MAINTAINERS: Cover docs/igd-assign.txt in VFIO section
[qemu/ar7.git] / target / riscv / fpu_helper.c
blob7c4ab92ecbe282f7cc3c7a8f48ebdd1f83f1e595
1 /*
2 * RISC-V FPU Emulation Helpers for QEMU.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "internals.h"
27 target_ulong riscv_cpu_get_fflags(CPURISCVState *env)
29 int soft = get_float_exception_flags(&env->fp_status);
30 target_ulong hard = 0;
32 hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0;
33 hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0;
34 hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0;
35 hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0;
36 hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0;
38 return hard;
41 void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard)
43 int soft = 0;
45 soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0;
46 soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0;
47 soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0;
48 soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0;
49 soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0;
51 set_float_exception_flags(soft, &env->fp_status);
54 void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm)
56 int softrm;
58 if (rm == 7) {
59 rm = env->frm;
61 switch (rm) {
62 case 0:
63 softrm = float_round_nearest_even;
64 break;
65 case 1:
66 softrm = float_round_to_zero;
67 break;
68 case 2:
69 softrm = float_round_down;
70 break;
71 case 3:
72 softrm = float_round_up;
73 break;
74 case 4:
75 softrm = float_round_ties_away;
76 break;
77 default:
78 riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
81 set_float_rounding_mode(softrm, &env->fp_status);
84 static uint64_t do_fmadd_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2,
85 uint64_t rs3, int flags)
87 float32 frs1 = check_nanbox_s(rs1);
88 float32 frs2 = check_nanbox_s(rs2);
89 float32 frs3 = check_nanbox_s(rs3);
90 return nanbox_s(float32_muladd(frs1, frs2, frs3, flags, &env->fp_status));
93 uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
94 uint64_t frs3)
96 return do_fmadd_s(env, frs1, frs2, frs3, 0);
99 uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
100 uint64_t frs3)
102 return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status);
105 uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
106 uint64_t frs3)
108 return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_c);
111 uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
112 uint64_t frs3)
114 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c,
115 &env->fp_status);
118 uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
119 uint64_t frs3)
121 return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_product);
124 uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
125 uint64_t frs3)
127 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product,
128 &env->fp_status);
131 uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
132 uint64_t frs3)
134 return do_fmadd_s(env, frs1, frs2, frs3,
135 float_muladd_negate_c | float_muladd_negate_product);
138 uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
139 uint64_t frs3)
141 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c |
142 float_muladd_negate_product, &env->fp_status);
145 uint64_t helper_fadd_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
147 float32 frs1 = check_nanbox_s(rs1);
148 float32 frs2 = check_nanbox_s(rs2);
149 return nanbox_s(float32_add(frs1, frs2, &env->fp_status));
152 uint64_t helper_fsub_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
154 float32 frs1 = check_nanbox_s(rs1);
155 float32 frs2 = check_nanbox_s(rs2);
156 return nanbox_s(float32_sub(frs1, frs2, &env->fp_status));
159 uint64_t helper_fmul_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
161 float32 frs1 = check_nanbox_s(rs1);
162 float32 frs2 = check_nanbox_s(rs2);
163 return nanbox_s(float32_mul(frs1, frs2, &env->fp_status));
166 uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
168 float32 frs1 = check_nanbox_s(rs1);
169 float32 frs2 = check_nanbox_s(rs2);
170 return nanbox_s(float32_div(frs1, frs2, &env->fp_status));
173 uint64_t helper_fmin_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
175 float32 frs1 = check_nanbox_s(rs1);
176 float32 frs2 = check_nanbox_s(rs2);
177 return nanbox_s(float32_minnum(frs1, frs2, &env->fp_status));
180 uint64_t helper_fmax_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
182 float32 frs1 = check_nanbox_s(rs1);
183 float32 frs2 = check_nanbox_s(rs2);
184 return nanbox_s(float32_maxnum(frs1, frs2, &env->fp_status));
187 uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t rs1)
189 float32 frs1 = check_nanbox_s(rs1);
190 return nanbox_s(float32_sqrt(frs1, &env->fp_status));
193 target_ulong helper_fle_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
195 float32 frs1 = check_nanbox_s(rs1);
196 float32 frs2 = check_nanbox_s(rs2);
197 return float32_le(frs1, frs2, &env->fp_status);
200 target_ulong helper_flt_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
202 float32 frs1 = check_nanbox_s(rs1);
203 float32 frs2 = check_nanbox_s(rs2);
204 return float32_lt(frs1, frs2, &env->fp_status);
207 target_ulong helper_feq_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
209 float32 frs1 = check_nanbox_s(rs1);
210 float32 frs2 = check_nanbox_s(rs2);
211 return float32_eq_quiet(frs1, frs2, &env->fp_status);
214 target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t rs1)
216 float32 frs1 = check_nanbox_s(rs1);
217 return float32_to_int32(frs1, &env->fp_status);
220 target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t rs1)
222 float32 frs1 = check_nanbox_s(rs1);
223 return (int32_t)float32_to_uint32(frs1, &env->fp_status);
226 uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t rs1)
228 float32 frs1 = check_nanbox_s(rs1);
229 return float32_to_int64(frs1, &env->fp_status);
232 uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t rs1)
234 float32 frs1 = check_nanbox_s(rs1);
235 return float32_to_uint64(frs1, &env->fp_status);
238 uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1)
240 return nanbox_s(int32_to_float32((int32_t)rs1, &env->fp_status));
243 uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1)
245 return nanbox_s(uint32_to_float32((uint32_t)rs1, &env->fp_status));
248 uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1)
250 return nanbox_s(int64_to_float32(rs1, &env->fp_status));
253 uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1)
255 return nanbox_s(uint64_to_float32(rs1, &env->fp_status));
258 target_ulong helper_fclass_s(uint64_t rs1)
260 float32 frs1 = check_nanbox_s(rs1);
261 return fclass_s(frs1);
264 uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
266 return float64_add(frs1, frs2, &env->fp_status);
269 uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
271 return float64_sub(frs1, frs2, &env->fp_status);
274 uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
276 return float64_mul(frs1, frs2, &env->fp_status);
279 uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
281 return float64_div(frs1, frs2, &env->fp_status);
284 uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
286 return float64_minnum(frs1, frs2, &env->fp_status);
289 uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
291 return float64_maxnum(frs1, frs2, &env->fp_status);
294 uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1)
296 return nanbox_s(float64_to_float32(rs1, &env->fp_status));
299 uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1)
301 float32 frs1 = check_nanbox_s(rs1);
302 return float32_to_float64(frs1, &env->fp_status);
305 uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1)
307 return float64_sqrt(frs1, &env->fp_status);
310 target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
312 return float64_le(frs1, frs2, &env->fp_status);
315 target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
317 return float64_lt(frs1, frs2, &env->fp_status);
320 target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
322 return float64_eq_quiet(frs1, frs2, &env->fp_status);
325 target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1)
327 return float64_to_int32(frs1, &env->fp_status);
330 target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1)
332 return (int32_t)float64_to_uint32(frs1, &env->fp_status);
335 uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1)
337 return float64_to_int64(frs1, &env->fp_status);
340 uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1)
342 return float64_to_uint64(frs1, &env->fp_status);
345 uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1)
347 return int32_to_float64((int32_t)rs1, &env->fp_status);
350 uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1)
352 return uint32_to_float64((uint32_t)rs1, &env->fp_status);
355 uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1)
357 return int64_to_float64(rs1, &env->fp_status);
360 uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1)
362 return uint64_to_float64(rs1, &env->fp_status);
365 target_ulong helper_fclass_d(uint64_t frs1)
367 return fclass_d(frs1);