MAINTAINERS: Cover docs/igd-assign.txt in VFIO section
[qemu/ar7.git] / target / arm / cpu64.c
blobf0a9e968c9c1c278f62a7dad27e6d87ad49a3474
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "kvm_arm.h"
33 #include "qapi/visitor.h"
34 #include "hw/qdev-properties.h"
37 #ifndef CONFIG_USER_ONLY
38 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 ARMCPU *cpu = env_archcpu(env);
42 /* Number of cores is in [25:24]; otherwise we RAZ */
43 return (cpu->core_count - 1) << 24;
45 #endif
47 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
48 #ifndef CONFIG_USER_ONLY
49 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
50 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
51 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
52 .writefn = arm_cp_write_ignore },
53 { .name = "L2CTLR",
54 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
55 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
56 .writefn = arm_cp_write_ignore },
57 #endif
58 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
59 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
60 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
61 { .name = "L2ECTLR",
62 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
63 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
64 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
65 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
66 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
68 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
69 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
70 { .name = "CPUACTLR",
71 .cp = 15, .opc1 = 0, .crm = 15,
72 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
73 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
74 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
75 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
76 { .name = "CPUECTLR",
77 .cp = 15, .opc1 = 1, .crm = 15,
78 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
79 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
80 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
81 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
82 { .name = "CPUMERRSR",
83 .cp = 15, .opc1 = 2, .crm = 15,
84 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
85 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
86 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
87 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
88 { .name = "L2MERRSR",
89 .cp = 15, .opc1 = 3, .crm = 15,
90 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
91 REGINFO_SENTINEL
94 static void aarch64_a57_initfn(Object *obj)
96 ARMCPU *cpu = ARM_CPU(obj);
98 cpu->dtb_compatible = "arm,cortex-a57";
99 set_feature(&cpu->env, ARM_FEATURE_V8);
100 set_feature(&cpu->env, ARM_FEATURE_NEON);
101 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
102 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
103 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
104 set_feature(&cpu->env, ARM_FEATURE_EL2);
105 set_feature(&cpu->env, ARM_FEATURE_EL3);
106 set_feature(&cpu->env, ARM_FEATURE_PMU);
107 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
108 cpu->midr = 0x411fd070;
109 cpu->revidr = 0x00000000;
110 cpu->reset_fpsid = 0x41034070;
111 cpu->isar.mvfr0 = 0x10110222;
112 cpu->isar.mvfr1 = 0x12111111;
113 cpu->isar.mvfr2 = 0x00000043;
114 cpu->ctr = 0x8444c004;
115 cpu->reset_sctlr = 0x00c50838;
116 cpu->isar.id_pfr0 = 0x00000131;
117 cpu->isar.id_pfr1 = 0x00011011;
118 cpu->isar.id_dfr0 = 0x03010066;
119 cpu->id_afr0 = 0x00000000;
120 cpu->isar.id_mmfr0 = 0x10101105;
121 cpu->isar.id_mmfr1 = 0x40000000;
122 cpu->isar.id_mmfr2 = 0x01260000;
123 cpu->isar.id_mmfr3 = 0x02102211;
124 cpu->isar.id_isar0 = 0x02101110;
125 cpu->isar.id_isar1 = 0x13112111;
126 cpu->isar.id_isar2 = 0x21232042;
127 cpu->isar.id_isar3 = 0x01112131;
128 cpu->isar.id_isar4 = 0x00011142;
129 cpu->isar.id_isar5 = 0x00011121;
130 cpu->isar.id_isar6 = 0;
131 cpu->isar.id_aa64pfr0 = 0x00002222;
132 cpu->isar.id_aa64dfr0 = 0x10305106;
133 cpu->isar.id_aa64isar0 = 0x00011120;
134 cpu->isar.id_aa64mmfr0 = 0x00001124;
135 cpu->isar.dbgdidr = 0x3516d000;
136 cpu->clidr = 0x0a200023;
137 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
138 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
139 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
140 cpu->dcz_blocksize = 4; /* 64 bytes */
141 cpu->gic_num_lrs = 4;
142 cpu->gic_vpribits = 5;
143 cpu->gic_vprebits = 5;
144 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
147 static void aarch64_a53_initfn(Object *obj)
149 ARMCPU *cpu = ARM_CPU(obj);
151 cpu->dtb_compatible = "arm,cortex-a53";
152 set_feature(&cpu->env, ARM_FEATURE_V8);
153 set_feature(&cpu->env, ARM_FEATURE_NEON);
154 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
155 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
156 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
157 set_feature(&cpu->env, ARM_FEATURE_EL2);
158 set_feature(&cpu->env, ARM_FEATURE_EL3);
159 set_feature(&cpu->env, ARM_FEATURE_PMU);
160 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
161 cpu->midr = 0x410fd034;
162 cpu->revidr = 0x00000000;
163 cpu->reset_fpsid = 0x41034070;
164 cpu->isar.mvfr0 = 0x10110222;
165 cpu->isar.mvfr1 = 0x12111111;
166 cpu->isar.mvfr2 = 0x00000043;
167 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
168 cpu->reset_sctlr = 0x00c50838;
169 cpu->isar.id_pfr0 = 0x00000131;
170 cpu->isar.id_pfr1 = 0x00011011;
171 cpu->isar.id_dfr0 = 0x03010066;
172 cpu->id_afr0 = 0x00000000;
173 cpu->isar.id_mmfr0 = 0x10101105;
174 cpu->isar.id_mmfr1 = 0x40000000;
175 cpu->isar.id_mmfr2 = 0x01260000;
176 cpu->isar.id_mmfr3 = 0x02102211;
177 cpu->isar.id_isar0 = 0x02101110;
178 cpu->isar.id_isar1 = 0x13112111;
179 cpu->isar.id_isar2 = 0x21232042;
180 cpu->isar.id_isar3 = 0x01112131;
181 cpu->isar.id_isar4 = 0x00011142;
182 cpu->isar.id_isar5 = 0x00011121;
183 cpu->isar.id_isar6 = 0;
184 cpu->isar.id_aa64pfr0 = 0x00002222;
185 cpu->isar.id_aa64dfr0 = 0x10305106;
186 cpu->isar.id_aa64isar0 = 0x00011120;
187 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
188 cpu->isar.dbgdidr = 0x3516d000;
189 cpu->clidr = 0x0a200023;
190 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
191 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
192 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
193 cpu->dcz_blocksize = 4; /* 64 bytes */
194 cpu->gic_num_lrs = 4;
195 cpu->gic_vpribits = 5;
196 cpu->gic_vprebits = 5;
197 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
200 static void aarch64_a72_initfn(Object *obj)
202 ARMCPU *cpu = ARM_CPU(obj);
204 cpu->dtb_compatible = "arm,cortex-a72";
205 set_feature(&cpu->env, ARM_FEATURE_V8);
206 set_feature(&cpu->env, ARM_FEATURE_NEON);
207 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
208 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
209 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
210 set_feature(&cpu->env, ARM_FEATURE_EL2);
211 set_feature(&cpu->env, ARM_FEATURE_EL3);
212 set_feature(&cpu->env, ARM_FEATURE_PMU);
213 cpu->midr = 0x410fd083;
214 cpu->revidr = 0x00000000;
215 cpu->reset_fpsid = 0x41034080;
216 cpu->isar.mvfr0 = 0x10110222;
217 cpu->isar.mvfr1 = 0x12111111;
218 cpu->isar.mvfr2 = 0x00000043;
219 cpu->ctr = 0x8444c004;
220 cpu->reset_sctlr = 0x00c50838;
221 cpu->isar.id_pfr0 = 0x00000131;
222 cpu->isar.id_pfr1 = 0x00011011;
223 cpu->isar.id_dfr0 = 0x03010066;
224 cpu->id_afr0 = 0x00000000;
225 cpu->isar.id_mmfr0 = 0x10201105;
226 cpu->isar.id_mmfr1 = 0x40000000;
227 cpu->isar.id_mmfr2 = 0x01260000;
228 cpu->isar.id_mmfr3 = 0x02102211;
229 cpu->isar.id_isar0 = 0x02101110;
230 cpu->isar.id_isar1 = 0x13112111;
231 cpu->isar.id_isar2 = 0x21232042;
232 cpu->isar.id_isar3 = 0x01112131;
233 cpu->isar.id_isar4 = 0x00011142;
234 cpu->isar.id_isar5 = 0x00011121;
235 cpu->isar.id_aa64pfr0 = 0x00002222;
236 cpu->isar.id_aa64dfr0 = 0x10305106;
237 cpu->isar.id_aa64isar0 = 0x00011120;
238 cpu->isar.id_aa64mmfr0 = 0x00001124;
239 cpu->isar.dbgdidr = 0x3516d000;
240 cpu->clidr = 0x0a200023;
241 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
242 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
243 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
244 cpu->dcz_blocksize = 4; /* 64 bytes */
245 cpu->gic_num_lrs = 4;
246 cpu->gic_vpribits = 5;
247 cpu->gic_vprebits = 5;
248 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
251 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
254 * If any vector lengths are explicitly enabled with sve<N> properties,
255 * then all other lengths are implicitly disabled. If sve-max-vq is
256 * specified then it is the same as explicitly enabling all lengths
257 * up to and including the specified maximum, which means all larger
258 * lengths will be implicitly disabled. If no sve<N> properties
259 * are enabled and sve-max-vq is not specified, then all lengths not
260 * explicitly disabled will be enabled. Additionally, all power-of-two
261 * vector lengths less than the maximum enabled length will be
262 * automatically enabled and all vector lengths larger than the largest
263 * disabled power-of-two vector length will be automatically disabled.
264 * Errors are generated if the user provided input that interferes with
265 * any of the above. Finally, if SVE is not disabled, then at least one
266 * vector length must be enabled.
268 DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
269 DECLARE_BITMAP(tmp, ARM_MAX_VQ);
270 uint32_t vq, max_vq = 0;
272 /* Collect the set of vector lengths supported by KVM. */
273 bitmap_zero(kvm_supported, ARM_MAX_VQ);
274 if (kvm_enabled() && kvm_arm_sve_supported()) {
275 kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
276 } else if (kvm_enabled()) {
277 assert(!cpu_isar_feature(aa64_sve, cpu));
281 * Process explicit sve<N> properties.
282 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
283 * Check first for any sve<N> enabled.
285 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
286 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
288 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
289 error_setg(errp, "cannot enable sve%d", max_vq * 128);
290 error_append_hint(errp, "sve%d is larger than the maximum vector "
291 "length, sve-max-vq=%d (%d bits)\n",
292 max_vq * 128, cpu->sve_max_vq,
293 cpu->sve_max_vq * 128);
294 return;
297 if (kvm_enabled()) {
299 * For KVM we have to automatically enable all supported unitialized
300 * lengths, even when the smaller lengths are not all powers-of-two.
302 bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
303 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
304 } else {
305 /* Propagate enabled bits down through required powers-of-two. */
306 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
307 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
308 set_bit(vq - 1, cpu->sve_vq_map);
312 } else if (cpu->sve_max_vq == 0) {
314 * No explicit bits enabled, and no implicit bits from sve-max-vq.
316 if (!cpu_isar_feature(aa64_sve, cpu)) {
317 /* SVE is disabled and so are all vector lengths. Good. */
318 return;
321 if (kvm_enabled()) {
322 /* Disabling a supported length disables all larger lengths. */
323 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
324 if (test_bit(vq - 1, cpu->sve_vq_init) &&
325 test_bit(vq - 1, kvm_supported)) {
326 break;
329 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
330 bitmap_andnot(cpu->sve_vq_map, kvm_supported,
331 cpu->sve_vq_init, max_vq);
332 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
333 error_setg(errp, "cannot disable sve%d", vq * 128);
334 error_append_hint(errp, "Disabling sve%d results in all "
335 "vector lengths being disabled.\n",
336 vq * 128);
337 error_append_hint(errp, "With SVE enabled, at least one "
338 "vector length must be enabled.\n");
339 return;
341 } else {
342 /* Disabling a power-of-two disables all larger lengths. */
343 if (test_bit(0, cpu->sve_vq_init)) {
344 error_setg(errp, "cannot disable sve128");
345 error_append_hint(errp, "Disabling sve128 results in all "
346 "vector lengths being disabled.\n");
347 error_append_hint(errp, "With SVE enabled, at least one "
348 "vector length must be enabled.\n");
349 return;
351 for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
352 if (test_bit(vq - 1, cpu->sve_vq_init)) {
353 break;
356 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
357 bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
360 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
364 * Process the sve-max-vq property.
365 * Note that we know from the above that no bit above
366 * sve-max-vq is currently set.
368 if (cpu->sve_max_vq != 0) {
369 max_vq = cpu->sve_max_vq;
371 if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
372 test_bit(max_vq - 1, cpu->sve_vq_init)) {
373 error_setg(errp, "cannot disable sve%d", max_vq * 128);
374 error_append_hint(errp, "The maximum vector length must be "
375 "enabled, sve-max-vq=%d (%d bits)\n",
376 max_vq, max_vq * 128);
377 return;
380 /* Set all bits not explicitly set within sve-max-vq. */
381 bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
382 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
386 * We should know what max-vq is now. Also, as we're done
387 * manipulating sve-vq-map, we ensure any bits above max-vq
388 * are clear, just in case anybody looks.
390 assert(max_vq != 0);
391 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
393 if (kvm_enabled()) {
394 /* Ensure the set of lengths matches what KVM supports. */
395 bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
396 if (!bitmap_empty(tmp, max_vq)) {
397 vq = find_last_bit(tmp, max_vq) + 1;
398 if (test_bit(vq - 1, cpu->sve_vq_map)) {
399 if (cpu->sve_max_vq) {
400 error_setg(errp, "cannot set sve-max-vq=%d",
401 cpu->sve_max_vq);
402 error_append_hint(errp, "This KVM host does not support "
403 "the vector length %d-bits.\n",
404 vq * 128);
405 error_append_hint(errp, "It may not be possible to use "
406 "sve-max-vq with this KVM host. Try "
407 "using only sve<N> properties.\n");
408 } else {
409 error_setg(errp, "cannot enable sve%d", vq * 128);
410 error_append_hint(errp, "This KVM host does not support "
411 "the vector length %d-bits.\n",
412 vq * 128);
414 } else {
415 error_setg(errp, "cannot disable sve%d", vq * 128);
416 error_append_hint(errp, "The KVM host requires all "
417 "supported vector lengths smaller "
418 "than %d bits to also be enabled.\n",
419 max_vq * 128);
421 return;
423 } else {
424 /* Ensure all required powers-of-two are enabled. */
425 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
426 if (!test_bit(vq - 1, cpu->sve_vq_map)) {
427 error_setg(errp, "cannot disable sve%d", vq * 128);
428 error_append_hint(errp, "sve%d is required as it "
429 "is a power-of-two length smaller than "
430 "the maximum, sve%d\n",
431 vq * 128, max_vq * 128);
432 return;
438 * Now that we validated all our vector lengths, the only question
439 * left to answer is if we even want SVE at all.
441 if (!cpu_isar_feature(aa64_sve, cpu)) {
442 error_setg(errp, "cannot enable sve%d", max_vq * 128);
443 error_append_hint(errp, "SVE must be enabled to enable vector "
444 "lengths.\n");
445 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
446 return;
449 /* From now on sve_max_vq is the actual maximum supported length. */
450 cpu->sve_max_vq = max_vq;
453 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
454 void *opaque, Error **errp)
456 ARMCPU *cpu = ARM_CPU(obj);
457 uint32_t value;
459 /* All vector lengths are disabled when SVE is off. */
460 if (!cpu_isar_feature(aa64_sve, cpu)) {
461 value = 0;
462 } else {
463 value = cpu->sve_max_vq;
465 visit_type_uint32(v, name, &value, errp);
468 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
469 void *opaque, Error **errp)
471 ARMCPU *cpu = ARM_CPU(obj);
472 uint32_t max_vq;
474 if (!visit_type_uint32(v, name, &max_vq, errp)) {
475 return;
478 if (kvm_enabled() && !kvm_arm_sve_supported()) {
479 error_setg(errp, "cannot set sve-max-vq");
480 error_append_hint(errp, "SVE not supported by KVM on this host\n");
481 return;
484 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
485 error_setg(errp, "unsupported SVE vector length");
486 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
487 ARM_MAX_VQ);
488 return;
491 cpu->sve_max_vq = max_vq;
495 * Note that cpu_arm_get/set_sve_vq cannot use the simpler
496 * object_property_add_bool interface because they make use
497 * of the contents of "name" to determine which bit on which
498 * to operate.
500 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
501 void *opaque, Error **errp)
503 ARMCPU *cpu = ARM_CPU(obj);
504 uint32_t vq = atoi(&name[3]) / 128;
505 bool value;
507 /* All vector lengths are disabled when SVE is off. */
508 if (!cpu_isar_feature(aa64_sve, cpu)) {
509 value = false;
510 } else {
511 value = test_bit(vq - 1, cpu->sve_vq_map);
513 visit_type_bool(v, name, &value, errp);
516 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
517 void *opaque, Error **errp)
519 ARMCPU *cpu = ARM_CPU(obj);
520 uint32_t vq = atoi(&name[3]) / 128;
521 bool value;
523 if (!visit_type_bool(v, name, &value, errp)) {
524 return;
527 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
528 error_setg(errp, "cannot enable %s", name);
529 error_append_hint(errp, "SVE not supported by KVM on this host\n");
530 return;
533 if (value) {
534 set_bit(vq - 1, cpu->sve_vq_map);
535 } else {
536 clear_bit(vq - 1, cpu->sve_vq_map);
538 set_bit(vq - 1, cpu->sve_vq_init);
541 static bool cpu_arm_get_sve(Object *obj, Error **errp)
543 ARMCPU *cpu = ARM_CPU(obj);
544 return cpu_isar_feature(aa64_sve, cpu);
547 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
549 ARMCPU *cpu = ARM_CPU(obj);
550 uint64_t t;
552 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
553 error_setg(errp, "'sve' feature not supported by KVM on this host");
554 return;
557 t = cpu->isar.id_aa64pfr0;
558 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
559 cpu->isar.id_aa64pfr0 = t;
562 void aarch64_add_sve_properties(Object *obj)
564 uint32_t vq;
566 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
568 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
569 char name[8];
570 sprintf(name, "sve%d", vq * 128);
571 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
572 cpu_arm_set_sve_vq, NULL, NULL);
576 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
578 int arch_val = 0, impdef_val = 0;
579 uint64_t t;
581 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
582 if (cpu->prop_pauth) {
583 if (cpu->prop_pauth_impdef) {
584 impdef_val = 1;
585 } else {
586 arch_val = 1;
588 } else if (cpu->prop_pauth_impdef) {
589 error_setg(errp, "cannot enable pauth-impdef without pauth");
590 error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
593 t = cpu->isar.id_aa64isar1;
594 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
595 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
596 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
597 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
598 cpu->isar.id_aa64isar1 = t;
601 static Property arm_cpu_pauth_property =
602 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
603 static Property arm_cpu_pauth_impdef_property =
604 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
606 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
607 * otherwise, a CPU with as many features enabled as our emulation supports.
608 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
609 * this only needs to handle 64 bits.
611 static void aarch64_max_initfn(Object *obj)
613 ARMCPU *cpu = ARM_CPU(obj);
615 if (kvm_enabled()) {
616 kvm_arm_set_cpu_features_from_host(cpu);
617 } else {
618 uint64_t t;
619 uint32_t u;
620 aarch64_a57_initfn(obj);
623 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
624 * one and try to apply errata workarounds or use impdef features we
625 * don't provide.
626 * An IMPLEMENTER field of 0 means "reserved for software use";
627 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
628 * to see which features are present";
629 * the VARIANT, PARTNUM and REVISION fields are all implementation
630 * defined and we choose to define PARTNUM just in case guest
631 * code needs to distinguish this QEMU CPU from other software
632 * implementations, though this shouldn't be needed.
634 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
635 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
636 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
637 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
638 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
639 cpu->midr = t;
641 t = cpu->isar.id_aa64isar0;
642 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
643 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
644 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
645 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
646 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
647 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
648 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
649 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
650 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
651 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
652 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
653 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
654 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
655 cpu->isar.id_aa64isar0 = t;
657 t = cpu->isar.id_aa64isar1;
658 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
659 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
660 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
661 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
662 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
663 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
664 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
665 cpu->isar.id_aa64isar1 = t;
667 t = cpu->isar.id_aa64pfr0;
668 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
669 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
670 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
671 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
672 t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
673 cpu->isar.id_aa64pfr0 = t;
675 t = cpu->isar.id_aa64pfr1;
676 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
677 t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
679 * Begin with full support for MTE. This will be downgraded to MTE=0
680 * during realize if the board provides no tag memory, much like
681 * we do for EL2 with the virtualization=on property.
683 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2);
684 cpu->isar.id_aa64pfr1 = t;
686 t = cpu->isar.id_aa64mmfr0;
687 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
688 cpu->isar.id_aa64mmfr0 = t;
690 t = cpu->isar.id_aa64mmfr1;
691 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
692 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
693 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
694 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
695 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
696 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
697 cpu->isar.id_aa64mmfr1 = t;
699 t = cpu->isar.id_aa64mmfr2;
700 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
701 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
702 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
703 cpu->isar.id_aa64mmfr2 = t;
705 /* Replicate the same data to the 32-bit id registers. */
706 u = cpu->isar.id_isar5;
707 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
708 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
709 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
710 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
711 u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
712 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
713 cpu->isar.id_isar5 = u;
715 u = cpu->isar.id_isar6;
716 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
717 u = FIELD_DP32(u, ID_ISAR6, DP, 1);
718 u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
719 u = FIELD_DP32(u, ID_ISAR6, SB, 1);
720 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
721 cpu->isar.id_isar6 = u;
723 u = cpu->isar.id_pfr0;
724 u = FIELD_DP32(u, ID_PFR0, DIT, 1);
725 cpu->isar.id_pfr0 = u;
727 u = cpu->isar.id_pfr2;
728 u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
729 cpu->isar.id_pfr2 = u;
731 u = cpu->isar.id_mmfr3;
732 u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
733 cpu->isar.id_mmfr3 = u;
735 u = cpu->isar.id_mmfr4;
736 u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
737 u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
738 u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
739 u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
740 cpu->isar.id_mmfr4 = u;
742 t = cpu->isar.id_aa64dfr0;
743 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
744 cpu->isar.id_aa64dfr0 = t;
746 u = cpu->isar.id_dfr0;
747 u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
748 cpu->isar.id_dfr0 = u;
750 u = cpu->isar.mvfr1;
751 u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */
752 u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
753 cpu->isar.mvfr1 = u;
755 #ifdef CONFIG_USER_ONLY
756 /* For usermode -cpu max we can use a larger and more efficient DCZ
757 * blocksize since we don't have to follow what the hardware does.
759 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
760 cpu->dcz_blocksize = 7; /* 512 bytes */
761 #endif
763 /* Default to PAUTH on, with the architected algorithm. */
764 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
765 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
768 aarch64_add_sve_properties(obj);
769 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
770 cpu_max_set_sve_max_vq, NULL, NULL);
773 static const ARMCPUInfo aarch64_cpus[] = {
774 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
775 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
776 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
777 { .name = "max", .initfn = aarch64_max_initfn },
780 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
782 ARMCPU *cpu = ARM_CPU(obj);
784 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
787 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
789 ARMCPU *cpu = ARM_CPU(obj);
791 /* At this time, this property is only allowed if KVM is enabled. This
792 * restriction allows us to avoid fixing up functionality that assumes a
793 * uniform execution state like do_interrupt.
795 if (value == false) {
796 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
797 error_setg(errp, "'aarch64' feature cannot be disabled "
798 "unless KVM is enabled and 32-bit EL1 "
799 "is supported");
800 return;
802 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
803 } else {
804 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
808 static void aarch64_cpu_finalizefn(Object *obj)
812 static gchar *aarch64_gdb_arch_name(CPUState *cs)
814 return g_strdup("aarch64");
817 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
819 CPUClass *cc = CPU_CLASS(oc);
821 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
822 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
823 cc->gdb_num_core_regs = 34;
824 cc->gdb_core_xml_file = "aarch64-core.xml";
825 cc->gdb_arch_name = aarch64_gdb_arch_name;
827 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
828 aarch64_cpu_set_aarch64);
829 object_class_property_set_description(oc, "aarch64",
830 "Set on/off to enable/disable aarch64 "
831 "execution state ");
834 static void aarch64_cpu_instance_init(Object *obj)
836 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
838 acc->info->initfn(obj);
839 arm_cpu_post_init(obj);
842 static void cpu_register_class_init(ObjectClass *oc, void *data)
844 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
846 acc->info = data;
849 void aarch64_cpu_register(const ARMCPUInfo *info)
851 TypeInfo type_info = {
852 .parent = TYPE_AARCH64_CPU,
853 .instance_size = sizeof(ARMCPU),
854 .instance_init = aarch64_cpu_instance_init,
855 .class_size = sizeof(ARMCPUClass),
856 .class_init = info->class_init ?: cpu_register_class_init,
857 .class_data = (void *)info,
860 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
861 type_register(&type_info);
862 g_free((void *)type_info.name);
865 static const TypeInfo aarch64_cpu_type_info = {
866 .name = TYPE_AARCH64_CPU,
867 .parent = TYPE_ARM_CPU,
868 .instance_size = sizeof(ARMCPU),
869 .instance_finalize = aarch64_cpu_finalizefn,
870 .abstract = true,
871 .class_size = sizeof(AArch64CPUClass),
872 .class_init = aarch64_cpu_class_init,
875 static void aarch64_cpu_register_types(void)
877 size_t i;
879 type_register_static(&aarch64_cpu_type_info);
881 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
882 aarch64_cpu_register(&aarch64_cpus[i]);
886 type_init(aarch64_cpu_register_types)