4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
49 GDB_SIGNAL_UNKNOWN
= 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table
[] = {
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
227 static int gdb_signal_table
[] = {
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig
)
241 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
242 if (gdb_signal_table
[i
] == sig
)
244 return GDB_SIGNAL_UNKNOWN
;
248 static int gdb_signal_to_target (int sig
)
250 if (sig
< ARRAY_SIZE (gdb_signal_table
))
251 return gdb_signal_table
[sig
];
258 typedef struct GDBRegisterState
{
264 struct GDBRegisterState
*next
;
275 typedef struct GDBState
{
276 CPUState
*c_cpu
; /* current CPU for step/continue ops */
277 CPUState
*g_cpu
; /* current CPU for other ops */
278 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
279 enum RSState state
; /* parsing state */
280 char line_buf
[MAX_PACKET_LENGTH
];
283 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
286 #ifdef CONFIG_USER_ONLY
290 CharDriverState
*chr
;
291 CharDriverState
*mon_chr
;
295 /* By default use no IRQs and no timers while single stepping so as to
296 * make single stepping like an ICE HW step.
298 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
300 static GDBState
*gdbserver_state
;
302 /* This is an ugly hack to cope with both new and old gdb.
303 If gdb sends qXfer:features:read then assume we're talking to a newish
304 gdb that understands target descriptions. */
305 static int gdb_has_xml
;
307 #ifdef CONFIG_USER_ONLY
308 /* XXX: This is not thread safe. Do we care? */
309 static int gdbserver_fd
= -1;
311 static int get_char(GDBState
*s
)
317 ret
= recv(s
->fd
, &ch
, 1, 0);
319 if (errno
== ECONNRESET
)
321 if (errno
!= EINTR
&& errno
!= EAGAIN
)
323 } else if (ret
== 0) {
335 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
343 /* If gdb is connected when the first semihosting syscall occurs then use
344 remote gdb syscalls. Otherwise use native file IO. */
345 int use_gdb_syscalls(void)
347 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
348 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
351 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
354 /* Resume execution. */
355 static inline void gdb_continue(GDBState
*s
)
357 #ifdef CONFIG_USER_ONLY
358 s
->running_state
= 1;
364 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
366 #ifdef CONFIG_USER_ONLY
370 ret
= send(s
->fd
, buf
, len
, 0);
372 if (errno
!= EINTR
&& errno
!= EAGAIN
)
380 qemu_chr_write(s
->chr
, buf
, len
);
384 static inline int fromhex(int v
)
386 if (v
>= '0' && v
<= '9')
388 else if (v
>= 'A' && v
<= 'F')
390 else if (v
>= 'a' && v
<= 'f')
396 static inline int tohex(int v
)
404 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
409 for(i
= 0; i
< len
; i
++) {
411 *q
++ = tohex(c
>> 4);
412 *q
++ = tohex(c
& 0xf);
417 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
421 for(i
= 0; i
< len
; i
++) {
422 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
427 /* return -1 if error, 0 if OK */
428 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
439 for(i
= 0; i
< len
; i
++) {
443 *(p
++) = tohex((csum
>> 4) & 0xf);
444 *(p
++) = tohex((csum
) & 0xf);
446 s
->last_packet_len
= p
- s
->last_packet
;
447 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
449 #ifdef CONFIG_USER_ONLY
462 /* return -1 if error, 0 if OK */
463 static int put_packet(GDBState
*s
, const char *buf
)
466 printf("reply='%s'\n", buf
);
469 return put_packet_binary(s
, buf
, strlen(buf
));
472 /* The GDB remote protocol transfers values in target byte order. This means
473 we can use the raw memory access routines to access the value buffer.
474 Conveniently, these also handle the case where the buffer is mis-aligned.
476 #define GET_REG8(val) do { \
477 stb_p(mem_buf, val); \
480 #define GET_REG16(val) do { \
481 stw_p(mem_buf, val); \
484 #define GET_REG32(val) do { \
485 stl_p(mem_buf, val); \
488 #define GET_REG64(val) do { \
489 stq_p(mem_buf, val); \
493 #if TARGET_LONG_BITS == 64
494 #define GET_REGL(val) GET_REG64(val)
495 #define ldtul_p(addr) ldq_p(addr)
497 #define GET_REGL(val) GET_REG32(val)
498 #define ldtul_p(addr) ldl_p(addr)
501 #if defined(TARGET_I386)
504 static const int gpr_map
[16] = {
505 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
506 8, 9, 10, 11, 12, 13, 14, 15
509 #define gpr_map gpr_map32
511 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 #define IDX_IP_REG CPU_NB_REGS
516 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
517 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
518 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
519 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
520 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
522 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
524 if (n
< CPU_NB_REGS
) {
525 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
526 GET_REG64(env
->regs
[gpr_map
[n
]]);
527 } else if (n
< CPU_NB_REGS32
) {
528 GET_REG32(env
->regs
[gpr_map32
[n
]]);
530 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
531 #ifdef USE_X86LDOUBLE
532 /* FIXME: byteswap float values - after fixing fpregs layout. */
533 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
535 memset(mem_buf
, 0, 10);
538 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
540 if (n
< CPU_NB_REGS32
||
541 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
542 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
543 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
549 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
554 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
556 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
557 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
558 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
559 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
560 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
561 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
563 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
564 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
565 (env
->fpstt
& 0x7) << 11);
566 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
567 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
568 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
569 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
570 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
571 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
573 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
579 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
581 uint16_t selector
= ldl_p(mem_buf
);
583 if (selector
!= env
->segs
[sreg
].selector
) {
584 #if defined(CONFIG_USER_ONLY)
585 cpu_x86_load_seg(env
, sreg
, selector
);
587 unsigned int limit
, flags
;
590 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
591 base
= selector
<< 4;
595 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
598 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
604 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
608 if (n
< CPU_NB_REGS
) {
609 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
610 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
611 return sizeof(target_ulong
);
612 } else if (n
< CPU_NB_REGS32
) {
614 env
->regs
[n
] &= ~0xffffffffUL
;
615 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
618 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
619 #ifdef USE_X86LDOUBLE
620 /* FIXME: byteswap float values - after fixing fpregs layout. */
621 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
624 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
626 if (n
< CPU_NB_REGS32
||
627 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
628 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
629 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
635 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
636 env
->eip
= ldq_p(mem_buf
);
639 env
->eip
&= ~0xffffffffUL
;
640 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
644 env
->eflags
= ldl_p(mem_buf
);
647 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
648 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
649 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
650 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
651 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
652 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
654 case IDX_FP_REGS
+ 8:
655 env
->fpuc
= ldl_p(mem_buf
);
657 case IDX_FP_REGS
+ 9:
658 tmp
= ldl_p(mem_buf
);
659 env
->fpstt
= (tmp
>> 11) & 7;
660 env
->fpus
= tmp
& ~0x3800;
662 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
663 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
664 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
665 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
666 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
667 case IDX_FP_REGS
+ 15: /* fop */ return 4;
670 env
->mxcsr
= ldl_p(mem_buf
);
674 /* Unrecognised register. */
678 #elif defined (TARGET_PPC)
680 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
681 expects whatever the target description contains. Due to a
682 historical mishap the FP registers appear in between core integer
683 regs and PC, MSR, CR, and so forth. We hack round this by giving the
684 FP regs zero size when talking to a newer gdb. */
685 #define NUM_CORE_REGS 71
686 #if defined (TARGET_PPC64)
687 #define GDB_CORE_XML "power64-core.xml"
689 #define GDB_CORE_XML "power-core.xml"
692 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
696 GET_REGL(env
->gpr
[n
]);
701 stfq_p(mem_buf
, env
->fpr
[n
-32]);
705 case 64: GET_REGL(env
->nip
);
706 case 65: GET_REGL(env
->msr
);
711 for (i
= 0; i
< 8; i
++)
712 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
715 case 67: GET_REGL(env
->lr
);
716 case 68: GET_REGL(env
->ctr
);
717 case 69: GET_REGL(env
->xer
);
722 GET_REG32(0); /* fpscr */
729 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
733 env
->gpr
[n
] = ldtul_p(mem_buf
);
734 return sizeof(target_ulong
);
739 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
744 env
->nip
= ldtul_p(mem_buf
);
745 return sizeof(target_ulong
);
747 ppc_store_msr(env
, ldtul_p(mem_buf
));
748 return sizeof(target_ulong
);
751 uint32_t cr
= ldl_p(mem_buf
);
753 for (i
= 0; i
< 8; i
++)
754 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
758 env
->lr
= ldtul_p(mem_buf
);
759 return sizeof(target_ulong
);
761 env
->ctr
= ldtul_p(mem_buf
);
762 return sizeof(target_ulong
);
764 env
->xer
= ldtul_p(mem_buf
);
765 return sizeof(target_ulong
);
776 #elif defined (TARGET_SPARC)
778 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
779 #define NUM_CORE_REGS 86
781 #define NUM_CORE_REGS 72
785 #define GET_REGA(val) GET_REG32(val)
787 #define GET_REGA(val) GET_REGL(val)
790 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
794 GET_REGA(env
->gregs
[n
]);
797 /* register window */
798 GET_REGA(env
->regwptr
[n
- 8]);
800 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
803 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
805 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
807 case 64: GET_REGA(env
->y
);
808 case 65: GET_REGA(cpu_get_psr(env
));
809 case 66: GET_REGA(env
->wim
);
810 case 67: GET_REGA(env
->tbr
);
811 case 68: GET_REGA(env
->pc
);
812 case 69: GET_REGA(env
->npc
);
813 case 70: GET_REGA(env
->fsr
);
814 case 71: GET_REGA(0); /* csr */
815 default: GET_REGA(0);
820 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
823 /* f32-f62 (double width, even numbers only) */
826 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
827 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
831 case 80: GET_REGL(env
->pc
);
832 case 81: GET_REGL(env
->npc
);
833 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
834 ((env
->asi
& 0xff) << 24) |
835 ((env
->pstate
& 0xfff) << 8) |
837 case 83: GET_REGL(env
->fsr
);
838 case 84: GET_REGL(env
->fprs
);
839 case 85: GET_REGL(env
->y
);
845 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
847 #if defined(TARGET_ABI32)
850 tmp
= ldl_p(mem_buf
);
854 tmp
= ldtul_p(mem_buf
);
861 /* register window */
862 env
->regwptr
[n
- 8] = tmp
;
864 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
867 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
869 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
871 case 64: env
->y
= tmp
; break;
872 case 65: cpu_put_psr(env
, tmp
); break;
873 case 66: env
->wim
= tmp
; break;
874 case 67: env
->tbr
= tmp
; break;
875 case 68: env
->pc
= tmp
; break;
876 case 69: env
->npc
= tmp
; break;
877 case 70: env
->fsr
= tmp
; break;
885 env
->fpr
[n
] = ldfl_p(mem_buf
);
888 /* f32-f62 (double width, even numbers only) */
889 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
890 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
893 case 80: env
->pc
= tmp
; break;
894 case 81: env
->npc
= tmp
; break;
896 cpu_put_ccr(env
, tmp
>> 32);
897 env
->asi
= (tmp
>> 24) & 0xff;
898 env
->pstate
= (tmp
>> 8) & 0xfff;
899 cpu_put_cwp64(env
, tmp
& 0xff);
901 case 83: env
->fsr
= tmp
; break;
902 case 84: env
->fprs
= tmp
; break;
903 case 85: env
->y
= tmp
; break;
910 #elif defined (TARGET_ARM)
912 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
913 whatever the target description contains. Due to a historical mishap
914 the FPA registers appear in between core integer regs and the CPSR.
915 We hack round this by giving the FPA regs zero size when talking to a
917 #define NUM_CORE_REGS 26
918 #define GDB_CORE_XML "arm-core.xml"
920 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
923 /* Core integer register. */
924 GET_REG32(env
->regs
[n
]);
930 memset(mem_buf
, 0, 12);
935 /* FPA status register. */
941 GET_REG32(cpsr_read(env
));
943 /* Unknown register. */
947 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
951 tmp
= ldl_p(mem_buf
);
953 /* Mask out low bit of PC to workaround gdb bugs. This will probably
954 cause problems if we ever implement the Jazelle DBX extensions. */
959 /* Core integer register. */
963 if (n
< 24) { /* 16-23 */
964 /* FPA registers (ignored). */
971 /* FPA status register (ignored). */
977 cpsr_write (env
, tmp
, 0xffffffff);
980 /* Unknown register. */
984 #elif defined (TARGET_M68K)
986 #define NUM_CORE_REGS 18
988 #define GDB_CORE_XML "cf-core.xml"
990 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
994 GET_REG32(env
->dregs
[n
]);
997 GET_REG32(env
->aregs
[n
- 8]);
1000 case 16: GET_REG32(env
->sr
);
1001 case 17: GET_REG32(env
->pc
);
1004 /* FP registers not included here because they vary between
1005 ColdFire and m68k. Use XML bits for these. */
1009 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1013 tmp
= ldl_p(mem_buf
);
1017 env
->dregs
[n
] = tmp
;
1018 } else if (n
< 16) {
1020 env
->aregs
[n
- 8] = tmp
;
1023 case 16: env
->sr
= tmp
; break;
1024 case 17: env
->pc
= tmp
; break;
1030 #elif defined (TARGET_MIPS)
1032 #define NUM_CORE_REGS 73
1034 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1037 GET_REGL(env
->active_tc
.gpr
[n
]);
1039 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1040 if (n
>= 38 && n
< 70) {
1041 if (env
->CP0_Status
& (1 << CP0St_FR
))
1042 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1044 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1047 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1048 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1052 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1053 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1054 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1055 case 35: GET_REGL(env
->CP0_BadVAddr
);
1056 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1057 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1058 case 72: GET_REGL(0); /* fp */
1059 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1061 if (n
>= 73 && n
<= 88) {
1062 /* 16 embedded regs. */
1069 /* convert MIPS rounding mode in FCR31 to IEEE library */
1070 static unsigned int ieee_rm
[] =
1072 float_round_nearest_even
,
1073 float_round_to_zero
,
1077 #define RESTORE_ROUNDING_MODE \
1078 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1080 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1084 tmp
= ldtul_p(mem_buf
);
1087 env
->active_tc
.gpr
[n
] = tmp
;
1088 return sizeof(target_ulong
);
1090 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1091 && n
>= 38 && n
< 73) {
1093 if (env
->CP0_Status
& (1 << CP0St_FR
))
1094 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1096 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1100 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1101 /* set rounding mode */
1102 RESTORE_ROUNDING_MODE
;
1103 #ifndef CONFIG_SOFTFLOAT
1104 /* no floating point exception for native float */
1105 SET_FP_ENABLE(env
->active_fpu
.fcr31
, 0);
1108 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1110 return sizeof(target_ulong
);
1113 case 32: env
->CP0_Status
= tmp
; break;
1114 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1115 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1116 case 35: env
->CP0_BadVAddr
= tmp
; break;
1117 case 36: env
->CP0_Cause
= tmp
; break;
1119 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1121 env
->hflags
|= MIPS_HFLAG_M16
;
1123 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1126 case 72: /* fp, ignored */ break;
1130 /* Other registers are readonly. Ignore writes. */
1134 return sizeof(target_ulong
);
1136 #elif defined (TARGET_SH4)
1138 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1139 /* FIXME: We should use XML for this. */
1141 #define NUM_CORE_REGS 59
1143 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1146 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1147 GET_REGL(env
->gregs
[n
+ 16]);
1149 GET_REGL(env
->gregs
[n
]);
1151 } else if (n
< 16) {
1152 GET_REGL(env
->gregs
[n
]);
1153 } else if (n
>= 25 && n
< 41) {
1154 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1155 } else if (n
>= 43 && n
< 51) {
1156 GET_REGL(env
->gregs
[n
- 43]);
1157 } else if (n
>= 51 && n
< 59) {
1158 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1161 case 16: GET_REGL(env
->pc
);
1162 case 17: GET_REGL(env
->pr
);
1163 case 18: GET_REGL(env
->gbr
);
1164 case 19: GET_REGL(env
->vbr
);
1165 case 20: GET_REGL(env
->mach
);
1166 case 21: GET_REGL(env
->macl
);
1167 case 22: GET_REGL(env
->sr
);
1168 case 23: GET_REGL(env
->fpul
);
1169 case 24: GET_REGL(env
->fpscr
);
1170 case 41: GET_REGL(env
->ssr
);
1171 case 42: GET_REGL(env
->spc
);
1177 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1181 tmp
= ldl_p(mem_buf
);
1184 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1185 env
->gregs
[n
+ 16] = tmp
;
1187 env
->gregs
[n
] = tmp
;
1190 } else if (n
< 16) {
1191 env
->gregs
[n
] = tmp
;
1193 } else if (n
>= 25 && n
< 41) {
1194 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1196 } else if (n
>= 43 && n
< 51) {
1197 env
->gregs
[n
- 43] = tmp
;
1199 } else if (n
>= 51 && n
< 59) {
1200 env
->gregs
[n
- (51 - 16)] = tmp
;
1204 case 16: env
->pc
= tmp
; break;
1205 case 17: env
->pr
= tmp
; break;
1206 case 18: env
->gbr
= tmp
; break;
1207 case 19: env
->vbr
= tmp
; break;
1208 case 20: env
->mach
= tmp
; break;
1209 case 21: env
->macl
= tmp
; break;
1210 case 22: env
->sr
= tmp
; break;
1211 case 23: env
->fpul
= tmp
; break;
1212 case 24: env
->fpscr
= tmp
; break;
1213 case 41: env
->ssr
= tmp
; break;
1214 case 42: env
->spc
= tmp
; break;
1220 #elif defined (TARGET_MICROBLAZE)
1222 #define NUM_CORE_REGS (32 + 5)
1224 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1227 GET_REG32(env
->regs
[n
]);
1229 GET_REG32(env
->sregs
[n
- 32]);
1234 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1238 if (n
> NUM_CORE_REGS
)
1241 tmp
= ldl_p(mem_buf
);
1246 env
->sregs
[n
- 32] = tmp
;
1250 #elif defined (TARGET_CRIS)
1252 #define NUM_CORE_REGS 49
1255 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1258 GET_REG32(env
->regs
[n
]);
1268 GET_REG8(env
->pregs
[n
- 16]);
1271 GET_REG8(env
->pregs
[n
- 16]);
1275 GET_REG16(env
->pregs
[n
- 16]);
1279 GET_REG32(env
->pregs
[n
- 16]);
1287 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1291 if (env
->pregs
[PR_VR
] < 32)
1292 return read_register_crisv10(env
, mem_buf
, n
);
1294 srs
= env
->pregs
[PR_SRS
];
1296 GET_REG32(env
->regs
[n
]);
1299 if (n
>= 21 && n
< 32) {
1300 GET_REG32(env
->pregs
[n
- 16]);
1302 if (n
>= 33 && n
< 49) {
1303 GET_REG32(env
->sregs
[srs
][n
- 33]);
1306 case 16: GET_REG8(env
->pregs
[0]);
1307 case 17: GET_REG8(env
->pregs
[1]);
1308 case 18: GET_REG32(env
->pregs
[2]);
1309 case 19: GET_REG8(srs
);
1310 case 20: GET_REG16(env
->pregs
[4]);
1311 case 32: GET_REG32(env
->pc
);
1317 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1324 tmp
= ldl_p(mem_buf
);
1330 if (n
>= 21 && n
< 32) {
1331 env
->pregs
[n
- 16] = tmp
;
1334 /* FIXME: Should support function regs be writable? */
1338 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1341 case 32: env
->pc
= tmp
; break;
1346 #elif defined (TARGET_ALPHA)
1348 #define NUM_CORE_REGS 67
1350 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1360 d
.d
= env
->fir
[n
- 32];
1364 val
= cpu_alpha_load_fpcr(env
);
1374 /* 31 really is the zero register; 65 is unassigned in the
1375 gdb protocol, but is still required to occupy 8 bytes. */
1384 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1386 target_ulong tmp
= ldtul_p(mem_buf
);
1395 env
->fir
[n
- 32] = d
.d
;
1398 cpu_alpha_store_fpcr(env
, tmp
);
1408 /* 31 really is the zero register; 65 is unassigned in the
1409 gdb protocol, but is still required to occupy 8 bytes. */
1416 #elif defined (TARGET_S390X)
1418 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1420 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1423 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1424 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1425 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1426 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1427 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1428 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1429 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1430 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1433 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1434 case S390_CC_REGNUM
: GET_REG32(env
->cc
); break;
1440 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1445 tmpl
= ldtul_p(mem_buf
);
1446 tmp32
= ldl_p(mem_buf
);
1449 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1450 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1451 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1452 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1453 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1454 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1455 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1456 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1459 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1460 case S390_CC_REGNUM
: env
->cc
= tmp32
; r
=4; break;
1467 #define NUM_CORE_REGS 0
1469 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1474 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1481 static int num_g_regs
= NUM_CORE_REGS
;
1484 /* Encode data using the encoding for 'x' packets. */
1485 static int memtox(char *buf
, const char *mem
, int len
)
1493 case '#': case '$': case '*': case '}':
1505 static const char *get_feature_xml(const char *p
, const char **newp
)
1510 static char target_xml
[1024];
1513 while (p
[len
] && p
[len
] != ':')
1518 if (strncmp(p
, "target.xml", len
) == 0) {
1519 /* Generate the XML description for this CPU. */
1520 if (!target_xml
[0]) {
1521 GDBRegisterState
*r
;
1523 snprintf(target_xml
, sizeof(target_xml
),
1524 "<?xml version=\"1.0\"?>"
1525 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1527 "<xi:include href=\"%s\"/>",
1530 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1531 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1532 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1533 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1535 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1539 for (i
= 0; ; i
++) {
1540 name
= xml_builtin
[i
][0];
1541 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1544 return name
? xml_builtin
[i
][1] : NULL
;
1548 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1550 GDBRegisterState
*r
;
1552 if (reg
< NUM_CORE_REGS
)
1553 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1555 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1556 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1557 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1563 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1565 GDBRegisterState
*r
;
1567 if (reg
< NUM_CORE_REGS
)
1568 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1570 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1571 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1572 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1578 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1579 specifies the first register number and these registers are included in
1580 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1581 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1584 void gdb_register_coprocessor(CPUState
* env
,
1585 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1586 int num_regs
, const char *xml
, int g_pos
)
1588 GDBRegisterState
*s
;
1589 GDBRegisterState
**p
;
1590 static int last_reg
= NUM_CORE_REGS
;
1592 s
= (GDBRegisterState
*)qemu_mallocz(sizeof(GDBRegisterState
));
1593 s
->base_reg
= last_reg
;
1594 s
->num_regs
= num_regs
;
1595 s
->get_reg
= get_reg
;
1596 s
->set_reg
= set_reg
;
1600 /* Check for duplicates. */
1601 if (strcmp((*p
)->xml
, xml
) == 0)
1605 /* Add to end of list. */
1606 last_reg
+= num_regs
;
1609 if (g_pos
!= s
->base_reg
) {
1610 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1611 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1613 num_g_regs
= last_reg
;
1618 #ifndef CONFIG_USER_ONLY
1619 static const int xlat_gdb_type
[] = {
1620 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1621 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1622 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1626 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1632 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1635 case GDB_BREAKPOINT_SW
:
1636 case GDB_BREAKPOINT_HW
:
1637 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1638 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1643 #ifndef CONFIG_USER_ONLY
1644 case GDB_WATCHPOINT_WRITE
:
1645 case GDB_WATCHPOINT_READ
:
1646 case GDB_WATCHPOINT_ACCESS
:
1647 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1648 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1660 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1666 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1669 case GDB_BREAKPOINT_SW
:
1670 case GDB_BREAKPOINT_HW
:
1671 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1672 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1677 #ifndef CONFIG_USER_ONLY
1678 case GDB_WATCHPOINT_WRITE
:
1679 case GDB_WATCHPOINT_READ
:
1680 case GDB_WATCHPOINT_ACCESS
:
1681 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1682 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1693 static void gdb_breakpoint_remove_all(void)
1697 if (kvm_enabled()) {
1698 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1702 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1703 cpu_breakpoint_remove_all(env
, BP_GDB
);
1704 #ifndef CONFIG_USER_ONLY
1705 cpu_watchpoint_remove_all(env
, BP_GDB
);
1710 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1712 #if defined(TARGET_I386)
1713 cpu_synchronize_state(s
->c_cpu
);
1715 #elif defined (TARGET_PPC)
1717 #elif defined (TARGET_SPARC)
1719 s
->c_cpu
->npc
= pc
+ 4;
1720 #elif defined (TARGET_ARM)
1721 s
->c_cpu
->regs
[15] = pc
;
1722 #elif defined (TARGET_SH4)
1724 #elif defined (TARGET_MIPS)
1725 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1727 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1729 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1731 #elif defined (TARGET_MICROBLAZE)
1732 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1733 #elif defined (TARGET_CRIS)
1735 #elif defined (TARGET_ALPHA)
1737 #elif defined (TARGET_S390X)
1738 cpu_synchronize_state(s
->c_cpu
);
1739 s
->c_cpu
->psw
.addr
= pc
;
1743 static inline int gdb_id(CPUState
*env
)
1745 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1746 return env
->host_tid
;
1748 return env
->cpu_index
+ 1;
1752 static CPUState
*find_cpu(uint32_t thread_id
)
1756 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1757 if (gdb_id(env
) == thread_id
) {
1765 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1770 int ch
, reg_size
, type
, res
;
1771 char buf
[MAX_PACKET_LENGTH
];
1772 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1774 target_ulong addr
, len
;
1777 printf("command='%s'\n", line_buf
);
1783 /* TODO: Make this return the correct value for user-mode. */
1784 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1787 /* Remove all the breakpoints when this query is issued,
1788 * because gdb is doing and initial connect and the state
1789 * should be cleaned up.
1791 gdb_breakpoint_remove_all();
1795 addr
= strtoull(p
, (char **)&p
, 16);
1796 gdb_set_cpu_pc(s
, addr
);
1802 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1803 if (s
->signal
== -1)
1808 if (strncmp(p
, "Cont", 4) == 0) {
1809 int res_signal
, res_thread
;
1813 put_packet(s
, "vCont;c;C;s;S");
1828 if (action
== 'C' || action
== 'S') {
1829 signal
= strtoul(p
, (char **)&p
, 16);
1830 } else if (action
!= 'c' && action
!= 's') {
1836 thread
= strtoull(p
+1, (char **)&p
, 16);
1838 action
= tolower(action
);
1839 if (res
== 0 || (res
== 'c' && action
== 's')) {
1841 res_signal
= signal
;
1842 res_thread
= thread
;
1846 if (res_thread
!= -1 && res_thread
!= 0) {
1847 env
= find_cpu(res_thread
);
1849 put_packet(s
, "E22");
1855 cpu_single_step(s
->c_cpu
, sstep_flags
);
1857 s
->signal
= res_signal
;
1863 goto unknown_command
;
1866 /* Kill the target */
1867 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
1871 gdb_breakpoint_remove_all();
1872 gdb_syscall_mode
= GDB_SYS_DISABLED
;
1874 put_packet(s
, "OK");
1878 addr
= strtoull(p
, (char **)&p
, 16);
1879 gdb_set_cpu_pc(s
, addr
);
1881 cpu_single_step(s
->c_cpu
, sstep_flags
);
1889 ret
= strtoull(p
, (char **)&p
, 16);
1892 err
= strtoull(p
, (char **)&p
, 16);
1899 if (gdb_current_syscall_cb
)
1900 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
1902 put_packet(s
, "T02");
1909 cpu_synchronize_state(s
->g_cpu
);
1911 for (addr
= 0; addr
< num_g_regs
; addr
++) {
1912 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
1915 memtohex(buf
, mem_buf
, len
);
1919 cpu_synchronize_state(s
->g_cpu
);
1920 registers
= mem_buf
;
1921 len
= strlen(p
) / 2;
1922 hextomem((uint8_t *)registers
, p
, len
);
1923 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
1924 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
1926 registers
+= reg_size
;
1928 put_packet(s
, "OK");
1931 addr
= strtoull(p
, (char **)&p
, 16);
1934 len
= strtoull(p
, NULL
, 16);
1935 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
1936 put_packet (s
, "E14");
1938 memtohex(buf
, mem_buf
, len
);
1943 addr
= strtoull(p
, (char **)&p
, 16);
1946 len
= strtoull(p
, (char **)&p
, 16);
1949 hextomem(mem_buf
, p
, len
);
1950 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
1951 put_packet(s
, "E14");
1953 put_packet(s
, "OK");
1956 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1957 This works, but can be very slow. Anything new enough to
1958 understand XML also knows how to use this properly. */
1960 goto unknown_command
;
1961 addr
= strtoull(p
, (char **)&p
, 16);
1962 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
1964 memtohex(buf
, mem_buf
, reg_size
);
1967 put_packet(s
, "E14");
1972 goto unknown_command
;
1973 addr
= strtoull(p
, (char **)&p
, 16);
1976 reg_size
= strlen(p
) / 2;
1977 hextomem(mem_buf
, p
, reg_size
);
1978 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
1979 put_packet(s
, "OK");
1983 type
= strtoul(p
, (char **)&p
, 16);
1986 addr
= strtoull(p
, (char **)&p
, 16);
1989 len
= strtoull(p
, (char **)&p
, 16);
1991 res
= gdb_breakpoint_insert(addr
, len
, type
);
1993 res
= gdb_breakpoint_remove(addr
, len
, type
);
1995 put_packet(s
, "OK");
1996 else if (res
== -ENOSYS
)
1999 put_packet(s
, "E22");
2003 thread
= strtoull(p
, (char **)&p
, 16);
2004 if (thread
== -1 || thread
== 0) {
2005 put_packet(s
, "OK");
2008 env
= find_cpu(thread
);
2010 put_packet(s
, "E22");
2016 put_packet(s
, "OK");
2020 put_packet(s
, "OK");
2023 put_packet(s
, "E22");
2028 thread
= strtoull(p
, (char **)&p
, 16);
2029 env
= find_cpu(thread
);
2032 put_packet(s
, "OK");
2034 put_packet(s
, "E22");
2039 /* parse any 'q' packets here */
2040 if (!strcmp(p
,"qemu.sstepbits")) {
2041 /* Query Breakpoint bit definitions */
2042 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2048 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2049 /* Display or change the sstep_flags */
2052 /* Display current setting */
2053 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2058 type
= strtoul(p
, (char **)&p
, 16);
2060 put_packet(s
, "OK");
2062 } else if (strcmp(p
,"C") == 0) {
2063 /* "Current thread" remains vague in the spec, so always return
2064 * the first CPU (gdb returns the first thread). */
2065 put_packet(s
, "QC1");
2067 } else if (strcmp(p
,"fThreadInfo") == 0) {
2068 s
->query_cpu
= first_cpu
;
2069 goto report_cpuinfo
;
2070 } else if (strcmp(p
,"sThreadInfo") == 0) {
2073 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2075 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2079 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2080 thread
= strtoull(p
+16, (char **)&p
, 16);
2081 env
= find_cpu(thread
);
2083 cpu_synchronize_state(env
);
2084 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2085 "CPU#%d [%s]", env
->cpu_index
,
2086 env
->halted
? "halted " : "running");
2087 memtohex(buf
, mem_buf
, len
);
2092 #ifdef CONFIG_USER_ONLY
2093 else if (strncmp(p
, "Offsets", 7) == 0) {
2094 TaskState
*ts
= s
->c_cpu
->opaque
;
2096 snprintf(buf
, sizeof(buf
),
2097 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2098 ";Bss=" TARGET_ABI_FMT_lx
,
2099 ts
->info
->code_offset
,
2100 ts
->info
->data_offset
,
2101 ts
->info
->data_offset
);
2105 #else /* !CONFIG_USER_ONLY */
2106 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2107 int len
= strlen(p
+ 5);
2109 if ((len
% 2) != 0) {
2110 put_packet(s
, "E01");
2113 hextomem(mem_buf
, p
+ 5, len
);
2116 qemu_chr_read(s
->mon_chr
, mem_buf
, len
);
2117 put_packet(s
, "OK");
2120 #endif /* !CONFIG_USER_ONLY */
2121 if (strncmp(p
, "Supported", 9) == 0) {
2122 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2124 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2130 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2132 target_ulong total_len
;
2136 xml
= get_feature_xml(p
, &p
);
2138 snprintf(buf
, sizeof(buf
), "E00");
2145 addr
= strtoul(p
, (char **)&p
, 16);
2148 len
= strtoul(p
, (char **)&p
, 16);
2150 total_len
= strlen(xml
);
2151 if (addr
> total_len
) {
2152 snprintf(buf
, sizeof(buf
), "E00");
2156 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2157 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2158 if (len
< total_len
- addr
) {
2160 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2163 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2165 put_packet_binary(s
, buf
, len
+ 1);
2169 /* Unrecognised 'q' command. */
2170 goto unknown_command
;
2174 /* put empty packet */
2182 void gdb_set_stop_cpu(CPUState
*env
)
2184 gdbserver_state
->c_cpu
= env
;
2185 gdbserver_state
->g_cpu
= env
;
2188 #ifndef CONFIG_USER_ONLY
2189 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
2191 GDBState
*s
= gdbserver_state
;
2192 CPUState
*env
= s
->c_cpu
;
2197 if (running
|| (reason
!= VMSTOP_DEBUG
&& reason
!= VMSTOP_USER
) ||
2198 s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
) {
2201 /* disable single step if it was enable */
2202 cpu_single_step(env
, 0);
2204 if (reason
== VMSTOP_DEBUG
) {
2205 if (env
->watchpoint_hit
) {
2206 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2217 snprintf(buf
, sizeof(buf
),
2218 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2219 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2220 env
->watchpoint_hit
->vaddr
);
2222 env
->watchpoint_hit
= NULL
;
2226 ret
= GDB_SIGNAL_TRAP
;
2228 ret
= GDB_SIGNAL_INT
;
2230 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2235 /* Send a gdb syscall request.
2236 This accepts limited printf-style format specifiers, specifically:
2237 %x - target_ulong argument printed in hex.
2238 %lx - 64-bit argument printed in hex.
2239 %s - string pointer (target_ulong) and length (int) pair. */
2240 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2249 s
= gdbserver_state
;
2252 gdb_current_syscall_cb
= cb
;
2253 s
->state
= RS_SYSCALL
;
2254 #ifndef CONFIG_USER_ONLY
2255 vm_stop(VMSTOP_DEBUG
);
2266 addr
= va_arg(va
, target_ulong
);
2267 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2270 if (*(fmt
++) != 'x')
2272 i64
= va_arg(va
, uint64_t);
2273 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2276 addr
= va_arg(va
, target_ulong
);
2277 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2278 addr
, va_arg(va
, int));
2282 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2293 #ifdef CONFIG_USER_ONLY
2294 gdb_handlesig(s
->c_cpu
, 0);
2300 static void gdb_read_byte(GDBState
*s
, int ch
)
2305 #ifndef CONFIG_USER_ONLY
2306 if (s
->last_packet_len
) {
2307 /* Waiting for a response to the last packet. If we see the start
2308 of a new command then abandon the previous response. */
2311 printf("Got NACK, retransmitting\n");
2313 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2317 printf("Got ACK\n");
2319 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2321 if (ch
== '+' || ch
== '$')
2322 s
->last_packet_len
= 0;
2327 /* when the CPU is running, we cannot do anything except stop
2328 it when receiving a char */
2329 vm_stop(VMSTOP_USER
);
2336 s
->line_buf_index
= 0;
2337 s
->state
= RS_GETLINE
;
2342 s
->state
= RS_CHKSUM1
;
2343 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2346 s
->line_buf
[s
->line_buf_index
++] = ch
;
2350 s
->line_buf
[s
->line_buf_index
] = '\0';
2351 s
->line_csum
= fromhex(ch
) << 4;
2352 s
->state
= RS_CHKSUM2
;
2355 s
->line_csum
|= fromhex(ch
);
2357 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2358 csum
+= s
->line_buf
[i
];
2360 if (s
->line_csum
!= (csum
& 0xff)) {
2362 put_buffer(s
, &reply
, 1);
2366 put_buffer(s
, &reply
, 1);
2367 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2376 /* Tell the remote gdb that the process has exited. */
2377 void gdb_exit(CPUState
*env
, int code
)
2382 s
= gdbserver_state
;
2386 #ifdef CONFIG_USER_ONLY
2387 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2392 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2395 #ifndef CONFIG_USER_ONLY
2397 qemu_chr_close(s
->chr
);
2402 #ifdef CONFIG_USER_ONLY
2408 s
= gdbserver_state
;
2410 if (gdbserver_fd
< 0 || s
->fd
< 0)
2417 gdb_handlesig (CPUState
*env
, int sig
)
2423 s
= gdbserver_state
;
2424 if (gdbserver_fd
< 0 || s
->fd
< 0)
2427 /* disable single step if it was enabled */
2428 cpu_single_step(env
, 0);
2433 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2436 /* put_packet() might have detected that the peer terminated the
2443 s
->running_state
= 0;
2444 while (s
->running_state
== 0) {
2445 n
= read (s
->fd
, buf
, 256);
2450 for (i
= 0; i
< n
; i
++)
2451 gdb_read_byte (s
, buf
[i
]);
2453 else if (n
== 0 || errno
!= EAGAIN
)
2455 /* XXX: Connection closed. Should probably wait for annother
2456 connection before continuing. */
2465 /* Tell the remote gdb that the process has exited due to SIG. */
2466 void gdb_signalled(CPUState
*env
, int sig
)
2471 s
= gdbserver_state
;
2472 if (gdbserver_fd
< 0 || s
->fd
< 0)
2475 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2479 static void gdb_accept(void)
2482 struct sockaddr_in sockaddr
;
2487 len
= sizeof(sockaddr
);
2488 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2489 if (fd
< 0 && errno
!= EINTR
) {
2492 } else if (fd
>= 0) {
2494 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2500 /* set short latency */
2502 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2504 s
= qemu_mallocz(sizeof(GDBState
));
2505 s
->c_cpu
= first_cpu
;
2506 s
->g_cpu
= first_cpu
;
2510 gdbserver_state
= s
;
2512 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2515 static int gdbserver_open(int port
)
2517 struct sockaddr_in sockaddr
;
2520 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2526 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2529 /* allow fast reuse */
2531 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2533 sockaddr
.sin_family
= AF_INET
;
2534 sockaddr
.sin_port
= htons(port
);
2535 sockaddr
.sin_addr
.s_addr
= 0;
2536 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2541 ret
= listen(fd
, 0);
2549 int gdbserver_start(int port
)
2551 gdbserver_fd
= gdbserver_open(port
);
2552 if (gdbserver_fd
< 0)
2554 /* accept connections */
2559 /* Disable gdb stub for child processes. */
2560 void gdbserver_fork(CPUState
*env
)
2562 GDBState
*s
= gdbserver_state
;
2563 if (gdbserver_fd
< 0 || s
->fd
< 0)
2567 cpu_breakpoint_remove_all(env
, BP_GDB
);
2568 cpu_watchpoint_remove_all(env
, BP_GDB
);
2571 static int gdb_chr_can_receive(void *opaque
)
2573 /* We can handle an arbitrarily large amount of data.
2574 Pick the maximum packet size, which is as good as anything. */
2575 return MAX_PACKET_LENGTH
;
2578 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2582 for (i
= 0; i
< size
; i
++) {
2583 gdb_read_byte(gdbserver_state
, buf
[i
]);
2587 static void gdb_chr_event(void *opaque
, int event
)
2590 case CHR_EVENT_OPENED
:
2591 vm_stop(VMSTOP_USER
);
2599 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2601 char buf
[MAX_PACKET_LENGTH
];
2604 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2605 len
= (MAX_PACKET_LENGTH
/2) - 1;
2606 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2610 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2612 const char *p
= (const char *)buf
;
2615 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2617 if (len
<= max_sz
) {
2618 gdb_monitor_output(gdbserver_state
, p
, len
);
2621 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2629 static void gdb_sigterm_handler(int signal
)
2632 vm_stop(VMSTOP_USER
);
2637 int gdbserver_start(const char *device
)
2640 char gdbstub_device_name
[128];
2641 CharDriverState
*chr
= NULL
;
2642 CharDriverState
*mon_chr
;
2646 if (strcmp(device
, "none") != 0) {
2647 if (strstart(device
, "tcp:", NULL
)) {
2648 /* enforce required TCP attributes */
2649 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2650 "%s,nowait,nodelay,server", device
);
2651 device
= gdbstub_device_name
;
2654 else if (strcmp(device
, "stdio") == 0) {
2655 struct sigaction act
;
2657 memset(&act
, 0, sizeof(act
));
2658 act
.sa_handler
= gdb_sigterm_handler
;
2659 sigaction(SIGINT
, &act
, NULL
);
2662 chr
= qemu_chr_open("gdb", device
, NULL
);
2666 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2667 gdb_chr_event
, NULL
);
2670 s
= gdbserver_state
;
2672 s
= qemu_mallocz(sizeof(GDBState
));
2673 gdbserver_state
= s
;
2675 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2677 /* Initialize a monitor terminal for gdb */
2678 mon_chr
= qemu_mallocz(sizeof(*mon_chr
));
2679 mon_chr
->chr_write
= gdb_monitor_write
;
2680 monitor_init(mon_chr
, 0);
2683 qemu_chr_close(s
->chr
);
2684 mon_chr
= s
->mon_chr
;
2685 memset(s
, 0, sizeof(GDBState
));
2687 s
->c_cpu
= first_cpu
;
2688 s
->g_cpu
= first_cpu
;
2690 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2691 s
->mon_chr
= mon_chr
;