2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
30 #include "qemu-common.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/kvm.h"
37 #include "sysemu/device_tree.h"
38 #include "qapi/qmp/qjson.h"
39 #include "exec/gdbstub.h"
40 #include "exec/address-spaces.h"
42 #include "qapi-event.h"
43 #include "hw/s390x/s390-pci-inst.h"
44 #include "hw/s390x/s390-pci-bus.h"
45 #include "hw/s390x/ipl.h"
46 #include "hw/s390x/ebcdic.h"
47 #include "exec/memattrs.h"
48 #include "hw/s390x/s390-virtio-ccw.h"
50 /* #define DEBUG_KVM */
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define kvm_vm_check_mem_attr(s, attr) \
61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
63 #define IPA0_DIAG 0x8300
64 #define IPA0_SIGP 0xae00
65 #define IPA0_B2 0xb200
66 #define IPA0_B9 0xb900
67 #define IPA0_EB 0xeb00
68 #define IPA0_E3 0xe300
70 #define PRIV_B2_SCLP_CALL 0x20
71 #define PRIV_B2_CSCH 0x30
72 #define PRIV_B2_HSCH 0x31
73 #define PRIV_B2_MSCH 0x32
74 #define PRIV_B2_SSCH 0x33
75 #define PRIV_B2_STSCH 0x34
76 #define PRIV_B2_TSCH 0x35
77 #define PRIV_B2_TPI 0x36
78 #define PRIV_B2_SAL 0x37
79 #define PRIV_B2_RSCH 0x38
80 #define PRIV_B2_STCRW 0x39
81 #define PRIV_B2_STCPS 0x3a
82 #define PRIV_B2_RCHP 0x3b
83 #define PRIV_B2_SCHM 0x3c
84 #define PRIV_B2_CHSC 0x5f
85 #define PRIV_B2_SIGA 0x74
86 #define PRIV_B2_XSCH 0x76
88 #define PRIV_EB_SQBS 0x8a
89 #define PRIV_EB_PCISTB 0xd0
90 #define PRIV_EB_SIC 0xd1
92 #define PRIV_B9_EQBS 0x9c
93 #define PRIV_B9_CLP 0xa0
94 #define PRIV_B9_PCISTG 0xd0
95 #define PRIV_B9_PCILG 0xd2
96 #define PRIV_B9_RPCIT 0xd3
98 #define PRIV_E3_MPCIFC 0xd0
99 #define PRIV_E3_STPCIFC 0xd4
101 #define DIAG_TIMEREVENT 0x288
102 #define DIAG_IPL 0x308
103 #define DIAG_KVM_HYPERCALL 0x500
104 #define DIAG_KVM_BREAKPOINT 0x501
106 #define ICPT_INSTRUCTION 0x04
107 #define ICPT_PROGRAM 0x08
108 #define ICPT_EXT_INT 0x14
109 #define ICPT_WAITPSW 0x1c
110 #define ICPT_SOFT_INTERCEPT 0x24
111 #define ICPT_CPU_STOP 0x28
112 #define ICPT_OPEREXC 0x2c
115 #define NR_LOCAL_IRQS 32
117 * Needs to be big enough to contain max_cpus emergency signals
118 * and in addition NR_LOCAL_IRQS interrupts
120 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
121 (max_cpus + NR_LOCAL_IRQS))
123 static CPUWatchpoint hw_watchpoint
;
125 * We don't use a list because this structure is also used to transmit the
126 * hardware breakpoints to the kernel.
128 static struct kvm_hw_breakpoint
*hw_breakpoints
;
129 static int nb_hw_breakpoints
;
131 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
135 static QemuMutex qemu_sigp_mutex
;
137 static int cap_sync_regs
;
138 static int cap_async_pf
;
139 static int cap_mem_op
;
140 static int cap_s390_irq
;
143 static void *legacy_s390_alloc(size_t size
, uint64_t *align
);
145 static int kvm_s390_query_mem_limit(KVMState
*s
, uint64_t *memory_limit
)
147 struct kvm_device_attr attr
= {
148 .group
= KVM_S390_VM_MEM_CTRL
,
149 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
150 .addr
= (uint64_t) memory_limit
,
153 return kvm_vm_ioctl(s
, KVM_GET_DEVICE_ATTR
, &attr
);
156 int kvm_s390_set_mem_limit(KVMState
*s
, uint64_t new_limit
, uint64_t *hw_limit
)
160 struct kvm_device_attr attr
= {
161 .group
= KVM_S390_VM_MEM_CTRL
,
162 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
163 .addr
= (uint64_t) &new_limit
,
166 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_LIMIT_SIZE
)) {
170 rc
= kvm_s390_query_mem_limit(s
, hw_limit
);
173 } else if (*hw_limit
< new_limit
) {
177 return kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
180 static bool kvm_s390_cmma_available(void)
182 static bool initialized
, value
;
186 value
= kvm_vm_check_mem_attr(kvm_state
, KVM_S390_VM_MEM_ENABLE_CMMA
) &&
187 kvm_vm_check_mem_attr(kvm_state
, KVM_S390_VM_MEM_CLR_CMMA
);
192 void kvm_s390_cmma_reset(void)
195 struct kvm_device_attr attr
= {
196 .group
= KVM_S390_VM_MEM_CTRL
,
197 .attr
= KVM_S390_VM_MEM_CLR_CMMA
,
200 if (!mem_path
|| !kvm_s390_cmma_available()) {
204 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
205 trace_kvm_clear_cmma(rc
);
208 static void kvm_s390_enable_cmma(void)
211 struct kvm_device_attr attr
= {
212 .group
= KVM_S390_VM_MEM_CTRL
,
213 .attr
= KVM_S390_VM_MEM_ENABLE_CMMA
,
216 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
217 trace_kvm_enable_cmma(rc
);
220 static void kvm_s390_set_attr(uint64_t attr
)
222 struct kvm_device_attr attribute
= {
223 .group
= KVM_S390_VM_CRYPTO
,
227 int ret
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attribute
);
230 error_report("Failed to set crypto device attribute %lu: %s",
231 attr
, strerror(-ret
));
235 static void kvm_s390_init_aes_kw(void)
237 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_AES_KW
;
239 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
241 attr
= KVM_S390_VM_CRYPTO_ENABLE_AES_KW
;
244 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
245 kvm_s390_set_attr(attr
);
249 static void kvm_s390_init_dea_kw(void)
251 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_DEA_KW
;
253 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
255 attr
= KVM_S390_VM_CRYPTO_ENABLE_DEA_KW
;
258 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
259 kvm_s390_set_attr(attr
);
263 void kvm_s390_crypto_reset(void)
265 if (s390_has_feat(S390_FEAT_MSA_EXT_3
)) {
266 kvm_s390_init_aes_kw();
267 kvm_s390_init_dea_kw();
271 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
273 cap_sync_regs
= kvm_check_extension(s
, KVM_CAP_SYNC_REGS
);
274 cap_async_pf
= kvm_check_extension(s
, KVM_CAP_ASYNC_PF
);
275 cap_mem_op
= kvm_check_extension(s
, KVM_CAP_S390_MEM_OP
);
276 cap_s390_irq
= kvm_check_extension(s
, KVM_CAP_S390_INJECT_IRQ
);
278 if (!kvm_check_extension(s
, KVM_CAP_S390_GMAP
)
279 || !kvm_check_extension(s
, KVM_CAP_S390_COW
)) {
280 phys_mem_set_alloc(legacy_s390_alloc
);
283 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_SIGP
, 0);
284 kvm_vm_enable_cap(s
, KVM_CAP_S390_VECTOR_REGISTERS
, 0);
285 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_STSI
, 0);
287 if (kvm_vm_enable_cap(s
, KVM_CAP_S390_RI
, 0) == 0) {
292 qemu_mutex_init(&qemu_sigp_mutex
);
297 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
299 return cpu
->cpu_index
;
302 int kvm_arch_init_vcpu(CPUState
*cs
)
304 S390CPU
*cpu
= S390_CPU(cs
);
305 kvm_s390_set_cpu_state(cpu
, cpu
->env
.cpu_state
);
306 cpu
->irqstate
= g_malloc0(VCPU_IRQ_BUF_SIZE
);
310 void kvm_s390_reset_vcpu(S390CPU
*cpu
)
312 CPUState
*cs
= CPU(cpu
);
314 /* The initial reset call is needed here to reset in-kernel
315 * vcpu data that we can't access directly from QEMU
316 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
317 * Before this ioctl cpu_synchronize_state() is called in common kvm
319 if (kvm_vcpu_ioctl(cs
, KVM_S390_INITIAL_RESET
, NULL
)) {
320 error_report("Initial CPU reset failed on CPU %i", cs
->cpu_index
);
324 static int can_sync_regs(CPUState
*cs
, int regs
)
326 return cap_sync_regs
&& (cs
->kvm_run
->kvm_valid_regs
& regs
) == regs
;
329 int kvm_arch_put_registers(CPUState
*cs
, int level
)
331 S390CPU
*cpu
= S390_CPU(cs
);
332 CPUS390XState
*env
= &cpu
->env
;
333 struct kvm_sregs sregs
;
334 struct kvm_regs regs
;
335 struct kvm_fpu fpu
= {};
339 /* always save the PSW and the GPRS*/
340 cs
->kvm_run
->psw_addr
= env
->psw
.addr
;
341 cs
->kvm_run
->psw_mask
= env
->psw
.mask
;
343 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
344 for (i
= 0; i
< 16; i
++) {
345 cs
->kvm_run
->s
.regs
.gprs
[i
] = env
->regs
[i
];
346 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GPRS
;
349 for (i
= 0; i
< 16; i
++) {
350 regs
.gprs
[i
] = env
->regs
[i
];
352 r
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
358 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
359 for (i
= 0; i
< 32; i
++) {
360 cs
->kvm_run
->s
.regs
.vrs
[i
][0] = env
->vregs
[i
][0].ll
;
361 cs
->kvm_run
->s
.regs
.vrs
[i
][1] = env
->vregs
[i
][1].ll
;
363 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
364 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_VRS
;
365 } else if (can_sync_regs(cs
, KVM_SYNC_FPRS
)) {
366 for (i
= 0; i
< 16; i
++) {
367 cs
->kvm_run
->s
.regs
.fprs
[i
] = get_freg(env
, i
)->ll
;
369 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
370 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_FPRS
;
373 for (i
= 0; i
< 16; i
++) {
374 fpu
.fprs
[i
] = get_freg(env
, i
)->ll
;
378 r
= kvm_vcpu_ioctl(cs
, KVM_SET_FPU
, &fpu
);
384 /* Do we need to save more than that? */
385 if (level
== KVM_PUT_RUNTIME_STATE
) {
389 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
390 cs
->kvm_run
->s
.regs
.cputm
= env
->cputm
;
391 cs
->kvm_run
->s
.regs
.ckc
= env
->ckc
;
392 cs
->kvm_run
->s
.regs
.todpr
= env
->todpr
;
393 cs
->kvm_run
->s
.regs
.gbea
= env
->gbea
;
394 cs
->kvm_run
->s
.regs
.pp
= env
->pp
;
395 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ARCH0
;
398 * These ONE_REGS are not protected by a capability. As they are only
399 * necessary for migration we just trace a possible error, but don't
400 * return with an error return code.
402 kvm_set_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
403 kvm_set_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
404 kvm_set_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
405 kvm_set_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
406 kvm_set_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
409 if (can_sync_regs(cs
, KVM_SYNC_RICCB
)) {
410 memcpy(cs
->kvm_run
->s
.regs
.riccb
, env
->riccb
, 64);
411 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_RICCB
;
414 /* pfault parameters */
415 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
416 cs
->kvm_run
->s
.regs
.pft
= env
->pfault_token
;
417 cs
->kvm_run
->s
.regs
.pfs
= env
->pfault_select
;
418 cs
->kvm_run
->s
.regs
.pfc
= env
->pfault_compare
;
419 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PFAULT
;
420 } else if (cap_async_pf
) {
421 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
425 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
429 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
435 /* access registers and control registers*/
436 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
437 for (i
= 0; i
< 16; i
++) {
438 cs
->kvm_run
->s
.regs
.acrs
[i
] = env
->aregs
[i
];
439 cs
->kvm_run
->s
.regs
.crs
[i
] = env
->cregs
[i
];
441 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ACRS
;
442 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_CRS
;
444 for (i
= 0; i
< 16; i
++) {
445 sregs
.acrs
[i
] = env
->aregs
[i
];
446 sregs
.crs
[i
] = env
->cregs
[i
];
448 r
= kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
454 /* Finally the prefix */
455 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
456 cs
->kvm_run
->s
.regs
.prefix
= env
->psa
;
457 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PREFIX
;
459 /* prefix is only supported via sync regs */
464 int kvm_arch_get_registers(CPUState
*cs
)
466 S390CPU
*cpu
= S390_CPU(cs
);
467 CPUS390XState
*env
= &cpu
->env
;
468 struct kvm_sregs sregs
;
469 struct kvm_regs regs
;
474 env
->psw
.addr
= cs
->kvm_run
->psw_addr
;
475 env
->psw
.mask
= cs
->kvm_run
->psw_mask
;
478 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
479 for (i
= 0; i
< 16; i
++) {
480 env
->regs
[i
] = cs
->kvm_run
->s
.regs
.gprs
[i
];
483 r
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
487 for (i
= 0; i
< 16; i
++) {
488 env
->regs
[i
] = regs
.gprs
[i
];
492 /* The ACRS and CRS */
493 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
494 for (i
= 0; i
< 16; i
++) {
495 env
->aregs
[i
] = cs
->kvm_run
->s
.regs
.acrs
[i
];
496 env
->cregs
[i
] = cs
->kvm_run
->s
.regs
.crs
[i
];
499 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
503 for (i
= 0; i
< 16; i
++) {
504 env
->aregs
[i
] = sregs
.acrs
[i
];
505 env
->cregs
[i
] = sregs
.crs
[i
];
509 /* Floating point and vector registers */
510 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
511 for (i
= 0; i
< 32; i
++) {
512 env
->vregs
[i
][0].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][0];
513 env
->vregs
[i
][1].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][1];
515 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
516 } else if (can_sync_regs(cs
, KVM_SYNC_FPRS
)) {
517 for (i
= 0; i
< 16; i
++) {
518 get_freg(env
, i
)->ll
= cs
->kvm_run
->s
.regs
.fprs
[i
];
520 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
522 r
= kvm_vcpu_ioctl(cs
, KVM_GET_FPU
, &fpu
);
526 for (i
= 0; i
< 16; i
++) {
527 get_freg(env
, i
)->ll
= fpu
.fprs
[i
];
533 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
534 env
->psa
= cs
->kvm_run
->s
.regs
.prefix
;
537 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
538 env
->cputm
= cs
->kvm_run
->s
.regs
.cputm
;
539 env
->ckc
= cs
->kvm_run
->s
.regs
.ckc
;
540 env
->todpr
= cs
->kvm_run
->s
.regs
.todpr
;
541 env
->gbea
= cs
->kvm_run
->s
.regs
.gbea
;
542 env
->pp
= cs
->kvm_run
->s
.regs
.pp
;
545 * These ONE_REGS are not protected by a capability. As they are only
546 * necessary for migration we just trace a possible error, but don't
547 * return with an error return code.
549 kvm_get_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
550 kvm_get_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
551 kvm_get_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
552 kvm_get_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
553 kvm_get_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
556 if (can_sync_regs(cs
, KVM_SYNC_RICCB
)) {
557 memcpy(env
->riccb
, cs
->kvm_run
->s
.regs
.riccb
, 64);
560 /* pfault parameters */
561 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
562 env
->pfault_token
= cs
->kvm_run
->s
.regs
.pft
;
563 env
->pfault_select
= cs
->kvm_run
->s
.regs
.pfs
;
564 env
->pfault_compare
= cs
->kvm_run
->s
.regs
.pfc
;
565 } else if (cap_async_pf
) {
566 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
570 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
574 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
583 int kvm_s390_get_clock(uint8_t *tod_high
, uint64_t *tod_low
)
586 struct kvm_device_attr attr
= {
587 .group
= KVM_S390_VM_TOD
,
588 .attr
= KVM_S390_VM_TOD_LOW
,
589 .addr
= (uint64_t)tod_low
,
592 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
597 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
598 attr
.addr
= (uint64_t)tod_high
;
599 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
602 int kvm_s390_set_clock(uint8_t *tod_high
, uint64_t *tod_low
)
606 struct kvm_device_attr attr
= {
607 .group
= KVM_S390_VM_TOD
,
608 .attr
= KVM_S390_VM_TOD_LOW
,
609 .addr
= (uint64_t)tod_low
,
612 r
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
617 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
618 attr
.addr
= (uint64_t)tod_high
;
619 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
624 * @addr: the logical start address in guest memory
625 * @ar: the access register number
626 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
627 * @len: length that should be transferred
628 * @is_write: true = write, false = read
629 * Returns: 0 on success, non-zero if an exception or error occurred
631 * Use KVM ioctl to read/write from/to guest memory. An access exception
632 * is injected into the vCPU in case of translation errors.
634 int kvm_s390_mem_op(S390CPU
*cpu
, vaddr addr
, uint8_t ar
, void *hostbuf
,
635 int len
, bool is_write
)
637 struct kvm_s390_mem_op mem_op
= {
639 .flags
= KVM_S390_MEMOP_F_INJECT_EXCEPTION
,
641 .op
= is_write
? KVM_S390_MEMOP_LOGICAL_WRITE
642 : KVM_S390_MEMOP_LOGICAL_READ
,
643 .buf
= (uint64_t)hostbuf
,
652 mem_op
.flags
|= KVM_S390_MEMOP_F_CHECK_ONLY
;
655 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_S390_MEM_OP
, &mem_op
);
657 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret
));
663 * Legacy layout for s390:
664 * Older S390 KVM requires the topmost vma of the RAM to be
665 * smaller than an system defined value, which is at least 256GB.
666 * Larger systems have larger values. We put the guest between
667 * the end of data segment (system break) and this value. We
668 * use 32GB as a base to have enough room for the system break
669 * to grow. We also have to use MAP parameters that avoid
670 * read-only mapping of guest pages.
672 static void *legacy_s390_alloc(size_t size
, uint64_t *align
)
676 mem
= mmap((void *) 0x800000000ULL
, size
,
677 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
678 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
679 return mem
== MAP_FAILED
? NULL
: mem
;
682 static uint8_t const *sw_bp_inst
;
683 static uint8_t sw_bp_ilen
;
685 static void determine_sw_breakpoint_instr(void)
687 /* DIAG 501 is used for sw breakpoints with old kernels */
688 static const uint8_t diag_501
[] = {0x83, 0x24, 0x05, 0x01};
689 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
690 static const uint8_t instr_0x0000
[] = {0x00, 0x00};
695 if (kvm_vm_enable_cap(kvm_state
, KVM_CAP_S390_USER_INSTR0
, 0)) {
696 sw_bp_inst
= diag_501
;
697 sw_bp_ilen
= sizeof(diag_501
);
698 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
700 sw_bp_inst
= instr_0x0000
;
701 sw_bp_ilen
= sizeof(instr_0x0000
);
702 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
706 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
708 determine_sw_breakpoint_instr();
710 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
712 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)sw_bp_inst
, sw_bp_ilen
, 1)) {
718 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
722 if (cpu_memory_rw_debug(cs
, bp
->pc
, t
, sw_bp_ilen
, 0)) {
724 } else if (memcmp(t
, sw_bp_inst
, sw_bp_ilen
)) {
726 } else if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
734 static struct kvm_hw_breakpoint
*find_hw_breakpoint(target_ulong addr
,
739 for (n
= 0; n
< nb_hw_breakpoints
; n
++) {
740 if (hw_breakpoints
[n
].addr
== addr
&& hw_breakpoints
[n
].type
== type
&&
741 (hw_breakpoints
[n
].len
== len
|| len
== -1)) {
742 return &hw_breakpoints
[n
];
749 static int insert_hw_breakpoint(target_ulong addr
, int len
, int type
)
753 if (find_hw_breakpoint(addr
, len
, type
)) {
757 size
= (nb_hw_breakpoints
+ 1) * sizeof(struct kvm_hw_breakpoint
);
759 if (!hw_breakpoints
) {
760 nb_hw_breakpoints
= 0;
761 hw_breakpoints
= (struct kvm_hw_breakpoint
*)g_try_malloc(size
);
764 (struct kvm_hw_breakpoint
*)g_try_realloc(hw_breakpoints
, size
);
767 if (!hw_breakpoints
) {
768 nb_hw_breakpoints
= 0;
772 hw_breakpoints
[nb_hw_breakpoints
].addr
= addr
;
773 hw_breakpoints
[nb_hw_breakpoints
].len
= len
;
774 hw_breakpoints
[nb_hw_breakpoints
].type
= type
;
781 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
782 target_ulong len
, int type
)
785 case GDB_BREAKPOINT_HW
:
788 case GDB_WATCHPOINT_WRITE
:
792 type
= KVM_HW_WP_WRITE
;
797 return insert_hw_breakpoint(addr
, len
, type
);
800 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
801 target_ulong len
, int type
)
804 struct kvm_hw_breakpoint
*bp
= find_hw_breakpoint(addr
, len
, type
);
811 if (nb_hw_breakpoints
> 0) {
813 * In order to trim the array, move the last element to the position to
814 * be removed - if necessary.
816 if (bp
!= &hw_breakpoints
[nb_hw_breakpoints
]) {
817 *bp
= hw_breakpoints
[nb_hw_breakpoints
];
819 size
= nb_hw_breakpoints
* sizeof(struct kvm_hw_breakpoint
);
821 (struct kvm_hw_breakpoint
*)g_realloc(hw_breakpoints
, size
);
823 g_free(hw_breakpoints
);
824 hw_breakpoints
= NULL
;
830 void kvm_arch_remove_all_hw_breakpoints(void)
832 nb_hw_breakpoints
= 0;
833 g_free(hw_breakpoints
);
834 hw_breakpoints
= NULL
;
837 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
841 if (nb_hw_breakpoints
> 0) {
842 dbg
->arch
.nr_hw_bp
= nb_hw_breakpoints
;
843 dbg
->arch
.hw_bp
= hw_breakpoints
;
845 for (i
= 0; i
< nb_hw_breakpoints
; ++i
) {
846 hw_breakpoints
[i
].phys_addr
= s390_cpu_get_phys_addr_debug(cpu
,
847 hw_breakpoints
[i
].addr
);
849 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
851 dbg
->arch
.nr_hw_bp
= 0;
852 dbg
->arch
.hw_bp
= NULL
;
856 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
860 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
862 return MEMTXATTRS_UNSPECIFIED
;
865 int kvm_arch_process_async_events(CPUState
*cs
)
870 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq
*irq
,
871 struct kvm_s390_interrupt
*interrupt
)
875 interrupt
->type
= irq
->type
;
877 case KVM_S390_INT_VIRTIO
:
878 interrupt
->parm
= irq
->u
.ext
.ext_params
;
880 case KVM_S390_INT_PFAULT_INIT
:
881 case KVM_S390_INT_PFAULT_DONE
:
882 interrupt
->parm64
= irq
->u
.ext
.ext_params2
;
884 case KVM_S390_PROGRAM_INT
:
885 interrupt
->parm
= irq
->u
.pgm
.code
;
887 case KVM_S390_SIGP_SET_PREFIX
:
888 interrupt
->parm
= irq
->u
.prefix
.address
;
890 case KVM_S390_INT_SERVICE
:
891 interrupt
->parm
= irq
->u
.ext
.ext_params
;
894 interrupt
->parm
= irq
->u
.mchk
.cr14
;
895 interrupt
->parm64
= irq
->u
.mchk
.mcic
;
897 case KVM_S390_INT_EXTERNAL_CALL
:
898 interrupt
->parm
= irq
->u
.extcall
.code
;
900 case KVM_S390_INT_EMERGENCY
:
901 interrupt
->parm
= irq
->u
.emerg
.code
;
903 case KVM_S390_SIGP_STOP
:
904 case KVM_S390_RESTART
:
905 break; /* These types have no parameters */
906 case KVM_S390_INT_IO_MIN
...KVM_S390_INT_IO_MAX
:
907 interrupt
->parm
= irq
->u
.io
.subchannel_id
<< 16;
908 interrupt
->parm
|= irq
->u
.io
.subchannel_nr
;
909 interrupt
->parm64
= (uint64_t)irq
->u
.io
.io_int_parm
<< 32;
910 interrupt
->parm64
|= irq
->u
.io
.io_int_word
;
919 static void inject_vcpu_irq_legacy(CPUState
*cs
, struct kvm_s390_irq
*irq
)
921 struct kvm_s390_interrupt kvmint
= {};
924 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
926 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
930 r
= kvm_vcpu_ioctl(cs
, KVM_S390_INTERRUPT
, &kvmint
);
932 fprintf(stderr
, "KVM failed to inject interrupt\n");
937 void kvm_s390_vcpu_interrupt(S390CPU
*cpu
, struct kvm_s390_irq
*irq
)
939 CPUState
*cs
= CPU(cpu
);
943 r
= kvm_vcpu_ioctl(cs
, KVM_S390_IRQ
, irq
);
947 error_report("KVM failed to inject interrupt %llx", irq
->type
);
951 inject_vcpu_irq_legacy(cs
, irq
);
954 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
956 struct kvm_s390_interrupt kvmint
= {};
959 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
961 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
965 r
= kvm_vm_ioctl(kvm_state
, KVM_S390_INTERRUPT
, &kvmint
);
967 fprintf(stderr
, "KVM failed to inject interrupt\n");
972 void kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
974 static bool use_flic
= true;
978 r
= kvm_s390_inject_flic(irq
);
986 __kvm_s390_floating_interrupt(irq
);
989 void kvm_s390_service_interrupt(uint32_t parm
)
991 struct kvm_s390_irq irq
= {
992 .type
= KVM_S390_INT_SERVICE
,
993 .u
.ext
.ext_params
= parm
,
996 kvm_s390_floating_interrupt(&irq
);
999 static void enter_pgmcheck(S390CPU
*cpu
, uint16_t code
)
1001 struct kvm_s390_irq irq
= {
1002 .type
= KVM_S390_PROGRAM_INT
,
1006 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1009 void kvm_s390_access_exception(S390CPU
*cpu
, uint16_t code
, uint64_t te_code
)
1011 struct kvm_s390_irq irq
= {
1012 .type
= KVM_S390_PROGRAM_INT
,
1014 .u
.pgm
.trans_exc_code
= te_code
,
1015 .u
.pgm
.exc_access_id
= te_code
& 3,
1018 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1021 static int kvm_sclp_service_call(S390CPU
*cpu
, struct kvm_run
*run
,
1024 CPUS390XState
*env
= &cpu
->env
;
1029 cpu_synchronize_state(CPU(cpu
));
1030 sccb
= env
->regs
[ipbh0
& 0xf];
1031 code
= env
->regs
[(ipbh0
& 0xf0) >> 4];
1033 r
= sclp_service_call(env
, sccb
, code
);
1035 enter_pgmcheck(cpu
, -r
);
1043 static int handle_b2(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1045 CPUS390XState
*env
= &cpu
->env
;
1047 uint16_t ipbh0
= (run
->s390_sieic
.ipb
& 0xffff0000) >> 16;
1049 cpu_synchronize_state(CPU(cpu
));
1053 ioinst_handle_xsch(cpu
, env
->regs
[1]);
1056 ioinst_handle_csch(cpu
, env
->regs
[1]);
1059 ioinst_handle_hsch(cpu
, env
->regs
[1]);
1062 ioinst_handle_msch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1065 ioinst_handle_ssch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1068 ioinst_handle_stcrw(cpu
, run
->s390_sieic
.ipb
);
1071 ioinst_handle_stsch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1074 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1075 fprintf(stderr
, "Spurious tsch intercept\n");
1078 ioinst_handle_chsc(cpu
, run
->s390_sieic
.ipb
);
1081 /* This should have been handled by kvm already. */
1082 fprintf(stderr
, "Spurious tpi intercept\n");
1085 ioinst_handle_schm(cpu
, env
->regs
[1], env
->regs
[2],
1086 run
->s390_sieic
.ipb
);
1089 ioinst_handle_rsch(cpu
, env
->regs
[1]);
1092 ioinst_handle_rchp(cpu
, env
->regs
[1]);
1095 /* We do not provide this instruction, it is suppressed. */
1098 ioinst_handle_sal(cpu
, env
->regs
[1]);
1101 /* Not provided, set CC = 3 for subchannel not operational */
1104 case PRIV_B2_SCLP_CALL
:
1105 rc
= kvm_sclp_service_call(cpu
, run
, ipbh0
);
1109 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1
);
1116 static uint64_t get_base_disp_rxy(S390CPU
*cpu
, struct kvm_run
*run
,
1119 CPUS390XState
*env
= &cpu
->env
;
1120 uint32_t x2
= (run
->s390_sieic
.ipa
& 0x000f);
1121 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1122 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1123 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1125 if (disp2
& 0x80000) {
1126 disp2
+= 0xfff00000;
1132 return (base2
? env
->regs
[base2
] : 0) +
1133 (x2
? env
->regs
[x2
] : 0) + (long)(int)disp2
;
1136 static uint64_t get_base_disp_rsy(S390CPU
*cpu
, struct kvm_run
*run
,
1139 CPUS390XState
*env
= &cpu
->env
;
1140 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1141 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1142 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1144 if (disp2
& 0x80000) {
1145 disp2
+= 0xfff00000;
1151 return (base2
? env
->regs
[base2
] : 0) + (long)(int)disp2
;
1154 static int kvm_clp_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1156 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1158 return clp_service_call(cpu
, r2
);
1161 static int kvm_pcilg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1163 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1164 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1166 return pcilg_service_call(cpu
, r1
, r2
);
1169 static int kvm_pcistg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1171 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1172 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1174 return pcistg_service_call(cpu
, r1
, r2
);
1177 static int kvm_stpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1179 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1183 cpu_synchronize_state(CPU(cpu
));
1184 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1186 return stpcifc_service_call(cpu
, r1
, fiba
, ar
);
1189 static int kvm_sic_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1195 static int kvm_rpcit_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1197 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1198 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1200 return rpcit_service_call(cpu
, r1
, r2
);
1203 static int kvm_pcistb_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1205 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1206 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1210 cpu_synchronize_state(CPU(cpu
));
1211 gaddr
= get_base_disp_rsy(cpu
, run
, &ar
);
1213 return pcistb_service_call(cpu
, r1
, r3
, gaddr
, ar
);
1216 static int kvm_mpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1218 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1222 cpu_synchronize_state(CPU(cpu
));
1223 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1225 return mpcifc_service_call(cpu
, r1
, fiba
, ar
);
1228 static int handle_b9(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1234 r
= kvm_clp_service_call(cpu
, run
);
1236 case PRIV_B9_PCISTG
:
1237 r
= kvm_pcistg_service_call(cpu
, run
);
1240 r
= kvm_pcilg_service_call(cpu
, run
);
1243 r
= kvm_rpcit_service_call(cpu
, run
);
1246 /* just inject exception */
1251 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1
);
1258 static int handle_eb(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1263 case PRIV_EB_PCISTB
:
1264 r
= kvm_pcistb_service_call(cpu
, run
);
1267 r
= kvm_sic_service_call(cpu
, run
);
1270 /* just inject exception */
1275 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl
);
1282 static int handle_e3(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1287 case PRIV_E3_MPCIFC
:
1288 r
= kvm_mpcifc_service_call(cpu
, run
);
1290 case PRIV_E3_STPCIFC
:
1291 r
= kvm_stpcifc_service_call(cpu
, run
);
1295 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl
);
1302 static int handle_hypercall(S390CPU
*cpu
, struct kvm_run
*run
)
1304 CPUS390XState
*env
= &cpu
->env
;
1307 cpu_synchronize_state(CPU(cpu
));
1308 ret
= s390_virtio_hypercall(env
);
1309 if (ret
== -EINVAL
) {
1310 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1317 static void kvm_handle_diag_288(S390CPU
*cpu
, struct kvm_run
*run
)
1322 cpu_synchronize_state(CPU(cpu
));
1323 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1324 r3
= run
->s390_sieic
.ipa
& 0x000f;
1325 rc
= handle_diag_288(&cpu
->env
, r1
, r3
);
1327 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1331 static void kvm_handle_diag_308(S390CPU
*cpu
, struct kvm_run
*run
)
1335 cpu_synchronize_state(CPU(cpu
));
1336 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1337 r3
= run
->s390_sieic
.ipa
& 0x000f;
1338 handle_diag_308(&cpu
->env
, r1
, r3
);
1341 static int handle_sw_breakpoint(S390CPU
*cpu
, struct kvm_run
*run
)
1343 CPUS390XState
*env
= &cpu
->env
;
1346 cpu_synchronize_state(CPU(cpu
));
1348 pc
= env
->psw
.addr
- sw_bp_ilen
;
1349 if (kvm_find_sw_breakpoint(CPU(cpu
), pc
)) {
1357 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1359 static int handle_diag(S390CPU
*cpu
, struct kvm_run
*run
, uint32_t ipb
)
1365 * For any diagnose call we support, bits 48-63 of the resulting
1366 * address specify the function code; the remainder is ignored.
1368 func_code
= decode_basedisp_rs(&cpu
->env
, ipb
, NULL
) & DIAG_KVM_CODE_MASK
;
1369 switch (func_code
) {
1370 case DIAG_TIMEREVENT
:
1371 kvm_handle_diag_288(cpu
, run
);
1374 kvm_handle_diag_308(cpu
, run
);
1376 case DIAG_KVM_HYPERCALL
:
1377 r
= handle_hypercall(cpu
, run
);
1379 case DIAG_KVM_BREAKPOINT
:
1380 r
= handle_sw_breakpoint(cpu
, run
);
1383 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code
);
1384 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1391 typedef struct SigpInfo
{
1394 uint64_t *status_reg
;
1397 static void set_sigp_status(SigpInfo
*si
, uint64_t status
)
1399 *si
->status_reg
&= 0xffffffff00000000ULL
;
1400 *si
->status_reg
|= status
;
1401 si
->cc
= SIGP_CC_STATUS_STORED
;
1404 static void sigp_start(CPUState
*cs
, run_on_cpu_data arg
)
1406 S390CPU
*cpu
= S390_CPU(cs
);
1407 SigpInfo
*si
= arg
.host_ptr
;
1409 if (s390_cpu_get_state(cpu
) != CPU_STATE_STOPPED
) {
1410 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1414 s390_cpu_set_state(CPU_STATE_OPERATING
, cpu
);
1415 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1418 static void sigp_stop(CPUState
*cs
, run_on_cpu_data arg
)
1420 S390CPU
*cpu
= S390_CPU(cs
);
1421 SigpInfo
*si
= arg
.host_ptr
;
1422 struct kvm_s390_irq irq
= {
1423 .type
= KVM_S390_SIGP_STOP
,
1426 if (s390_cpu_get_state(cpu
) != CPU_STATE_OPERATING
) {
1427 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1431 /* disabled wait - sleeping in user space */
1433 s390_cpu_set_state(CPU_STATE_STOPPED
, cpu
);
1435 /* execute the stop function */
1436 cpu
->env
.sigp_order
= SIGP_STOP
;
1437 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1439 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1442 #define ADTL_SAVE_AREA_SIZE 1024
1443 static int kvm_s390_store_adtl_status(S390CPU
*cpu
, hwaddr addr
)
1446 hwaddr len
= ADTL_SAVE_AREA_SIZE
;
1448 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1452 if (len
!= ADTL_SAVE_AREA_SIZE
) {
1453 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1457 memcpy(mem
, &cpu
->env
.vregs
, 512);
1459 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1464 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1465 #define SAVE_AREA_SIZE 512
1466 static int kvm_s390_store_status(S390CPU
*cpu
, hwaddr addr
, bool store_arch
)
1468 static const uint8_t ar_id
= 1;
1469 uint64_t ckc
= cpu
->env
.ckc
>> 8;
1472 hwaddr len
= SAVE_AREA_SIZE
;
1474 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1478 if (len
!= SAVE_AREA_SIZE
) {
1479 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1484 cpu_physical_memory_write(offsetof(LowCore
, ar_access_id
), &ar_id
, 1);
1486 for (i
= 0; i
< 16; ++i
) {
1487 *((uint64_t *)mem
+ i
) = get_freg(&cpu
->env
, i
)->ll
;
1489 memcpy(mem
+ 128, &cpu
->env
.regs
, 128);
1490 memcpy(mem
+ 256, &cpu
->env
.psw
, 16);
1491 memcpy(mem
+ 280, &cpu
->env
.psa
, 4);
1492 memcpy(mem
+ 284, &cpu
->env
.fpc
, 4);
1493 memcpy(mem
+ 292, &cpu
->env
.todpr
, 4);
1494 memcpy(mem
+ 296, &cpu
->env
.cputm
, 8);
1495 memcpy(mem
+ 304, &ckc
, 8);
1496 memcpy(mem
+ 320, &cpu
->env
.aregs
, 64);
1497 memcpy(mem
+ 384, &cpu
->env
.cregs
, 128);
1499 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1504 static void sigp_stop_and_store_status(CPUState
*cs
, run_on_cpu_data arg
)
1506 S390CPU
*cpu
= S390_CPU(cs
);
1507 SigpInfo
*si
= arg
.host_ptr
;
1508 struct kvm_s390_irq irq
= {
1509 .type
= KVM_S390_SIGP_STOP
,
1512 /* disabled wait - sleeping in user space */
1513 if (s390_cpu_get_state(cpu
) == CPU_STATE_OPERATING
&& cs
->halted
) {
1514 s390_cpu_set_state(CPU_STATE_STOPPED
, cpu
);
1517 switch (s390_cpu_get_state(cpu
)) {
1518 case CPU_STATE_OPERATING
:
1519 cpu
->env
.sigp_order
= SIGP_STOP_STORE_STATUS
;
1520 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1521 /* store will be performed when handling the stop intercept */
1523 case CPU_STATE_STOPPED
:
1524 /* already stopped, just store the status */
1525 cpu_synchronize_state(cs
);
1526 kvm_s390_store_status(cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
, true);
1529 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1532 static void sigp_store_status_at_address(CPUState
*cs
, run_on_cpu_data arg
)
1534 S390CPU
*cpu
= S390_CPU(cs
);
1535 SigpInfo
*si
= arg
.host_ptr
;
1536 uint32_t address
= si
->param
& 0x7ffffe00u
;
1538 /* cpu has to be stopped */
1539 if (s390_cpu_get_state(cpu
) != CPU_STATE_STOPPED
) {
1540 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1544 cpu_synchronize_state(cs
);
1546 if (kvm_s390_store_status(cpu
, address
, false)) {
1547 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1550 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1553 static void sigp_store_adtl_status(CPUState
*cs
, run_on_cpu_data arg
)
1555 S390CPU
*cpu
= S390_CPU(cs
);
1556 SigpInfo
*si
= arg
.host_ptr
;
1558 if (!s390_has_feat(S390_FEAT_VECTOR
)) {
1559 set_sigp_status(si
, SIGP_STAT_INVALID_ORDER
);
1563 /* cpu has to be stopped */
1564 if (s390_cpu_get_state(cpu
) != CPU_STATE_STOPPED
) {
1565 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1569 /* parameter must be aligned to 1024-byte boundary */
1570 if (si
->param
& 0x3ff) {
1571 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1575 cpu_synchronize_state(cs
);
1577 if (kvm_s390_store_adtl_status(cpu
, si
->param
)) {
1578 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1581 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1584 static void sigp_restart(CPUState
*cs
, run_on_cpu_data arg
)
1586 S390CPU
*cpu
= S390_CPU(cs
);
1587 SigpInfo
*si
= arg
.host_ptr
;
1588 struct kvm_s390_irq irq
= {
1589 .type
= KVM_S390_RESTART
,
1592 switch (s390_cpu_get_state(cpu
)) {
1593 case CPU_STATE_STOPPED
:
1594 /* the restart irq has to be delivered prior to any other pending irq */
1595 cpu_synchronize_state(cs
);
1596 do_restart_interrupt(&cpu
->env
);
1597 s390_cpu_set_state(CPU_STATE_OPERATING
, cpu
);
1599 case CPU_STATE_OPERATING
:
1600 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1603 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1606 int kvm_s390_cpu_restart(S390CPU
*cpu
)
1610 run_on_cpu(CPU(cpu
), sigp_restart
, RUN_ON_CPU_HOST_PTR(&si
));
1611 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu
->env
);
1615 static void sigp_initial_cpu_reset(CPUState
*cs
, run_on_cpu_data arg
)
1617 S390CPU
*cpu
= S390_CPU(cs
);
1618 S390CPUClass
*scc
= S390_CPU_GET_CLASS(cpu
);
1619 SigpInfo
*si
= arg
.host_ptr
;
1621 cpu_synchronize_state(cs
);
1622 scc
->initial_cpu_reset(cs
);
1623 cpu_synchronize_post_reset(cs
);
1624 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1627 static void sigp_cpu_reset(CPUState
*cs
, run_on_cpu_data arg
)
1629 S390CPU
*cpu
= S390_CPU(cs
);
1630 S390CPUClass
*scc
= S390_CPU_GET_CLASS(cpu
);
1631 SigpInfo
*si
= arg
.host_ptr
;
1633 cpu_synchronize_state(cs
);
1635 cpu_synchronize_post_reset(cs
);
1636 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1639 static void sigp_set_prefix(CPUState
*cs
, run_on_cpu_data arg
)
1641 S390CPU
*cpu
= S390_CPU(cs
);
1642 SigpInfo
*si
= arg
.host_ptr
;
1643 uint32_t addr
= si
->param
& 0x7fffe000u
;
1645 cpu_synchronize_state(cs
);
1647 if (!address_space_access_valid(&address_space_memory
, addr
,
1648 sizeof(struct LowCore
), false)) {
1649 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1653 /* cpu has to be stopped */
1654 if (s390_cpu_get_state(cpu
) != CPU_STATE_STOPPED
) {
1655 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1659 cpu
->env
.psa
= addr
;
1660 cpu_synchronize_post_init(cs
);
1661 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1664 static int handle_sigp_single_dst(S390CPU
*dst_cpu
, uint8_t order
,
1665 uint64_t param
, uint64_t *status_reg
)
1669 .status_reg
= status_reg
,
1672 /* cpu available? */
1673 if (dst_cpu
== NULL
) {
1674 return SIGP_CC_NOT_OPERATIONAL
;
1677 /* only resets can break pending orders */
1678 if (dst_cpu
->env
.sigp_order
!= 0 &&
1679 order
!= SIGP_CPU_RESET
&&
1680 order
!= SIGP_INITIAL_CPU_RESET
) {
1681 return SIGP_CC_BUSY
;
1686 run_on_cpu(CPU(dst_cpu
), sigp_start
, RUN_ON_CPU_HOST_PTR(&si
));
1689 run_on_cpu(CPU(dst_cpu
), sigp_stop
, RUN_ON_CPU_HOST_PTR(&si
));
1692 run_on_cpu(CPU(dst_cpu
), sigp_restart
, RUN_ON_CPU_HOST_PTR(&si
));
1694 case SIGP_STOP_STORE_STATUS
:
1695 run_on_cpu(CPU(dst_cpu
), sigp_stop_and_store_status
, RUN_ON_CPU_HOST_PTR(&si
));
1697 case SIGP_STORE_STATUS_ADDR
:
1698 run_on_cpu(CPU(dst_cpu
), sigp_store_status_at_address
, RUN_ON_CPU_HOST_PTR(&si
));
1700 case SIGP_STORE_ADTL_STATUS
:
1701 run_on_cpu(CPU(dst_cpu
), sigp_store_adtl_status
, RUN_ON_CPU_HOST_PTR(&si
));
1703 case SIGP_SET_PREFIX
:
1704 run_on_cpu(CPU(dst_cpu
), sigp_set_prefix
, RUN_ON_CPU_HOST_PTR(&si
));
1706 case SIGP_INITIAL_CPU_RESET
:
1707 run_on_cpu(CPU(dst_cpu
), sigp_initial_cpu_reset
, RUN_ON_CPU_HOST_PTR(&si
));
1709 case SIGP_CPU_RESET
:
1710 run_on_cpu(CPU(dst_cpu
), sigp_cpu_reset
, RUN_ON_CPU_HOST_PTR(&si
));
1713 DPRINTF("KVM: unknown SIGP: 0x%x\n", order
);
1714 set_sigp_status(&si
, SIGP_STAT_INVALID_ORDER
);
1720 static int sigp_set_architecture(S390CPU
*cpu
, uint32_t param
,
1721 uint64_t *status_reg
)
1726 /* due to the BQL, we are the only active cpu */
1727 CPU_FOREACH(cur_cs
) {
1728 cur_cpu
= S390_CPU(cur_cs
);
1729 if (cur_cpu
->env
.sigp_order
!= 0) {
1730 return SIGP_CC_BUSY
;
1732 cpu_synchronize_state(cur_cs
);
1733 /* all but the current one have to be stopped */
1734 if (cur_cpu
!= cpu
&&
1735 s390_cpu_get_state(cur_cpu
) != CPU_STATE_STOPPED
) {
1736 *status_reg
&= 0xffffffff00000000ULL
;
1737 *status_reg
|= SIGP_STAT_INCORRECT_STATE
;
1738 return SIGP_CC_STATUS_STORED
;
1742 switch (param
& 0xff) {
1743 case SIGP_MODE_ESA_S390
:
1745 return SIGP_CC_NOT_OPERATIONAL
;
1746 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW
:
1747 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW
:
1748 CPU_FOREACH(cur_cs
) {
1749 cur_cpu
= S390_CPU(cur_cs
);
1750 cur_cpu
->env
.pfault_token
= -1UL;
1754 *status_reg
&= 0xffffffff00000000ULL
;
1755 *status_reg
|= SIGP_STAT_INVALID_PARAMETER
;
1756 return SIGP_CC_STATUS_STORED
;
1759 return SIGP_CC_ORDER_CODE_ACCEPTED
;
1762 #define SIGP_ORDER_MASK 0x000000ff
1764 static int handle_sigp(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1766 CPUS390XState
*env
= &cpu
->env
;
1767 const uint8_t r1
= ipa1
>> 4;
1768 const uint8_t r3
= ipa1
& 0x0f;
1771 uint64_t *status_reg
;
1773 S390CPU
*dst_cpu
= NULL
;
1775 cpu_synchronize_state(CPU(cpu
));
1777 /* get order code */
1778 order
= decode_basedisp_rs(env
, run
->s390_sieic
.ipb
, NULL
)
1780 status_reg
= &env
->regs
[r1
];
1781 param
= (r1
% 2) ? env
->regs
[r1
] : env
->regs
[r1
+ 1];
1783 if (qemu_mutex_trylock(&qemu_sigp_mutex
)) {
1790 ret
= sigp_set_architecture(cpu
, param
, status_reg
);
1793 /* all other sigp orders target a single vcpu */
1794 dst_cpu
= s390_cpu_addr2state(env
->regs
[r3
]);
1795 ret
= handle_sigp_single_dst(dst_cpu
, order
, param
, status_reg
);
1797 qemu_mutex_unlock(&qemu_sigp_mutex
);
1800 trace_kvm_sigp_finished(order
, CPU(cpu
)->cpu_index
,
1801 dst_cpu
? CPU(dst_cpu
)->cpu_index
: -1, ret
);
1811 static int handle_instruction(S390CPU
*cpu
, struct kvm_run
*run
)
1813 unsigned int ipa0
= (run
->s390_sieic
.ipa
& 0xff00);
1814 uint8_t ipa1
= run
->s390_sieic
.ipa
& 0x00ff;
1817 DPRINTF("handle_instruction 0x%x 0x%x\n",
1818 run
->s390_sieic
.ipa
, run
->s390_sieic
.ipb
);
1821 r
= handle_b2(cpu
, run
, ipa1
);
1824 r
= handle_b9(cpu
, run
, ipa1
);
1827 r
= handle_eb(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1830 r
= handle_e3(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1833 r
= handle_diag(cpu
, run
, run
->s390_sieic
.ipb
);
1836 r
= handle_sigp(cpu
, run
, ipa1
);
1842 enter_pgmcheck(cpu
, 0x0001);
1848 static bool is_special_wait_psw(CPUState
*cs
)
1850 /* signal quiesce */
1851 return cs
->kvm_run
->psw_addr
== 0xfffUL
;
1854 static void unmanageable_intercept(S390CPU
*cpu
, const char *str
, int pswoffset
)
1856 CPUState
*cs
= CPU(cpu
);
1858 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1859 str
, cs
->cpu_index
, ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
),
1860 ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
+ 8));
1862 qemu_system_guest_panicked();
1865 static int handle_intercept(S390CPU
*cpu
)
1867 CPUState
*cs
= CPU(cpu
);
1868 struct kvm_run
*run
= cs
->kvm_run
;
1869 int icpt_code
= run
->s390_sieic
.icptcode
;
1872 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code
,
1873 (long)cs
->kvm_run
->psw_addr
);
1874 switch (icpt_code
) {
1875 case ICPT_INSTRUCTION
:
1876 r
= handle_instruction(cpu
, run
);
1879 unmanageable_intercept(cpu
, "program interrupt",
1880 offsetof(LowCore
, program_new_psw
));
1884 unmanageable_intercept(cpu
, "external interrupt",
1885 offsetof(LowCore
, external_new_psw
));
1889 /* disabled wait, since enabled wait is handled in kernel */
1890 cpu_synchronize_state(cs
);
1891 if (s390_cpu_halt(cpu
) == 0) {
1892 if (is_special_wait_psw(cs
)) {
1893 qemu_system_shutdown_request();
1895 qemu_system_guest_panicked();
1901 if (s390_cpu_set_state(CPU_STATE_STOPPED
, cpu
) == 0) {
1902 qemu_system_shutdown_request();
1904 if (cpu
->env
.sigp_order
== SIGP_STOP_STORE_STATUS
) {
1905 kvm_s390_store_status(cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
,
1908 cpu
->env
.sigp_order
= 0;
1912 /* currently only instr 0x0000 after enabled via capability */
1913 r
= handle_sw_breakpoint(cpu
, run
);
1915 enter_pgmcheck(cpu
, PGM_OPERATION
);
1919 case ICPT_SOFT_INTERCEPT
:
1920 fprintf(stderr
, "KVM unimplemented icpt SOFT\n");
1924 fprintf(stderr
, "KVM unimplemented icpt IO\n");
1928 fprintf(stderr
, "Unknown intercept code: %d\n", icpt_code
);
1936 static int handle_tsch(S390CPU
*cpu
)
1938 CPUState
*cs
= CPU(cpu
);
1939 struct kvm_run
*run
= cs
->kvm_run
;
1942 cpu_synchronize_state(cs
);
1944 ret
= ioinst_handle_tsch(cpu
, cpu
->env
.regs
[1], run
->s390_tsch
.ipb
);
1948 * If an I/O interrupt had been dequeued, we have to reinject it.
1950 if (run
->s390_tsch
.dequeued
) {
1951 kvm_s390_io_interrupt(run
->s390_tsch
.subchannel_id
,
1952 run
->s390_tsch
.subchannel_nr
,
1953 run
->s390_tsch
.io_int_parm
,
1954 run
->s390_tsch
.io_int_word
);
1961 static void insert_stsi_3_2_2(S390CPU
*cpu
, __u64 addr
, uint8_t ar
)
1963 struct sysib_322 sysib
;
1966 if (s390_cpu_virt_mem_read(cpu
, addr
, ar
, &sysib
, sizeof(sysib
))) {
1969 /* Shift the stack of Extended Names to prepare for our own data */
1970 memmove(&sysib
.ext_names
[1], &sysib
.ext_names
[0],
1971 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- 1));
1972 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1973 * assumed it's not capable of managing Extended Names for lower levels.
1975 for (del
= 1; del
< sysib
.count
; del
++) {
1976 if (!sysib
.vm
[del
].ext_name_encoding
|| !sysib
.ext_names
[del
][0]) {
1980 if (del
< sysib
.count
) {
1981 memset(sysib
.ext_names
[del
], 0,
1982 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- del
));
1984 /* Insert short machine name in EBCDIC, padded with blanks */
1986 memset(sysib
.vm
[0].name
, 0x40, sizeof(sysib
.vm
[0].name
));
1987 ebcdic_put(sysib
.vm
[0].name
, qemu_name
, MIN(sizeof(sysib
.vm
[0].name
),
1988 strlen(qemu_name
)));
1990 sysib
.vm
[0].ext_name_encoding
= 2; /* 2 = UTF-8 */
1991 memset(sysib
.ext_names
[0], 0, sizeof(sysib
.ext_names
[0]));
1992 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1993 * considered by s390 as not capable of providing any Extended Name.
1994 * Therefore if no name was specified on qemu invocation, we go with the
1995 * same "KVMguest" default, which KVM has filled into short name field.
1998 strncpy((char *)sysib
.ext_names
[0], qemu_name
,
1999 sizeof(sysib
.ext_names
[0]));
2001 strcpy((char *)sysib
.ext_names
[0], "KVMguest");
2004 memcpy(sysib
.vm
[0].uuid
, &qemu_uuid
, sizeof(sysib
.vm
[0].uuid
));
2006 s390_cpu_virt_mem_write(cpu
, addr
, ar
, &sysib
, sizeof(sysib
));
2009 static int handle_stsi(S390CPU
*cpu
)
2011 CPUState
*cs
= CPU(cpu
);
2012 struct kvm_run
*run
= cs
->kvm_run
;
2014 switch (run
->s390_stsi
.fc
) {
2016 if (run
->s390_stsi
.sel1
!= 2 || run
->s390_stsi
.sel2
!= 2) {
2019 /* Only sysib 3.2.2 needs post-handling for now. */
2020 insert_stsi_3_2_2(cpu
, run
->s390_stsi
.addr
, run
->s390_stsi
.ar
);
2027 static int kvm_arch_handle_debug_exit(S390CPU
*cpu
)
2029 CPUState
*cs
= CPU(cpu
);
2030 struct kvm_run
*run
= cs
->kvm_run
;
2033 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
2035 switch (arch_info
->type
) {
2036 case KVM_HW_WP_WRITE
:
2037 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
2038 cs
->watchpoint_hit
= &hw_watchpoint
;
2039 hw_watchpoint
.vaddr
= arch_info
->addr
;
2040 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2045 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
2049 case KVM_SINGLESTEP
:
2050 if (cs
->singlestep_enabled
) {
2061 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
2063 S390CPU
*cpu
= S390_CPU(cs
);
2066 qemu_mutex_lock_iothread();
2068 switch (run
->exit_reason
) {
2069 case KVM_EXIT_S390_SIEIC
:
2070 ret
= handle_intercept(cpu
);
2072 case KVM_EXIT_S390_RESET
:
2073 s390_reipl_request();
2075 case KVM_EXIT_S390_TSCH
:
2076 ret
= handle_tsch(cpu
);
2078 case KVM_EXIT_S390_STSI
:
2079 ret
= handle_stsi(cpu
);
2081 case KVM_EXIT_DEBUG
:
2082 ret
= kvm_arch_handle_debug_exit(cpu
);
2085 fprintf(stderr
, "Unknown KVM exit: %d\n", run
->exit_reason
);
2088 qemu_mutex_unlock_iothread();
2091 ret
= EXCP_INTERRUPT
;
2096 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
2101 int kvm_arch_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2106 int kvm_arch_on_sigbus(int code
, void *addr
)
2111 void kvm_s390_io_interrupt(uint16_t subchannel_id
,
2112 uint16_t subchannel_nr
, uint32_t io_int_parm
,
2113 uint32_t io_int_word
)
2115 struct kvm_s390_irq irq
= {
2116 .u
.io
.subchannel_id
= subchannel_id
,
2117 .u
.io
.subchannel_nr
= subchannel_nr
,
2118 .u
.io
.io_int_parm
= io_int_parm
,
2119 .u
.io
.io_int_word
= io_int_word
,
2122 if (io_int_word
& IO_INT_WORD_AI
) {
2123 irq
.type
= KVM_S390_INT_IO(1, 0, 0, 0);
2125 irq
.type
= KVM_S390_INT_IO(0, (subchannel_id
& 0xff00) >> 8,
2126 (subchannel_id
& 0x0006),
2129 kvm_s390_floating_interrupt(&irq
);
2132 static uint64_t build_channel_report_mcic(void)
2136 /* subclass: indicate channel report pending */
2138 /* subclass modifiers: none */
2139 /* storage errors: none */
2140 /* validity bits: no damage */
2141 MCIC_VB_WP
| MCIC_VB_MS
| MCIC_VB_PM
| MCIC_VB_IA
| MCIC_VB_FP
|
2142 MCIC_VB_GR
| MCIC_VB_CR
| MCIC_VB_ST
| MCIC_VB_AR
| MCIC_VB_PR
|
2143 MCIC_VB_FC
| MCIC_VB_CT
| MCIC_VB_CC
;
2144 if (s390_has_feat(S390_FEAT_VECTOR
)) {
2150 void kvm_s390_crw_mchk(void)
2152 struct kvm_s390_irq irq
= {
2153 .type
= KVM_S390_MCHK
,
2154 .u
.mchk
.cr14
= 1 << 28,
2155 .u
.mchk
.mcic
= build_channel_report_mcic(),
2157 kvm_s390_floating_interrupt(&irq
);
2160 void kvm_s390_enable_css_support(S390CPU
*cpu
)
2164 /* Activate host kernel channel subsystem support. */
2165 r
= kvm_vcpu_enable_cap(CPU(cpu
), KVM_CAP_S390_CSS_SUPPORT
, 0);
2169 void kvm_arch_init_irq_routing(KVMState
*s
)
2172 * Note that while irqchip capabilities generally imply that cpustates
2173 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2174 * have to override the common code kvm_halt_in_kernel_allowed setting.
2176 if (kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2177 kvm_gsi_routing_allowed
= true;
2178 kvm_halt_in_kernel_allowed
= false;
2182 int kvm_s390_assign_subch_ioeventfd(EventNotifier
*notifier
, uint32_t sch
,
2183 int vq
, bool assign
)
2185 struct kvm_ioeventfd kick
= {
2186 .flags
= KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY
|
2187 KVM_IOEVENTFD_FLAG_DATAMATCH
,
2188 .fd
= event_notifier_get_fd(notifier
),
2193 if (!kvm_check_extension(kvm_state
, KVM_CAP_IOEVENTFD
)) {
2197 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
2199 return kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
2202 int kvm_s390_get_memslot_count(KVMState
*s
)
2204 return kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2207 int kvm_s390_get_ri(void)
2212 int kvm_s390_set_cpu_state(S390CPU
*cpu
, uint8_t cpu_state
)
2214 struct kvm_mp_state mp_state
= {};
2217 /* the kvm part might not have been initialized yet */
2218 if (CPU(cpu
)->kvm_state
== NULL
) {
2222 switch (cpu_state
) {
2223 case CPU_STATE_STOPPED
:
2224 mp_state
.mp_state
= KVM_MP_STATE_STOPPED
;
2226 case CPU_STATE_CHECK_STOP
:
2227 mp_state
.mp_state
= KVM_MP_STATE_CHECK_STOP
;
2229 case CPU_STATE_OPERATING
:
2230 mp_state
.mp_state
= KVM_MP_STATE_OPERATING
;
2232 case CPU_STATE_LOAD
:
2233 mp_state
.mp_state
= KVM_MP_STATE_LOAD
;
2236 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2241 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2243 trace_kvm_failed_cpu_state_set(CPU(cpu
)->cpu_index
, cpu_state
,
2250 void kvm_s390_vcpu_interrupt_pre_save(S390CPU
*cpu
)
2252 struct kvm_s390_irq_state irq_state
;
2253 CPUState
*cs
= CPU(cpu
);
2256 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2260 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2261 irq_state
.len
= VCPU_IRQ_BUF_SIZE
;
2263 bytes
= kvm_vcpu_ioctl(cs
, KVM_S390_GET_IRQ_STATE
, &irq_state
);
2265 cpu
->irqstate_saved_size
= 0;
2266 error_report("Migration of interrupt state failed");
2270 cpu
->irqstate_saved_size
= bytes
;
2273 int kvm_s390_vcpu_interrupt_post_load(S390CPU
*cpu
)
2275 CPUState
*cs
= CPU(cpu
);
2276 struct kvm_s390_irq_state irq_state
;
2279 if (cpu
->irqstate_saved_size
== 0) {
2283 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2287 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2288 irq_state
.len
= cpu
->irqstate_saved_size
;
2290 r
= kvm_vcpu_ioctl(cs
, KVM_S390_SET_IRQ_STATE
, &irq_state
);
2292 error_report("Setting interrupt state failed %d", r
);
2297 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2298 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
2300 S390PCIBusDevice
*pbdev
;
2301 uint32_t idx
= data
>> ZPCI_MSI_VEC_BITS
;
2302 uint32_t vec
= data
& ZPCI_MSI_VEC_MASK
;
2304 pbdev
= s390_pci_find_dev_by_idx(idx
);
2306 DPRINTF("add_msi_route no dev\n");
2310 pbdev
->routes
.adapter
.ind_offset
= vec
;
2312 route
->type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
2314 route
->u
.adapter
.summary_addr
= pbdev
->routes
.adapter
.summary_addr
;
2315 route
->u
.adapter
.ind_addr
= pbdev
->routes
.adapter
.ind_addr
;
2316 route
->u
.adapter
.summary_offset
= pbdev
->routes
.adapter
.summary_offset
;
2317 route
->u
.adapter
.ind_offset
= pbdev
->routes
.adapter
.ind_offset
;
2318 route
->u
.adapter
.adapter_id
= pbdev
->routes
.adapter
.adapter_id
;
2322 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
2323 int vector
, PCIDevice
*dev
)
2328 int kvm_arch_release_virq_post(int virq
)
2333 int kvm_arch_msi_data_to_gsi(uint32_t data
)
2338 static inline int test_bit_inv(long nr
, const unsigned long *addr
)
2340 return test_bit(BE_BIT_NR(nr
), addr
);
2343 static inline void set_bit_inv(long nr
, unsigned long *addr
)
2345 set_bit(BE_BIT_NR(nr
), addr
);
2348 static int query_cpu_subfunc(S390FeatBitmap features
)
2350 struct kvm_s390_vm_cpu_subfunc prop
;
2351 struct kvm_device_attr attr
= {
2352 .group
= KVM_S390_VM_CPU_MODEL
,
2353 .attr
= KVM_S390_VM_CPU_MACHINE_SUBFUNC
,
2354 .addr
= (uint64_t) &prop
,
2358 rc
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
2364 * We're going to add all subfunctions now, if the corresponding feature
2365 * is available that unlocks the query functions.
2367 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PLO
, prop
.plo
);
2368 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING
, features
)) {
2369 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PTFF
, prop
.ptff
);
2371 if (test_bit(S390_FEAT_MSA
, features
)) {
2372 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMAC
, prop
.kmac
);
2373 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMC
, prop
.kmc
);
2374 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KM
, prop
.km
);
2375 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KIMD
, prop
.kimd
);
2376 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KLMD
, prop
.klmd
);
2378 if (test_bit(S390_FEAT_MSA_EXT_3
, features
)) {
2379 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PCKMO
, prop
.pckmo
);
2381 if (test_bit(S390_FEAT_MSA_EXT_4
, features
)) {
2382 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMCTR
, prop
.kmctr
);
2383 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMF
, prop
.kmf
);
2384 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMO
, prop
.kmo
);
2385 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PCC
, prop
.pcc
);
2387 if (test_bit(S390_FEAT_MSA_EXT_5
, features
)) {
2388 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PPNO
, prop
.ppno
);
2393 static int configure_cpu_subfunc(const S390FeatBitmap features
)
2395 struct kvm_s390_vm_cpu_subfunc prop
= {};
2396 struct kvm_device_attr attr
= {
2397 .group
= KVM_S390_VM_CPU_MODEL
,
2398 .attr
= KVM_S390_VM_CPU_PROCESSOR_SUBFUNC
,
2399 .addr
= (uint64_t) &prop
,
2402 if (!kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2403 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC
)) {
2404 /* hardware support might be missing, IBC will handle most of this */
2408 s390_fill_feat_block(features
, S390_FEAT_TYPE_PLO
, prop
.plo
);
2409 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING
, features
)) {
2410 s390_fill_feat_block(features
, S390_FEAT_TYPE_PTFF
, prop
.ptff
);
2411 prop
.ptff
[0] |= 0x80; /* query is always available */
2413 if (test_bit(S390_FEAT_MSA
, features
)) {
2414 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMAC
, prop
.kmac
);
2415 prop
.kmac
[0] |= 0x80; /* query is always available */
2416 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMC
, prop
.kmc
);
2417 prop
.kmc
[0] |= 0x80; /* query is always available */
2418 s390_fill_feat_block(features
, S390_FEAT_TYPE_KM
, prop
.km
);
2419 prop
.km
[0] |= 0x80; /* query is always available */
2420 s390_fill_feat_block(features
, S390_FEAT_TYPE_KIMD
, prop
.kimd
);
2421 prop
.kimd
[0] |= 0x80; /* query is always available */
2422 s390_fill_feat_block(features
, S390_FEAT_TYPE_KLMD
, prop
.klmd
);
2423 prop
.klmd
[0] |= 0x80; /* query is always available */
2425 if (test_bit(S390_FEAT_MSA_EXT_3
, features
)) {
2426 s390_fill_feat_block(features
, S390_FEAT_TYPE_PCKMO
, prop
.pckmo
);
2427 prop
.pckmo
[0] |= 0x80; /* query is always available */
2429 if (test_bit(S390_FEAT_MSA_EXT_4
, features
)) {
2430 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMCTR
, prop
.kmctr
);
2431 prop
.kmctr
[0] |= 0x80; /* query is always available */
2432 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMF
, prop
.kmf
);
2433 prop
.kmf
[0] |= 0x80; /* query is always available */
2434 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMO
, prop
.kmo
);
2435 prop
.kmo
[0] |= 0x80; /* query is always available */
2436 s390_fill_feat_block(features
, S390_FEAT_TYPE_PCC
, prop
.pcc
);
2437 prop
.pcc
[0] |= 0x80; /* query is always available */
2439 if (test_bit(S390_FEAT_MSA_EXT_5
, features
)) {
2440 s390_fill_feat_block(features
, S390_FEAT_TYPE_PPNO
, prop
.ppno
);
2441 prop
.ppno
[0] |= 0x80; /* query is always available */
2443 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
2446 static int kvm_to_feat
[][2] = {
2447 { KVM_S390_VM_CPU_FEAT_ESOP
, S390_FEAT_ESOP
},
2448 { KVM_S390_VM_CPU_FEAT_SIEF2
, S390_FEAT_SIE_F2
},
2449 { KVM_S390_VM_CPU_FEAT_64BSCAO
, S390_FEAT_SIE_64BSCAO
},
2450 { KVM_S390_VM_CPU_FEAT_SIIF
, S390_FEAT_SIE_SIIF
},
2451 { KVM_S390_VM_CPU_FEAT_GPERE
, S390_FEAT_SIE_GPERE
},
2452 { KVM_S390_VM_CPU_FEAT_GSLS
, S390_FEAT_SIE_GSLS
},
2453 { KVM_S390_VM_CPU_FEAT_IB
, S390_FEAT_SIE_IB
},
2454 { KVM_S390_VM_CPU_FEAT_CEI
, S390_FEAT_SIE_CEI
},
2455 { KVM_S390_VM_CPU_FEAT_IBS
, S390_FEAT_SIE_IBS
},
2456 { KVM_S390_VM_CPU_FEAT_SKEY
, S390_FEAT_SIE_SKEY
},
2457 { KVM_S390_VM_CPU_FEAT_CMMA
, S390_FEAT_SIE_CMMA
},
2458 { KVM_S390_VM_CPU_FEAT_PFMFI
, S390_FEAT_SIE_PFMFI
},
2459 { KVM_S390_VM_CPU_FEAT_SIGPIF
, S390_FEAT_SIE_SIGPIF
},
2462 static int query_cpu_feat(S390FeatBitmap features
)
2464 struct kvm_s390_vm_cpu_feat prop
;
2465 struct kvm_device_attr attr
= {
2466 .group
= KVM_S390_VM_CPU_MODEL
,
2467 .attr
= KVM_S390_VM_CPU_MACHINE_FEAT
,
2468 .addr
= (uint64_t) &prop
,
2473 rc
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
2478 for (i
= 0; i
< ARRAY_SIZE(kvm_to_feat
); i
++) {
2479 if (test_bit_inv(kvm_to_feat
[i
][0], (unsigned long *)prop
.feat
)) {
2480 set_bit(kvm_to_feat
[i
][1], features
);
2486 static int configure_cpu_feat(const S390FeatBitmap features
)
2488 struct kvm_s390_vm_cpu_feat prop
= {};
2489 struct kvm_device_attr attr
= {
2490 .group
= KVM_S390_VM_CPU_MODEL
,
2491 .attr
= KVM_S390_VM_CPU_PROCESSOR_FEAT
,
2492 .addr
= (uint64_t) &prop
,
2496 for (i
= 0; i
< ARRAY_SIZE(kvm_to_feat
); i
++) {
2497 if (test_bit(kvm_to_feat
[i
][1], features
)) {
2498 set_bit_inv(kvm_to_feat
[i
][0], (unsigned long *)prop
.feat
);
2501 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
2504 bool kvm_s390_cpu_models_supported(void)
2506 if (!cpu_model_allowed()) {
2507 /* compatibility machines interfere with the cpu model */
2510 return kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2511 KVM_S390_VM_CPU_MACHINE
) &&
2512 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2513 KVM_S390_VM_CPU_PROCESSOR
) &&
2514 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2515 KVM_S390_VM_CPU_MACHINE_FEAT
) &&
2516 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2517 KVM_S390_VM_CPU_PROCESSOR_FEAT
) &&
2518 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2519 KVM_S390_VM_CPU_MACHINE_SUBFUNC
);
2522 void kvm_s390_get_host_cpu_model(S390CPUModel
*model
, Error
**errp
)
2524 struct kvm_s390_vm_cpu_machine prop
= {};
2525 struct kvm_device_attr attr
= {
2526 .group
= KVM_S390_VM_CPU_MODEL
,
2527 .attr
= KVM_S390_VM_CPU_MACHINE
,
2528 .addr
= (uint64_t) &prop
,
2530 uint16_t unblocked_ibc
= 0, cpu_type
= 0;
2533 memset(model
, 0, sizeof(*model
));
2535 if (!kvm_s390_cpu_models_supported()) {
2536 error_setg(errp
, "KVM doesn't support CPU models");
2540 /* query the basic cpu model properties */
2541 rc
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
2543 error_setg(errp
, "KVM: Error querying host CPU model: %d", rc
);
2547 cpu_type
= cpuid_type(prop
.cpuid
);
2548 if (has_ibc(prop
.ibc
)) {
2549 model
->lowest_ibc
= lowest_ibc(prop
.ibc
);
2550 unblocked_ibc
= unblocked_ibc(prop
.ibc
);
2552 model
->cpu_id
= cpuid_id(prop
.cpuid
);
2553 model
->cpu_ver
= 0xff;
2555 /* get supported cpu features indicated via STFL(E) */
2556 s390_add_from_feat_block(model
->features
, S390_FEAT_TYPE_STFL
,
2557 (uint8_t *) prop
.fac_mask
);
2558 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2559 if (test_bit(S390_FEAT_STFLE
, model
->features
)) {
2560 set_bit(S390_FEAT_DAT_ENH_2
, model
->features
);
2562 /* get supported cpu features indicated e.g. via SCLP */
2563 rc
= query_cpu_feat(model
->features
);
2565 error_setg(errp
, "KVM: Error querying CPU features: %d", rc
);
2568 /* get supported cpu subfunctions indicated via query / test bit */
2569 rc
= query_cpu_subfunc(model
->features
);
2571 error_setg(errp
, "KVM: Error querying CPU subfunctions: %d", rc
);
2575 /* with cpu model support, CMM is only indicated if really available */
2576 if (kvm_s390_cmma_available()) {
2577 set_bit(S390_FEAT_CMM
, model
->features
);
2580 if (s390_known_cpu_type(cpu_type
)) {
2581 /* we want the exact model, even if some features are missing */
2582 model
->def
= s390_find_cpu_def(cpu_type
, ibc_gen(unblocked_ibc
),
2583 ibc_ec_ga(unblocked_ibc
), NULL
);
2585 /* model unknown, e.g. too new - search using features */
2586 model
->def
= s390_find_cpu_def(0, ibc_gen(unblocked_ibc
),
2587 ibc_ec_ga(unblocked_ibc
),
2591 error_setg(errp
, "KVM: host CPU model could not be identified");
2594 /* strip of features that are not part of the maximum model */
2595 bitmap_and(model
->features
, model
->features
, model
->def
->full_feat
,
2599 void kvm_s390_apply_cpu_model(const S390CPUModel
*model
, Error
**errp
)
2601 struct kvm_s390_vm_cpu_processor prop
= {
2604 struct kvm_device_attr attr
= {
2605 .group
= KVM_S390_VM_CPU_MODEL
,
2606 .attr
= KVM_S390_VM_CPU_PROCESSOR
,
2607 .addr
= (uint64_t) &prop
,
2612 /* compatibility handling if cpu models are disabled */
2613 if (kvm_s390_cmma_available() && !mem_path
) {
2614 kvm_s390_enable_cmma();
2618 if (!kvm_s390_cpu_models_supported()) {
2619 error_setg(errp
, "KVM doesn't support CPU models");
2622 prop
.cpuid
= s390_cpuid_from_cpu_model(model
);
2623 prop
.ibc
= s390_ibc_from_cpu_model(model
);
2624 /* configure cpu features indicated via STFL(e) */
2625 s390_fill_feat_block(model
->features
, S390_FEAT_TYPE_STFL
,
2626 (uint8_t *) prop
.fac_list
);
2627 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
2629 error_setg(errp
, "KVM: Error configuring the CPU model: %d", rc
);
2632 /* configure cpu features indicated e.g. via SCLP */
2633 rc
= configure_cpu_feat(model
->features
);
2635 error_setg(errp
, "KVM: Error configuring CPU features: %d", rc
);
2638 /* configure cpu subfunctions indicated via query / test bit */
2639 rc
= configure_cpu_subfunc(model
->features
);
2641 error_setg(errp
, "KVM: Error configuring CPU subfunctions: %d", rc
);
2644 /* enable CMM via CMMA - disable on hugetlbfs */
2645 if (test_bit(S390_FEAT_CMM
, model
->features
)) {
2647 error_report("Warning: CMM will not be enabled because it is not "
2648 "compatible to hugetlbfs.");
2650 kvm_s390_enable_cmma();