util/hbitmap: update orig_size on truncate
[qemu/ar7.git] / target / i386 / kvm.c
blobdbbb13772af8f8bbfca1947fbb0270e15bfcea0a
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
23 #include "cpu.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_i386.h"
28 #include "hyperv.h"
29 #include "hyperv-proto.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #include "qemu/config-file.h"
34 #include "qemu/error-report.h"
35 #include "hw/i386/pc.h"
36 #include "hw/i386/apic.h"
37 #include "hw/i386/apic_internal.h"
38 #include "hw/i386/apic-msidef.h"
39 #include "hw/i386/intel_iommu.h"
40 #include "hw/i386/x86-iommu.h"
42 #include "hw/pci/pci.h"
43 #include "hw/pci/msi.h"
44 #include "hw/pci/msix.h"
45 #include "migration/blocker.h"
46 #include "exec/memattrs.h"
47 #include "trace.h"
49 //#define DEBUG_KVM
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
59 #define MSR_KVM_WALL_CLOCK 0x11
60 #define MSR_KVM_SYSTEM_TIME 0x12
62 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
63 * 255 kvm_msr_entry structs */
64 #define MSR_BUF_SIZE 4096
66 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
67 KVM_CAP_INFO(SET_TSS_ADDR),
68 KVM_CAP_INFO(EXT_CPUID),
69 KVM_CAP_INFO(MP_STATE),
70 KVM_CAP_LAST_INFO
73 static bool has_msr_star;
74 static bool has_msr_hsave_pa;
75 static bool has_msr_tsc_aux;
76 static bool has_msr_tsc_adjust;
77 static bool has_msr_tsc_deadline;
78 static bool has_msr_feature_control;
79 static bool has_msr_misc_enable;
80 static bool has_msr_smbase;
81 static bool has_msr_bndcfgs;
82 static int lm_capable_kernel;
83 static bool has_msr_hv_hypercall;
84 static bool has_msr_hv_crash;
85 static bool has_msr_hv_reset;
86 static bool has_msr_hv_vpindex;
87 static bool hv_vpindex_settable;
88 static bool has_msr_hv_runtime;
89 static bool has_msr_hv_synic;
90 static bool has_msr_hv_stimer;
91 static bool has_msr_hv_frequencies;
92 static bool has_msr_hv_reenlightenment;
93 static bool has_msr_xss;
94 static bool has_msr_spec_ctrl;
95 static bool has_msr_virt_ssbd;
96 static bool has_msr_smi_count;
97 static bool has_msr_arch_capabs;
98 static bool has_msr_core_capabs;
100 static uint32_t has_architectural_pmu_version;
101 static uint32_t num_architectural_pmu_gp_counters;
102 static uint32_t num_architectural_pmu_fixed_counters;
104 static int has_xsave;
105 static int has_xcrs;
106 static int has_pit_state2;
107 static int has_exception_payload;
109 static bool has_msr_mcg_ext_ctl;
111 static struct kvm_cpuid2 *cpuid_cache;
112 static struct kvm_msr_list *kvm_feature_msrs;
114 int kvm_has_pit_state2(void)
116 return has_pit_state2;
119 bool kvm_has_smm(void)
121 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
124 bool kvm_has_adjust_clock_stable(void)
126 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
128 return (ret == KVM_CLOCK_TSC_STABLE);
131 bool kvm_has_exception_payload(void)
133 return has_exception_payload;
136 bool kvm_allows_irq0_override(void)
138 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
141 static bool kvm_x2apic_api_set_flags(uint64_t flags)
143 KVMState *s = KVM_STATE(current_machine->accelerator);
145 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
148 #define MEMORIZE(fn, _result) \
149 ({ \
150 static bool _memorized; \
152 if (_memorized) { \
153 return _result; \
155 _memorized = true; \
156 _result = fn; \
159 static bool has_x2apic_api;
161 bool kvm_has_x2apic_api(void)
163 return has_x2apic_api;
166 bool kvm_enable_x2apic(void)
168 return MEMORIZE(
169 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
170 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
171 has_x2apic_api);
174 bool kvm_hv_vpindex_settable(void)
176 return hv_vpindex_settable;
179 static int kvm_get_tsc(CPUState *cs)
181 X86CPU *cpu = X86_CPU(cs);
182 CPUX86State *env = &cpu->env;
183 struct {
184 struct kvm_msrs info;
185 struct kvm_msr_entry entries[1];
186 } msr_data;
187 int ret;
189 if (env->tsc_valid) {
190 return 0;
193 msr_data.info.nmsrs = 1;
194 msr_data.entries[0].index = MSR_IA32_TSC;
195 env->tsc_valid = !runstate_is_running();
197 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
198 if (ret < 0) {
199 return ret;
202 assert(ret == 1);
203 env->tsc = msr_data.entries[0].data;
204 return 0;
207 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
209 kvm_get_tsc(cpu);
212 void kvm_synchronize_all_tsc(void)
214 CPUState *cpu;
216 if (kvm_enabled()) {
217 CPU_FOREACH(cpu) {
218 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
223 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
225 struct kvm_cpuid2 *cpuid;
226 int r, size;
228 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
229 cpuid = g_malloc0(size);
230 cpuid->nent = max;
231 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
232 if (r == 0 && cpuid->nent >= max) {
233 r = -E2BIG;
235 if (r < 0) {
236 if (r == -E2BIG) {
237 g_free(cpuid);
238 return NULL;
239 } else {
240 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
241 strerror(-r));
242 exit(1);
245 return cpuid;
248 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
249 * for all entries.
251 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
253 struct kvm_cpuid2 *cpuid;
254 int max = 1;
256 if (cpuid_cache != NULL) {
257 return cpuid_cache;
259 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
260 max *= 2;
262 cpuid_cache = cpuid;
263 return cpuid;
266 static const struct kvm_para_features {
267 int cap;
268 int feature;
269 } para_features[] = {
270 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
271 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
272 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
273 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
276 static int get_para_features(KVMState *s)
278 int i, features = 0;
280 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
281 if (kvm_check_extension(s, para_features[i].cap)) {
282 features |= (1 << para_features[i].feature);
286 return features;
289 static bool host_tsx_blacklisted(void)
291 int family, model, stepping;\
292 char vendor[CPUID_VENDOR_SZ + 1];
294 host_vendor_fms(vendor, &family, &model, &stepping);
296 /* Check if we are running on a Haswell host known to have broken TSX */
297 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
298 (family == 6) &&
299 ((model == 63 && stepping < 4) ||
300 model == 60 || model == 69 || model == 70);
303 /* Returns the value for a specific register on the cpuid entry
305 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
307 uint32_t ret = 0;
308 switch (reg) {
309 case R_EAX:
310 ret = entry->eax;
311 break;
312 case R_EBX:
313 ret = entry->ebx;
314 break;
315 case R_ECX:
316 ret = entry->ecx;
317 break;
318 case R_EDX:
319 ret = entry->edx;
320 break;
322 return ret;
325 /* Find matching entry for function/index on kvm_cpuid2 struct
327 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
328 uint32_t function,
329 uint32_t index)
331 int i;
332 for (i = 0; i < cpuid->nent; ++i) {
333 if (cpuid->entries[i].function == function &&
334 cpuid->entries[i].index == index) {
335 return &cpuid->entries[i];
338 /* not found: */
339 return NULL;
342 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
343 uint32_t index, int reg)
345 struct kvm_cpuid2 *cpuid;
346 uint32_t ret = 0;
347 uint32_t cpuid_1_edx;
348 bool found = false;
350 cpuid = get_supported_cpuid(s);
352 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
353 if (entry) {
354 found = true;
355 ret = cpuid_entry_get_reg(entry, reg);
358 /* Fixups for the data returned by KVM, below */
360 if (function == 1 && reg == R_EDX) {
361 /* KVM before 2.6.30 misreports the following features */
362 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
363 } else if (function == 1 && reg == R_ECX) {
364 /* We can set the hypervisor flag, even if KVM does not return it on
365 * GET_SUPPORTED_CPUID
367 ret |= CPUID_EXT_HYPERVISOR;
368 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
369 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
370 * and the irqchip is in the kernel.
372 if (kvm_irqchip_in_kernel() &&
373 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
374 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
377 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
378 * without the in-kernel irqchip
380 if (!kvm_irqchip_in_kernel()) {
381 ret &= ~CPUID_EXT_X2APIC;
384 if (enable_cpu_pm) {
385 int disable_exits = kvm_check_extension(s,
386 KVM_CAP_X86_DISABLE_EXITS);
388 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
389 ret |= CPUID_EXT_MONITOR;
392 } else if (function == 6 && reg == R_EAX) {
393 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
394 } else if (function == 7 && index == 0 && reg == R_EBX) {
395 if (host_tsx_blacklisted()) {
396 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
398 } else if (function == 7 && index == 0 && reg == R_EDX) {
400 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
401 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
402 * returned by KVM_GET_MSR_INDEX_LIST.
404 if (!has_msr_arch_capabs) {
405 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
407 } else if (function == 0x80000001 && reg == R_ECX) {
409 * It's safe to enable TOPOEXT even if it's not returned by
410 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
411 * us to keep CPU models including TOPOEXT runnable on older kernels.
413 ret |= CPUID_EXT3_TOPOEXT;
414 } else if (function == 0x80000001 && reg == R_EDX) {
415 /* On Intel, kvm returns cpuid according to the Intel spec,
416 * so add missing bits according to the AMD spec:
418 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
419 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
420 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
421 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
422 * be enabled without the in-kernel irqchip
424 if (!kvm_irqchip_in_kernel()) {
425 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
427 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
428 ret |= 1U << KVM_HINTS_REALTIME;
429 found = 1;
432 /* fallback for older kernels */
433 if ((function == KVM_CPUID_FEATURES) && !found) {
434 ret = get_para_features(s);
437 return ret;
440 uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
442 struct {
443 struct kvm_msrs info;
444 struct kvm_msr_entry entries[1];
445 } msr_data;
446 uint32_t ret;
448 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
449 return 0;
452 /* Check if requested MSR is supported feature MSR */
453 int i;
454 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
455 if (kvm_feature_msrs->indices[i] == index) {
456 break;
458 if (i == kvm_feature_msrs->nmsrs) {
459 return 0; /* if the feature MSR is not supported, simply return 0 */
462 msr_data.info.nmsrs = 1;
463 msr_data.entries[0].index = index;
465 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
466 if (ret != 1) {
467 error_report("KVM get MSR (index=0x%x) feature failed, %s",
468 index, strerror(-ret));
469 exit(1);
472 return msr_data.entries[0].data;
476 typedef struct HWPoisonPage {
477 ram_addr_t ram_addr;
478 QLIST_ENTRY(HWPoisonPage) list;
479 } HWPoisonPage;
481 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
482 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
484 static void kvm_unpoison_all(void *param)
486 HWPoisonPage *page, *next_page;
488 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
489 QLIST_REMOVE(page, list);
490 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
491 g_free(page);
495 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
497 HWPoisonPage *page;
499 QLIST_FOREACH(page, &hwpoison_page_list, list) {
500 if (page->ram_addr == ram_addr) {
501 return;
504 page = g_new(HWPoisonPage, 1);
505 page->ram_addr = ram_addr;
506 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
509 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
510 int *max_banks)
512 int r;
514 r = kvm_check_extension(s, KVM_CAP_MCE);
515 if (r > 0) {
516 *max_banks = r;
517 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
519 return -ENOSYS;
522 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
524 CPUState *cs = CPU(cpu);
525 CPUX86State *env = &cpu->env;
526 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
527 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
528 uint64_t mcg_status = MCG_STATUS_MCIP;
529 int flags = 0;
531 if (code == BUS_MCEERR_AR) {
532 status |= MCI_STATUS_AR | 0x134;
533 mcg_status |= MCG_STATUS_EIPV;
534 } else {
535 status |= 0xc0;
536 mcg_status |= MCG_STATUS_RIPV;
539 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
540 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
541 * guest kernel back into env->mcg_ext_ctl.
543 cpu_synchronize_state(cs);
544 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
545 mcg_status |= MCG_STATUS_LMCE;
546 flags = 0;
549 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
550 (MCM_ADDR_PHYS << 6) | 0xc, flags);
553 static void hardware_memory_error(void)
555 fprintf(stderr, "Hardware memory error!\n");
556 exit(1);
559 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
561 X86CPU *cpu = X86_CPU(c);
562 CPUX86State *env = &cpu->env;
563 ram_addr_t ram_addr;
564 hwaddr paddr;
566 /* If we get an action required MCE, it has been injected by KVM
567 * while the VM was running. An action optional MCE instead should
568 * be coming from the main thread, which qemu_init_sigbus identifies
569 * as the "early kill" thread.
571 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
573 if ((env->mcg_cap & MCG_SER_P) && addr) {
574 ram_addr = qemu_ram_addr_from_host(addr);
575 if (ram_addr != RAM_ADDR_INVALID &&
576 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
577 kvm_hwpoison_page_add(ram_addr);
578 kvm_mce_inject(cpu, paddr, code);
579 return;
582 fprintf(stderr, "Hardware memory error for memory used by "
583 "QEMU itself instead of guest system!\n");
586 if (code == BUS_MCEERR_AR) {
587 hardware_memory_error();
590 /* Hope we are lucky for AO MCE */
593 static void kvm_reset_exception(CPUX86State *env)
595 env->exception_nr = -1;
596 env->exception_pending = 0;
597 env->exception_injected = 0;
598 env->exception_has_payload = false;
599 env->exception_payload = 0;
602 static void kvm_queue_exception(CPUX86State *env,
603 int32_t exception_nr,
604 uint8_t exception_has_payload,
605 uint64_t exception_payload)
607 assert(env->exception_nr == -1);
608 assert(!env->exception_pending);
609 assert(!env->exception_injected);
610 assert(!env->exception_has_payload);
612 env->exception_nr = exception_nr;
614 if (has_exception_payload) {
615 env->exception_pending = 1;
617 env->exception_has_payload = exception_has_payload;
618 env->exception_payload = exception_payload;
619 } else {
620 env->exception_injected = 1;
622 if (exception_nr == EXCP01_DB) {
623 assert(exception_has_payload);
624 env->dr[6] = exception_payload;
625 } else if (exception_nr == EXCP0E_PAGE) {
626 assert(exception_has_payload);
627 env->cr[2] = exception_payload;
628 } else {
629 assert(!exception_has_payload);
634 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
636 CPUX86State *env = &cpu->env;
638 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
639 unsigned int bank, bank_num = env->mcg_cap & 0xff;
640 struct kvm_x86_mce mce;
642 kvm_reset_exception(env);
645 * There must be at least one bank in use if an MCE is pending.
646 * Find it and use its values for the event injection.
648 for (bank = 0; bank < bank_num; bank++) {
649 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
650 break;
653 assert(bank < bank_num);
655 mce.bank = bank;
656 mce.status = env->mce_banks[bank * 4 + 1];
657 mce.mcg_status = env->mcg_status;
658 mce.addr = env->mce_banks[bank * 4 + 2];
659 mce.misc = env->mce_banks[bank * 4 + 3];
661 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
663 return 0;
666 static void cpu_update_state(void *opaque, int running, RunState state)
668 CPUX86State *env = opaque;
670 if (running) {
671 env->tsc_valid = false;
675 unsigned long kvm_arch_vcpu_id(CPUState *cs)
677 X86CPU *cpu = X86_CPU(cs);
678 return cpu->apic_id;
681 #ifndef KVM_CPUID_SIGNATURE_NEXT
682 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
683 #endif
685 static bool hyperv_enabled(X86CPU *cpu)
687 CPUState *cs = CPU(cpu);
688 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
689 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
690 cpu->hyperv_features || cpu->hyperv_passthrough);
693 static int kvm_arch_set_tsc_khz(CPUState *cs)
695 X86CPU *cpu = X86_CPU(cs);
696 CPUX86State *env = &cpu->env;
697 int r;
699 if (!env->tsc_khz) {
700 return 0;
703 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
704 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
705 -ENOTSUP;
706 if (r < 0) {
707 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
708 * TSC frequency doesn't match the one we want.
710 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
711 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
712 -ENOTSUP;
713 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
714 warn_report("TSC frequency mismatch between "
715 "VM (%" PRId64 " kHz) and host (%d kHz), "
716 "and TSC scaling unavailable",
717 env->tsc_khz, cur_freq);
718 return r;
722 return 0;
725 static bool tsc_is_stable_and_known(CPUX86State *env)
727 if (!env->tsc_khz) {
728 return false;
730 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
731 || env->user_tsc_khz;
734 static struct {
735 const char *desc;
736 struct {
737 uint32_t fw;
738 uint32_t bits;
739 } flags[2];
740 uint64_t dependencies;
741 } kvm_hyperv_properties[] = {
742 [HYPERV_FEAT_RELAXED] = {
743 .desc = "relaxed timing (hv-relaxed)",
744 .flags = {
745 {.fw = FEAT_HYPERV_EAX,
746 .bits = HV_HYPERCALL_AVAILABLE},
747 {.fw = FEAT_HV_RECOMM_EAX,
748 .bits = HV_RELAXED_TIMING_RECOMMENDED}
751 [HYPERV_FEAT_VAPIC] = {
752 .desc = "virtual APIC (hv-vapic)",
753 .flags = {
754 {.fw = FEAT_HYPERV_EAX,
755 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
756 {.fw = FEAT_HV_RECOMM_EAX,
757 .bits = HV_APIC_ACCESS_RECOMMENDED}
760 [HYPERV_FEAT_TIME] = {
761 .desc = "clocksources (hv-time)",
762 .flags = {
763 {.fw = FEAT_HYPERV_EAX,
764 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
765 HV_REFERENCE_TSC_AVAILABLE}
768 [HYPERV_FEAT_CRASH] = {
769 .desc = "crash MSRs (hv-crash)",
770 .flags = {
771 {.fw = FEAT_HYPERV_EDX,
772 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
775 [HYPERV_FEAT_RESET] = {
776 .desc = "reset MSR (hv-reset)",
777 .flags = {
778 {.fw = FEAT_HYPERV_EAX,
779 .bits = HV_RESET_AVAILABLE}
782 [HYPERV_FEAT_VPINDEX] = {
783 .desc = "VP_INDEX MSR (hv-vpindex)",
784 .flags = {
785 {.fw = FEAT_HYPERV_EAX,
786 .bits = HV_VP_INDEX_AVAILABLE}
789 [HYPERV_FEAT_RUNTIME] = {
790 .desc = "VP_RUNTIME MSR (hv-runtime)",
791 .flags = {
792 {.fw = FEAT_HYPERV_EAX,
793 .bits = HV_VP_RUNTIME_AVAILABLE}
796 [HYPERV_FEAT_SYNIC] = {
797 .desc = "synthetic interrupt controller (hv-synic)",
798 .flags = {
799 {.fw = FEAT_HYPERV_EAX,
800 .bits = HV_SYNIC_AVAILABLE}
803 [HYPERV_FEAT_STIMER] = {
804 .desc = "synthetic timers (hv-stimer)",
805 .flags = {
806 {.fw = FEAT_HYPERV_EAX,
807 .bits = HV_SYNTIMERS_AVAILABLE}
809 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
811 [HYPERV_FEAT_FREQUENCIES] = {
812 .desc = "frequency MSRs (hv-frequencies)",
813 .flags = {
814 {.fw = FEAT_HYPERV_EAX,
815 .bits = HV_ACCESS_FREQUENCY_MSRS},
816 {.fw = FEAT_HYPERV_EDX,
817 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
820 [HYPERV_FEAT_REENLIGHTENMENT] = {
821 .desc = "reenlightenment MSRs (hv-reenlightenment)",
822 .flags = {
823 {.fw = FEAT_HYPERV_EAX,
824 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
827 [HYPERV_FEAT_TLBFLUSH] = {
828 .desc = "paravirtualized TLB flush (hv-tlbflush)",
829 .flags = {
830 {.fw = FEAT_HV_RECOMM_EAX,
831 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
832 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
834 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
836 [HYPERV_FEAT_EVMCS] = {
837 .desc = "enlightened VMCS (hv-evmcs)",
838 .flags = {
839 {.fw = FEAT_HV_RECOMM_EAX,
840 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
842 .dependencies = BIT(HYPERV_FEAT_VAPIC)
844 [HYPERV_FEAT_IPI] = {
845 .desc = "paravirtualized IPI (hv-ipi)",
846 .flags = {
847 {.fw = FEAT_HV_RECOMM_EAX,
848 .bits = HV_CLUSTER_IPI_RECOMMENDED |
849 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
851 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
853 [HYPERV_FEAT_STIMER_DIRECT] = {
854 .desc = "direct mode synthetic timers (hv-stimer-direct)",
855 .flags = {
856 {.fw = FEAT_HYPERV_EDX,
857 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
859 .dependencies = BIT(HYPERV_FEAT_STIMER)
863 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
865 struct kvm_cpuid2 *cpuid;
866 int r, size;
868 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
869 cpuid = g_malloc0(size);
870 cpuid->nent = max;
872 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
873 if (r == 0 && cpuid->nent >= max) {
874 r = -E2BIG;
876 if (r < 0) {
877 if (r == -E2BIG) {
878 g_free(cpuid);
879 return NULL;
880 } else {
881 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
882 strerror(-r));
883 exit(1);
886 return cpuid;
890 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
891 * for all entries.
893 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
895 struct kvm_cpuid2 *cpuid;
896 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
899 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
900 * -E2BIG, however, it doesn't report back the right size. Keep increasing
901 * it and re-trying until we succeed.
903 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
904 max++;
906 return cpuid;
910 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
911 * leaves from KVM_CAP_HYPERV* and present MSRs data.
913 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
915 X86CPU *cpu = X86_CPU(cs);
916 struct kvm_cpuid2 *cpuid;
917 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
919 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
920 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
921 cpuid->nent = 2;
923 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
924 entry_feat = &cpuid->entries[0];
925 entry_feat->function = HV_CPUID_FEATURES;
927 entry_recomm = &cpuid->entries[1];
928 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
929 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
931 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
932 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
933 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
934 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
935 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
936 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
939 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
940 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
941 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
944 if (has_msr_hv_frequencies) {
945 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
946 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
949 if (has_msr_hv_crash) {
950 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
953 if (has_msr_hv_reenlightenment) {
954 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
957 if (has_msr_hv_reset) {
958 entry_feat->eax |= HV_RESET_AVAILABLE;
961 if (has_msr_hv_vpindex) {
962 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
965 if (has_msr_hv_runtime) {
966 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
969 if (has_msr_hv_synic) {
970 unsigned int cap = cpu->hyperv_synic_kvm_only ?
971 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
973 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
974 entry_feat->eax |= HV_SYNIC_AVAILABLE;
978 if (has_msr_hv_stimer) {
979 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
982 if (kvm_check_extension(cs->kvm_state,
983 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
984 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
985 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
988 if (kvm_check_extension(cs->kvm_state,
989 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
990 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
993 if (kvm_check_extension(cs->kvm_state,
994 KVM_CAP_HYPERV_SEND_IPI) > 0) {
995 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
996 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
999 return cpuid;
1002 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1004 struct kvm_cpuid_entry2 *entry;
1005 uint32_t func;
1006 int reg;
1008 switch (fw) {
1009 case FEAT_HYPERV_EAX:
1010 reg = R_EAX;
1011 func = HV_CPUID_FEATURES;
1012 break;
1013 case FEAT_HYPERV_EDX:
1014 reg = R_EDX;
1015 func = HV_CPUID_FEATURES;
1016 break;
1017 case FEAT_HV_RECOMM_EAX:
1018 reg = R_EAX;
1019 func = HV_CPUID_ENLIGHTMENT_INFO;
1020 break;
1021 default:
1022 return -EINVAL;
1025 entry = cpuid_find_entry(cpuid, func, 0);
1026 if (!entry) {
1027 return -ENOENT;
1030 switch (reg) {
1031 case R_EAX:
1032 *r = entry->eax;
1033 break;
1034 case R_EDX:
1035 *r = entry->edx;
1036 break;
1037 default:
1038 return -EINVAL;
1041 return 0;
1044 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1045 int feature)
1047 X86CPU *cpu = X86_CPU(cs);
1048 CPUX86State *env = &cpu->env;
1049 uint32_t r, fw, bits;
1050 uint64_t deps;
1051 int i, dep_feat;
1053 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1054 return 0;
1057 deps = kvm_hyperv_properties[feature].dependencies;
1058 while (deps) {
1059 dep_feat = ctz64(deps);
1060 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1061 fprintf(stderr,
1062 "Hyper-V %s requires Hyper-V %s\n",
1063 kvm_hyperv_properties[feature].desc,
1064 kvm_hyperv_properties[dep_feat].desc);
1065 return 1;
1067 deps &= ~(1ull << dep_feat);
1070 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1071 fw = kvm_hyperv_properties[feature].flags[i].fw;
1072 bits = kvm_hyperv_properties[feature].flags[i].bits;
1074 if (!fw) {
1075 continue;
1078 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1079 if (hyperv_feat_enabled(cpu, feature)) {
1080 fprintf(stderr,
1081 "Hyper-V %s is not supported by kernel\n",
1082 kvm_hyperv_properties[feature].desc);
1083 return 1;
1084 } else {
1085 return 0;
1089 env->features[fw] |= bits;
1092 if (cpu->hyperv_passthrough) {
1093 cpu->hyperv_features |= BIT(feature);
1096 return 0;
1100 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1101 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1102 * extentions are enabled.
1104 static int hyperv_handle_properties(CPUState *cs,
1105 struct kvm_cpuid_entry2 *cpuid_ent)
1107 X86CPU *cpu = X86_CPU(cs);
1108 CPUX86State *env = &cpu->env;
1109 struct kvm_cpuid2 *cpuid;
1110 struct kvm_cpuid_entry2 *c;
1111 uint32_t signature[3];
1112 uint32_t cpuid_i = 0;
1113 int r;
1115 if (!hyperv_enabled(cpu))
1116 return 0;
1118 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1119 cpu->hyperv_passthrough) {
1120 uint16_t evmcs_version;
1122 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1123 (uintptr_t)&evmcs_version);
1125 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1126 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1127 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1128 return -ENOSYS;
1131 if (!r) {
1132 env->features[FEAT_HV_RECOMM_EAX] |=
1133 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1134 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1138 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1139 cpuid = get_supported_hv_cpuid(cs);
1140 } else {
1141 cpuid = get_supported_hv_cpuid_legacy(cs);
1144 if (cpu->hyperv_passthrough) {
1145 memcpy(cpuid_ent, &cpuid->entries[0],
1146 cpuid->nent * sizeof(cpuid->entries[0]));
1148 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1149 if (c) {
1150 env->features[FEAT_HYPERV_EAX] = c->eax;
1151 env->features[FEAT_HYPERV_EBX] = c->ebx;
1152 env->features[FEAT_HYPERV_EDX] = c->eax;
1154 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1155 if (c) {
1156 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1158 /* hv-spinlocks may have been overriden */
1159 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1160 c->ebx = cpu->hyperv_spinlock_attempts;
1163 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1164 if (c) {
1165 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1169 /* Features */
1170 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1171 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1172 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1173 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1174 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1175 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1176 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1177 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1178 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1179 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1180 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1181 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1182 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1183 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1184 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1186 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1187 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1188 !cpu->hyperv_synic_kvm_only &&
1189 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1190 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1191 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1192 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1193 r |= 1;
1196 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1197 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1199 if (r) {
1200 r = -ENOSYS;
1201 goto free;
1204 if (cpu->hyperv_passthrough) {
1205 /* We already copied all feature words from KVM as is */
1206 r = cpuid->nent;
1207 goto free;
1210 c = &cpuid_ent[cpuid_i++];
1211 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1212 if (!cpu->hyperv_vendor_id) {
1213 memcpy(signature, "Microsoft Hv", 12);
1214 } else {
1215 size_t len = strlen(cpu->hyperv_vendor_id);
1217 if (len > 12) {
1218 error_report("hv-vendor-id truncated to 12 characters");
1219 len = 12;
1221 memset(signature, 0, 12);
1222 memcpy(signature, cpu->hyperv_vendor_id, len);
1224 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1225 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1226 c->ebx = signature[0];
1227 c->ecx = signature[1];
1228 c->edx = signature[2];
1230 c = &cpuid_ent[cpuid_i++];
1231 c->function = HV_CPUID_INTERFACE;
1232 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1233 c->eax = signature[0];
1234 c->ebx = 0;
1235 c->ecx = 0;
1236 c->edx = 0;
1238 c = &cpuid_ent[cpuid_i++];
1239 c->function = HV_CPUID_VERSION;
1240 c->eax = 0x00001bbc;
1241 c->ebx = 0x00060001;
1243 c = &cpuid_ent[cpuid_i++];
1244 c->function = HV_CPUID_FEATURES;
1245 c->eax = env->features[FEAT_HYPERV_EAX];
1246 c->ebx = env->features[FEAT_HYPERV_EBX];
1247 c->edx = env->features[FEAT_HYPERV_EDX];
1249 c = &cpuid_ent[cpuid_i++];
1250 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1251 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1252 c->ebx = cpu->hyperv_spinlock_attempts;
1254 c = &cpuid_ent[cpuid_i++];
1255 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1256 c->eax = cpu->hv_max_vps;
1257 c->ebx = 0x40;
1259 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1260 __u32 function;
1262 /* Create zeroed 0x40000006..0x40000009 leaves */
1263 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1264 function < HV_CPUID_NESTED_FEATURES; function++) {
1265 c = &cpuid_ent[cpuid_i++];
1266 c->function = function;
1269 c = &cpuid_ent[cpuid_i++];
1270 c->function = HV_CPUID_NESTED_FEATURES;
1271 c->eax = env->features[FEAT_HV_NESTED_EAX];
1273 r = cpuid_i;
1275 free:
1276 g_free(cpuid);
1278 return r;
1281 static Error *hv_passthrough_mig_blocker;
1283 static int hyperv_init_vcpu(X86CPU *cpu)
1285 CPUState *cs = CPU(cpu);
1286 Error *local_err = NULL;
1287 int ret;
1289 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1290 error_setg(&hv_passthrough_mig_blocker,
1291 "'hv-passthrough' CPU flag prevents migration, use explicit"
1292 " set of hv-* flags instead");
1293 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1294 if (local_err) {
1295 error_report_err(local_err);
1296 error_free(hv_passthrough_mig_blocker);
1297 return ret;
1301 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1303 * the kernel doesn't support setting vp_index; assert that its value
1304 * is in sync
1306 struct {
1307 struct kvm_msrs info;
1308 struct kvm_msr_entry entries[1];
1309 } msr_data = {
1310 .info.nmsrs = 1,
1311 .entries[0].index = HV_X64_MSR_VP_INDEX,
1314 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1315 if (ret < 0) {
1316 return ret;
1318 assert(ret == 1);
1320 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1321 error_report("kernel's vp_index != QEMU's vp_index");
1322 return -ENXIO;
1326 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1327 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1328 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1329 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1330 if (ret < 0) {
1331 error_report("failed to turn on HyperV SynIC in KVM: %s",
1332 strerror(-ret));
1333 return ret;
1336 if (!cpu->hyperv_synic_kvm_only) {
1337 ret = hyperv_x86_synic_add(cpu);
1338 if (ret < 0) {
1339 error_report("failed to create HyperV SynIC: %s",
1340 strerror(-ret));
1341 return ret;
1346 return 0;
1349 static Error *invtsc_mig_blocker;
1351 #define KVM_MAX_CPUID_ENTRIES 100
1353 int kvm_arch_init_vcpu(CPUState *cs)
1355 struct {
1356 struct kvm_cpuid2 cpuid;
1357 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1358 } cpuid_data;
1360 * The kernel defines these structs with padding fields so there
1361 * should be no extra padding in our cpuid_data struct.
1363 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1364 sizeof(struct kvm_cpuid2) +
1365 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1367 X86CPU *cpu = X86_CPU(cs);
1368 CPUX86State *env = &cpu->env;
1369 uint32_t limit, i, j, cpuid_i;
1370 uint32_t unused;
1371 struct kvm_cpuid_entry2 *c;
1372 uint32_t signature[3];
1373 int kvm_base = KVM_CPUID_SIGNATURE;
1374 int max_nested_state_len;
1375 int r;
1376 Error *local_err = NULL;
1378 memset(&cpuid_data, 0, sizeof(cpuid_data));
1380 cpuid_i = 0;
1382 r = kvm_arch_set_tsc_khz(cs);
1383 if (r < 0) {
1384 return r;
1387 /* vcpu's TSC frequency is either specified by user, or following
1388 * the value used by KVM if the former is not present. In the
1389 * latter case, we query it from KVM and record in env->tsc_khz,
1390 * so that vcpu's TSC frequency can be migrated later via this field.
1392 if (!env->tsc_khz) {
1393 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1394 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1395 -ENOTSUP;
1396 if (r > 0) {
1397 env->tsc_khz = r;
1401 /* Paravirtualization CPUIDs */
1402 r = hyperv_handle_properties(cs, cpuid_data.entries);
1403 if (r < 0) {
1404 return r;
1405 } else if (r > 0) {
1406 cpuid_i = r;
1407 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1408 has_msr_hv_hypercall = true;
1411 if (cpu->expose_kvm) {
1412 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1413 c = &cpuid_data.entries[cpuid_i++];
1414 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1415 c->eax = KVM_CPUID_FEATURES | kvm_base;
1416 c->ebx = signature[0];
1417 c->ecx = signature[1];
1418 c->edx = signature[2];
1420 c = &cpuid_data.entries[cpuid_i++];
1421 c->function = KVM_CPUID_FEATURES | kvm_base;
1422 c->eax = env->features[FEAT_KVM];
1423 c->edx = env->features[FEAT_KVM_HINTS];
1426 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1428 for (i = 0; i <= limit; i++) {
1429 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1430 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1431 abort();
1433 c = &cpuid_data.entries[cpuid_i++];
1435 switch (i) {
1436 case 2: {
1437 /* Keep reading function 2 till all the input is received */
1438 int times;
1440 c->function = i;
1441 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1442 KVM_CPUID_FLAG_STATE_READ_NEXT;
1443 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1444 times = c->eax & 0xff;
1446 for (j = 1; j < times; ++j) {
1447 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1448 fprintf(stderr, "cpuid_data is full, no space for "
1449 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1450 abort();
1452 c = &cpuid_data.entries[cpuid_i++];
1453 c->function = i;
1454 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1455 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1457 break;
1459 case 0x1f:
1460 if (env->nr_dies < 2) {
1461 break;
1463 case 4:
1464 case 0xb:
1465 case 0xd:
1466 for (j = 0; ; j++) {
1467 if (i == 0xd && j == 64) {
1468 break;
1471 if (i == 0x1f && j == 64) {
1472 break;
1475 c->function = i;
1476 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1477 c->index = j;
1478 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1480 if (i == 4 && c->eax == 0) {
1481 break;
1483 if (i == 0xb && !(c->ecx & 0xff00)) {
1484 break;
1486 if (i == 0x1f && !(c->ecx & 0xff00)) {
1487 break;
1489 if (i == 0xd && c->eax == 0) {
1490 continue;
1492 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1493 fprintf(stderr, "cpuid_data is full, no space for "
1494 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1495 abort();
1497 c = &cpuid_data.entries[cpuid_i++];
1499 break;
1500 case 0x14: {
1501 uint32_t times;
1503 c->function = i;
1504 c->index = 0;
1505 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1506 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1507 times = c->eax;
1509 for (j = 1; j <= times; ++j) {
1510 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1511 fprintf(stderr, "cpuid_data is full, no space for "
1512 "cpuid(eax:0x14,ecx:0x%x)\n", j);
1513 abort();
1515 c = &cpuid_data.entries[cpuid_i++];
1516 c->function = i;
1517 c->index = j;
1518 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1519 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1521 break;
1523 default:
1524 c->function = i;
1525 c->flags = 0;
1526 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1527 break;
1531 if (limit >= 0x0a) {
1532 uint32_t eax, edx;
1534 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1536 has_architectural_pmu_version = eax & 0xff;
1537 if (has_architectural_pmu_version > 0) {
1538 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1540 /* Shouldn't be more than 32, since that's the number of bits
1541 * available in EBX to tell us _which_ counters are available.
1542 * Play it safe.
1544 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1545 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1548 if (has_architectural_pmu_version > 1) {
1549 num_architectural_pmu_fixed_counters = edx & 0x1f;
1551 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1552 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1558 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1560 for (i = 0x80000000; i <= limit; i++) {
1561 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1562 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1563 abort();
1565 c = &cpuid_data.entries[cpuid_i++];
1567 switch (i) {
1568 case 0x8000001d:
1569 /* Query for all AMD cache information leaves */
1570 for (j = 0; ; j++) {
1571 c->function = i;
1572 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1573 c->index = j;
1574 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1576 if (c->eax == 0) {
1577 break;
1579 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1580 fprintf(stderr, "cpuid_data is full, no space for "
1581 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1582 abort();
1584 c = &cpuid_data.entries[cpuid_i++];
1586 break;
1587 default:
1588 c->function = i;
1589 c->flags = 0;
1590 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1591 break;
1595 /* Call Centaur's CPUID instructions they are supported. */
1596 if (env->cpuid_xlevel2 > 0) {
1597 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1599 for (i = 0xC0000000; i <= limit; i++) {
1600 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1601 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1602 abort();
1604 c = &cpuid_data.entries[cpuid_i++];
1606 c->function = i;
1607 c->flags = 0;
1608 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1612 cpuid_data.cpuid.nent = cpuid_i;
1614 if (((env->cpuid_version >> 8)&0xF) >= 6
1615 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1616 (CPUID_MCE | CPUID_MCA)
1617 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1618 uint64_t mcg_cap, unsupported_caps;
1619 int banks;
1620 int ret;
1622 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1623 if (ret < 0) {
1624 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1625 return ret;
1628 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1629 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1630 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1631 return -ENOTSUP;
1634 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1635 if (unsupported_caps) {
1636 if (unsupported_caps & MCG_LMCE_P) {
1637 error_report("kvm: LMCE not supported");
1638 return -ENOTSUP;
1640 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1641 unsupported_caps);
1644 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1645 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1646 if (ret < 0) {
1647 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1648 return ret;
1652 qemu_add_vm_change_state_handler(cpu_update_state, env);
1654 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1655 if (c) {
1656 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1657 !!(c->ecx & CPUID_EXT_SMX);
1660 if (env->mcg_cap & MCG_LMCE_P) {
1661 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1664 if (!env->user_tsc_khz) {
1665 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1666 invtsc_mig_blocker == NULL) {
1667 error_setg(&invtsc_mig_blocker,
1668 "State blocked by non-migratable CPU device"
1669 " (invtsc flag)");
1670 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1671 if (local_err) {
1672 error_report_err(local_err);
1673 error_free(invtsc_mig_blocker);
1674 return r;
1679 if (cpu->vmware_cpuid_freq
1680 /* Guests depend on 0x40000000 to detect this feature, so only expose
1681 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1682 && cpu->expose_kvm
1683 && kvm_base == KVM_CPUID_SIGNATURE
1684 /* TSC clock must be stable and known for this feature. */
1685 && tsc_is_stable_and_known(env)) {
1687 c = &cpuid_data.entries[cpuid_i++];
1688 c->function = KVM_CPUID_SIGNATURE | 0x10;
1689 c->eax = env->tsc_khz;
1690 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1691 * APIC_BUS_CYCLE_NS */
1692 c->ebx = 1000000;
1693 c->ecx = c->edx = 0;
1695 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1696 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1699 cpuid_data.cpuid.nent = cpuid_i;
1701 cpuid_data.cpuid.padding = 0;
1702 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1703 if (r) {
1704 goto fail;
1707 if (has_xsave) {
1708 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1711 max_nested_state_len = kvm_max_nested_state_length();
1712 if (max_nested_state_len > 0) {
1713 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1715 if (cpu_has_vmx(env)) {
1716 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1718 env->nested_state = g_malloc0(max_nested_state_len);
1719 env->nested_state->size = max_nested_state_len;
1720 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1722 vmx_hdr = &env->nested_state->hdr.vmx;
1723 vmx_hdr->vmxon_pa = -1ull;
1724 vmx_hdr->vmcs12_pa = -1ull;
1728 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1730 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1731 has_msr_tsc_aux = false;
1734 r = hyperv_init_vcpu(cpu);
1735 if (r) {
1736 goto fail;
1739 return 0;
1741 fail:
1742 migrate_del_blocker(invtsc_mig_blocker);
1744 return r;
1747 int kvm_arch_destroy_vcpu(CPUState *cs)
1749 X86CPU *cpu = X86_CPU(cs);
1750 CPUX86State *env = &cpu->env;
1752 if (cpu->kvm_msr_buf) {
1753 g_free(cpu->kvm_msr_buf);
1754 cpu->kvm_msr_buf = NULL;
1757 if (env->nested_state) {
1758 g_free(env->nested_state);
1759 env->nested_state = NULL;
1762 return 0;
1765 void kvm_arch_reset_vcpu(X86CPU *cpu)
1767 CPUX86State *env = &cpu->env;
1769 env->xcr0 = 1;
1770 if (kvm_irqchip_in_kernel()) {
1771 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1772 KVM_MP_STATE_UNINITIALIZED;
1773 } else {
1774 env->mp_state = KVM_MP_STATE_RUNNABLE;
1777 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1778 int i;
1779 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1780 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1783 hyperv_x86_synic_reset(cpu);
1787 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1789 CPUX86State *env = &cpu->env;
1791 /* APs get directly into wait-for-SIPI state. */
1792 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1793 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1797 static int kvm_get_supported_feature_msrs(KVMState *s)
1799 int ret = 0;
1801 if (kvm_feature_msrs != NULL) {
1802 return 0;
1805 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1806 return 0;
1809 struct kvm_msr_list msr_list;
1811 msr_list.nmsrs = 0;
1812 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1813 if (ret < 0 && ret != -E2BIG) {
1814 error_report("Fetch KVM feature MSR list failed: %s",
1815 strerror(-ret));
1816 return ret;
1819 assert(msr_list.nmsrs > 0);
1820 kvm_feature_msrs = (struct kvm_msr_list *) \
1821 g_malloc0(sizeof(msr_list) +
1822 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1824 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1825 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1827 if (ret < 0) {
1828 error_report("Fetch KVM feature MSR list failed: %s",
1829 strerror(-ret));
1830 g_free(kvm_feature_msrs);
1831 kvm_feature_msrs = NULL;
1832 return ret;
1835 return 0;
1838 static int kvm_get_supported_msrs(KVMState *s)
1840 static int kvm_supported_msrs;
1841 int ret = 0;
1843 /* first time */
1844 if (kvm_supported_msrs == 0) {
1845 struct kvm_msr_list msr_list, *kvm_msr_list;
1847 kvm_supported_msrs = -1;
1849 /* Obtain MSR list from KVM. These are the MSRs that we must
1850 * save/restore */
1851 msr_list.nmsrs = 0;
1852 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1853 if (ret < 0 && ret != -E2BIG) {
1854 return ret;
1856 /* Old kernel modules had a bug and could write beyond the provided
1857 memory. Allocate at least a safe amount of 1K. */
1858 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1859 msr_list.nmsrs *
1860 sizeof(msr_list.indices[0])));
1862 kvm_msr_list->nmsrs = msr_list.nmsrs;
1863 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1864 if (ret >= 0) {
1865 int i;
1867 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1868 switch (kvm_msr_list->indices[i]) {
1869 case MSR_STAR:
1870 has_msr_star = true;
1871 break;
1872 case MSR_VM_HSAVE_PA:
1873 has_msr_hsave_pa = true;
1874 break;
1875 case MSR_TSC_AUX:
1876 has_msr_tsc_aux = true;
1877 break;
1878 case MSR_TSC_ADJUST:
1879 has_msr_tsc_adjust = true;
1880 break;
1881 case MSR_IA32_TSCDEADLINE:
1882 has_msr_tsc_deadline = true;
1883 break;
1884 case MSR_IA32_SMBASE:
1885 has_msr_smbase = true;
1886 break;
1887 case MSR_SMI_COUNT:
1888 has_msr_smi_count = true;
1889 break;
1890 case MSR_IA32_MISC_ENABLE:
1891 has_msr_misc_enable = true;
1892 break;
1893 case MSR_IA32_BNDCFGS:
1894 has_msr_bndcfgs = true;
1895 break;
1896 case MSR_IA32_XSS:
1897 has_msr_xss = true;
1898 break;
1899 case HV_X64_MSR_CRASH_CTL:
1900 has_msr_hv_crash = true;
1901 break;
1902 case HV_X64_MSR_RESET:
1903 has_msr_hv_reset = true;
1904 break;
1905 case HV_X64_MSR_VP_INDEX:
1906 has_msr_hv_vpindex = true;
1907 break;
1908 case HV_X64_MSR_VP_RUNTIME:
1909 has_msr_hv_runtime = true;
1910 break;
1911 case HV_X64_MSR_SCONTROL:
1912 has_msr_hv_synic = true;
1913 break;
1914 case HV_X64_MSR_STIMER0_CONFIG:
1915 has_msr_hv_stimer = true;
1916 break;
1917 case HV_X64_MSR_TSC_FREQUENCY:
1918 has_msr_hv_frequencies = true;
1919 break;
1920 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1921 has_msr_hv_reenlightenment = true;
1922 break;
1923 case MSR_IA32_SPEC_CTRL:
1924 has_msr_spec_ctrl = true;
1925 break;
1926 case MSR_VIRT_SSBD:
1927 has_msr_virt_ssbd = true;
1928 break;
1929 case MSR_IA32_ARCH_CAPABILITIES:
1930 has_msr_arch_capabs = true;
1931 break;
1932 case MSR_IA32_CORE_CAPABILITY:
1933 has_msr_core_capabs = true;
1934 break;
1939 g_free(kvm_msr_list);
1942 return ret;
1945 static Notifier smram_machine_done;
1946 static KVMMemoryListener smram_listener;
1947 static AddressSpace smram_address_space;
1948 static MemoryRegion smram_as_root;
1949 static MemoryRegion smram_as_mem;
1951 static void register_smram_listener(Notifier *n, void *unused)
1953 MemoryRegion *smram =
1954 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1956 /* Outer container... */
1957 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1958 memory_region_set_enabled(&smram_as_root, true);
1960 /* ... with two regions inside: normal system memory with low
1961 * priority, and...
1963 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1964 get_system_memory(), 0, ~0ull);
1965 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1966 memory_region_set_enabled(&smram_as_mem, true);
1968 if (smram) {
1969 /* ... SMRAM with higher priority */
1970 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1971 memory_region_set_enabled(smram, true);
1974 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1975 kvm_memory_listener_register(kvm_state, &smram_listener,
1976 &smram_address_space, 1);
1979 int kvm_arch_init(MachineState *ms, KVMState *s)
1981 uint64_t identity_base = 0xfffbc000;
1982 uint64_t shadow_mem;
1983 int ret;
1984 struct utsname utsname;
1986 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1987 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1988 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1990 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1992 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
1993 if (has_exception_payload) {
1994 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
1995 if (ret < 0) {
1996 error_report("kvm: Failed to enable exception payload cap: %s",
1997 strerror(-ret));
1998 return ret;
2002 ret = kvm_get_supported_msrs(s);
2003 if (ret < 0) {
2004 return ret;
2007 kvm_get_supported_feature_msrs(s);
2009 uname(&utsname);
2010 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2013 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2014 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2015 * Since these must be part of guest physical memory, we need to allocate
2016 * them, both by setting their start addresses in the kernel and by
2017 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2019 * Older KVM versions may not support setting the identity map base. In
2020 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2021 * size.
2023 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2024 /* Allows up to 16M BIOSes. */
2025 identity_base = 0xfeffc000;
2027 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2028 if (ret < 0) {
2029 return ret;
2033 /* Set TSS base one page after EPT identity map. */
2034 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2035 if (ret < 0) {
2036 return ret;
2039 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2040 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2041 if (ret < 0) {
2042 fprintf(stderr, "e820_add_entry() table is full\n");
2043 return ret;
2045 qemu_register_reset(kvm_unpoison_all, NULL);
2047 shadow_mem = machine_kvm_shadow_mem(ms);
2048 if (shadow_mem != -1) {
2049 shadow_mem /= 4096;
2050 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2051 if (ret < 0) {
2052 return ret;
2056 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2057 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2058 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
2059 smram_machine_done.notify = register_smram_listener;
2060 qemu_add_machine_init_done_notifier(&smram_machine_done);
2063 if (enable_cpu_pm) {
2064 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2065 int ret;
2067 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2068 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2069 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2070 #endif
2071 if (disable_exits) {
2072 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2073 KVM_X86_DISABLE_EXITS_HLT |
2074 KVM_X86_DISABLE_EXITS_PAUSE);
2077 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2078 disable_exits);
2079 if (ret < 0) {
2080 error_report("kvm: guest stopping CPU not supported: %s",
2081 strerror(-ret));
2085 return 0;
2088 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2090 lhs->selector = rhs->selector;
2091 lhs->base = rhs->base;
2092 lhs->limit = rhs->limit;
2093 lhs->type = 3;
2094 lhs->present = 1;
2095 lhs->dpl = 3;
2096 lhs->db = 0;
2097 lhs->s = 1;
2098 lhs->l = 0;
2099 lhs->g = 0;
2100 lhs->avl = 0;
2101 lhs->unusable = 0;
2104 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2106 unsigned flags = rhs->flags;
2107 lhs->selector = rhs->selector;
2108 lhs->base = rhs->base;
2109 lhs->limit = rhs->limit;
2110 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2111 lhs->present = (flags & DESC_P_MASK) != 0;
2112 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2113 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2114 lhs->s = (flags & DESC_S_MASK) != 0;
2115 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2116 lhs->g = (flags & DESC_G_MASK) != 0;
2117 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2118 lhs->unusable = !lhs->present;
2119 lhs->padding = 0;
2122 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2124 lhs->selector = rhs->selector;
2125 lhs->base = rhs->base;
2126 lhs->limit = rhs->limit;
2127 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2128 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2129 (rhs->dpl << DESC_DPL_SHIFT) |
2130 (rhs->db << DESC_B_SHIFT) |
2131 (rhs->s * DESC_S_MASK) |
2132 (rhs->l << DESC_L_SHIFT) |
2133 (rhs->g * DESC_G_MASK) |
2134 (rhs->avl * DESC_AVL_MASK);
2137 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2139 if (set) {
2140 *kvm_reg = *qemu_reg;
2141 } else {
2142 *qemu_reg = *kvm_reg;
2146 static int kvm_getput_regs(X86CPU *cpu, int set)
2148 CPUX86State *env = &cpu->env;
2149 struct kvm_regs regs;
2150 int ret = 0;
2152 if (!set) {
2153 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2154 if (ret < 0) {
2155 return ret;
2159 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2160 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2161 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2162 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2163 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2164 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2165 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2166 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2167 #ifdef TARGET_X86_64
2168 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2169 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2170 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2171 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2172 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2173 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2174 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2175 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2176 #endif
2178 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2179 kvm_getput_reg(&regs.rip, &env->eip, set);
2181 if (set) {
2182 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2185 return ret;
2188 static int kvm_put_fpu(X86CPU *cpu)
2190 CPUX86State *env = &cpu->env;
2191 struct kvm_fpu fpu;
2192 int i;
2194 memset(&fpu, 0, sizeof fpu);
2195 fpu.fsw = env->fpus & ~(7 << 11);
2196 fpu.fsw |= (env->fpstt & 7) << 11;
2197 fpu.fcw = env->fpuc;
2198 fpu.last_opcode = env->fpop;
2199 fpu.last_ip = env->fpip;
2200 fpu.last_dp = env->fpdp;
2201 for (i = 0; i < 8; ++i) {
2202 fpu.ftwx |= (!env->fptags[i]) << i;
2204 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2205 for (i = 0; i < CPU_NB_REGS; i++) {
2206 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2207 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2209 fpu.mxcsr = env->mxcsr;
2211 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2214 #define XSAVE_FCW_FSW 0
2215 #define XSAVE_FTW_FOP 1
2216 #define XSAVE_CWD_RIP 2
2217 #define XSAVE_CWD_RDP 4
2218 #define XSAVE_MXCSR 6
2219 #define XSAVE_ST_SPACE 8
2220 #define XSAVE_XMM_SPACE 40
2221 #define XSAVE_XSTATE_BV 128
2222 #define XSAVE_YMMH_SPACE 144
2223 #define XSAVE_BNDREGS 240
2224 #define XSAVE_BNDCSR 256
2225 #define XSAVE_OPMASK 272
2226 #define XSAVE_ZMM_Hi256 288
2227 #define XSAVE_Hi16_ZMM 416
2228 #define XSAVE_PKRU 672
2230 #define XSAVE_BYTE_OFFSET(word_offset) \
2231 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2233 #define ASSERT_OFFSET(word_offset, field) \
2234 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2235 offsetof(X86XSaveArea, field))
2237 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2238 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2239 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2240 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2241 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2242 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2243 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2244 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2245 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2246 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2247 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2248 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2249 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2250 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2251 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2253 static int kvm_put_xsave(X86CPU *cpu)
2255 CPUX86State *env = &cpu->env;
2256 X86XSaveArea *xsave = env->xsave_buf;
2258 if (!has_xsave) {
2259 return kvm_put_fpu(cpu);
2261 x86_cpu_xsave_all_areas(cpu, xsave);
2263 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2266 static int kvm_put_xcrs(X86CPU *cpu)
2268 CPUX86State *env = &cpu->env;
2269 struct kvm_xcrs xcrs = {};
2271 if (!has_xcrs) {
2272 return 0;
2275 xcrs.nr_xcrs = 1;
2276 xcrs.flags = 0;
2277 xcrs.xcrs[0].xcr = 0;
2278 xcrs.xcrs[0].value = env->xcr0;
2279 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2282 static int kvm_put_sregs(X86CPU *cpu)
2284 CPUX86State *env = &cpu->env;
2285 struct kvm_sregs sregs;
2287 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2288 if (env->interrupt_injected >= 0) {
2289 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2290 (uint64_t)1 << (env->interrupt_injected % 64);
2293 if ((env->eflags & VM_MASK)) {
2294 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2295 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2296 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2297 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2298 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2299 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2300 } else {
2301 set_seg(&sregs.cs, &env->segs[R_CS]);
2302 set_seg(&sregs.ds, &env->segs[R_DS]);
2303 set_seg(&sregs.es, &env->segs[R_ES]);
2304 set_seg(&sregs.fs, &env->segs[R_FS]);
2305 set_seg(&sregs.gs, &env->segs[R_GS]);
2306 set_seg(&sregs.ss, &env->segs[R_SS]);
2309 set_seg(&sregs.tr, &env->tr);
2310 set_seg(&sregs.ldt, &env->ldt);
2312 sregs.idt.limit = env->idt.limit;
2313 sregs.idt.base = env->idt.base;
2314 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2315 sregs.gdt.limit = env->gdt.limit;
2316 sregs.gdt.base = env->gdt.base;
2317 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2319 sregs.cr0 = env->cr[0];
2320 sregs.cr2 = env->cr[2];
2321 sregs.cr3 = env->cr[3];
2322 sregs.cr4 = env->cr[4];
2324 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2325 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2327 sregs.efer = env->efer;
2329 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2332 static void kvm_msr_buf_reset(X86CPU *cpu)
2334 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2337 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2339 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2340 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2341 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2343 assert((void *)(entry + 1) <= limit);
2345 entry->index = index;
2346 entry->reserved = 0;
2347 entry->data = value;
2348 msrs->nmsrs++;
2351 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2353 kvm_msr_buf_reset(cpu);
2354 kvm_msr_entry_add(cpu, index, value);
2356 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2359 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2361 int ret;
2363 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2364 assert(ret == 1);
2367 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2369 CPUX86State *env = &cpu->env;
2370 int ret;
2372 if (!has_msr_tsc_deadline) {
2373 return 0;
2376 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2377 if (ret < 0) {
2378 return ret;
2381 assert(ret == 1);
2382 return 0;
2386 * Provide a separate write service for the feature control MSR in order to
2387 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2388 * before writing any other state because forcibly leaving nested mode
2389 * invalidates the VCPU state.
2391 static int kvm_put_msr_feature_control(X86CPU *cpu)
2393 int ret;
2395 if (!has_msr_feature_control) {
2396 return 0;
2399 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2400 cpu->env.msr_ia32_feature_control);
2401 if (ret < 0) {
2402 return ret;
2405 assert(ret == 1);
2406 return 0;
2409 static int kvm_put_msrs(X86CPU *cpu, int level)
2411 CPUX86State *env = &cpu->env;
2412 int i;
2413 int ret;
2415 kvm_msr_buf_reset(cpu);
2417 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2418 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2419 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2420 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2421 if (has_msr_star) {
2422 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2424 if (has_msr_hsave_pa) {
2425 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2427 if (has_msr_tsc_aux) {
2428 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2430 if (has_msr_tsc_adjust) {
2431 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2433 if (has_msr_misc_enable) {
2434 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2435 env->msr_ia32_misc_enable);
2437 if (has_msr_smbase) {
2438 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2440 if (has_msr_smi_count) {
2441 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2443 if (has_msr_bndcfgs) {
2444 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2446 if (has_msr_xss) {
2447 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2449 if (has_msr_spec_ctrl) {
2450 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2452 if (has_msr_virt_ssbd) {
2453 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2456 #ifdef TARGET_X86_64
2457 if (lm_capable_kernel) {
2458 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2459 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2460 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2461 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2463 #endif
2465 /* If host supports feature MSR, write down. */
2466 if (has_msr_arch_capabs) {
2467 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2468 env->features[FEAT_ARCH_CAPABILITIES]);
2471 if (has_msr_core_capabs) {
2472 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2473 env->features[FEAT_CORE_CAPABILITY]);
2477 * The following MSRs have side effects on the guest or are too heavy
2478 * for normal writeback. Limit them to reset or full state updates.
2480 if (level >= KVM_PUT_RESET_STATE) {
2481 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2482 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2483 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2484 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2485 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2487 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2488 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2490 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2491 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2493 if (has_architectural_pmu_version > 0) {
2494 if (has_architectural_pmu_version > 1) {
2495 /* Stop the counter. */
2496 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2497 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2500 /* Set the counter values. */
2501 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2502 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2503 env->msr_fixed_counters[i]);
2505 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2506 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2507 env->msr_gp_counters[i]);
2508 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2509 env->msr_gp_evtsel[i]);
2511 if (has_architectural_pmu_version > 1) {
2512 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2513 env->msr_global_status);
2514 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2515 env->msr_global_ovf_ctrl);
2517 /* Now start the PMU. */
2518 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2519 env->msr_fixed_ctr_ctrl);
2520 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2521 env->msr_global_ctrl);
2525 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2526 * only sync them to KVM on the first cpu
2528 if (current_cpu == first_cpu) {
2529 if (has_msr_hv_hypercall) {
2530 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2531 env->msr_hv_guest_os_id);
2532 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2533 env->msr_hv_hypercall);
2535 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2536 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2537 env->msr_hv_tsc);
2539 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2540 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2541 env->msr_hv_reenlightenment_control);
2542 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2543 env->msr_hv_tsc_emulation_control);
2544 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2545 env->msr_hv_tsc_emulation_status);
2548 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2549 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2550 env->msr_hv_vapic);
2552 if (has_msr_hv_crash) {
2553 int j;
2555 for (j = 0; j < HV_CRASH_PARAMS; j++)
2556 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2557 env->msr_hv_crash_params[j]);
2559 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2561 if (has_msr_hv_runtime) {
2562 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2564 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2565 && hv_vpindex_settable) {
2566 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2567 hyperv_vp_index(CPU(cpu)));
2569 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2570 int j;
2572 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2574 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2575 env->msr_hv_synic_control);
2576 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2577 env->msr_hv_synic_evt_page);
2578 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2579 env->msr_hv_synic_msg_page);
2581 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2582 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2583 env->msr_hv_synic_sint[j]);
2586 if (has_msr_hv_stimer) {
2587 int j;
2589 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2590 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2591 env->msr_hv_stimer_config[j]);
2594 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2595 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2596 env->msr_hv_stimer_count[j]);
2599 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2600 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2602 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2603 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2604 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2605 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2606 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2607 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2608 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2609 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2610 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2611 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2612 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2613 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2614 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2615 /* The CPU GPs if we write to a bit above the physical limit of
2616 * the host CPU (and KVM emulates that)
2618 uint64_t mask = env->mtrr_var[i].mask;
2619 mask &= phys_mask;
2621 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2622 env->mtrr_var[i].base);
2623 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2626 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2627 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2628 0x14, 1, R_EAX) & 0x7;
2630 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2631 env->msr_rtit_ctrl);
2632 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2633 env->msr_rtit_status);
2634 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2635 env->msr_rtit_output_base);
2636 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2637 env->msr_rtit_output_mask);
2638 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2639 env->msr_rtit_cr3_match);
2640 for (i = 0; i < addr_num; i++) {
2641 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2642 env->msr_rtit_addrs[i]);
2646 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2647 * kvm_put_msr_feature_control. */
2649 if (env->mcg_cap) {
2650 int i;
2652 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2653 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2654 if (has_msr_mcg_ext_ctl) {
2655 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2657 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2658 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2662 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2663 if (ret < 0) {
2664 return ret;
2667 if (ret < cpu->kvm_msr_buf->nmsrs) {
2668 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2669 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2670 (uint32_t)e->index, (uint64_t)e->data);
2673 assert(ret == cpu->kvm_msr_buf->nmsrs);
2674 return 0;
2678 static int kvm_get_fpu(X86CPU *cpu)
2680 CPUX86State *env = &cpu->env;
2681 struct kvm_fpu fpu;
2682 int i, ret;
2684 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2685 if (ret < 0) {
2686 return ret;
2689 env->fpstt = (fpu.fsw >> 11) & 7;
2690 env->fpus = fpu.fsw;
2691 env->fpuc = fpu.fcw;
2692 env->fpop = fpu.last_opcode;
2693 env->fpip = fpu.last_ip;
2694 env->fpdp = fpu.last_dp;
2695 for (i = 0; i < 8; ++i) {
2696 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2698 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2699 for (i = 0; i < CPU_NB_REGS; i++) {
2700 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2701 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2703 env->mxcsr = fpu.mxcsr;
2705 return 0;
2708 static int kvm_get_xsave(X86CPU *cpu)
2710 CPUX86State *env = &cpu->env;
2711 X86XSaveArea *xsave = env->xsave_buf;
2712 int ret;
2714 if (!has_xsave) {
2715 return kvm_get_fpu(cpu);
2718 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2719 if (ret < 0) {
2720 return ret;
2722 x86_cpu_xrstor_all_areas(cpu, xsave);
2724 return 0;
2727 static int kvm_get_xcrs(X86CPU *cpu)
2729 CPUX86State *env = &cpu->env;
2730 int i, ret;
2731 struct kvm_xcrs xcrs;
2733 if (!has_xcrs) {
2734 return 0;
2737 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2738 if (ret < 0) {
2739 return ret;
2742 for (i = 0; i < xcrs.nr_xcrs; i++) {
2743 /* Only support xcr0 now */
2744 if (xcrs.xcrs[i].xcr == 0) {
2745 env->xcr0 = xcrs.xcrs[i].value;
2746 break;
2749 return 0;
2752 static int kvm_get_sregs(X86CPU *cpu)
2754 CPUX86State *env = &cpu->env;
2755 struct kvm_sregs sregs;
2756 int bit, i, ret;
2758 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2759 if (ret < 0) {
2760 return ret;
2763 /* There can only be one pending IRQ set in the bitmap at a time, so try
2764 to find it and save its number instead (-1 for none). */
2765 env->interrupt_injected = -1;
2766 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2767 if (sregs.interrupt_bitmap[i]) {
2768 bit = ctz64(sregs.interrupt_bitmap[i]);
2769 env->interrupt_injected = i * 64 + bit;
2770 break;
2774 get_seg(&env->segs[R_CS], &sregs.cs);
2775 get_seg(&env->segs[R_DS], &sregs.ds);
2776 get_seg(&env->segs[R_ES], &sregs.es);
2777 get_seg(&env->segs[R_FS], &sregs.fs);
2778 get_seg(&env->segs[R_GS], &sregs.gs);
2779 get_seg(&env->segs[R_SS], &sregs.ss);
2781 get_seg(&env->tr, &sregs.tr);
2782 get_seg(&env->ldt, &sregs.ldt);
2784 env->idt.limit = sregs.idt.limit;
2785 env->idt.base = sregs.idt.base;
2786 env->gdt.limit = sregs.gdt.limit;
2787 env->gdt.base = sregs.gdt.base;
2789 env->cr[0] = sregs.cr0;
2790 env->cr[2] = sregs.cr2;
2791 env->cr[3] = sregs.cr3;
2792 env->cr[4] = sregs.cr4;
2794 env->efer = sregs.efer;
2796 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2797 x86_update_hflags(env);
2799 return 0;
2802 static int kvm_get_msrs(X86CPU *cpu)
2804 CPUX86State *env = &cpu->env;
2805 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2806 int ret, i;
2807 uint64_t mtrr_top_bits;
2809 kvm_msr_buf_reset(cpu);
2811 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2812 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2813 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2814 kvm_msr_entry_add(cpu, MSR_PAT, 0);
2815 if (has_msr_star) {
2816 kvm_msr_entry_add(cpu, MSR_STAR, 0);
2818 if (has_msr_hsave_pa) {
2819 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2821 if (has_msr_tsc_aux) {
2822 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2824 if (has_msr_tsc_adjust) {
2825 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2827 if (has_msr_tsc_deadline) {
2828 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2830 if (has_msr_misc_enable) {
2831 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2833 if (has_msr_smbase) {
2834 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2836 if (has_msr_smi_count) {
2837 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2839 if (has_msr_feature_control) {
2840 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2842 if (has_msr_bndcfgs) {
2843 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2845 if (has_msr_xss) {
2846 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2848 if (has_msr_spec_ctrl) {
2849 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2851 if (has_msr_virt_ssbd) {
2852 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2854 if (!env->tsc_valid) {
2855 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2856 env->tsc_valid = !runstate_is_running();
2859 #ifdef TARGET_X86_64
2860 if (lm_capable_kernel) {
2861 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2862 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2863 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2864 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2866 #endif
2867 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2868 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2869 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2870 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2872 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2873 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2875 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2876 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2878 if (has_architectural_pmu_version > 0) {
2879 if (has_architectural_pmu_version > 1) {
2880 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2881 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2882 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2883 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2885 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2886 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2888 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2889 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2890 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2894 if (env->mcg_cap) {
2895 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2896 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2897 if (has_msr_mcg_ext_ctl) {
2898 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2900 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2901 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2905 if (has_msr_hv_hypercall) {
2906 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2907 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2909 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2910 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2912 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2913 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2915 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2916 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2917 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2918 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2920 if (has_msr_hv_crash) {
2921 int j;
2923 for (j = 0; j < HV_CRASH_PARAMS; j++) {
2924 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2927 if (has_msr_hv_runtime) {
2928 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2930 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2931 uint32_t msr;
2933 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2934 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2935 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2936 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2937 kvm_msr_entry_add(cpu, msr, 0);
2940 if (has_msr_hv_stimer) {
2941 uint32_t msr;
2943 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2944 msr++) {
2945 kvm_msr_entry_add(cpu, msr, 0);
2948 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2949 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2950 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2951 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2952 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2953 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2954 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2955 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2956 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2957 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2958 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2959 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2960 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2961 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2962 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2963 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2967 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2968 int addr_num =
2969 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2971 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2972 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2973 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2974 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2975 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2976 for (i = 0; i < addr_num; i++) {
2977 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2981 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2982 if (ret < 0) {
2983 return ret;
2986 if (ret < cpu->kvm_msr_buf->nmsrs) {
2987 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2988 error_report("error: failed to get MSR 0x%" PRIx32,
2989 (uint32_t)e->index);
2992 assert(ret == cpu->kvm_msr_buf->nmsrs);
2994 * MTRR masks: Each mask consists of 5 parts
2995 * a 10..0: must be zero
2996 * b 11 : valid bit
2997 * c n-1.12: actual mask bits
2998 * d 51..n: reserved must be zero
2999 * e 63.52: reserved must be zero
3001 * 'n' is the number of physical bits supported by the CPU and is
3002 * apparently always <= 52. We know our 'n' but don't know what
3003 * the destinations 'n' is; it might be smaller, in which case
3004 * it masks (c) on loading. It might be larger, in which case
3005 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3006 * we're migrating to.
3009 if (cpu->fill_mtrr_mask) {
3010 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3011 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3012 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3013 } else {
3014 mtrr_top_bits = 0;
3017 for (i = 0; i < ret; i++) {
3018 uint32_t index = msrs[i].index;
3019 switch (index) {
3020 case MSR_IA32_SYSENTER_CS:
3021 env->sysenter_cs = msrs[i].data;
3022 break;
3023 case MSR_IA32_SYSENTER_ESP:
3024 env->sysenter_esp = msrs[i].data;
3025 break;
3026 case MSR_IA32_SYSENTER_EIP:
3027 env->sysenter_eip = msrs[i].data;
3028 break;
3029 case MSR_PAT:
3030 env->pat = msrs[i].data;
3031 break;
3032 case MSR_STAR:
3033 env->star = msrs[i].data;
3034 break;
3035 #ifdef TARGET_X86_64
3036 case MSR_CSTAR:
3037 env->cstar = msrs[i].data;
3038 break;
3039 case MSR_KERNELGSBASE:
3040 env->kernelgsbase = msrs[i].data;
3041 break;
3042 case MSR_FMASK:
3043 env->fmask = msrs[i].data;
3044 break;
3045 case MSR_LSTAR:
3046 env->lstar = msrs[i].data;
3047 break;
3048 #endif
3049 case MSR_IA32_TSC:
3050 env->tsc = msrs[i].data;
3051 break;
3052 case MSR_TSC_AUX:
3053 env->tsc_aux = msrs[i].data;
3054 break;
3055 case MSR_TSC_ADJUST:
3056 env->tsc_adjust = msrs[i].data;
3057 break;
3058 case MSR_IA32_TSCDEADLINE:
3059 env->tsc_deadline = msrs[i].data;
3060 break;
3061 case MSR_VM_HSAVE_PA:
3062 env->vm_hsave = msrs[i].data;
3063 break;
3064 case MSR_KVM_SYSTEM_TIME:
3065 env->system_time_msr = msrs[i].data;
3066 break;
3067 case MSR_KVM_WALL_CLOCK:
3068 env->wall_clock_msr = msrs[i].data;
3069 break;
3070 case MSR_MCG_STATUS:
3071 env->mcg_status = msrs[i].data;
3072 break;
3073 case MSR_MCG_CTL:
3074 env->mcg_ctl = msrs[i].data;
3075 break;
3076 case MSR_MCG_EXT_CTL:
3077 env->mcg_ext_ctl = msrs[i].data;
3078 break;
3079 case MSR_IA32_MISC_ENABLE:
3080 env->msr_ia32_misc_enable = msrs[i].data;
3081 break;
3082 case MSR_IA32_SMBASE:
3083 env->smbase = msrs[i].data;
3084 break;
3085 case MSR_SMI_COUNT:
3086 env->msr_smi_count = msrs[i].data;
3087 break;
3088 case MSR_IA32_FEATURE_CONTROL:
3089 env->msr_ia32_feature_control = msrs[i].data;
3090 break;
3091 case MSR_IA32_BNDCFGS:
3092 env->msr_bndcfgs = msrs[i].data;
3093 break;
3094 case MSR_IA32_XSS:
3095 env->xss = msrs[i].data;
3096 break;
3097 default:
3098 if (msrs[i].index >= MSR_MC0_CTL &&
3099 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3100 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3102 break;
3103 case MSR_KVM_ASYNC_PF_EN:
3104 env->async_pf_en_msr = msrs[i].data;
3105 break;
3106 case MSR_KVM_PV_EOI_EN:
3107 env->pv_eoi_en_msr = msrs[i].data;
3108 break;
3109 case MSR_KVM_STEAL_TIME:
3110 env->steal_time_msr = msrs[i].data;
3111 break;
3112 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3113 env->msr_fixed_ctr_ctrl = msrs[i].data;
3114 break;
3115 case MSR_CORE_PERF_GLOBAL_CTRL:
3116 env->msr_global_ctrl = msrs[i].data;
3117 break;
3118 case MSR_CORE_PERF_GLOBAL_STATUS:
3119 env->msr_global_status = msrs[i].data;
3120 break;
3121 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3122 env->msr_global_ovf_ctrl = msrs[i].data;
3123 break;
3124 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3125 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3126 break;
3127 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3128 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3129 break;
3130 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3131 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3132 break;
3133 case HV_X64_MSR_HYPERCALL:
3134 env->msr_hv_hypercall = msrs[i].data;
3135 break;
3136 case HV_X64_MSR_GUEST_OS_ID:
3137 env->msr_hv_guest_os_id = msrs[i].data;
3138 break;
3139 case HV_X64_MSR_APIC_ASSIST_PAGE:
3140 env->msr_hv_vapic = msrs[i].data;
3141 break;
3142 case HV_X64_MSR_REFERENCE_TSC:
3143 env->msr_hv_tsc = msrs[i].data;
3144 break;
3145 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3146 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3147 break;
3148 case HV_X64_MSR_VP_RUNTIME:
3149 env->msr_hv_runtime = msrs[i].data;
3150 break;
3151 case HV_X64_MSR_SCONTROL:
3152 env->msr_hv_synic_control = msrs[i].data;
3153 break;
3154 case HV_X64_MSR_SIEFP:
3155 env->msr_hv_synic_evt_page = msrs[i].data;
3156 break;
3157 case HV_X64_MSR_SIMP:
3158 env->msr_hv_synic_msg_page = msrs[i].data;
3159 break;
3160 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3161 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3162 break;
3163 case HV_X64_MSR_STIMER0_CONFIG:
3164 case HV_X64_MSR_STIMER1_CONFIG:
3165 case HV_X64_MSR_STIMER2_CONFIG:
3166 case HV_X64_MSR_STIMER3_CONFIG:
3167 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3168 msrs[i].data;
3169 break;
3170 case HV_X64_MSR_STIMER0_COUNT:
3171 case HV_X64_MSR_STIMER1_COUNT:
3172 case HV_X64_MSR_STIMER2_COUNT:
3173 case HV_X64_MSR_STIMER3_COUNT:
3174 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3175 msrs[i].data;
3176 break;
3177 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3178 env->msr_hv_reenlightenment_control = msrs[i].data;
3179 break;
3180 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3181 env->msr_hv_tsc_emulation_control = msrs[i].data;
3182 break;
3183 case HV_X64_MSR_TSC_EMULATION_STATUS:
3184 env->msr_hv_tsc_emulation_status = msrs[i].data;
3185 break;
3186 case MSR_MTRRdefType:
3187 env->mtrr_deftype = msrs[i].data;
3188 break;
3189 case MSR_MTRRfix64K_00000:
3190 env->mtrr_fixed[0] = msrs[i].data;
3191 break;
3192 case MSR_MTRRfix16K_80000:
3193 env->mtrr_fixed[1] = msrs[i].data;
3194 break;
3195 case MSR_MTRRfix16K_A0000:
3196 env->mtrr_fixed[2] = msrs[i].data;
3197 break;
3198 case MSR_MTRRfix4K_C0000:
3199 env->mtrr_fixed[3] = msrs[i].data;
3200 break;
3201 case MSR_MTRRfix4K_C8000:
3202 env->mtrr_fixed[4] = msrs[i].data;
3203 break;
3204 case MSR_MTRRfix4K_D0000:
3205 env->mtrr_fixed[5] = msrs[i].data;
3206 break;
3207 case MSR_MTRRfix4K_D8000:
3208 env->mtrr_fixed[6] = msrs[i].data;
3209 break;
3210 case MSR_MTRRfix4K_E0000:
3211 env->mtrr_fixed[7] = msrs[i].data;
3212 break;
3213 case MSR_MTRRfix4K_E8000:
3214 env->mtrr_fixed[8] = msrs[i].data;
3215 break;
3216 case MSR_MTRRfix4K_F0000:
3217 env->mtrr_fixed[9] = msrs[i].data;
3218 break;
3219 case MSR_MTRRfix4K_F8000:
3220 env->mtrr_fixed[10] = msrs[i].data;
3221 break;
3222 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3223 if (index & 1) {
3224 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3225 mtrr_top_bits;
3226 } else {
3227 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3229 break;
3230 case MSR_IA32_SPEC_CTRL:
3231 env->spec_ctrl = msrs[i].data;
3232 break;
3233 case MSR_VIRT_SSBD:
3234 env->virt_ssbd = msrs[i].data;
3235 break;
3236 case MSR_IA32_RTIT_CTL:
3237 env->msr_rtit_ctrl = msrs[i].data;
3238 break;
3239 case MSR_IA32_RTIT_STATUS:
3240 env->msr_rtit_status = msrs[i].data;
3241 break;
3242 case MSR_IA32_RTIT_OUTPUT_BASE:
3243 env->msr_rtit_output_base = msrs[i].data;
3244 break;
3245 case MSR_IA32_RTIT_OUTPUT_MASK:
3246 env->msr_rtit_output_mask = msrs[i].data;
3247 break;
3248 case MSR_IA32_RTIT_CR3_MATCH:
3249 env->msr_rtit_cr3_match = msrs[i].data;
3250 break;
3251 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3252 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3253 break;
3257 return 0;
3260 static int kvm_put_mp_state(X86CPU *cpu)
3262 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3264 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3267 static int kvm_get_mp_state(X86CPU *cpu)
3269 CPUState *cs = CPU(cpu);
3270 CPUX86State *env = &cpu->env;
3271 struct kvm_mp_state mp_state;
3272 int ret;
3274 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3275 if (ret < 0) {
3276 return ret;
3278 env->mp_state = mp_state.mp_state;
3279 if (kvm_irqchip_in_kernel()) {
3280 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3282 return 0;
3285 static int kvm_get_apic(X86CPU *cpu)
3287 DeviceState *apic = cpu->apic_state;
3288 struct kvm_lapic_state kapic;
3289 int ret;
3291 if (apic && kvm_irqchip_in_kernel()) {
3292 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3293 if (ret < 0) {
3294 return ret;
3297 kvm_get_apic_state(apic, &kapic);
3299 return 0;
3302 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3304 CPUState *cs = CPU(cpu);
3305 CPUX86State *env = &cpu->env;
3306 struct kvm_vcpu_events events = {};
3308 if (!kvm_has_vcpu_events()) {
3309 return 0;
3312 events.flags = 0;
3314 if (has_exception_payload) {
3315 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3316 events.exception.pending = env->exception_pending;
3317 events.exception_has_payload = env->exception_has_payload;
3318 events.exception_payload = env->exception_payload;
3320 events.exception.nr = env->exception_nr;
3321 events.exception.injected = env->exception_injected;
3322 events.exception.has_error_code = env->has_error_code;
3323 events.exception.error_code = env->error_code;
3325 events.interrupt.injected = (env->interrupt_injected >= 0);
3326 events.interrupt.nr = env->interrupt_injected;
3327 events.interrupt.soft = env->soft_interrupt;
3329 events.nmi.injected = env->nmi_injected;
3330 events.nmi.pending = env->nmi_pending;
3331 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3333 events.sipi_vector = env->sipi_vector;
3335 if (has_msr_smbase) {
3336 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3337 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3338 if (kvm_irqchip_in_kernel()) {
3339 /* As soon as these are moved to the kernel, remove them
3340 * from cs->interrupt_request.
3342 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3343 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3344 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3345 } else {
3346 /* Keep these in cs->interrupt_request. */
3347 events.smi.pending = 0;
3348 events.smi.latched_init = 0;
3350 /* Stop SMI delivery on old machine types to avoid a reboot
3351 * on an inward migration of an old VM.
3353 if (!cpu->kvm_no_smi_migration) {
3354 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3358 if (level >= KVM_PUT_RESET_STATE) {
3359 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3360 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3361 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3365 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3368 static int kvm_get_vcpu_events(X86CPU *cpu)
3370 CPUX86State *env = &cpu->env;
3371 struct kvm_vcpu_events events;
3372 int ret;
3374 if (!kvm_has_vcpu_events()) {
3375 return 0;
3378 memset(&events, 0, sizeof(events));
3379 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3380 if (ret < 0) {
3381 return ret;
3384 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3385 env->exception_pending = events.exception.pending;
3386 env->exception_has_payload = events.exception_has_payload;
3387 env->exception_payload = events.exception_payload;
3388 } else {
3389 env->exception_pending = 0;
3390 env->exception_has_payload = false;
3392 env->exception_injected = events.exception.injected;
3393 env->exception_nr =
3394 (env->exception_pending || env->exception_injected) ?
3395 events.exception.nr : -1;
3396 env->has_error_code = events.exception.has_error_code;
3397 env->error_code = events.exception.error_code;
3399 env->interrupt_injected =
3400 events.interrupt.injected ? events.interrupt.nr : -1;
3401 env->soft_interrupt = events.interrupt.soft;
3403 env->nmi_injected = events.nmi.injected;
3404 env->nmi_pending = events.nmi.pending;
3405 if (events.nmi.masked) {
3406 env->hflags2 |= HF2_NMI_MASK;
3407 } else {
3408 env->hflags2 &= ~HF2_NMI_MASK;
3411 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3412 if (events.smi.smm) {
3413 env->hflags |= HF_SMM_MASK;
3414 } else {
3415 env->hflags &= ~HF_SMM_MASK;
3417 if (events.smi.pending) {
3418 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3419 } else {
3420 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3422 if (events.smi.smm_inside_nmi) {
3423 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3424 } else {
3425 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3427 if (events.smi.latched_init) {
3428 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3429 } else {
3430 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3434 env->sipi_vector = events.sipi_vector;
3436 return 0;
3439 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3441 CPUState *cs = CPU(cpu);
3442 CPUX86State *env = &cpu->env;
3443 int ret = 0;
3444 unsigned long reinject_trap = 0;
3446 if (!kvm_has_vcpu_events()) {
3447 if (env->exception_nr == EXCP01_DB) {
3448 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3449 } else if (env->exception_injected == EXCP03_INT3) {
3450 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3452 kvm_reset_exception(env);
3456 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3457 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3458 * by updating the debug state once again if single-stepping is on.
3459 * Another reason to call kvm_update_guest_debug here is a pending debug
3460 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3461 * reinject them via SET_GUEST_DEBUG.
3463 if (reinject_trap ||
3464 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3465 ret = kvm_update_guest_debug(cs, reinject_trap);
3467 return ret;
3470 static int kvm_put_debugregs(X86CPU *cpu)
3472 CPUX86State *env = &cpu->env;
3473 struct kvm_debugregs dbgregs;
3474 int i;
3476 if (!kvm_has_debugregs()) {
3477 return 0;
3480 for (i = 0; i < 4; i++) {
3481 dbgregs.db[i] = env->dr[i];
3483 dbgregs.dr6 = env->dr[6];
3484 dbgregs.dr7 = env->dr[7];
3485 dbgregs.flags = 0;
3487 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3490 static int kvm_get_debugregs(X86CPU *cpu)
3492 CPUX86State *env = &cpu->env;
3493 struct kvm_debugregs dbgregs;
3494 int i, ret;
3496 if (!kvm_has_debugregs()) {
3497 return 0;
3500 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3501 if (ret < 0) {
3502 return ret;
3504 for (i = 0; i < 4; i++) {
3505 env->dr[i] = dbgregs.db[i];
3507 env->dr[4] = env->dr[6] = dbgregs.dr6;
3508 env->dr[5] = env->dr[7] = dbgregs.dr7;
3510 return 0;
3513 static int kvm_put_nested_state(X86CPU *cpu)
3515 CPUX86State *env = &cpu->env;
3516 int max_nested_state_len = kvm_max_nested_state_length();
3518 if (!env->nested_state) {
3519 return 0;
3522 assert(env->nested_state->size <= max_nested_state_len);
3523 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3526 static int kvm_get_nested_state(X86CPU *cpu)
3528 CPUX86State *env = &cpu->env;
3529 int max_nested_state_len = kvm_max_nested_state_length();
3530 int ret;
3532 if (!env->nested_state) {
3533 return 0;
3537 * It is possible that migration restored a smaller size into
3538 * nested_state->hdr.size than what our kernel support.
3539 * We preserve migration origin nested_state->hdr.size for
3540 * call to KVM_SET_NESTED_STATE but wish that our next call
3541 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3543 env->nested_state->size = max_nested_state_len;
3545 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3546 if (ret < 0) {
3547 return ret;
3550 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3551 env->hflags |= HF_GUEST_MASK;
3552 } else {
3553 env->hflags &= ~HF_GUEST_MASK;
3556 return ret;
3559 int kvm_arch_put_registers(CPUState *cpu, int level)
3561 X86CPU *x86_cpu = X86_CPU(cpu);
3562 int ret;
3564 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3566 if (level >= KVM_PUT_RESET_STATE) {
3567 ret = kvm_put_nested_state(x86_cpu);
3568 if (ret < 0) {
3569 return ret;
3572 ret = kvm_put_msr_feature_control(x86_cpu);
3573 if (ret < 0) {
3574 return ret;
3578 if (level == KVM_PUT_FULL_STATE) {
3579 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3580 * because TSC frequency mismatch shouldn't abort migration,
3581 * unless the user explicitly asked for a more strict TSC
3582 * setting (e.g. using an explicit "tsc-freq" option).
3584 kvm_arch_set_tsc_khz(cpu);
3587 ret = kvm_getput_regs(x86_cpu, 1);
3588 if (ret < 0) {
3589 return ret;
3591 ret = kvm_put_xsave(x86_cpu);
3592 if (ret < 0) {
3593 return ret;
3595 ret = kvm_put_xcrs(x86_cpu);
3596 if (ret < 0) {
3597 return ret;
3599 ret = kvm_put_sregs(x86_cpu);
3600 if (ret < 0) {
3601 return ret;
3603 /* must be before kvm_put_msrs */
3604 ret = kvm_inject_mce_oldstyle(x86_cpu);
3605 if (ret < 0) {
3606 return ret;
3608 ret = kvm_put_msrs(x86_cpu, level);
3609 if (ret < 0) {
3610 return ret;
3612 ret = kvm_put_vcpu_events(x86_cpu, level);
3613 if (ret < 0) {
3614 return ret;
3616 if (level >= KVM_PUT_RESET_STATE) {
3617 ret = kvm_put_mp_state(x86_cpu);
3618 if (ret < 0) {
3619 return ret;
3623 ret = kvm_put_tscdeadline_msr(x86_cpu);
3624 if (ret < 0) {
3625 return ret;
3627 ret = kvm_put_debugregs(x86_cpu);
3628 if (ret < 0) {
3629 return ret;
3631 /* must be last */
3632 ret = kvm_guest_debug_workarounds(x86_cpu);
3633 if (ret < 0) {
3634 return ret;
3636 return 0;
3639 int kvm_arch_get_registers(CPUState *cs)
3641 X86CPU *cpu = X86_CPU(cs);
3642 int ret;
3644 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3646 ret = kvm_get_vcpu_events(cpu);
3647 if (ret < 0) {
3648 goto out;
3651 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3652 * KVM_GET_REGS and KVM_GET_SREGS.
3654 ret = kvm_get_mp_state(cpu);
3655 if (ret < 0) {
3656 goto out;
3658 ret = kvm_getput_regs(cpu, 0);
3659 if (ret < 0) {
3660 goto out;
3662 ret = kvm_get_xsave(cpu);
3663 if (ret < 0) {
3664 goto out;
3666 ret = kvm_get_xcrs(cpu);
3667 if (ret < 0) {
3668 goto out;
3670 ret = kvm_get_sregs(cpu);
3671 if (ret < 0) {
3672 goto out;
3674 ret = kvm_get_msrs(cpu);
3675 if (ret < 0) {
3676 goto out;
3678 ret = kvm_get_apic(cpu);
3679 if (ret < 0) {
3680 goto out;
3682 ret = kvm_get_debugregs(cpu);
3683 if (ret < 0) {
3684 goto out;
3686 ret = kvm_get_nested_state(cpu);
3687 if (ret < 0) {
3688 goto out;
3690 ret = 0;
3691 out:
3692 cpu_sync_bndcs_hflags(&cpu->env);
3693 return ret;
3696 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3698 X86CPU *x86_cpu = X86_CPU(cpu);
3699 CPUX86State *env = &x86_cpu->env;
3700 int ret;
3702 /* Inject NMI */
3703 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3704 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3705 qemu_mutex_lock_iothread();
3706 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3707 qemu_mutex_unlock_iothread();
3708 DPRINTF("injected NMI\n");
3709 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3710 if (ret < 0) {
3711 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3712 strerror(-ret));
3715 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3716 qemu_mutex_lock_iothread();
3717 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3718 qemu_mutex_unlock_iothread();
3719 DPRINTF("injected SMI\n");
3720 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3721 if (ret < 0) {
3722 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3723 strerror(-ret));
3728 if (!kvm_pic_in_kernel()) {
3729 qemu_mutex_lock_iothread();
3732 /* Force the VCPU out of its inner loop to process any INIT requests
3733 * or (for userspace APIC, but it is cheap to combine the checks here)
3734 * pending TPR access reports.
3736 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3737 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3738 !(env->hflags & HF_SMM_MASK)) {
3739 cpu->exit_request = 1;
3741 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3742 cpu->exit_request = 1;
3746 if (!kvm_pic_in_kernel()) {
3747 /* Try to inject an interrupt if the guest can accept it */
3748 if (run->ready_for_interrupt_injection &&
3749 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3750 (env->eflags & IF_MASK)) {
3751 int irq;
3753 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3754 irq = cpu_get_pic_interrupt(env);
3755 if (irq >= 0) {
3756 struct kvm_interrupt intr;
3758 intr.irq = irq;
3759 DPRINTF("injected interrupt %d\n", irq);
3760 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3761 if (ret < 0) {
3762 fprintf(stderr,
3763 "KVM: injection failed, interrupt lost (%s)\n",
3764 strerror(-ret));
3769 /* If we have an interrupt but the guest is not ready to receive an
3770 * interrupt, request an interrupt window exit. This will
3771 * cause a return to userspace as soon as the guest is ready to
3772 * receive interrupts. */
3773 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3774 run->request_interrupt_window = 1;
3775 } else {
3776 run->request_interrupt_window = 0;
3779 DPRINTF("setting tpr\n");
3780 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3782 qemu_mutex_unlock_iothread();
3786 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3788 X86CPU *x86_cpu = X86_CPU(cpu);
3789 CPUX86State *env = &x86_cpu->env;
3791 if (run->flags & KVM_RUN_X86_SMM) {
3792 env->hflags |= HF_SMM_MASK;
3793 } else {
3794 env->hflags &= ~HF_SMM_MASK;
3796 if (run->if_flag) {
3797 env->eflags |= IF_MASK;
3798 } else {
3799 env->eflags &= ~IF_MASK;
3802 /* We need to protect the apic state against concurrent accesses from
3803 * different threads in case the userspace irqchip is used. */
3804 if (!kvm_irqchip_in_kernel()) {
3805 qemu_mutex_lock_iothread();
3807 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3808 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
3809 if (!kvm_irqchip_in_kernel()) {
3810 qemu_mutex_unlock_iothread();
3812 return cpu_get_mem_attrs(env);
3815 int kvm_arch_process_async_events(CPUState *cs)
3817 X86CPU *cpu = X86_CPU(cs);
3818 CPUX86State *env = &cpu->env;
3820 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
3821 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3822 assert(env->mcg_cap);
3824 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
3826 kvm_cpu_synchronize_state(cs);
3828 if (env->exception_nr == EXCP08_DBLE) {
3829 /* this means triple fault */
3830 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3831 cs->exit_request = 1;
3832 return 0;
3834 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
3835 env->has_error_code = 0;
3837 cs->halted = 0;
3838 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3839 env->mp_state = KVM_MP_STATE_RUNNABLE;
3843 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3844 !(env->hflags & HF_SMM_MASK)) {
3845 kvm_cpu_synchronize_state(cs);
3846 do_cpu_init(cpu);
3849 if (kvm_irqchip_in_kernel()) {
3850 return 0;
3853 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3854 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
3855 apic_poll_irq(cpu->apic_state);
3857 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3858 (env->eflags & IF_MASK)) ||
3859 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3860 cs->halted = 0;
3862 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3863 kvm_cpu_synchronize_state(cs);
3864 do_cpu_sipi(cpu);
3866 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3867 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3868 kvm_cpu_synchronize_state(cs);
3869 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3870 env->tpr_access_type);
3873 return cs->halted;
3876 static int kvm_handle_halt(X86CPU *cpu)
3878 CPUState *cs = CPU(cpu);
3879 CPUX86State *env = &cpu->env;
3881 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3882 (env->eflags & IF_MASK)) &&
3883 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3884 cs->halted = 1;
3885 return EXCP_HLT;
3888 return 0;
3891 static int kvm_handle_tpr_access(X86CPU *cpu)
3893 CPUState *cs = CPU(cpu);
3894 struct kvm_run *run = cs->kvm_run;
3896 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3897 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3898 : TPR_ACCESS_READ);
3899 return 1;
3902 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3904 static const uint8_t int3 = 0xcc;
3906 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3907 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3908 return -EINVAL;
3910 return 0;
3913 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3915 uint8_t int3;
3917 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3918 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3919 return -EINVAL;
3921 return 0;
3924 static struct {
3925 target_ulong addr;
3926 int len;
3927 int type;
3928 } hw_breakpoint[4];
3930 static int nb_hw_breakpoint;
3932 static int find_hw_breakpoint(target_ulong addr, int len, int type)
3934 int n;
3936 for (n = 0; n < nb_hw_breakpoint; n++) {
3937 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3938 (hw_breakpoint[n].len == len || len == -1)) {
3939 return n;
3942 return -1;
3945 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3946 target_ulong len, int type)
3948 switch (type) {
3949 case GDB_BREAKPOINT_HW:
3950 len = 1;
3951 break;
3952 case GDB_WATCHPOINT_WRITE:
3953 case GDB_WATCHPOINT_ACCESS:
3954 switch (len) {
3955 case 1:
3956 break;
3957 case 2:
3958 case 4:
3959 case 8:
3960 if (addr & (len - 1)) {
3961 return -EINVAL;
3963 break;
3964 default:
3965 return -EINVAL;
3967 break;
3968 default:
3969 return -ENOSYS;
3972 if (nb_hw_breakpoint == 4) {
3973 return -ENOBUFS;
3975 if (find_hw_breakpoint(addr, len, type) >= 0) {
3976 return -EEXIST;
3978 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3979 hw_breakpoint[nb_hw_breakpoint].len = len;
3980 hw_breakpoint[nb_hw_breakpoint].type = type;
3981 nb_hw_breakpoint++;
3983 return 0;
3986 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3987 target_ulong len, int type)
3989 int n;
3991 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3992 if (n < 0) {
3993 return -ENOENT;
3995 nb_hw_breakpoint--;
3996 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3998 return 0;
4001 void kvm_arch_remove_all_hw_breakpoints(void)
4003 nb_hw_breakpoint = 0;
4006 static CPUWatchpoint hw_watchpoint;
4008 static int kvm_handle_debug(X86CPU *cpu,
4009 struct kvm_debug_exit_arch *arch_info)
4011 CPUState *cs = CPU(cpu);
4012 CPUX86State *env = &cpu->env;
4013 int ret = 0;
4014 int n;
4016 if (arch_info->exception == EXCP01_DB) {
4017 if (arch_info->dr6 & DR6_BS) {
4018 if (cs->singlestep_enabled) {
4019 ret = EXCP_DEBUG;
4021 } else {
4022 for (n = 0; n < 4; n++) {
4023 if (arch_info->dr6 & (1 << n)) {
4024 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4025 case 0x0:
4026 ret = EXCP_DEBUG;
4027 break;
4028 case 0x1:
4029 ret = EXCP_DEBUG;
4030 cs->watchpoint_hit = &hw_watchpoint;
4031 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4032 hw_watchpoint.flags = BP_MEM_WRITE;
4033 break;
4034 case 0x3:
4035 ret = EXCP_DEBUG;
4036 cs->watchpoint_hit = &hw_watchpoint;
4037 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4038 hw_watchpoint.flags = BP_MEM_ACCESS;
4039 break;
4044 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4045 ret = EXCP_DEBUG;
4047 if (ret == 0) {
4048 cpu_synchronize_state(cs);
4049 assert(env->exception_nr == -1);
4051 /* pass to guest */
4052 kvm_queue_exception(env, arch_info->exception,
4053 arch_info->exception == EXCP01_DB,
4054 arch_info->dr6);
4055 env->has_error_code = 0;
4058 return ret;
4061 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4063 const uint8_t type_code[] = {
4064 [GDB_BREAKPOINT_HW] = 0x0,
4065 [GDB_WATCHPOINT_WRITE] = 0x1,
4066 [GDB_WATCHPOINT_ACCESS] = 0x3
4068 const uint8_t len_code[] = {
4069 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4071 int n;
4073 if (kvm_sw_breakpoints_active(cpu)) {
4074 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4076 if (nb_hw_breakpoint > 0) {
4077 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4078 dbg->arch.debugreg[7] = 0x0600;
4079 for (n = 0; n < nb_hw_breakpoint; n++) {
4080 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4081 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4082 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4083 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4088 static bool host_supports_vmx(void)
4090 uint32_t ecx, unused;
4092 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4093 return ecx & CPUID_EXT_VMX;
4096 #define VMX_INVALID_GUEST_STATE 0x80000021
4098 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4100 X86CPU *cpu = X86_CPU(cs);
4101 uint64_t code;
4102 int ret;
4104 switch (run->exit_reason) {
4105 case KVM_EXIT_HLT:
4106 DPRINTF("handle_hlt\n");
4107 qemu_mutex_lock_iothread();
4108 ret = kvm_handle_halt(cpu);
4109 qemu_mutex_unlock_iothread();
4110 break;
4111 case KVM_EXIT_SET_TPR:
4112 ret = 0;
4113 break;
4114 case KVM_EXIT_TPR_ACCESS:
4115 qemu_mutex_lock_iothread();
4116 ret = kvm_handle_tpr_access(cpu);
4117 qemu_mutex_unlock_iothread();
4118 break;
4119 case KVM_EXIT_FAIL_ENTRY:
4120 code = run->fail_entry.hardware_entry_failure_reason;
4121 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4122 code);
4123 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4124 fprintf(stderr,
4125 "\nIf you're running a guest on an Intel machine without "
4126 "unrestricted mode\n"
4127 "support, the failure can be most likely due to the guest "
4128 "entering an invalid\n"
4129 "state for Intel VT. For example, the guest maybe running "
4130 "in big real mode\n"
4131 "which is not supported on less recent Intel processors."
4132 "\n\n");
4134 ret = -1;
4135 break;
4136 case KVM_EXIT_EXCEPTION:
4137 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4138 run->ex.exception, run->ex.error_code);
4139 ret = -1;
4140 break;
4141 case KVM_EXIT_DEBUG:
4142 DPRINTF("kvm_exit_debug\n");
4143 qemu_mutex_lock_iothread();
4144 ret = kvm_handle_debug(cpu, &run->debug.arch);
4145 qemu_mutex_unlock_iothread();
4146 break;
4147 case KVM_EXIT_HYPERV:
4148 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4149 break;
4150 case KVM_EXIT_IOAPIC_EOI:
4151 ioapic_eoi_broadcast(run->eoi.vector);
4152 ret = 0;
4153 break;
4154 default:
4155 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4156 ret = -1;
4157 break;
4160 return ret;
4163 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4165 X86CPU *cpu = X86_CPU(cs);
4166 CPUX86State *env = &cpu->env;
4168 kvm_cpu_synchronize_state(cs);
4169 return !(env->cr[0] & CR0_PE_MASK) ||
4170 ((env->segs[R_CS].selector & 3) != 3);
4173 void kvm_arch_init_irq_routing(KVMState *s)
4175 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4176 /* If kernel can't do irq routing, interrupt source
4177 * override 0->2 cannot be set up as required by HPET.
4178 * So we have to disable it.
4180 no_hpet = 1;
4182 /* We know at this point that we're using the in-kernel
4183 * irqchip, so we can use irqfds, and on x86 we know
4184 * we can use msi via irqfd and GSI routing.
4186 kvm_msi_via_irqfd_allowed = true;
4187 kvm_gsi_routing_allowed = true;
4189 if (kvm_irqchip_is_split()) {
4190 int i;
4192 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4193 MSI routes for signaling interrupts to the local apics. */
4194 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4195 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4196 error_report("Could not enable split IRQ mode.");
4197 exit(1);
4203 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4205 int ret;
4206 if (machine_kernel_irqchip_split(ms)) {
4207 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4208 if (ret) {
4209 error_report("Could not enable split irqchip mode: %s",
4210 strerror(-ret));
4211 exit(1);
4212 } else {
4213 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4214 kvm_split_irqchip = true;
4215 return 1;
4217 } else {
4218 return 0;
4222 /* Classic KVM device assignment interface. Will remain x86 only. */
4223 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4224 uint32_t flags, uint32_t *dev_id)
4226 struct kvm_assigned_pci_dev dev_data = {
4227 .segnr = dev_addr->domain,
4228 .busnr = dev_addr->bus,
4229 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4230 .flags = flags,
4232 int ret;
4234 dev_data.assigned_dev_id =
4235 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4237 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4238 if (ret < 0) {
4239 return ret;
4242 *dev_id = dev_data.assigned_dev_id;
4244 return 0;
4247 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4249 struct kvm_assigned_pci_dev dev_data = {
4250 .assigned_dev_id = dev_id,
4253 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4256 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4257 uint32_t irq_type, uint32_t guest_irq)
4259 struct kvm_assigned_irq assigned_irq = {
4260 .assigned_dev_id = dev_id,
4261 .guest_irq = guest_irq,
4262 .flags = irq_type,
4265 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4266 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4267 } else {
4268 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4272 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4273 uint32_t guest_irq)
4275 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4276 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4278 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4281 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4283 struct kvm_assigned_pci_dev dev_data = {
4284 .assigned_dev_id = dev_id,
4285 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4288 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4291 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4292 uint32_t type)
4294 struct kvm_assigned_irq assigned_irq = {
4295 .assigned_dev_id = dev_id,
4296 .flags = type,
4299 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4302 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4304 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4305 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4308 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4310 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4311 KVM_DEV_IRQ_GUEST_MSI, virq);
4314 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4316 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4317 KVM_DEV_IRQ_HOST_MSI);
4320 bool kvm_device_msix_supported(KVMState *s)
4322 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4323 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4324 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4327 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4328 uint32_t nr_vectors)
4330 struct kvm_assigned_msix_nr msix_nr = {
4331 .assigned_dev_id = dev_id,
4332 .entry_nr = nr_vectors,
4335 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4338 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4339 int virq)
4341 struct kvm_assigned_msix_entry msix_entry = {
4342 .assigned_dev_id = dev_id,
4343 .gsi = virq,
4344 .entry = vector,
4347 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4350 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4352 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4353 KVM_DEV_IRQ_GUEST_MSIX, 0);
4356 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4358 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4359 KVM_DEV_IRQ_HOST_MSIX);
4362 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4363 uint64_t address, uint32_t data, PCIDevice *dev)
4365 X86IOMMUState *iommu = x86_iommu_get_default();
4367 if (iommu) {
4368 int ret;
4369 MSIMessage src, dst;
4370 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4372 if (!class->int_remap) {
4373 return 0;
4376 src.address = route->u.msi.address_hi;
4377 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4378 src.address |= route->u.msi.address_lo;
4379 src.data = route->u.msi.data;
4381 ret = class->int_remap(iommu, &src, &dst, dev ? \
4382 pci_requester_id(dev) : \
4383 X86_IOMMU_SID_INVALID);
4384 if (ret) {
4385 trace_kvm_x86_fixup_msi_error(route->gsi);
4386 return 1;
4389 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4390 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4391 route->u.msi.data = dst.data;
4394 return 0;
4397 typedef struct MSIRouteEntry MSIRouteEntry;
4399 struct MSIRouteEntry {
4400 PCIDevice *dev; /* Device pointer */
4401 int vector; /* MSI/MSIX vector index */
4402 int virq; /* Virtual IRQ index */
4403 QLIST_ENTRY(MSIRouteEntry) list;
4406 /* List of used GSI routes */
4407 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4408 QLIST_HEAD_INITIALIZER(msi_route_list);
4410 static void kvm_update_msi_routes_all(void *private, bool global,
4411 uint32_t index, uint32_t mask)
4413 int cnt = 0, vector;
4414 MSIRouteEntry *entry;
4415 MSIMessage msg;
4416 PCIDevice *dev;
4418 /* TODO: explicit route update */
4419 QLIST_FOREACH(entry, &msi_route_list, list) {
4420 cnt++;
4421 vector = entry->vector;
4422 dev = entry->dev;
4423 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4424 msg = msix_get_message(dev, vector);
4425 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4426 msg = msi_get_message(dev, vector);
4427 } else {
4429 * Either MSI/MSIX is disabled for the device, or the
4430 * specific message was masked out. Skip this one.
4432 continue;
4434 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4436 kvm_irqchip_commit_routes(kvm_state);
4437 trace_kvm_x86_update_msi_routes(cnt);
4440 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4441 int vector, PCIDevice *dev)
4443 static bool notify_list_inited = false;
4444 MSIRouteEntry *entry;
4446 if (!dev) {
4447 /* These are (possibly) IOAPIC routes only used for split
4448 * kernel irqchip mode, while what we are housekeeping are
4449 * PCI devices only. */
4450 return 0;
4453 entry = g_new0(MSIRouteEntry, 1);
4454 entry->dev = dev;
4455 entry->vector = vector;
4456 entry->virq = route->gsi;
4457 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4459 trace_kvm_x86_add_msi_route(route->gsi);
4461 if (!notify_list_inited) {
4462 /* For the first time we do add route, add ourselves into
4463 * IOMMU's IEC notify list if needed. */
4464 X86IOMMUState *iommu = x86_iommu_get_default();
4465 if (iommu) {
4466 x86_iommu_iec_register_notifier(iommu,
4467 kvm_update_msi_routes_all,
4468 NULL);
4470 notify_list_inited = true;
4472 return 0;
4475 int kvm_arch_release_virq_post(int virq)
4477 MSIRouteEntry *entry, *next;
4478 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4479 if (entry->virq == virq) {
4480 trace_kvm_x86_remove_msi_route(virq);
4481 QLIST_REMOVE(entry, list);
4482 g_free(entry);
4483 break;
4486 return 0;
4489 int kvm_arch_msi_data_to_gsi(uint32_t data)
4491 abort();