair0_ns;
405 uint32_t mair1_ns;
406 uint64_t _unused_mair_1;
407 uint32_t mair0_s;
408 uint32_t mair1_s;
409 #endif
411 uint64_t mair_el[4];
413 union { /* vector base address register */
414 struct {
415 uint64_t _unused_vbar;
416 uint64_t vbar_ns;
417 uint64_t hvbar;
418 uint64_t vbar_s;
420 uint64_t vbar_el[4];
422 uint32_t mvbar; /* (monitor) vector base address register */
423 struct { /* FCSE PID. */
424 uint32_t fcseidr_ns;
425 uint32_t fcseidr_s;
427 union { /* Context ID. */
428 struct {
429 uint64_t _unused_contextidr_0;
430 uint64_t contextidr_ns;
431 uint64_t _unused_contextidr_1;
432 uint64_t contextidr_s;
434 uint64_t contextidr_el[4];
436 union { /* User RW Thread register. */
437 struct {
438 uint64_t tpidrurw_ns;
439 uint64_t tpidrprw_ns;
440 uint64_t htpidr;
441 uint64_t _tpidr_el3;
443 uint64_t tpidr_el[4];
445 /* The secure banks of these registers don't map anywhere */
446 uint64_t tpidrurw_s;
447 uint64_t tpidrprw_s;
448 uint64_t tpidruro_s;
450 union { /* User RO Thread register. */
451 uint64_t tpidruro_ns;
452 uint64_t tpidrro_el[1];
454 uint64_t c14_cntfrq; /* Counter Frequency register */
455 uint64_t c14_cntkctl; /* Timer Control register */
456 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
457 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
458 ARMGenericTimer c14_timer[NUM_GTIMERS];
459 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
460 uint32_t c15_ticonfig; /* TI925T configuration byte. */
461 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
462 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
463 uint32_t c15_threadid; /* TI debugger thread-ID. */
464 uint32_t c15_config_base_address; /* SCU base address. */
465 uint32_t c15_diagnostic; /* diagnostic register */
466 uint32_t c15_power_diagnostic;
467 uint32_t c15_power_control; /* power control */
468 uint64_t dbgbvr[16]; /* breakpoint value registers */
469 uint64_t dbgbcr[16]; /* breakpoint control registers */
470 uint64_t dbgwvr[16]; /* watchpoint value registers */
471 uint64_t dbgwcr[16]; /* watchpoint control registers */
472 uint64_t mdscr_el1;
473 uint64_t oslsr_el1; /* OS Lock Status */
474 uint64_t mdcr_el2;
475 uint64_t mdcr_el3;
476 /* Stores the architectural value of the counter *the last time it was
477 * updated* by pmccntr_op_start. Accesses should always be surrounded
478 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
479 * architecturally-correct value is being read/set.
481 uint64_t c15_ccnt;
482 /* Stores the delta between the architectural value and the underlying
483 * cycle count during normal operation. It is used to update c15_ccnt
484 * to be the correct architectural value before accesses. During
485 * accesses, c15_ccnt_delta contains the underlying count being used
486 * for the access, after which it reverts to the delta value in
487 * pmccntr_op_finish.
489 uint64_t c15_ccnt_delta;
490 uint64_t c14_pmevcntr[31];
491 uint64_t c14_pmevcntr_delta[31];
492 uint64_t c14_pmevtyper[31];
493 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
494 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
495 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
496 } cp15;
498 struct {
499 /* M profile has up to 4 stack pointers:
500 * a Main Stack Pointer and a Process Stack Pointer for each
501 * of the Secure and Non-Secure states. (If the CPU doesn't support
502 * the security extension then it has only two SPs.)
503 * In QEMU we always store the currently active SP in regs[13],
504 * and the non-active SP for the current security state in
505 * v7m.other_sp. The stack pointers for the inactive security state
506 * are stored in other_ss_msp and other_ss_psp.
507 * switch_v7m_security_state() is responsible for rearranging them
508 * when we change security state.
510 uint32_t other_sp;
511 uint32_t other_ss_msp;
512 uint32_t other_ss_psp;
513 uint32_t vecbase[M_REG_NUM_BANKS];
514 uint32_t basepri[M_REG_NUM_BANKS];
515 uint32_t control[M_REG_NUM_BANKS];
516 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
517 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
518 uint32_t hfsr; /* HardFault Status */
519 uint32_t dfsr; /* Debug Fault Status Register */
520 uint32_t sfsr; /* Secure Fault Status Register */
521 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
522 uint32_t bfar; /* BusFault Address */
523 uint32_t sfar; /* Secure Fault Address Register */
524 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
525 int exception;
526 uint32_t primask[M_REG_NUM_BANKS];
527 uint32_t faultmask[M_REG_NUM_BANKS];
528 uint32_t aircr; /* only holds r/w state if security extn implemented */
529 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
530 uint32_t csselr[M_REG_NUM_BANKS];
531 uint32_t scr[M_REG_NUM_BANKS];
532 uint32_t msplim[M_REG_NUM_BANKS];
533 uint32_t psplim[M_REG_NUM_BANKS];
534 } v7m;
536 /* Information associated with an exception about to be taken:
537 * code which raises an exception must set cs->exception_index and
538 * the relevant parts of this structure; the cpu_do_interrupt function
539 * will then set the guest-visible registers as part of the exception
540 * entry process.
542 struct {
543 uint32_t syndrome; /* AArch64 format syndrome register */
544 uint32_t fsr; /* AArch32 format fault status register info */
545 uint64_t vaddress; /* virtual addr associated with exception, if any */
546 uint32_t target_el; /* EL the exception should be targeted for */
547 /* If we implement EL2 we will also need to store information
548 * about the intermediate physical address for stage 2 faults.
550 } exception;
552 /* Information associated with an SError */
553 struct {
554 uint8_t pending;
555 uint8_t has_esr;
556 uint64_t esr;
557 } serror;
559 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
560 uint32_t irq_line_state;
562 /* Thumb-2 EE state. */
563 uint32_t teecr;
564 uint32_t teehbr;
566 /* VFP coprocessor state. */
567 struct {
568 ARMVectorReg zregs[32];
570 #ifdef TARGET_AARCH64
571 /* Store FFR as pregs[16] to make it easier to treat as any other. */
572 #define FFR_PRED_NUM 16
573 ARMPredicateReg pregs[17];
574 /* Scratch space for aa64 sve predicate temporary. */
575 ARMPredicateReg preg_tmp;
576 #endif
578 uint32_t xregs[16];
579 /* We store these fpcsr fields separately for convenience. */
580 int vec_len;
581 int vec_stride;
583 /* Scratch space for aa32 neon expansion. */
584 uint32_t scratch[8];
586 /* There are a number of distinct float control structures:
588 * fp_status: is the "normal" fp status.
589 * fp_status_fp16: used for half-precision calculations
590 * standard_fp_status : the ARM "Standard FPSCR Value"
592 * Half-precision operations are governed by a separate
593 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
594 * status structure to control this.
596 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
597 * round-to-nearest and is used by any operations (generally
598 * Neon) which the architecture defines as controlled by the
599 * standard FPSCR value rather than the FPSCR.
601 * To avoid having to transfer exception bits around, we simply
602 * say that the FPSCR cumulative exception flags are the logical
603 * OR of the flags in the three fp statuses. This relies on the
604 * only thing which needs to read the exception flags being
605 * an explicit FPSCR read.
607 float_status fp_status;
608 float_status fp_status_f16;
609 float_status standard_fp_status;
611 /* ZCR_EL[1-3] */
612 uint64_t zcr_el[4];
613 } vfp;
614 uint64_t exclusive_addr;
615 uint64_t exclusive_val;
616 uint64_t exclusive_high;
618 /* iwMMXt coprocessor state. */
619 struct {
620 uint64_t regs[16];
621 uint64_t val;
623 uint32_t cregs[16];
624 } iwmmxt;
626 #ifdef TARGET_AARCH64
627 ARMPACKey apia_key;
628 ARMPACKey apib_key;
629 ARMPACKey apda_key;
630 ARMPACKey apdb_key;
631 ARMPACKey apga_key;
632 #endif
634 #if defined(CONFIG_USER_ONLY)
635 /* For usermode syscall translation. */
636 int eabi;
637 #endif
639 struct CPUBreakpoint *cpu_breakpoint[16];
640 struct CPUWatchpoint *cpu_watchpoint[16];
642 /* Fields up to this point are cleared by a CPU reset */
643 struct {} end_reset_fields;
645 CPU_COMMON
647 /* Fields after CPU_COMMON are preserved across CPU reset. */
649 /* Internal CPU feature flags. */
650 uint64_t features;
652 /* PMSAv7 MPU */
653 struct {
654 uint32_t *drbar;
655 uint32_t *drsr;
656 uint32_t *dracr;
657 uint32_t rnr[M_REG_NUM_BANKS];
658 } pmsav7;
660 /* PMSAv8 MPU */
661 struct {
662 /* The PMSAv8 implementation also shares some PMSAv7 config
663 * and state:
664 * pmsav7.rnr (region number register)
665 * pmsav7_dregion (number of configured regions)
667 uint32_t *rbar[M_REG_NUM_BANKS];
668 uint32_t *rlar[M_REG_NUM_BANKS];
669 uint32_t mair0[M_REG_NUM_BANKS];
670 uint32_t mair1[M_REG_NUM_BANKS];
671 } pmsav8;
673 /* v8M SAU */
674 struct {
675 uint32_t *rbar;
676 uint32_t *rlar;
677 uint32_t rnr;
678 uint32_t ctrl;
679 } sau;
681 void *nvic;
682 const struct arm_boot_info *boot_info;
683 /* Store GICv3CPUState to access from this struct */
684 void *gicv3state;
685 } CPUARMState;
688 * ARMELChangeHookFn:
689 * type of a function which can be registered via arm_register_el_change_hook()
690 * to get callbacks when the CPU changes its exception level or mode.
692 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
693 typedef struct ARMELChangeHook ARMELChangeHook;
694 struct ARMELChangeHook {
695 ARMELChangeHookFn *hook;
696 void *opaque;
697 QLIST_ENTRY(ARMELChangeHook) node;
700 /* These values map onto the return values for
701 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
702 typedef enum ARMPSCIState {
703 PSCI_ON = 0,
704 PSCI_OFF = 1,
705 PSCI_ON_PENDING = 2
706 } ARMPSCIState;
708 typedef struct ARMISARegisters ARMISARegisters;
711 * ARMCPU:
712 * @env: #CPUARMState
714 * An ARM CPU core.
716 struct ARMCPU {
717 /*< private >*/
718 CPUState parent_obj;
719 /*< public >*/
721 CPUARMState env;
723 /* Coprocessor information */
724 GHashTable *cp_regs;
725 /* For marshalling (mostly coprocessor) register state between the
726 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
727 * we use these arrays.
729 /* List of register indexes managed via these arrays; (full KVM style
730 * 64 bit indexes, not CPRegInfo 32 bit indexes)
732 uint64_t *cpreg_indexes;
733 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
734 uint64_t *cpreg_values;
735 /* Length of the indexes, values, reset_values arrays */
736 int32_t cpreg_array_len;
737 /* These are used only for migration: incoming data arrives in
738 * these fields and is sanity checked in post_load before copying
739 * to the working data structures above.
741 uint64_t *cpreg_vmstate_indexes;
742 uint64_t *cpreg_vmstate_values;
743 int32_t cpreg_vmstate_array_len;
745 DynamicGDBXMLInfo dyn_xml;
747 /* Timers used by the generic (architected) timer */
748 QEMUTimer *gt_timer[NUM_GTIMERS];
750 * Timer used by the PMU. Its state is restored after migration by
751 * pmu_op_finish() - it does not need other handling during migration
753 QEMUTimer *pmu_timer;
754 /* GPIO outputs for generic timer */
755 qemu_irq gt_timer_outputs[NUM_GTIMERS];
756 /* GPIO output for GICv3 maintenance interrupt signal */
757 qemu_irq gicv3_maintenance_interrupt;
758 /* GPIO output for the PMU interrupt */
759 qemu_irq pmu_interrupt;
761 /* MemoryRegion to use for secure physical accesses */
762 MemoryRegion *secure_memory;
764 /* For v8M, pointer to the IDAU interface provided by board/SoC */
765 Object *idau;
767 /* 'compatible' string for this CPU for Linux device trees */
768 const char *dtb_compatible;
770 /* PSCI version for this CPU
771 * Bits[31:16] = Major Version
772 * Bits[15:0] = Minor Version
774 uint32_t psci_version;
776 /* Should CPU start in PSCI powered-off state? */
777 bool start_powered_off;
779 /* Current power state, access guarded by BQL */
780 ARMPSCIState power_state;
782 /* CPU has virtualization extension */
783 bool has_el2;
784 /* CPU has security extension */
785 bool has_el3;
786 /* CPU has PMU (Performance Monitor Unit) */
787 bool has_pmu;
789 /* CPU has memory protection unit */
790 bool has_mpu;
791 /* PMSAv7 MPU number of supported regions */
792 uint32_t pmsav7_dregion;
793 /* v8M SAU number of supported regions */
794 uint32_t sau_sregion;
796 /* PSCI conduit used to invoke PSCI methods
797 * 0 - disabled, 1 - smc, 2 - hvc
799 uint32_t psci_conduit;
801 /* For v8M, initial value of the Secure VTOR */
802 uint32_t init_svtor;
804 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
805 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
807 uint32_t kvm_target;
809 /* KVM init features for this CPU */
810 uint32_t kvm_init_features[7];
812 /* Uniprocessor system with MP extensions */
813 bool mp_is_up;
815 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
816 * and the probe failed (so we need to report the error in realize)
818 bool host_cpu_probe_failed;
820 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
821 * register.
823 int32_t core_count;
825 /* The instance init functions for implementation-specific subclasses
826 * set these fields to specify the implementation-dependent values of
827 * various constant registers and reset values of non-constant
828 * registers.
829 * Some of these might become QOM properties eventually.
830 * Field names match the official register names as defined in the
831 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
832 * is used for reset values of non-constant registers; no reset_
833 * prefix means a constant register.
834 * Some of these registers are split out into a substructure that
835 * is shared with the translators to control the ISA.
837 struct ARMISARegisters {
838 uint32_t id_isar0;
839 uint32_t id_isar1;
840 uint32_t id_isar2;
841 uint32_t id_isar3;
842 uint32_t id_isar4;
843 uint32_t id_isar5;
844 uint32_t id_isar6;
845 uint32_t mvfr0;
846 uint32_t mvfr1;
847 uint32_t mvfr2;
848 uint64_t id_aa64isar0;
849 uint64_t id_aa64isar1;
850 uint64_t id_aa64pfr0;
851 uint64_t id_aa64pfr1;
852 uint64_t id_aa64mmfr0;
853 uint64_t id_aa64mmfr1;
854 } isar;
855 uint32_t midr;
856 uint32_t revidr;
857 uint32_t reset_fpsid;
858 uint32_t ctr;
859 uint32_t reset_sctlr;
860 uint32_t id_pfr0;
861 uint32_t id_pfr1;
862 uint32_t id_dfr0;
863 uint64_t pmceid0;
864 uint64_t pmceid1;
865 uint32_t id_afr0;
866 uint32_t id_mmfr0;
867 uint32_t id_mmfr1;
868 uint32_t id_mmfr2;
869 uint32_t id_mmfr3;
870 uint32_t id_mmfr4;
871 uint64_t id_aa64dfr0;
872 uint64_t id_aa64dfr1;
873 uint64_t id_aa64afr0;
874 uint64_t id_aa64afr1;
875 uint32_t dbgdidr;
876 uint32_t clidr;
877 uint64_t mp_affinity; /* MP ID without feature bits */
878 /* The elements of this array are the CCSIDR values for each cache,
879 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
881 uint32_t ccsidr[16];
882 uint64_t reset_cbar;
883 uint32_t reset_auxcr;
884 bool reset_hivecs;
885 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
886 uint32_t dcz_blocksize;
887 uint64_t rvbar;
889 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
890 int gic_num_lrs; /* number of list registers */
891 int gic_vpribits; /* number of virtual priority bits */
892 int gic_vprebits; /* number of virtual preemption bits */
894 /* Whether the cfgend input is high (i.e. this CPU should reset into
895 * big-endian mode). This setting isn't used directly: instead it modifies
896 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
897 * architecture version.
899 bool cfgend;
901 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
902 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
904 int32_t node_id; /* NUMA node this CPU belongs to */
906 /* Used to synchronize KVM and QEMU in-kernel device levels */
907 uint8_t device_irq_level;
909 /* Used to set the maximum vector length the cpu will support. */
910 uint32_t sve_max_vq;
913 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
915 return container_of(env, ARMCPU, env);
918 void arm_cpu_post_init(Object *obj);
920 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
922 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
924 #define ENV_OFFSET offsetof(ARMCPU, env)
926 #ifndef CONFIG_USER_ONLY
927 extern const struct VMStateDescription vmstate_arm_cpu;
928 #endif
930 void arm_cpu_do_interrupt(CPUState *cpu);
931 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
932 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
934 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
935 int flags);
937 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
938 MemTxAttrs *attrs);
940 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
941 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
943 /* Dynamically generates for gdb stub an XML description of the sysregs from
944 * the cp_regs hashtable. Returns the registered sysregs number.
946 int arm_gen_dynamic_xml(CPUState *cpu);
948 /* Returns the dynamically generated XML for the gdb stub.
949 * Returns a pointer to the XML contents for the specified XML file or NULL
950 * if the XML name doesn't match the predefined one.
952 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
954 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
955 int cpuid, void *opaque);
956 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
957 int cpuid, void *opaque);
959 #ifdef TARGET_AARCH64
960 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
961 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
962 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
963 void aarch64_sve_change_el(CPUARMState *env, int old_el,
964 int new_el, bool el0_a64);
965 #else
966 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
967 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
968 int n, bool a)
970 #endif
972 target_ulong do_arm_semihosting(CPUARMState *env);
973 void aarch64_sync_32_to_64(CPUARMState *env);
974 void aarch64_sync_64_to_32(CPUARMState *env);
976 int fp_exception_el(CPUARMState *env, int cur_el);
977 int sve_exception_el(CPUARMState *env, int cur_el);
978 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
980 static inline bool is_a64(CPUARMState *env)
982 return env->aarch64;
985 /* you can call this signal handler from your SIGBUS and SIGSEGV
986 signal handlers to inform the virtual CPU of exceptions. non zero
987 is returned if the signal was handled by the virtual CPU. */
988 int cpu_arm_signal_handler(int host_signum, void *pinfo,
989 void *puc);
992 * pmccntr_op_start/finish
993 * @env: CPUARMState
995 * Convert the counter in the PMCCNTR between its delta form (the typical mode
996 * when it's enabled) and the guest-visible value. These two calls must always
997 * surround any action which might affect the counter.
999 void pmccntr_op_start(CPUARMState *env);
1000 void pmccntr_op_finish(CPUARMState *env);
1003 * pmu_op_start/finish
1004 * @env: CPUARMState
1006 * Convert all PMU counters between their delta form (the typical mode when
1007 * they are enabled) and the guest-visible values. These two calls must
1008 * surround any action which might affect the counters.
1010 void pmu_op_start(CPUARMState *env);
1011 void pmu_op_finish(CPUARMState *env);
1014 * Called when a PMU counter is due to overflow
1016 void arm_pmu_timer_cb(void *opaque);
1019 * Functions to register as EL change hooks for PMU mode filtering
1021 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1022 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1025 * pmu_init
1026 * @cpu: ARMCPU
1028 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1029 * for the current configuration
1031 void pmu_init(ARMCPU *cpu);
1033 /* SCTLR bit meanings. Several bits have been reused in newer
1034 * versions of the architecture; in that case we define constants
1035 * for both old and new bit meanings. Code which tests against those
1036 * bits should probably check or otherwise arrange that the CPU
1037 * is the architectural version it expects.
1039 #define SCTLR_M (1U << 0)
1040 #define SCTLR_A (1U << 1)
1041 #define SCTLR_C (1U << 2)
1042 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1043 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1044 #define SCTLR_SA (1U << 3) /* AArch64 only */
1045 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1046 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1047 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1048 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1049 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1050 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1051 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1052 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1053 #define SCTLR_ITD (1U << 7) /* v8 onward */
1054 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1055 #define SCTLR_SED (1U << 8) /* v8 onward */
1056 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1057 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1058 #define SCTLR_F (1U << 10) /* up to v6 */
1059 #define SCTLR_SW (1U << 10) /* v7, RES0 in v8 */
1060 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1061 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1062 #define SCTLR_I (1U << 12)
1063 #define SCTLR_V (1U << 13) /* AArch32 only */
1064 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1065 #define SCTLR_RR (1U << 14) /* up to v7 */
1066 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1067 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1068 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1069 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1070 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1071 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1072 #define SCTLR_BR (1U << 17) /* PMSA only */
1073 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1074 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1075 #define SCTLR_WXN (1U << 19)
1076 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1077 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1078 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1079 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1080 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1081 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1082 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1083 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1084 #define SCTLR_VE (1U << 24) /* up to v7 */
1085 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1086 #define SCTLR_EE (1U << 25)
1087 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1088 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1089 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1090 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1091 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1092 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1093 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1094 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1095 #define SCTLR_TE (1U << 30) /* AArch32 only */
1096 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1097 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1098 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1099 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1100 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1101 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1102 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1103 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1104 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1105 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
1107 #define CPTR_TCPAC (1U << 31)
1108 #define CPTR_TTA (1U << 20)
1109 #define CPTR_TFP (1U << 10)
1110 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1111 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1113 #define MDCR_EPMAD (1U << 21)
1114 #define MDCR_EDAD (1U << 20)
1115 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1116 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1117 #define MDCR_SDD (1U << 16)
1118 #define MDCR_SPD (3U << 14)
1119 #define MDCR_TDRA (1U << 11)
1120 #define MDCR_TDOSA (1U << 10)
1121 #define MDCR_TDA (1U << 9)
1122 #define MDCR_TDE (1U << 8)
1123 #define MDCR_HPME (1U << 7)
1124 #define MDCR_TPM (1U << 6)
1125 #define MDCR_TPMCR (1U << 5)
1126 #define MDCR_HPMN (0x1fU)
1128 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1129 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1131 #define CPSR_M (0x1fU)
1132 #define CPSR_T (1U << 5)
1133 #define CPSR_F (1U << 6)
1134 #define CPSR_I (1U << 7)
1135 #define CPSR_A (1U << 8)
1136 #define CPSR_E (1U << 9)
1137 #define CPSR_IT_2_7 (0xfc00U)
1138 #define CPSR_GE (0xfU << 16)
1139 #define CPSR_IL (1U << 20)
1140 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1141 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1142 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1143 * where it is live state but not accessible to the AArch32 code.
1145 #define CPSR_RESERVED (0x7U << 21)
1146 #define CPSR_J (1U << 24)
1147 #define CPSR_IT_0_1 (3U << 25)
1148 #define CPSR_Q (1U << 27)
1149 #define CPSR_V (1U << 28)
1150 #define CPSR_C (1U << 29)
1151 #define CPSR_Z (1U << 30)
1152 #define CPSR_N (1U << 31)
1153 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1154 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1156 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1157 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1158 | CPSR_NZCV)
1159 /* Bits writable in user mode. */
1160 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1161 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1162 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1163 /* Mask of bits which may be set by exception return copying them from SPSR */
1164 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1166 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1167 #define XPSR_EXCP 0x1ffU
1168 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1169 #define XPSR_IT_2_7 CPSR_IT_2_7
1170 #define XPSR_GE CPSR_GE
1171 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1172 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1173 #define XPSR_IT_0_1 CPSR_IT_0_1
1174 #define XPSR_Q CPSR_Q
1175 #define XPSR_V CPSR_V
1176 #define XPSR_C CPSR_C
1177 #define XPSR_Z CPSR_Z
1178 #define XPSR_N CPSR_N
1179 #define XPSR_NZCV CPSR_NZCV
1180 #define XPSR_IT CPSR_IT
1182 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1183 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1184 #define TTBCR_PD0 (1U << 4)
1185 #define TTBCR_PD1 (1U << 5)
1186 #define TTBCR_EPD0 (1U << 7)
1187 #define TTBCR_IRGN0 (3U << 8)
1188 #define TTBCR_ORGN0 (3U << 10)
1189 #define TTBCR_SH0 (3U << 12)
1190 #define TTBCR_T1SZ (3U << 16)
1191 #define TTBCR_A1 (1U << 22)
1192 #define TTBCR_EPD1 (1U << 23)
1193 #define TTBCR_IRGN1 (3U << 24)
1194 #define TTBCR_ORGN1 (3U << 26)
1195 #define TTBCR_SH1 (1U << 28)
1196 #define TTBCR_EAE (1U << 31)
1198 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1199 * Only these are valid when in AArch64 mode; in
1200 * AArch32 mode SPSRs are basically CPSR-format.
1202 #define PSTATE_SP (1U)
1203 #define PSTATE_M (0xFU)
1204 #define PSTATE_nRW (1U << 4)
1205 #define PSTATE_F (1U << 6)
1206 #define PSTATE_I (1U << 7)
1207 #define PSTATE_A (1U << 8)
1208 #define PSTATE_D (1U << 9)
1209 #define PSTATE_IL (1U << 20)
1210 #define PSTATE_SS (1U << 21)
1211 #define PSTATE_V (1U << 28)
1212 #define PSTATE_C (1U << 29)
1213 #define PSTATE_Z (1U << 30)
1214 #define PSTATE_N (1U << 31)
1215 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1216 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1217 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1218 /* Mode values for AArch64 */
1219 #define PSTATE_MODE_EL3h 13
1220 #define PSTATE_MODE_EL3t 12
1221 #define PSTATE_MODE_EL2h 9
1222 #define PSTATE_MODE_EL2t 8
1223 #define PSTATE_MODE_EL1h 5
1224 #define PSTATE_MODE_EL1t 4
1225 #define PSTATE_MODE_EL0t 0
1227 /* Write a new value to v7m.exception, thus transitioning into or out
1228 * of Handler mode; this may result in a change of active stack pointer.
1230 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1232 /* Map EL and handler into a PSTATE_MODE. */
1233 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1235 return (el << 2) | handler;
1238 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1239 * interprocessing, so we don't attempt to sync with the cpsr state used by
1240 * the 32 bit decoder.
1242 static inline uint32_t pstate_read(CPUARMState *env)
1244 int ZF;
1246 ZF = (env->ZF == 0);
1247 return (env->NF & 0x80000000) | (ZF << 30)
1248 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1249 | env->pstate | env->daif;
1252 static inline void pstate_write(CPUARMState *env, uint32_t val)
1254 env->ZF = (~val) & PSTATE_Z;
1255 env->NF = val;
1256 env->CF = (val >> 29) & 1;
1257 env->VF = (val << 3) & 0x80000000;
1258 env->daif = val & PSTATE_DAIF;
1259 env->pstate = val & ~CACHED_PSTATE_BITS;
1262 /* Return the current CPSR value. */
1263 uint32_t cpsr_read(CPUARMState *env);
1265 typedef enum CPSRWriteType {
1266 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1267 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1268 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1269 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1270 } CPSRWriteType;
1272 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1273 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1274 CPSRWriteType write_type);
1276 /* Return the current xPSR value. */
1277 static inline uint32_t xpsr_read(CPUARMState *env)
1279 int ZF;
1280 ZF = (env->ZF == 0);
1281 return (env->NF & 0x80000000) | (ZF << 30)
1282 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1283 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1284 | ((env->condexec_bits & 0xfc) << 8)
1285 | env->v7m.exception;
1288 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1289 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1291 if (mask & XPSR_NZCV) {
1292 env->ZF = (~val) & XPSR_Z;
1293 env->NF = val;
1294 env->CF = (val >> 29) & 1;
1295 env->VF = (val << 3) & 0x80000000;
1297 if (mask & XPSR_Q) {
1298 env->QF = ((val & XPSR_Q) != 0);
1300 if (mask & XPSR_T) {
1301 env->thumb = ((val & XPSR_T) != 0);
1303 if (mask & XPSR_IT_0_1) {
1304 env->condexec_bits &= ~3;
1305 env->condexec_bits |= (val >> 25) & 3;
1307 if (mask & XPSR_IT_2_7) {
1308 env->condexec_bits &= 3;
1309 env->condexec_bits |= (val >> 8) & 0xfc;
1311 if (mask & XPSR_EXCP) {
1312 /* Note that this only happens on exception exit */
1313 write_v7m_exception(env, val & XPSR_EXCP);
1317 #define HCR_VM (1ULL << 0)
1318 #define HCR_SWIO (1ULL << 1)
1319 #define HCR_PTW (1ULL << 2)
1320 #define HCR_FMO (1ULL << 3)
1321 #define HCR_IMO (1ULL << 4)
1322 #define HCR_AMO (1ULL << 5)
1323 #define HCR_VF (1ULL << 6)
1324 #define HCR_VI (1ULL << 7)
1325 #define HCR_VSE (1ULL << 8)
1326 #define HCR_FB (1ULL << 9)
1327 #define HCR_BSU_MASK (3ULL << 10)
1328 #define HCR_DC (1ULL << 12)
1329 #define HCR_TWI (1ULL << 13)
1330 #define HCR_TWE (1ULL << 14)
1331 #define HCR_TID0 (1ULL << 15)
1332 #define HCR_TID1 (1ULL << 16)
1333 #define HCR_TID2 (1ULL << 17)
1334 #define HCR_TID3 (1ULL << 18)
1335 #define HCR_TSC (1ULL << 19)
1336 #define HCR_TIDCP (1ULL << 20)
1337 #define HCR_TACR (1ULL << 21)
1338 #define HCR_TSW (1ULL << 22)
1339 #define HCR_TPCP (1ULL << 23)
1340 #define HCR_TPU (1ULL << 24)
1341 #define HCR_TTLB (1ULL << 25)
1342 #define HCR_TVM (1ULL << 26)
1343 #define HCR_TGE (1ULL << 27)
1344 #define HCR_TDZ (1ULL << 28)
1345 #define HCR_HCD (1ULL << 29)
1346 #define HCR_TRVM (1ULL << 30)
1347 #define HCR_RW (1ULL << 31)
1348 #define HCR_CD (1ULL << 32)
1349 #define HCR_ID (1ULL << 33)
1350 #define HCR_E2H (1ULL << 34)
1351 #define HCR_TLOR (1ULL << 35)
1352 #define HCR_TERR (1ULL << 36)
1353 #define HCR_TEA (1ULL << 37)
1354 #define HCR_MIOCNCE (1ULL << 38)
1355 #define HCR_APK (1ULL << 40)
1356 #define HCR_API (1ULL << 41)
1357 #define HCR_NV (1ULL << 42)
1358 #define HCR_NV1 (1ULL << 43)
1359 #define HCR_AT (1ULL << 44)
1360 #define HCR_NV2 (1ULL << 45)
1361 #define HCR_FWB (1ULL << 46)
1362 #define HCR_FIEN (1ULL << 47)
1363 #define HCR_TID4 (1ULL << 49)
1364 #define HCR_TICAB (1ULL << 50)
1365 #define HCR_TOCU (1ULL << 52)
1366 #define HCR_TTLBIS (1ULL << 54)
1367 #define HCR_TTLBOS (1ULL << 55)
1368 #define HCR_ATA (1ULL << 56)
1369 #define HCR_DCT (1ULL << 57)
1372 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1373 * HCR_MASK and then clear it again if the feature bit is not set in
1374 * hcr_write().
1376 #define HCR_MASK ((1ULL << 34) - 1)
1378 #define SCR_NS (1U << 0)
1379 #define SCR_IRQ (1U << 1)
1380 #define SCR_FIQ (1U << 2)
1381 #define SCR_EA (1U << 3)
1382 #define SCR_FW (1U << 4)
1383 #define SCR_AW (1U << 5)
1384 #define SCR_NET (1U << 6)
1385 #define SCR_SMD (1U << 7)
1386 #define SCR_HCE (1U << 8)
1387 #define SCR_SIF (1U << 9)
1388 #define SCR_RW (1U << 10)
1389 #define SCR_ST (1U << 11)
1390 #define SCR_TWI (1U << 12)
1391 #define SCR_TWE (1U << 13)
1392 #define SCR_TLOR (1U << 14)
1393 #define SCR_TERR (1U << 15)
1394 #define SCR_APK (1U << 16)
1395 #define SCR_API (1U << 17)
1396 #define SCR_EEL2 (1U << 18)
1397 #define SCR_EASE (1U << 19)
1398 #define SCR_NMEA (1U << 20)
1399 #define SCR_FIEN (1U << 21)
1400 #define SCR_ENSCXT (1U << 25)
1401 #define SCR_ATA (1U << 26)
1403 /* Return the current FPSCR value. */
1404 uint32_t vfp_get_fpscr(CPUARMState *env);
1405 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1407 /* FPCR, Floating Point Control Register
1408 * FPSR, Floating Poiht Status Register
1410 * For A64 the FPSCR is split into two logically distinct registers,
1411 * FPCR and FPSR. However since they still use non-overlapping bits
1412 * we store the underlying state in fpscr and just mask on read/write.
1414 #define FPSR_MASK 0xf800009f
1415 #define FPCR_MASK 0x07ff9f00
1417 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1418 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1419 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1421 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1423 return vfp_get_fpscr(env) & FPSR_MASK;
1426 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1428 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1429 vfp_set_fpscr(env, new_fpscr);
1432 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1434 return vfp_get_fpscr(env) & FPCR_MASK;
1437 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1439 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1440 vfp_set_fpscr(env, new_fpscr);
1443 enum arm_cpu_mode {
1444 ARM_CPU_MODE_USR = 0x10,
1445 ARM_CPU_MODE_FIQ = 0x11,
1446 ARM_CPU_MODE_IRQ = 0x12,
1447 ARM_CPU_MODE_SVC = 0x13,
1448 ARM_CPU_MODE_MON = 0x16,
1449 ARM_CPU_MODE_ABT = 0x17,
1450 ARM_CPU_MODE_HYP = 0x1a,
1451 ARM_CPU_MODE_UND = 0x1b,
1452 ARM_CPU_MODE_SYS = 0x1f
1455 /* VFP system registers. */
1456 #define ARM_VFP_FPSID 0
1457 #define ARM_VFP_FPSCR 1
1458 #define ARM_VFP_MVFR2 5
1459 #define ARM_VFP_MVFR1 6
1460 #define ARM_VFP_MVFR0 7
1461 #define ARM_VFP_FPEXC 8
1462 #define ARM_VFP_FPINST 9
1463 #define ARM_VFP_FPINST2 10
1465 /* iwMMXt coprocessor control registers. */
1466 #define ARM_IWMMXT_wCID 0
1467 #define ARM_IWMMXT_wCon 1
1468 #define ARM_IWMMXT_wCSSF 2
1469 #define ARM_IWMMXT_wCASF 3
1470 #define ARM_IWMMXT_wCGR0 8
1471 #define ARM_IWMMXT_wCGR1 9
1472 #define ARM_IWMMXT_wCGR2 10
1473 #define ARM_IWMMXT_wCGR3 11
1475 /* V7M CCR bits */
1476 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1477 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1478 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1479 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1480 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1481 FIELD(V7M_CCR, STKALIGN, 9, 1)
1482 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1483 FIELD(V7M_CCR, DC, 16, 1)
1484 FIELD(V7M_CCR, IC, 17, 1)
1485 FIELD(V7M_CCR, BP, 18, 1)
1487 /* V7M SCR bits */
1488 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1489 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1490 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1491 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1493 /* V7M AIRCR bits */
1494 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1495 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1496 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1497 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1498 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1499 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1500 FIELD(V7M_AIRCR, PRIS, 14, 1)
1501 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1502 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1504 /* V7M CFSR bits for MMFSR */
1505 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1506 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1507 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1508 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1509 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1510 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1512 /* V7M CFSR bits for BFSR */
1513 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1514 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1515 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1516 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1517 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1518 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1519 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1521 /* V7M CFSR bits for UFSR */
1522 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1523 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1524 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1525 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1526 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1527 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1528 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1530 /* V7M CFSR bit masks covering all of the subregister bits */
1531 FIELD(V7M_CFSR, MMFSR, 0, 8)
1532 FIELD(V7M_CFSR, BFSR, 8, 8)
1533 FIELD(V7M_CFSR, UFSR, 16, 16)
1535 /* V7M HFSR bits */
1536 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1537 FIELD(V7M_HFSR, FORCED, 30, 1)
1538 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1540 /* V7M DFSR bits */
1541 FIELD(V7M_DFSR, HALTED, 0, 1)
1542 FIELD(V7M_DFSR, BKPT, 1, 1)
1543 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1544 FIELD(V7M_DFSR, VCATCH, 3, 1)
1545 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1547 /* V7M SFSR bits */
1548 FIELD(V7M_SFSR, INVEP, 0, 1)
1549 FIELD(V7M_SFSR, INVIS, 1, 1)
1550 FIELD(V7M_SFSR, INVER, 2, 1)
1551 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1552 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1553 FIELD(V7M_SFSR, LSPERR, 5, 1)
1554 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1555 FIELD(V7M_SFSR, LSERR, 7, 1)
1557 /* v7M MPU_CTRL bits */
1558 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1559 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1560 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1562 /* v7M CLIDR bits */
1563 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1564 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1565 FIELD(V7M_CLIDR, LOC, 24, 3)
1566 FIELD(V7M_CLIDR, LOUU, 27, 3)
1567 FIELD(V7M_CLIDR, ICB, 30, 2)
1569 FIELD(V7M_CSSELR, IND, 0, 1)
1570 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1571 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1572 * define a mask for this and check that it doesn't permit running off
1573 * the end of the array.
1575 FIELD(V7M_CSSELR, INDEX, 0, 4)
1578 * System register ID fields.
1580 FIELD(ID_ISAR0, SWAP, 0, 4)
1581 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1582 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1583 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1584 FIELD(ID_ISAR0, COPROC, 16, 4)
1585 FIELD(ID_ISAR0, DEBUG, 20, 4)
1586 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1588 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1589 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1590 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1591 FIELD(ID_ISAR1, EXTEND, 12, 4)
1592 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1593 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1594 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1595 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1597 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1598 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1599 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1600 FIELD(ID_ISAR2, MULT, 12, 4)
1601 FIELD(ID_ISAR2, MULTS, 16, 4)
1602 FIELD(ID_ISAR2, MULTU, 20, 4)
1603 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1604 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1606 FIELD(ID_ISAR3, SATURATE, 0, 4)
1607 FIELD(ID_ISAR3, SIMD, 4, 4)
1608 FIELD(ID_ISAR3, SVC, 8, 4)
1609 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1610 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1611 FIELD(ID_ISAR3, T32COPY, 20, 4)
1612 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1613 FIELD(ID_ISAR3, T32EE, 28, 4)
1615 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1616 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1617 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1618 FIELD(ID_ISAR4, SMC, 12, 4)
1619 FIELD(ID_ISAR4, BARRIER, 16, 4)
1620 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1621 FIELD(ID_ISAR4, PSR_M, 24, 4)
1622 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1624 FIELD(ID_ISAR5, SEVL, 0, 4)
1625 FIELD(ID_ISAR5, AES, 4, 4)
1626 FIELD(ID_ISAR5, SHA1, 8, 4)
1627 FIELD(ID_ISAR5, SHA2, 12, 4)
1628 FIELD(ID_ISAR5, CRC32, 16, 4)
1629 FIELD(ID_ISAR5, RDM, 24, 4)
1630 FIELD(ID_ISAR5, VCMA, 28, 4)
1632 FIELD(ID_ISAR6, JSCVT, 0, 4)
1633 FIELD(ID_ISAR6, DP, 4, 4)
1634 FIELD(ID_ISAR6, FHM, 8, 4)
1635 FIELD(ID_ISAR6, SB, 12, 4)
1636 FIELD(ID_ISAR6, SPECRES, 16, 4)
1638 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1639 FIELD(ID_MMFR4, AC2, 4, 4)
1640 FIELD(ID_MMFR4, XNX, 8, 4)
1641 FIELD(ID_MMFR4, CNP, 12, 4)
1642 FIELD(ID_MMFR4, HPDS, 16, 4)
1643 FIELD(ID_MMFR4, LSM, 20, 4)
1644 FIELD(ID_MMFR4, CCIDX, 24, 4)
1645 FIELD(ID_MMFR4, EVT, 28, 4)
1647 FIELD(ID_AA64ISAR0, AES, 4, 4)
1648 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1649 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1650 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1651 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1652 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1653 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1654 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1655 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1656 FIELD(ID_AA64ISAR0, DP, 44, 4)
1657 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1658 FIELD(ID_AA64ISAR0, TS, 52, 4)
1659 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1660 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1662 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1663 FIELD(ID_AA64ISAR1, APA, 4, 4)
1664 FIELD(ID_AA64ISAR1, API, 8, 4)
1665 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1666 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1667 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1668 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1669 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1670 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1671 FIELD(ID_AA64ISAR1, SB, 36, 4)
1672 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1674 FIELD(ID_AA64PFR0, EL0, 0, 4)
1675 FIELD(ID_AA64PFR0, EL1, 4, 4)
1676 FIELD(ID_AA64PFR0, EL2, 8, 4)
1677 FIELD(ID_AA64PFR0, EL3, 12, 4)
1678 FIELD(ID_AA64PFR0, FP, 16, 4)
1679 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1680 FIELD(ID_AA64PFR0, GIC, 24, 4)
1681 FIELD(ID_AA64PFR0, RAS, 28, 4)
1682 FIELD(ID_AA64PFR0, SVE, 32, 4)
1684 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1685 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1686 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1687 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1688 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1689 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1690 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1691 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1692 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1693 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1694 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1695 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1697 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1698 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1699 FIELD(ID_AA64MMFR1, VH, 8, 4)
1700 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1701 FIELD(ID_AA64MMFR1, LO, 16, 4)
1702 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1703 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1704 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1706 FIELD(ID_DFR0, COPDBG, 0, 4)
1707 FIELD(ID_DFR0, COPSDBG, 4, 4)
1708 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1709 FIELD(ID_DFR0, COPTRC, 12, 4)
1710 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1711 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1712 FIELD(ID_DFR0, PERFMON, 24, 4)
1713 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1715 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1717 /* If adding a feature bit which corresponds to a Linux ELF
1718 * HWCAP bit, remember to update the feature-bit-to-hwcap
1719 * mapping in linux-user/elfload.c:get_elf_hwcap().
1721 enum arm_features {
1722 ARM_FEATURE_VFP,
1723 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1724 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1725 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1726 ARM_FEATURE_V6,
1727 ARM_FEATURE_V6K,
1728 ARM_FEATURE_V7,
1729 ARM_FEATURE_THUMB2,
1730 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1731 ARM_FEATURE_VFP3,
1732 ARM_FEATURE_VFP_FP16,
1733 ARM_FEATURE_NEON,
1734 ARM_FEATURE_M, /* Microcontroller profile. */
1735 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1736 ARM_FEATURE_THUMB2EE,
1737 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1738 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1739 ARM_FEATURE_V4T,
1740 ARM_FEATURE_V5,
1741 ARM_FEATURE_STRONGARM,
1742 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1743 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1744 ARM_FEATURE_GENERIC_TIMER,
1745 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1746 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1747 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1748 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1749 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1750 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1751 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1752 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1753 ARM_FEATURE_V8,
1754 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1755 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1756 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1757 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1758 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1759 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1760 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1761 ARM_FEATURE_PMU, /* has PMU support */
1762 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1763 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1764 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1767 static inline int arm_feature(CPUARMState *env, int feature)
1769 return (env->features & (1ULL << feature)) != 0;
1772 #if !defined(CONFIG_USER_ONLY)
1773 /* Return true if exception levels below EL3 are in secure state,
1774 * or would be following an exception return to that level.
1775 * Unlike arm_is_secure() (which is always a question about the
1776 * _current_ state of the CPU) this doesn't care about the current
1777 * EL or mode.
1779 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1781 if (arm_feature(env, ARM_FEATURE_EL3)) {
1782 return !(env->cp15.scr_el3 & SCR_NS);
1783 } else {
1784 /* If EL3 is not supported then the secure state is implementation
1785 * defined, in which case QEMU defaults to non-secure.
1787 return false;
1791 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1792 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1794 if (arm_feature(env, ARM_FEATURE_EL3)) {
1795 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1796 /* CPU currently in AArch64 state and EL3 */
1797 return true;
1798 } else if (!is_a64(env) &&
1799 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1800 /* CPU currently in AArch32 state and monitor mode */
1801 return true;
1804 return false;
1807 /* Return true if the processor is in secure state */
1808 static inline bool arm_is_secure(CPUARMState *env)
1810 if (arm_is_el3_or_mon(env)) {
1811 return true;
1813 return arm_is_secure_below_el3(env);
1816 #else
1817 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1819 return false;
1822 static inline bool arm_is_secure(CPUARMState *env)
1824 return false;
1826 #endif
1829 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1830 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1831 * "for all purposes other than a direct read or write access of HCR_EL2."
1832 * Not included here is HCR_RW.
1834 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1836 /* Return true if the specified exception level is running in AArch64 state. */
1837 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1839 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1840 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1842 assert(el >= 1 && el <= 3);
1843 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1845 /* The highest exception level is always at the maximum supported
1846 * register width, and then lower levels have a register width controlled
1847 * by bits in the SCR or HCR registers.
1849 if (el == 3) {
1850 return aa64;
1853 if (arm_feature(env, ARM_FEATURE_EL3)) {
1854 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1857 if (el == 2) {
1858 return aa64;
1861 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1862 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1865 return aa64;
1868 /* Function for determing whether guest cp register reads and writes should
1869 * access the secure or non-secure bank of a cp register. When EL3 is
1870 * operating in AArch32 state, the NS-bit determines whether the secure
1871 * instance of a cp register should be used. When EL3 is AArch64 (or if
1872 * it doesn't exist at all) then there is no register banking, and all
1873 * accesses are to the non-secure version.
1875 static inline bool access_secure_reg(CPUARMState *env)
1877 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1878 !arm_el_is_aa64(env, 3) &&
1879 !(env->cp15.scr_el3 & SCR_NS));
1881 return ret;
1884 /* Macros for accessing a specified CP register bank */
1885 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1886 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1888 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1889 do { \
1890 if (_secure) { \
1891 (_env)->cp15._regname##_s = (_val); \
1892 } else { \
1893 (_env)->cp15._regname##_ns = (_val); \
1895 } while (0)
1897 /* Macros for automatically accessing a specific CP register bank depending on
1898 * the current secure state of the system. These macros are not intended for
1899 * supporting instruction translation reads/writes as these are dependent
1900 * solely on the SCR.NS bit and not the mode.
1902 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1903 A32_BANKED_REG_GET((_env), _regname, \
1904 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1906 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1907 A32_BANKED_REG_SET((_env), _regname, \
1908 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1909 (_val))
1911 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1912 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1913 uint32_t cur_el, bool secure);
1915 /* Interface between CPU and Interrupt controller. */
1916 #ifndef CONFIG_USER_ONLY
1917 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1918 #else
1919 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1921 return true;
1923 #endif
1925 * armv7m_nvic_set_pending: mark the specified exception as pending
1926 * @opaque: the NVIC
1927 * @irq: the exception number to mark pending
1928 * @secure: false for non-banked exceptions or for the nonsecure
1929 * version of a banked exception, true for the secure version of a banked
1930 * exception.
1932 * Marks the specified exception as pending. Note that we will assert()
1933 * if @secure is true and @irq does not specify one of the fixed set
1934 * of architecturally banked exceptions.
1936 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1938 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1939 * @opaque: the NVIC
1940 * @irq: the exception number to mark pending
1941 * @secure: false for non-banked exceptions or for the nonsecure
1942 * version of a banked exception, true for the secure version of a banked
1943 * exception.
1945 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1946 * exceptions (exceptions generated in the course of trying to take
1947 * a different exception).
1949 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1951 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1952 * exception, and whether it targets Secure state
1953 * @opaque: the NVIC
1954 * @pirq: set to pending exception number
1955 * @ptargets_secure: set to whether pending exception targets Secure
1957 * This function writes the number of the highest priority pending
1958 * exception (the one which would be made active by
1959 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1960 * to true if the current highest priority pending exception should
1961 * be taken to Secure state, false for NS.
1963 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1964 bool *ptargets_secure);
1966 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1967 * @opaque: the NVIC
1969 * Move the current highest priority pending exception from the pending
1970 * state to the active state, and update v7m.exception to indicate that
1971 * it is the exception currently being handled.
1973 void armv7m_nvic_acknowledge_irq(void *opaque);
1975 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1976 * @opaque: the NVIC
1977 * @irq: the exception number to complete
1978 * @secure: true if this exception was secure
1980 * Returns: -1 if the irq was not active
1981 * 1 if completing this irq brought us back to base (no active irqs)
1982 * 0 if there is still an irq active after this one was completed
1983 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1985 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1987 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1988 * @opaque: the NVIC
1990 * Returns: the raw execution priority as defined by the v8M architecture.
1991 * This is the execution priority minus the effects of AIRCR.PRIS,
1992 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1993 * (v8M ARM ARM I_PKLD.)
1995 int armv7m_nvic_raw_execution_priority(void *opaque);
1997 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1998 * priority is negative for the specified security state.
1999 * @opaque: the NVIC
2000 * @secure: the security state to test
2001 * This corresponds to the pseudocode IsReqExecPriNeg().
2003 #ifndef CONFIG_USER_ONLY
2004 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2005 #else
2006 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2008 return false;
2010 #endif
2012 /* Interface for defining coprocessor registers.
2013 * Registers are defined in tables of arm_cp_reginfo structs
2014 * which are passed to define_arm_cp_regs().
2017 /* When looking up a coprocessor register we look for it
2018 * via an integer which encodes all of:
2019 * coprocessor number
2020 * Crn, Crm, opc1, opc2 fields
2021 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2022 * or via MRRC/MCRR?)
2023 * non-secure/secure bank (AArch32 only)
2024 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2025 * (In this case crn and opc2 should be zero.)
2026 * For AArch64, there is no 32/64 bit size distinction;
2027 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2028 * and 4 bit CRn and CRm. The encoding patterns are chosen
2029 * to be easy to convert to and from the KVM encodings, and also
2030 * so that the hashtable can contain both AArch32 and AArch64
2031 * registers (to allow for interprocessing where we might run
2032 * 32 bit code on a 64 bit core).
2034 /* This bit is private to our hashtable cpreg; in KVM register
2035 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2036 * in the upper bits of the 64 bit ID.
2038 #define CP_REG_AA64_SHIFT 28
2039 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2041 /* To enable banking of coprocessor registers depending on ns-bit we
2042 * add a bit to distinguish between secure and non-secure cpregs in the
2043 * hashtable.
2045 #define CP_REG_NS_SHIFT 29
2046 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2048 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2049 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2050 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2052 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2053 (CP_REG_AA64_MASK | \
2054 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2055 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2056 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2057 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2058 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2059 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2061 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2062 * version used as a key for the coprocessor register hashtable
2064 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2066 uint32_t cpregid = kvmid;
2067 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2068 cpregid |= CP_REG_AA64_MASK;
2069 } else {
2070 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2071 cpregid |= (1 << 15);
2074 /* KVM is always non-secure so add the NS flag on AArch32 register
2075 * entries.
2077 cpregid |= 1 << CP_REG_NS_SHIFT;
2079 return cpregid;
2082 /* Convert a truncated 32 bit hashtable key into the full
2083 * 64 bit KVM register ID.
2085 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2087 uint64_t kvmid;
2089 if (cpregid & CP_REG_AA64_MASK) {
2090 kvmid = cpregid & ~CP_REG_AA64_MASK;
2091 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2092 } else {
2093 kvmid = cpregid & ~(1 << 15);
2094 if (cpregid & (1 << 15)) {
2095 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2096 } else {
2097 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2100 return kvmid;
2103 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2104 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2105 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2106 * TCG can assume the value to be constant (ie load at translate time)
2107 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2108 * indicates that the TB should not be ended after a write to this register
2109 * (the default is that the TB ends after cp writes). OVERRIDE permits
2110 * a register definition to override a previous definition for the
2111 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2112 * old must have the OVERRIDE bit set.
2113 * ALIAS indicates that this register is an alias view of some underlying
2114 * state which is also visible via another register, and that the other
2115 * register is handling migration and reset; registers marked ALIAS will not be
2116 * migrated but may have their state set by syncing of register state from KVM.
2117 * NO_RAW indicates that this register has no underlying state and does not
2118 * support raw access for state saving/loading; it will not be used for either
2119 * migration or KVM state synchronization. (Typically this is for "registers"
2120 * which are actually used as instructions for cache maintenance and so on.)
2121 * IO indicates that this register does I/O and therefore its accesses
2122 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2123 * registers which implement clocks or timers require this.
2125 #define ARM_CP_SPECIAL 0x0001
2126 #define ARM_CP_CONST 0x0002
2127 #define ARM_CP_64BIT 0x0004
2128 #define ARM_CP_SUPPRESS_TB_END 0x0008
2129 #define ARM_CP_OVERRIDE 0x0010
2130 #define ARM_CP_ALIAS 0x0020
2131 #define ARM_CP_IO 0x0040
2132 #define ARM_CP_NO_RAW 0x0080
2133 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2134 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2135 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2136 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2137 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2138 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2139 #define ARM_CP_FPU 0x1000
2140 #define ARM_CP_SVE 0x2000
2141 #define ARM_CP_NO_GDB 0x4000
2142 /* Used only as a terminator for ARMCPRegInfo lists */
2143 #define ARM_CP_SENTINEL 0xffff
2144 /* Mask of only the flag bits in a type field */
2145 #define ARM_CP_FLAG_MASK 0x70ff
2147 /* Valid values for ARMCPRegInfo state field, indicating which of
2148 * the AArch32 and AArch64 execution states this register is visible in.
2149 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2150 * If the reginfo is declared to be visible in both states then a second
2151 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2152 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2153 * Note that we rely on the values of these enums as we iterate through
2154 * the various states in some places.
2156 enum {
2157 ARM_CP_STATE_AA32 = 0,
2158 ARM_CP_STATE_AA64 = 1,
2159 ARM_CP_STATE_BOTH = 2,
2162 /* ARM CP register secure state flags. These flags identify security state
2163 * attributes for a given CP register entry.
2164 * The existence of both or neither secure and non-secure flags indicates that
2165 * the register has both a secure and non-secure hash entry. A single one of
2166 * these flags causes the register to only be hashed for the specified
2167 * security state.
2168 * Although definitions may have any combination of the S/NS bits, each
2169 * registered entry will only have one to identify whether the entry is secure
2170 * or non-secure.
2172 enum {
2173 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2174 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2177 /* Return true if cptype is a valid type field. This is used to try to
2178 * catch errors where the sentinel has been accidentally left off the end
2179 * of a list of registers.
2181 static inline bool cptype_valid(int cptype)
2183 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2184 || ((cptype & ARM_CP_SPECIAL) &&
2185 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2188 /* Access rights:
2189 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2190 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2191 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2192 * (ie any of the privileged modes in Secure state, or Monitor mode).
2193 * If a register is accessible in one privilege level it's always accessible
2194 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2195 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2196 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2197 * terminology a little and call this PL3.
2198 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2199 * with the ELx exception levels.
2201 * If access permissions for a register are more complex than can be
2202 * described with these bits, then use a laxer set of restrictions, and
2203 * do the more restrictive/complex check inside a helper function.
2205 #define PL3_R 0x80
2206 #define PL3_W 0x40
2207 #define PL2_R (0x20 | PL3_R)
2208 #define PL2_W (0x10 | PL3_W)
2209 #define PL1_R (0x08 | PL2_R)
2210 #define PL1_W (0x04 | PL2_W)
2211 #define PL0_R (0x02 | PL1_R)
2212 #define PL0_W (0x01 | PL1_W)
2214 #define PL3_RW (PL3_R | PL3_W)
2215 #define PL2_RW (PL2_R | PL2_W)
2216 #define PL1_RW (PL1_R | PL1_W)
2217 #define PL0_RW (PL0_R | PL0_W)
2219 /* Return the highest implemented Exception Level */
2220 static inline int arm_highest_el(CPUARMState *env)
2222 if (arm_feature(env, ARM_FEATURE_EL3)) {
2223 return 3;
2225 if (arm_feature(env, ARM_FEATURE_EL2)) {
2226 return 2;
2228 return 1;
2231 /* Return true if a v7M CPU is in Handler mode */
2232 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2234 return env->v7m.exception != 0;
2237 /* Return the current Exception Level (as per ARMv8; note that this differs
2238 * from the ARMv7 Privilege Level).
2240 static inline int arm_current_el(CPUARMState *env)
2242 if (arm_feature(env, ARM_FEATURE_M)) {
2243 return arm_v7m_is_handler_mode(env) ||
2244 !(env->v7m.control[env->v7m.secure] & 1);
2247 if (is_a64(env)) {
2248 return extract32(env->pstate, 2, 2);
2251 switch (env->uncached_cpsr & 0x1f) {
2252 case ARM_CPU_MODE_USR:
2253 return 0;
2254 case ARM_CPU_MODE_HYP:
2255 return 2;
2256 case ARM_CPU_MODE_MON:
2257 return 3;
2258 default:
2259 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2260 /* If EL3 is 32-bit then all secure privileged modes run in
2261 * EL3
2263 return 3;
2266 return 1;
2270 typedef struct ARMCPRegInfo ARMCPRegInfo;
2272 typedef enum CPAccessResult {
2273 /* Access is permitted */
2274 CP_ACCESS_OK = 0,
2275 /* Access fails due to a configurable trap or enable which would
2276 * result in a categorized exception syndrome giving information about
2277 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2278 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2279 * PL1 if in EL0, otherwise to the current EL).
2281 CP_ACCESS_TRAP = 1,
2282 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2283 * Note that this is not a catch-all case -- the set of cases which may
2284 * result in this failure is specifically defined by the architecture.
2286 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2287 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2288 CP_ACCESS_TRAP_EL2 = 3,
2289 CP_ACCESS_TRAP_EL3 = 4,
2290 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2291 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2292 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2293 /* Access fails and results in an exception syndrome for an FP access,
2294 * trapped directly to EL2 or EL3
2296 CP_ACCESS_TRAP_FP_EL2 = 7,
2297 CP_ACCESS_TRAP_FP_EL3 = 8,
2298 } CPAccessResult;
2300 /* Access functions for coprocessor registers. These cannot fail and
2301 * may not raise exceptions.
2303 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2304 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2305 uint64_t value);
2306 /* Access permission check functions for coprocessor registers. */
2307 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2308 const ARMCPRegInfo *opaque,
2309 bool isread);
2310 /* Hook function for register reset */
2311 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2313 #define CP_ANY 0xff
2315 /* Definition of an ARM coprocessor register */
2316 struct ARMCPRegInfo {
2317 /* Name of register (useful mainly for debugging, need not be unique) */
2318 const char *name;
2319 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2320 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2321 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2322 * will be decoded to this register. The register read and write
2323 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2324 * used by the program, so it is possible to register a wildcard and
2325 * then behave differently on read/write if necessary.
2326 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2327 * must both be zero.
2328 * For AArch64-visible registers, opc0 is also used.
2329 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2330 * way to distinguish (for KVM's benefit) guest-visible system registers
2331 * from demuxed ones provided to preserve the "no side effects on
2332 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2333 * visible (to match KVM's encoding); cp==0 will be converted to
2334 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2336 uint8_t cp;
2337 uint8_t crn;
2338 uint8_t crm;
2339 uint8_t opc0;
2340 uint8_t opc1;
2341 uint8_t opc2;
2342 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2343 int state;
2344 /* Register type: ARM_CP_* bits/values */
2345 int type;
2346 /* Access rights: PL*_[RW] */
2347 int access;
2348 /* Security state: ARM_CP_SECSTATE_* bits/values */
2349 int secure;
2350 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2351 * this register was defined: can be used to hand data through to the
2352 * register read/write functions, since they are passed the ARMCPRegInfo*.
2354 void *opaque;
2355 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2356 * fieldoffset is non-zero, the reset value of the register.
2358 uint64_t resetvalue;
2359 /* Offset of the field in CPUARMState for this register.
2361 * This is not needed if either:
2362 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2363 * 2. both readfn and writefn are specified
2365 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2367 /* Offsets of the secure and non-secure fields in CPUARMState for the
2368 * register if it is banked. These fields are only used during the static
2369 * registration of a register. During hashing the bank associated
2370 * with a given security state is copied to fieldoffset which is used from
2371 * there on out.
2373 * It is expected that register definitions use either fieldoffset or
2374 * bank_fieldoffsets in the definition but not both. It is also expected
2375 * that both bank offsets are set when defining a banked register. This
2376 * use indicates that a register is banked.
2378 ptrdiff_t bank_fieldoffsets[2];
2380 /* Function for making any access checks for this register in addition to
2381 * those specified by the 'access' permissions bits. If NULL, no extra
2382 * checks required. The access check is performed at runtime, not at
2383 * translate time.
2385 CPAccessFn *accessfn;
2386 /* Function for handling reads of this register. If NULL, then reads
2387 * will be done by loading from the offset into CPUARMState specified
2388 * by fieldoffset.
2390 CPReadFn *readfn;
2391 /* Function for handling writes of this register. If NULL, then writes
2392 * will be done by writing to the offset into CPUARMState specified
2393 * by fieldoffset.
2395 CPWriteFn *writefn;
2396 /* Function for doing a "raw" read; used when we need to copy
2397 * coprocessor state to the kernel for KVM or out for
2398 * migration. This only needs to be provided if there is also a
2399 * readfn and it has side effects (for instance clear-on-read bits).
2401 CPReadFn *raw_readfn;
2402 /* Function for doing a "raw" write; used when we need to copy KVM
2403 * kernel coprocessor state into userspace, or for inbound
2404 * migration. This only needs to be provided if there is also a
2405 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2406 * or similar behaviour.
2408 CPWriteFn *raw_writefn;
2409 /* Function for resetting the register. If NULL, then reset will be done
2410 * by writing resetvalue to the field specified in fieldoffset. If
2411 * fieldoffset is 0 then no reset will be done.
2413 CPResetFn *resetfn;
2416 /* Macros which are lvalues for the field in CPUARMState for the
2417 * ARMCPRegInfo *ri.
2419 #define CPREG_FIELD32(env, ri) \
2420 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2421 #define CPREG_FIELD64(env, ri) \
2422 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2424 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2426 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2427 const ARMCPRegInfo *regs, void *opaque);
2428 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2429 const ARMCPRegInfo *regs, void *opaque);
2430 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2432 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2434 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2436 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2438 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2440 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2441 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2442 uint64_t value);
2443 /* CPReadFn that can be used for read-as-zero behaviour */
2444 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2446 /* CPResetFn that does nothing, for use if no reset is required even
2447 * if fieldoffset is non zero.
2449 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2451 /* Return true if this reginfo struct's field in the cpu state struct
2452 * is 64 bits wide.
2454 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2456 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2459 static inline bool cp_access_ok(int current_el,
2460 const ARMCPRegInfo *ri, int isread)
2462 return (ri->access >> ((current_el * 2) + isread)) & 1;
2465 /* Raw read of a coprocessor register (as needed for migration, etc) */
2466 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2469 * write_list_to_cpustate
2470 * @cpu: ARMCPU
2472 * For each register listed in the ARMCPU cpreg_indexes list, write
2473 * its value from the cpreg_values list into the ARMCPUState structure.
2474 * This updates TCG's working data structures from KVM data or
2475 * from incoming migration state.
2477 * Returns: true if all register values were updated correctly,
2478 * false if some register was unknown or could not be written.
2479 * Note that we do not stop early on failure -- we will attempt
2480 * writing all registers in the list.
2482 bool write_list_to_cpustate(ARMCPU *cpu);
2485 * write_cpustate_to_list:
2486 * @cpu: ARMCPU
2488 * For each register listed in the ARMCPU cpreg_indexes list, write
2489 * its value from the ARMCPUState structure into the cpreg_values list.
2490 * This is used to copy info from TCG's working data structures into
2491 * KVM or for outbound migration.
2493 * Returns: true if all register values were read correctly,
2494 * false if some register was unknown or could not be read.
2495 * Note that we do not stop early on failure -- we will attempt
2496 * reading all registers in the list.
2498 bool write_cpustate_to_list(ARMCPU *cpu);
2500 #define ARM_CPUID_TI915T 0x54029152
2501 #define ARM_CPUID_TI925T 0x54029252
2503 #if defined(CONFIG_USER_ONLY)
2504 #define TARGET_PAGE_BITS 12
2505 #else
2506 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2507 * have to support 1K tiny pages.
2509 #define TARGET_PAGE_BITS_VARY
2510 #define TARGET_PAGE_BITS_MIN 10
2511 #endif
2513 #if defined(TARGET_AARCH64)
2514 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2515 # define TARGET_VIRT_ADDR_SPACE_BITS 64
2516 #else
2517 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2518 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2519 #endif
2521 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2522 unsigned int target_el)
2524 CPUARMState *env = cs->env_ptr;
2525 unsigned int cur_el = arm_current_el(env);
2526 bool secure = arm_is_secure(env);
2527 bool pstate_unmasked;
2528 int8_t unmasked = 0;
2529 uint64_t hcr_el2;
2531 /* Don't take exceptions if they target a lower EL.
2532 * This check should catch any exceptions that would not be taken but left
2533 * pending.
2535 if (cur_el > target_el) {
2536 return false;
2539 hcr_el2 = arm_hcr_el2_eff(env);
2541 switch (excp_idx) {
2542 case EXCP_FIQ:
2543 pstate_unmasked = !(env->daif & PSTATE_F);
2544 break;
2546 case EXCP_IRQ:
2547 pstate_unmasked = !(env->daif & PSTATE_I);
2548 break;
2550 case EXCP_VFIQ:
2551 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2552 /* VFIQs are only taken when hypervized and non-secure. */
2553 return false;
2555 return !(env->daif & PSTATE_F);
2556 case EXCP_VIRQ:
2557 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2558 /* VIRQs are only taken when hypervized and non-secure. */
2559 return false;
2561 return !(env->daif & PSTATE_I);
2562 default:
2563 g_assert_not_reached();
2566 /* Use the target EL, current execution state and SCR/HCR settings to
2567 * determine whether the corresponding CPSR bit is used to mask the
2568 * interrupt.
2570 if ((target_el > cur_el) && (target_el != 1)) {
2571 /* Exceptions targeting a higher EL may not be maskable */
2572 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2573 /* 64-bit masking rules are simple: exceptions to EL3
2574 * can't be masked, and exceptions to EL2 can only be
2575 * masked from Secure state. The HCR and SCR settings
2576 * don't affect the masking logic, only the interrupt routing.
2578 if (target_el == 3 || !secure) {
2579 unmasked = 1;
2581 } else {
2582 /* The old 32-bit-only environment has a more complicated
2583 * masking setup. HCR and SCR bits not only affect interrupt
2584 * routing but also change the behaviour of masking.
2586 bool hcr, scr;
2588 switch (excp_idx) {
2589 case EXCP_FIQ:
2590 /* If FIQs are routed to EL3 or EL2 then there are cases where
2591 * we override the CPSR.F in determining if the exception is
2592 * masked or not. If neither of these are set then we fall back
2593 * to the CPSR.F setting otherwise we further assess the state
2594 * below.
2596 hcr = hcr_el2 & HCR_FMO;
2597 scr = (env->cp15.scr_el3 & SCR_FIQ);
2599 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2600 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2601 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2602 * when non-secure but only when FIQs are only routed to EL3.
2604 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2605 break;
2606 case EXCP_IRQ:
2607 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2608 * we may override the CPSR.I masking when in non-secure state.
2609 * The SCR.IRQ setting has already been taken into consideration
2610 * when setting the target EL, so it does not have a further
2611 * affect here.
2613 hcr = hcr_el2 & HCR_IMO;
2614 scr = false;
2615 break;
2616 default:
2617 g_assert_not_reached();
2620 if ((scr || hcr) && !secure) {
2621 unmasked = 1;
2626 /* The PSTATE bits only mask the interrupt if we have not overriden the
2627 * ability above.
2629 return unmasked || pstate_unmasked;
2632 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2633 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2634 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2636 #define cpu_signal_handler cpu_arm_signal_handler
2637 #define cpu_list arm_cpu_list
2639 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2641 * If EL3 is 64-bit:
2642 * + NonSecure EL1 & 0 stage 1
2643 * + NonSecure EL1 & 0 stage 2
2644 * + NonSecure EL2
2645 * + Secure EL1 & EL0
2646 * + Secure EL3
2647 * If EL3 is 32-bit:
2648 * + NonSecure PL1 & 0 stage 1
2649 * + NonSecure PL1 & 0 stage 2
2650 * + NonSecure PL2
2651 * + Secure PL0 & PL1
2652 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2654 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2655 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2656 * may differ in access permissions even if the VA->PA map is the same
2657 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2658 * translation, which means that we have one mmu_idx that deals with two
2659 * concatenated translation regimes [this sort of combined s1+2 TLB is
2660 * architecturally permitted]
2661 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2662 * handling via the TLB. The only way to do a stage 1 translation without
2663 * the immediate stage 2 translation is via the ATS or AT system insns,
2664 * which can be slow-pathed and always do a page table walk.
2665 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2666 * translation regimes, because they map reasonably well to each other
2667 * and they can't both be active at the same time.
2668 * This gives us the following list of mmu_idx values:
2670 * NS EL0 (aka NS PL0) stage 1+2
2671 * NS EL1 (aka NS PL1) stage 1+2
2672 * NS EL2 (aka NS PL2)
2673 * S EL3 (aka S PL1)
2674 * S EL0 (aka S PL0)
2675 * S EL1 (not used if EL3 is 32 bit)
2676 * NS EL0+1 stage 2
2678 * (The last of these is an mmu_idx because we want to be able to use the TLB
2679 * for the accesses done as part of a stage 1 page table walk, rather than
2680 * having to walk the stage 2 page table over and over.)
2682 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2683 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2684 * NS EL2 if we ever model a Cortex-R52).
2686 * M profile CPUs are rather different as they do not have a true MMU.
2687 * They have the following different MMU indexes:
2688 * User
2689 * Privileged
2690 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2691 * Privileged, execution priority negative (ditto)
2692 * If the CPU supports the v8M Security Extension then there are also:
2693 * Secure User
2694 * Secure Privileged
2695 * Secure User, execution priority negative
2696 * Secure Privileged, execution priority negative
2698 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2699 * are not quite the same -- different CPU types (most notably M profile
2700 * vs A/R profile) would like to use MMU indexes with different semantics,
2701 * but since we don't ever need to use all of those in a single CPU we
2702 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2703 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2704 * the same for any particular CPU.
2705 * Variables of type ARMMUIdx are always full values, and the core
2706 * index values are in variables of type 'int'.
2708 * Our enumeration includes at the end some entries which are not "true"
2709 * mmu_idx values in that they don't have corresponding TLBs and are only
2710 * valid for doing slow path page table walks.
2712 * The constant names here are patterned after the general style of the names
2713 * of the AT/ATS operations.
2714 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2715 * For M profile we arrange them to have a bit for priv, a bit for negpri
2716 * and a bit for secure.
2718 #define ARM_MMU_IDX_A 0x10 /* A profile */
2719 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2720 #define ARM_MMU_IDX_M 0x40 /* M profile */
2722 /* meanings of the bits for M profile mmu idx values */
2723 #define ARM_MMU_IDX_M_PRIV 0x1
2724 #define ARM_MMU_IDX_M_NEGPRI 0x2
2725 #define ARM_MMU_IDX_M_S 0x4
2727 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2728 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2730 typedef enum ARMMMUIdx {
2731 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2732 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2733 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2734 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2735 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2736 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2737 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2738 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2739 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2740 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2741 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2742 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2743 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2744 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2745 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2746 /* Indexes below here don't have TLBs and are used only for AT system
2747 * instructions or for the first stage of an S12 page table walk.
2749 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2750 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2751 } ARMMMUIdx;
2753 /* Bit macros for the core-mmu-index values for each index,
2754 * for use when calling tlb_flush_by_mmuidx() and friends.
2756 typedef enum ARMMMUIdxBit {
2757 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2758 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2759 ARMMMUIdxBit_S1E2 = 1 << 2,
2760 ARMMMUIdxBit_S1E3 = 1 << 3,
2761 ARMMMUIdxBit_S1SE0 = 1 << 4,
2762 ARMMMUIdxBit_S1SE1 = 1 << 5,
2763 ARMMMUIdxBit_S2NS = 1 << 6,
2764 ARMMMUIdxBit_MUser = 1 << 0,
2765 ARMMMUIdxBit_MPriv = 1 << 1,
2766 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2767 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2768 ARMMMUIdxBit_MSUser = 1 << 4,
2769 ARMMMUIdxBit_MSPriv = 1 << 5,
2770 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2771 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2772 } ARMMMUIdxBit;
2774 #define MMU_USER_IDX 0
2776 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2778 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2781 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2783 if (arm_feature(env, ARM_FEATURE_M)) {
2784 return mmu_idx | ARM_MMU_IDX_M;
2785 } else {
2786 return mmu_idx | ARM_MMU_IDX_A;
2790 /* Return the exception level we're running at if this is our mmu_idx */
2791 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2793 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2794 case ARM_MMU_IDX_A:
2795 return mmu_idx & 3;
2796 case ARM_MMU_IDX_M:
2797 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2798 default:
2799 g_assert_not_reached();
2803 /* Return the MMU index for a v7M CPU in the specified security and
2804 * privilege state.
2806 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2807 bool secstate, bool priv);
2809 /* Return the MMU index for a v7M CPU in the specified security state */
2810 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2813 * cpu_mmu_index:
2814 * @env: The cpu environment
2815 * @ifetch: True for code access, false for data access.
2817 * Return the core mmu index for the current translation regime.
2818 * This function is used by generic TCG code paths.
2820 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2822 /* Indexes used when registering address spaces with cpu_address_space_init */
2823 typedef enum ARMASIdx {
2824 ARMASIdx_NS = 0,
2825 ARMASIdx_S = 1,
2826 } ARMASIdx;
2828 /* Return the Exception Level targeted by debug exceptions. */
2829 static inline int arm_debug_target_el(CPUARMState *env)
2831 bool secure = arm_is_secure(env);
2832 bool route_to_el2 = false;
2834 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2835 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2836 env->cp15.mdcr_el2 & MDCR_TDE;
2839 if (route_to_el2) {
2840 return 2;
2841 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2842 !arm_el_is_aa64(env, 3) && secure) {
2843 return 3;
2844 } else {
2845 return 1;
2849 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2851 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2852 * CSSELR is RAZ/WI.
2854 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2857 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2858 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2860 int cur_el = arm_current_el(env);
2861 int debug_el;
2863 if (cur_el == 3) {
2864 return false;
2867 /* MDCR_EL3.SDD disables debug events from Secure state */
2868 if (arm_is_secure_below_el3(env)
2869 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2870 return false;
2874 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2875 * while not masking the (D)ebug bit in DAIF.
2877 debug_el = arm_debug_target_el(env);
2879 if (cur_el == debug_el) {
2880 return extract32(env->cp15.mdscr_el1, 13, 1)
2881 && !(env->daif & PSTATE_D);
2884 /* Otherwise the debug target needs to be a higher EL */
2885 return debug_el > cur_el;
2888 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2890 int el = arm_current_el(env);
2892 if (el == 0 && arm_el_is_aa64(env, 1)) {
2893 return aa64_generate_debug_exceptions(env);
2896 if (arm_is_secure(env)) {
2897 int spd;
2899 if (el == 0 && (env->cp15.sder & 1)) {
2900 /* SDER.SUIDEN means debug exceptions from Secure EL0
2901 * are always enabled. Otherwise they are controlled by
2902 * SDCR.SPD like those from other Secure ELs.
2904 return true;
2907 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2908 switch (spd) {
2909 case 1:
2910 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2911 case 0:
2912 /* For 0b00 we return true if external secure invasive debug
2913 * is enabled. On real hardware this is controlled by external
2914 * signals to the core. QEMU always permits debug, and behaves
2915 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2917 return true;
2918 case 2:
2919 return false;
2920 case 3:
2921 return true;
2925 return el != 2;
2928 /* Return true if debugging exceptions are currently enabled.
2929 * This corresponds to what in ARM ARM pseudocode would be
2930 * if UsingAArch32() then
2931 * return AArch32.GenerateDebugExceptions()
2932 * else
2933 * return AArch64.GenerateDebugExceptions()
2934 * We choose to push the if() down into this function for clarity,
2935 * since the pseudocode has it at all callsites except for the one in
2936 * CheckSoftwareStep(), where it is elided because both branches would
2937 * always return the same value.
2939 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2941 if (env->aarch64) {
2942 return aa64_generate_debug_exceptions(env);
2943 } else {
2944 return aa32_generate_debug_exceptions(env);
2948 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2949 * implicitly means this always returns false in pre-v8 CPUs.)
2951 static inline bool arm_singlestep_active(CPUARMState *env)
2953 return extract32(env->cp15.mdscr_el1, 0, 1)
2954 && arm_el_is_aa64(env, arm_debug_target_el(env))
2955 && arm_generate_debug_exceptions(env);
2958 static inline bool arm_sctlr_b(CPUARMState *env)
2960 return
2961 /* We need not implement SCTLR.ITD in user-mode emulation, so
2962 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2963 * This lets people run BE32 binaries with "-cpu any".
2965 #ifndef CONFIG_USER_ONLY
2966 !arm_feature(env, ARM_FEATURE_V7) &&
2967 #endif
2968 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2971 /* Return true if the processor is in big-endian mode. */
2972 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2974 int cur_el;
2976 /* In 32bit endianness is determined by looking at CPSR's E bit */
2977 if (!is_a64(env)) {
2978 return
2979 #ifdef CONFIG_USER_ONLY
2980 /* In system mode, BE32 is modelled in line with the
2981 * architecture (as word-invariant big-endianness), where loads
2982 * and stores are done little endian but from addresses which
2983 * are adjusted by XORing with the appropriate constant. So the
2984 * endianness to use for the raw data access is not affected by
2985 * SCTLR.B.
2986 * In user mode, however, we model BE32 as byte-invariant
2987 * big-endianness (because user-only code cannot tell the
2988 * difference), and so we need to use a data access endianness
2989 * that depends on SCTLR.B.
2991 arm_sctlr_b(env) ||
2992 #endif
2993 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2996 cur_el = arm_current_el(env);
2998 if (cur_el == 0) {
2999 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
3002 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
3005 #include "exec/cpu-all.h"
3007 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3008 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3009 * We put flags which are shared between 32 and 64 bit mode at the top
3010 * of the word, and flags which apply to only one mode at the bottom.
3012 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3013 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3014 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3015 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3016 /* Target EL if we take a floating-point-disabled exception */
3017 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3018 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3020 /* Bit usage when in AArch32 state: */
3021 FIELD(TBFLAG_A32, THUMB, 0, 1)
3022 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3023 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3024 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3025 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3026 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3027 /* We store the bottom two bits of the CPAR as TB flags and handle
3028 * checks on the other bits at runtime
3030 FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3031 /* Indicates whether cp register reads and writes by guest code should access
3032 * the secure or nonsecure bank of banked registers; note that this is not
3033 * the same thing as the current security state of the processor!
3035 FIELD(TBFLAG_A32, NS, 19, 1)
3036 /* For M profile only, Handler (ie not Thread) mode */
3037 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3038 /* For M profile only, whether we should generate stack-limit checks */
3039 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3041 /* Bit usage when in AArch64 state */
3042 FIELD(TBFLAG_A64, TBII, 0, 2)
3043 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3044 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3045 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3047 static inline bool bswap_code(bool sctlr_b)
3049 #ifdef CONFIG_USER_ONLY
3050 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3051 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3052 * would also end up as a mixed-endian mode with BE code, LE data.
3054 return
3055 #ifdef TARGET_WORDS_BIGENDIAN
3057 #endif
3058 sctlr_b;
3059 #else
3060 /* All code access in ARM is little endian, and there are no loaders
3061 * doing swaps that need to be reversed
3063 return 0;
3064 #endif
3067 #ifdef CONFIG_USER_ONLY
3068 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3070 return
3071 #ifdef TARGET_WORDS_BIGENDIAN
3073 #endif
3074 arm_cpu_data_is_big_endian(env);
3076 #endif
3078 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3079 target_ulong *cs_base, uint32_t *flags);
3081 enum {
3082 QEMU_PSCI_CONDUIT_DISABLED = 0,
3083 QEMU_PSCI_CONDUIT_SMC = 1,
3084 QEMU_PSCI_CONDUIT_HVC = 2,
3087 #ifndef CONFIG_USER_ONLY
3088 /* Return the address space index to use for a memory access */
3089 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3091 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3094 /* Return the AddressSpace to use for a memory access
3095 * (which depends on whether the access is S or NS, and whether
3096 * the board gave us a separate AddressSpace for S accesses).
3098 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3100 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3102 #endif
3105 * arm_register_pre_el_change_hook:
3106 * Register a hook function which will be called immediately before this
3107 * CPU changes exception level or mode. The hook function will be
3108 * passed a pointer to the ARMCPU and the opaque data pointer passed
3109 * to this function when the hook was registered.
3111 * Note that if a pre-change hook is called, any registered post-change hooks
3112 * are guaranteed to subsequently be called.
3114 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3115 void *opaque);
3117 * arm_register_el_change_hook:
3118 * Register a hook function which will be called immediately after this
3119 * CPU changes exception level or mode. The hook function will be
3120 * passed a pointer to the ARMCPU and the opaque data pointer passed
3121 * to this function when the hook was registered.
3123 * Note that any registered hooks registered here are guaranteed to be called
3124 * if pre-change hooks have been.
3126 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3127 *opaque);
3130 * aa32_vfp_dreg:
3131 * Return a pointer to the Dn register within env in 32-bit mode.
3133 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3135 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3139 * aa32_vfp_qreg:
3140 * Return a pointer to the Qn register within env in 32-bit mode.
3142 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3144 return &env->vfp.zregs[regno].d[0];
3148 * aa64_vfp_qreg:
3149 * Return a pointer to the Qn register within env in 64-bit mode.
3151 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3153 return &env->vfp.zregs[regno].d[0];
3156 /* Shared between translate-sve.c and sve_helper.c. */
3157 extern const uint64_t pred_esz_masks[4];
3160 * 32-bit feature tests via id registers.
3162 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3164 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3167 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3169 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3172 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3174 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3177 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3179 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3182 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3184 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3187 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3189 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3192 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3194 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3197 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3199 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3202 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3204 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3207 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3209 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3212 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3214 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3217 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3220 * This is a placeholder for use by VCMA until the rest of
3221 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3222 * At which point we can properly set and check MVFR1.FPHP.
3224 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3228 * 64-bit feature tests via id registers.
3230 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3232 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3235 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3237 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3240 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3242 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3245 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3247 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3250 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3252 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3255 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3257 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3260 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3262 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3265 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3267 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3270 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3272 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3275 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3277 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3280 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3282 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3285 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3287 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3290 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3292 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3295 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3298 * Note that while QEMU will only implement the architected algorithm
3299 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3300 * defined algorithms, and thus API+GPI, and this predicate controls
3301 * migration of the 128-bit keys.
3303 return (id->id_aa64isar1 &
3304 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3305 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3306 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3307 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3310 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3312 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3313 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3316 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3318 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3321 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3323 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3326 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3328 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3332 * Forward to the above feature tests given an ARMCPU pointer.
3334 #define cpu_isar_feature(name, cpu) \
3335 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3337 #endif