MAINTAINERS: Cover docs/igd-assign.txt in VFIO section
[qemu/ar7.git] / target / riscv / cpu_helper.c
blob83a6bcfad08df1175866fb72cb34512691bcb53b
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 #include "semihosting/common-semi.h"
29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
31 #ifdef CONFIG_USER_ONLY
32 return 0;
33 #else
34 return env->priv;
35 #endif
38 #ifndef CONFIG_USER_ONLY
39 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
41 target_ulong irqs;
43 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
44 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
45 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
47 target_ulong pending = env->mip & env->mie &
48 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
49 target_ulong vspending = (env->mip & env->mie &
50 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
52 target_ulong mie = env->priv < PRV_M ||
53 (env->priv == PRV_M && mstatus_mie);
54 target_ulong sie = env->priv < PRV_S ||
55 (env->priv == PRV_S && mstatus_sie);
56 target_ulong hs_sie = env->priv < PRV_S ||
57 (env->priv == PRV_S && hs_mstatus_sie);
59 if (riscv_cpu_virt_enabled(env)) {
60 target_ulong pending_hs_irq = pending & -hs_sie;
62 if (pending_hs_irq) {
63 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
64 return ctz64(pending_hs_irq);
67 pending = vspending;
70 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
72 if (irqs) {
73 return ctz64(irqs); /* since non-zero */
74 } else {
75 return EXCP_NONE; /* indicates no pending interrupt */
78 #endif
80 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
82 #if !defined(CONFIG_USER_ONLY)
83 if (interrupt_request & CPU_INTERRUPT_HARD) {
84 RISCVCPU *cpu = RISCV_CPU(cs);
85 CPURISCVState *env = &cpu->env;
86 int interruptno = riscv_cpu_local_irq_pending(env);
87 if (interruptno >= 0) {
88 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
89 riscv_cpu_do_interrupt(cs);
90 return true;
93 #endif
94 return false;
97 #if !defined(CONFIG_USER_ONLY)
99 /* Return true is floating point support is currently enabled */
100 bool riscv_cpu_fp_enabled(CPURISCVState *env)
102 if (env->mstatus & MSTATUS_FS) {
103 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
104 return false;
106 return true;
109 return false;
112 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
114 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
115 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
116 MSTATUS64_UXL;
117 bool current_virt = riscv_cpu_virt_enabled(env);
119 g_assert(riscv_has_ext(env, RVH));
121 if (current_virt) {
122 /* Current V=1 and we are about to change to V=0 */
123 env->vsstatus = env->mstatus & mstatus_mask;
124 env->mstatus &= ~mstatus_mask;
125 env->mstatus |= env->mstatus_hs;
127 env->vstvec = env->stvec;
128 env->stvec = env->stvec_hs;
130 env->vsscratch = env->sscratch;
131 env->sscratch = env->sscratch_hs;
133 env->vsepc = env->sepc;
134 env->sepc = env->sepc_hs;
136 env->vscause = env->scause;
137 env->scause = env->scause_hs;
139 env->vstval = env->sbadaddr;
140 env->sbadaddr = env->stval_hs;
142 env->vsatp = env->satp;
143 env->satp = env->satp_hs;
144 } else {
145 /* Current V=0 and we are about to change to V=1 */
146 env->mstatus_hs = env->mstatus & mstatus_mask;
147 env->mstatus &= ~mstatus_mask;
148 env->mstatus |= env->vsstatus;
150 env->stvec_hs = env->stvec;
151 env->stvec = env->vstvec;
153 env->sscratch_hs = env->sscratch;
154 env->sscratch = env->vsscratch;
156 env->sepc_hs = env->sepc;
157 env->sepc = env->vsepc;
159 env->scause_hs = env->scause;
160 env->scause = env->vscause;
162 env->stval_hs = env->sbadaddr;
163 env->sbadaddr = env->vstval;
165 env->satp_hs = env->satp;
166 env->satp = env->vsatp;
170 bool riscv_cpu_virt_enabled(CPURISCVState *env)
172 if (!riscv_has_ext(env, RVH)) {
173 return false;
176 return get_field(env->virt, VIRT_ONOFF);
179 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
181 if (!riscv_has_ext(env, RVH)) {
182 return;
185 /* Flush the TLB on all virt mode changes. */
186 if (get_field(env->virt, VIRT_ONOFF) != enable) {
187 tlb_flush(env_cpu(env));
190 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
193 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
195 if (!riscv_has_ext(env, RVH)) {
196 return false;
199 return get_field(env->virt, FORCE_HS_EXCEP);
202 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
204 if (!riscv_has_ext(env, RVH)) {
205 return;
208 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
211 bool riscv_cpu_two_stage_lookup(int mmu_idx)
213 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
216 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
218 CPURISCVState *env = &cpu->env;
219 if (env->miclaim & interrupts) {
220 return -1;
221 } else {
222 env->miclaim |= interrupts;
223 return 0;
227 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
229 CPURISCVState *env = &cpu->env;
230 CPUState *cs = CPU(cpu);
231 uint32_t old = env->mip;
232 bool locked = false;
234 if (!qemu_mutex_iothread_locked()) {
235 locked = true;
236 qemu_mutex_lock_iothread();
239 env->mip = (env->mip & ~mask) | (value & mask);
241 if (env->mip) {
242 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
243 } else {
244 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
247 if (locked) {
248 qemu_mutex_unlock_iothread();
251 return old;
254 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
255 uint32_t arg)
257 env->rdtime_fn = fn;
258 env->rdtime_fn_arg = arg;
261 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
263 if (newpriv > PRV_M) {
264 g_assert_not_reached();
266 if (newpriv == PRV_H) {
267 newpriv = PRV_U;
269 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
270 env->priv = newpriv;
273 * Clear the load reservation - otherwise a reservation placed in one
274 * context/process can be used by another, resulting in an SC succeeding
275 * incorrectly. Version 2.2 of the ISA specification explicitly requires
276 * this behaviour, while later revisions say that the kernel "should" use
277 * an SC instruction to force the yielding of a load reservation on a
278 * preemptive context switch. As a result, do both.
280 env->load_res = -1;
283 /* get_physical_address - get the physical address for this virtual address
285 * Do a page table walk to obtain the physical address corresponding to a
286 * virtual address. Returns 0 if the translation was successful
288 * Adapted from Spike's mmu_t::translate and mmu_t::walk
290 * @env: CPURISCVState
291 * @physical: This will be set to the calculated physical address
292 * @prot: The returned protection attributes
293 * @addr: The virtual address to be translated
294 * @fault_pte_addr: If not NULL, this will be set to fault pte address
295 * when a error occurs on pte address translation.
296 * This will already be shifted to match htval.
297 * @access_type: The type of MMU access
298 * @mmu_idx: Indicates current privilege level
299 * @first_stage: Are we in first stage translation?
300 * Second stage is used for hypervisor guest translation
301 * @two_stage: Are we going to perform two stage translation
303 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
304 int *prot, target_ulong addr,
305 target_ulong *fault_pte_addr,
306 int access_type, int mmu_idx,
307 bool first_stage, bool two_stage)
309 /* NOTE: the env->pc value visible here will not be
310 * correct, but the value visible to the exception handler
311 * (riscv_cpu_do_interrupt) is correct */
312 MemTxResult res;
313 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
314 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
315 bool use_background = false;
318 * Check if we should use the background registers for the two
319 * stage translation. We don't need to check if we actually need
320 * two stage translation as that happened before this function
321 * was called. Background registers will be used if the guest has
322 * forced a two stage translation to be on (in HS or M mode).
324 if (!riscv_cpu_virt_enabled(env) && riscv_cpu_two_stage_lookup(mmu_idx)) {
325 use_background = true;
328 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
329 if (get_field(env->mstatus, MSTATUS_MPRV)) {
330 mode = get_field(env->mstatus, MSTATUS_MPP);
334 if (first_stage == false) {
335 /* We are in stage 2 translation, this is similar to stage 1. */
336 /* Stage 2 is always taken as U-mode */
337 mode = PRV_U;
340 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
341 *physical = addr;
342 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
343 return TRANSLATE_SUCCESS;
346 *prot = 0;
348 hwaddr base;
349 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
351 if (first_stage == true) {
352 mxr = get_field(env->mstatus, MSTATUS_MXR);
353 } else {
354 mxr = get_field(env->vsstatus, MSTATUS_MXR);
357 if (first_stage == true) {
358 if (use_background) {
359 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
360 vm = get_field(env->vsatp, SATP_MODE);
361 } else {
362 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
363 vm = get_field(env->satp, SATP_MODE);
365 widened = 0;
366 } else {
367 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
368 vm = get_field(env->hgatp, HGATP_MODE);
369 widened = 2;
371 /* status.SUM will be ignored if execute on background */
372 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background;
373 switch (vm) {
374 case VM_1_10_SV32:
375 levels = 2; ptidxbits = 10; ptesize = 4; break;
376 case VM_1_10_SV39:
377 levels = 3; ptidxbits = 9; ptesize = 8; break;
378 case VM_1_10_SV48:
379 levels = 4; ptidxbits = 9; ptesize = 8; break;
380 case VM_1_10_SV57:
381 levels = 5; ptidxbits = 9; ptesize = 8; break;
382 case VM_1_10_MBARE:
383 *physical = addr;
384 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
385 return TRANSLATE_SUCCESS;
386 default:
387 g_assert_not_reached();
390 CPUState *cs = env_cpu(env);
391 int va_bits = PGSHIFT + levels * ptidxbits + widened;
392 target_ulong mask, masked_msbs;
394 if (TARGET_LONG_BITS > (va_bits - 1)) {
395 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
396 } else {
397 mask = 0;
399 masked_msbs = (addr >> (va_bits - 1)) & mask;
401 if (masked_msbs != 0 && masked_msbs != mask) {
402 return TRANSLATE_FAIL;
405 int ptshift = (levels - 1) * ptidxbits;
406 int i;
408 #if !TCG_OVERSIZED_GUEST
409 restart:
410 #endif
411 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
412 target_ulong idx;
413 if (i == 0) {
414 idx = (addr >> (PGSHIFT + ptshift)) &
415 ((1 << (ptidxbits + widened)) - 1);
416 } else {
417 idx = (addr >> (PGSHIFT + ptshift)) &
418 ((1 << ptidxbits) - 1);
421 /* check that physical address of PTE is legal */
422 hwaddr pte_addr;
424 if (two_stage && first_stage) {
425 int vbase_prot;
426 hwaddr vbase;
428 /* Do the second stage translation on the base PTE address. */
429 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
430 base, NULL, MMU_DATA_LOAD,
431 mmu_idx, false, true);
433 if (vbase_ret != TRANSLATE_SUCCESS) {
434 if (fault_pte_addr) {
435 *fault_pte_addr = (base + idx * ptesize) >> 2;
437 return TRANSLATE_G_STAGE_FAIL;
440 pte_addr = vbase + idx * ptesize;
441 } else {
442 pte_addr = base + idx * ptesize;
445 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
446 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
447 1 << MMU_DATA_LOAD, PRV_S)) {
448 return TRANSLATE_PMP_FAIL;
451 target_ulong pte;
452 if (riscv_cpu_is_32bit(env)) {
453 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
454 } else {
455 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
458 if (res != MEMTX_OK) {
459 return TRANSLATE_FAIL;
462 hwaddr ppn = pte >> PTE_PPN_SHIFT;
464 if (!(pte & PTE_V)) {
465 /* Invalid PTE */
466 return TRANSLATE_FAIL;
467 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
468 /* Inner PTE, continue walking */
469 base = ppn << PGSHIFT;
470 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
471 /* Reserved leaf PTE flags: PTE_W */
472 return TRANSLATE_FAIL;
473 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
474 /* Reserved leaf PTE flags: PTE_W + PTE_X */
475 return TRANSLATE_FAIL;
476 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
477 (!sum || access_type == MMU_INST_FETCH))) {
478 /* User PTE flags when not U mode and mstatus.SUM is not set,
479 or the access type is an instruction fetch */
480 return TRANSLATE_FAIL;
481 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
482 /* Supervisor PTE flags when not S mode */
483 return TRANSLATE_FAIL;
484 } else if (ppn & ((1ULL << ptshift) - 1)) {
485 /* Misaligned PPN */
486 return TRANSLATE_FAIL;
487 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
488 ((pte & PTE_X) && mxr))) {
489 /* Read access check failed */
490 return TRANSLATE_FAIL;
491 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
492 /* Write access check failed */
493 return TRANSLATE_FAIL;
494 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
495 /* Fetch access check failed */
496 return TRANSLATE_FAIL;
497 } else {
498 /* if necessary, set accessed and dirty bits. */
499 target_ulong updated_pte = pte | PTE_A |
500 (access_type == MMU_DATA_STORE ? PTE_D : 0);
502 /* Page table updates need to be atomic with MTTCG enabled */
503 if (updated_pte != pte) {
505 * - if accessed or dirty bits need updating, and the PTE is
506 * in RAM, then we do so atomically with a compare and swap.
507 * - if the PTE is in IO space or ROM, then it can't be updated
508 * and we return TRANSLATE_FAIL.
509 * - if the PTE changed by the time we went to update it, then
510 * it is no longer valid and we must re-walk the page table.
512 MemoryRegion *mr;
513 hwaddr l = sizeof(target_ulong), addr1;
514 mr = address_space_translate(cs->as, pte_addr,
515 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
516 if (memory_region_is_ram(mr)) {
517 target_ulong *pte_pa =
518 qemu_map_ram_ptr(mr->ram_block, addr1);
519 #if TCG_OVERSIZED_GUEST
520 /* MTTCG is not enabled on oversized TCG guests so
521 * page table updates do not need to be atomic */
522 *pte_pa = pte = updated_pte;
523 #else
524 target_ulong old_pte =
525 qatomic_cmpxchg(pte_pa, pte, updated_pte);
526 if (old_pte != pte) {
527 goto restart;
528 } else {
529 pte = updated_pte;
531 #endif
532 } else {
533 /* misconfigured PTE in ROM (AD bits are not preset) or
534 * PTE is in IO space and can't be updated atomically */
535 return TRANSLATE_FAIL;
539 /* for superpage mappings, make a fake leaf PTE for the TLB's
540 benefit. */
541 target_ulong vpn = addr >> PGSHIFT;
542 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
543 (addr & ~TARGET_PAGE_MASK);
545 /* set permissions on the TLB entry */
546 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
547 *prot |= PAGE_READ;
549 if ((pte & PTE_X)) {
550 *prot |= PAGE_EXEC;
552 /* add write permission on stores or if the page is already dirty,
553 so that we TLB miss on later writes to update the dirty bit */
554 if ((pte & PTE_W) &&
555 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
556 *prot |= PAGE_WRITE;
558 return TRANSLATE_SUCCESS;
561 return TRANSLATE_FAIL;
564 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
565 MMUAccessType access_type, bool pmp_violation,
566 bool first_stage, bool two_stage)
568 CPUState *cs = env_cpu(env);
569 int page_fault_exceptions;
570 if (first_stage) {
571 page_fault_exceptions =
572 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
573 !pmp_violation;
574 } else {
575 page_fault_exceptions =
576 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
577 !pmp_violation;
579 switch (access_type) {
580 case MMU_INST_FETCH:
581 if (riscv_cpu_virt_enabled(env) && !first_stage) {
582 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
583 } else {
584 cs->exception_index = page_fault_exceptions ?
585 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
587 break;
588 case MMU_DATA_LOAD:
589 if (two_stage && !first_stage) {
590 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
591 } else {
592 cs->exception_index = page_fault_exceptions ?
593 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
595 break;
596 case MMU_DATA_STORE:
597 if (two_stage && !first_stage) {
598 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
599 } else {
600 cs->exception_index = page_fault_exceptions ?
601 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
603 break;
604 default:
605 g_assert_not_reached();
607 env->badaddr = address;
610 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
612 RISCVCPU *cpu = RISCV_CPU(cs);
613 CPURISCVState *env = &cpu->env;
614 hwaddr phys_addr;
615 int prot;
616 int mmu_idx = cpu_mmu_index(&cpu->env, false);
618 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
619 true, riscv_cpu_virt_enabled(env))) {
620 return -1;
623 if (riscv_cpu_virt_enabled(env)) {
624 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
625 0, mmu_idx, false, true)) {
626 return -1;
630 return phys_addr & TARGET_PAGE_MASK;
633 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
634 vaddr addr, unsigned size,
635 MMUAccessType access_type,
636 int mmu_idx, MemTxAttrs attrs,
637 MemTxResult response, uintptr_t retaddr)
639 RISCVCPU *cpu = RISCV_CPU(cs);
640 CPURISCVState *env = &cpu->env;
642 if (access_type == MMU_DATA_STORE) {
643 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
644 } else {
645 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
648 env->badaddr = addr;
649 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
652 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
653 MMUAccessType access_type, int mmu_idx,
654 uintptr_t retaddr)
656 RISCVCPU *cpu = RISCV_CPU(cs);
657 CPURISCVState *env = &cpu->env;
658 switch (access_type) {
659 case MMU_INST_FETCH:
660 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
661 break;
662 case MMU_DATA_LOAD:
663 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
664 break;
665 case MMU_DATA_STORE:
666 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
667 break;
668 default:
669 g_assert_not_reached();
671 env->badaddr = addr;
672 riscv_raise_exception(env, cs->exception_index, retaddr);
674 #endif /* !CONFIG_USER_ONLY */
676 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
677 MMUAccessType access_type, int mmu_idx,
678 bool probe, uintptr_t retaddr)
680 RISCVCPU *cpu = RISCV_CPU(cs);
681 CPURISCVState *env = &cpu->env;
682 #ifndef CONFIG_USER_ONLY
683 vaddr im_address;
684 hwaddr pa = 0;
685 int prot, prot2;
686 bool pmp_violation = false;
687 bool first_stage_error = true;
688 bool two_stage_lookup = false;
689 int ret = TRANSLATE_FAIL;
690 int mode = mmu_idx;
691 target_ulong tlb_size = 0;
693 env->guest_phys_fault_addr = 0;
695 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
696 __func__, address, access_type, mmu_idx);
698 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
699 if (get_field(env->mstatus, MSTATUS_MPRV)) {
700 mode = get_field(env->mstatus, MSTATUS_MPP);
704 if (riscv_has_ext(env, RVH) && env->priv == PRV_M &&
705 access_type != MMU_INST_FETCH &&
706 get_field(env->mstatus, MSTATUS_MPRV) &&
707 get_field(env->mstatus, MSTATUS_MPV)) {
708 two_stage_lookup = true;
711 if (riscv_cpu_virt_enabled(env) ||
712 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
713 access_type != MMU_INST_FETCH)) {
714 /* Two stage lookup */
715 ret = get_physical_address(env, &pa, &prot, address,
716 &env->guest_phys_fault_addr, access_type,
717 mmu_idx, true, true);
720 * A G-stage exception may be triggered during two state lookup.
721 * And the env->guest_phys_fault_addr has already been set in
722 * get_physical_address().
724 if (ret == TRANSLATE_G_STAGE_FAIL) {
725 first_stage_error = false;
726 access_type = MMU_DATA_LOAD;
729 qemu_log_mask(CPU_LOG_MMU,
730 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
731 TARGET_FMT_plx " prot %d\n",
732 __func__, address, ret, pa, prot);
734 if (ret == TRANSLATE_SUCCESS) {
735 /* Second stage lookup */
736 im_address = pa;
738 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
739 access_type, mmu_idx, false, true);
741 qemu_log_mask(CPU_LOG_MMU,
742 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
743 TARGET_FMT_plx " prot %d\n",
744 __func__, im_address, ret, pa, prot2);
746 prot &= prot2;
748 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
749 (ret == TRANSLATE_SUCCESS) &&
750 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
751 ret = TRANSLATE_PMP_FAIL;
754 if (ret != TRANSLATE_SUCCESS) {
756 * Guest physical address translation failed, this is a HS
757 * level exception
759 first_stage_error = false;
760 env->guest_phys_fault_addr = (im_address |
761 (address &
762 (TARGET_PAGE_SIZE - 1))) >> 2;
765 } else {
766 /* Single stage lookup */
767 ret = get_physical_address(env, &pa, &prot, address, NULL,
768 access_type, mmu_idx, true, false);
770 qemu_log_mask(CPU_LOG_MMU,
771 "%s address=%" VADDR_PRIx " ret %d physical "
772 TARGET_FMT_plx " prot %d\n",
773 __func__, address, ret, pa, prot);
776 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
777 (ret == TRANSLATE_SUCCESS) &&
778 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
779 ret = TRANSLATE_PMP_FAIL;
781 if (ret == TRANSLATE_PMP_FAIL) {
782 pmp_violation = true;
785 if (ret == TRANSLATE_SUCCESS) {
786 if (pmp_is_range_in_tlb(env, pa & TARGET_PAGE_MASK, &tlb_size)) {
787 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
788 prot, mmu_idx, tlb_size);
789 } else {
790 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
791 prot, mmu_idx, TARGET_PAGE_SIZE);
793 return true;
794 } else if (probe) {
795 return false;
796 } else {
797 raise_mmu_exception(env, address, access_type, pmp_violation,
798 first_stage_error,
799 riscv_cpu_virt_enabled(env) ||
800 riscv_cpu_two_stage_lookup(mmu_idx));
801 riscv_raise_exception(env, cs->exception_index, retaddr);
804 return true;
806 #else
807 switch (access_type) {
808 case MMU_INST_FETCH:
809 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
810 break;
811 case MMU_DATA_LOAD:
812 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
813 break;
814 case MMU_DATA_STORE:
815 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
816 break;
817 default:
818 g_assert_not_reached();
820 env->badaddr = address;
821 cpu_loop_exit_restore(cs, retaddr);
822 #endif
826 * Handle Traps
828 * Adapted from Spike's processor_t::take_trap.
831 void riscv_cpu_do_interrupt(CPUState *cs)
833 #if !defined(CONFIG_USER_ONLY)
835 RISCVCPU *cpu = RISCV_CPU(cs);
836 CPURISCVState *env = &cpu->env;
837 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
838 uint64_t s;
840 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
841 * so we mask off the MSB and separate into trap type and cause.
843 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
844 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
845 target_ulong deleg = async ? env->mideleg : env->medeleg;
846 bool write_tval = false;
847 target_ulong tval = 0;
848 target_ulong htval = 0;
849 target_ulong mtval2 = 0;
851 if (cause == RISCV_EXCP_SEMIHOST) {
852 if (env->priv >= PRV_S) {
853 env->gpr[xA0] = do_common_semihosting(cs);
854 env->pc += 4;
855 return;
857 cause = RISCV_EXCP_BREAKPOINT;
860 if (!async) {
861 /* set tval to badaddr for traps with address information */
862 switch (cause) {
863 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
864 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
865 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
866 force_hs_execp = true;
867 /* fallthrough */
868 case RISCV_EXCP_INST_ADDR_MIS:
869 case RISCV_EXCP_INST_ACCESS_FAULT:
870 case RISCV_EXCP_LOAD_ADDR_MIS:
871 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
872 case RISCV_EXCP_LOAD_ACCESS_FAULT:
873 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
874 case RISCV_EXCP_INST_PAGE_FAULT:
875 case RISCV_EXCP_LOAD_PAGE_FAULT:
876 case RISCV_EXCP_STORE_PAGE_FAULT:
877 write_tval = true;
878 tval = env->badaddr;
879 break;
880 default:
881 break;
883 /* ecall is dispatched as one cause so translate based on mode */
884 if (cause == RISCV_EXCP_U_ECALL) {
885 assert(env->priv <= 3);
887 if (env->priv == PRV_M) {
888 cause = RISCV_EXCP_M_ECALL;
889 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
890 cause = RISCV_EXCP_VS_ECALL;
891 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
892 cause = RISCV_EXCP_S_ECALL;
893 } else if (env->priv == PRV_U) {
894 cause = RISCV_EXCP_U_ECALL;
899 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
900 riscv_cpu_get_trap_name(cause, async));
902 qemu_log_mask(CPU_LOG_INT,
903 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
904 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
905 __func__, env->mhartid, async, cause, env->pc, tval,
906 riscv_cpu_get_trap_name(cause, async));
908 if (env->priv <= PRV_S &&
909 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
910 /* handle the trap in S-mode */
911 if (riscv_has_ext(env, RVH)) {
912 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
913 bool two_stage_lookup = false;
915 if (env->priv == PRV_M ||
916 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
917 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
918 get_field(env->hstatus, HSTATUS_HU))) {
919 two_stage_lookup = true;
922 if ((riscv_cpu_virt_enabled(env) || two_stage_lookup) && write_tval) {
924 * If we are writing a guest virtual address to stval, set
925 * this to 1. If we are trapping to VS we will set this to 0
926 * later.
928 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
929 } else {
930 /* For other HS-mode traps, we set this to 0. */
931 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
934 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
935 !force_hs_execp) {
936 /* Trap to VS mode */
938 * See if we need to adjust cause. Yes if its VS mode interrupt
939 * no if hypervisor has delegated one of hs mode's interrupt
941 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
942 cause == IRQ_VS_EXT) {
943 cause = cause - 1;
945 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
946 } else if (riscv_cpu_virt_enabled(env)) {
947 /* Trap into HS mode, from virt */
948 riscv_cpu_swap_hypervisor_regs(env);
949 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
950 env->priv);
951 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
952 riscv_cpu_virt_enabled(env));
954 htval = env->guest_phys_fault_addr;
956 riscv_cpu_set_virt_enabled(env, 0);
957 riscv_cpu_set_force_hs_excep(env, 0);
958 } else {
959 /* Trap into HS mode */
960 if (!two_stage_lookup) {
961 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
962 riscv_cpu_virt_enabled(env));
964 htval = env->guest_phys_fault_addr;
968 s = env->mstatus;
969 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
970 s = set_field(s, MSTATUS_SPP, env->priv);
971 s = set_field(s, MSTATUS_SIE, 0);
972 env->mstatus = s;
973 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
974 env->sepc = env->pc;
975 env->sbadaddr = tval;
976 env->htval = htval;
977 env->pc = (env->stvec >> 2 << 2) +
978 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
979 riscv_cpu_set_mode(env, PRV_S);
980 } else {
981 /* handle the trap in M-mode */
982 if (riscv_has_ext(env, RVH)) {
983 if (riscv_cpu_virt_enabled(env)) {
984 riscv_cpu_swap_hypervisor_regs(env);
986 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
987 riscv_cpu_virt_enabled(env));
988 if (riscv_cpu_virt_enabled(env) && tval) {
989 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
992 mtval2 = env->guest_phys_fault_addr;
994 /* Trapping to M mode, virt is disabled */
995 riscv_cpu_set_virt_enabled(env, 0);
996 riscv_cpu_set_force_hs_excep(env, 0);
999 s = env->mstatus;
1000 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1001 s = set_field(s, MSTATUS_MPP, env->priv);
1002 s = set_field(s, MSTATUS_MIE, 0);
1003 env->mstatus = s;
1004 env->mcause = cause | ~(((target_ulong)-1) >> async);
1005 env->mepc = env->pc;
1006 env->mbadaddr = tval;
1007 env->mtval2 = mtval2;
1008 env->pc = (env->mtvec >> 2 << 2) +
1009 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1010 riscv_cpu_set_mode(env, PRV_M);
1013 /* NOTE: it is not necessary to yield load reservations here. It is only
1014 * necessary for an SC from "another hart" to cause a load reservation
1015 * to be yielded. Refer to the memory consistency model section of the
1016 * RISC-V ISA Specification.
1019 #endif
1020 cs->exception_index = EXCP_NONE; /* mark handled to qemu */