util/hbitmap: update orig_size on truncate
[qemu/ar7.git] / hw / block / fdc.c
blob9b24cb9b8521f5d5ee7d0a6154176dfad57355fe
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
42 #include "qemu/log.h"
43 #include "qemu/module.h"
44 #include "trace.h"
46 /********************************************************/
47 /* debug Floppy devices */
49 #define DEBUG_FLOPPY 0
51 #define FLOPPY_DPRINTF(fmt, ...) \
52 do { \
53 if (DEBUG_FLOPPY) { \
54 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
55 } \
56 } while (0)
59 /********************************************************/
60 /* qdev floppy bus */
62 #define TYPE_FLOPPY_BUS "floppy-bus"
63 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
65 typedef struct FDCtrl FDCtrl;
66 typedef struct FDrive FDrive;
67 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
69 typedef struct FloppyBus {
70 BusState bus;
71 FDCtrl *fdc;
72 } FloppyBus;
74 static const TypeInfo floppy_bus_info = {
75 .name = TYPE_FLOPPY_BUS,
76 .parent = TYPE_BUS,
77 .instance_size = sizeof(FloppyBus),
80 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
82 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
83 bus->fdc = fdc;
87 /********************************************************/
88 /* Floppy drive emulation */
90 typedef enum FDriveRate {
91 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
92 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
93 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
94 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
95 } FDriveRate;
97 typedef enum FDriveSize {
98 FDRIVE_SIZE_UNKNOWN,
99 FDRIVE_SIZE_350,
100 FDRIVE_SIZE_525,
101 } FDriveSize;
103 typedef struct FDFormat {
104 FloppyDriveType drive;
105 uint8_t last_sect;
106 uint8_t max_track;
107 uint8_t max_head;
108 FDriveRate rate;
109 } FDFormat;
111 /* In many cases, the total sector size of a format is enough to uniquely
112 * identify it. However, there are some total sector collisions between
113 * formats of different physical size, and these are noted below by
114 * highlighting the total sector size for entries with collisions. */
115 static const FDFormat fd_formats[] = {
116 /* First entry is default format */
117 /* 1.44 MB 3"1/2 floppy disks */
118 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
119 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
120 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
121 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
122 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
123 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
124 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
125 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
126 /* 2.88 MB 3"1/2 floppy disks */
127 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
128 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
129 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
130 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
131 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
132 /* 720 kB 3"1/2 floppy disks */
133 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
134 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
135 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
136 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
137 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
138 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
139 /* 1.2 MB 5"1/4 floppy disks */
140 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
141 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
142 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
143 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
144 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
145 /* 720 kB 5"1/4 floppy disks */
146 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
147 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
148 /* 360 kB 5"1/4 floppy disks */
149 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
150 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
151 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
152 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
153 /* 320 kB 5"1/4 floppy disks */
154 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
155 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
156 /* 360 kB must match 5"1/4 better than 3"1/2... */
157 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
158 /* end */
159 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
162 static FDriveSize drive_size(FloppyDriveType drive)
164 switch (drive) {
165 case FLOPPY_DRIVE_TYPE_120:
166 return FDRIVE_SIZE_525;
167 case FLOPPY_DRIVE_TYPE_144:
168 case FLOPPY_DRIVE_TYPE_288:
169 return FDRIVE_SIZE_350;
170 default:
171 return FDRIVE_SIZE_UNKNOWN;
175 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
176 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
178 /* Will always be a fixed parameter for us */
179 #define FD_SECTOR_LEN 512
180 #define FD_SECTOR_SC 2 /* Sector size code */
181 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
183 /* Floppy disk drive emulation */
184 typedef enum FDiskFlags {
185 FDISK_DBL_SIDES = 0x01,
186 } FDiskFlags;
188 struct FDrive {
189 FDCtrl *fdctrl;
190 BlockBackend *blk;
191 BlockConf *conf;
192 /* Drive status */
193 FloppyDriveType drive; /* CMOS drive type */
194 uint8_t perpendicular; /* 2.88 MB access mode */
195 /* Position */
196 uint8_t head;
197 uint8_t track;
198 uint8_t sect;
199 /* Media */
200 FloppyDriveType disk; /* Current disk type */
201 FDiskFlags flags;
202 uint8_t last_sect; /* Nb sector per track */
203 uint8_t max_track; /* Nb of tracks */
204 uint16_t bps; /* Bytes per sector */
205 uint8_t ro; /* Is read-only */
206 uint8_t media_changed; /* Is media changed */
207 uint8_t media_rate; /* Data rate of medium */
209 bool media_validated; /* Have we validated the media? */
213 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
215 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
216 * currently goes through some pains to keep seeks within the bounds
217 * established by last_sect and max_track. Correcting this is difficult,
218 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
220 * For now: allow empty drives to have large bounds so we can seek around,
221 * with the understanding that when a diskette is inserted, the bounds will
222 * properly tighten to match the geometry of that inserted medium.
224 static void fd_empty_seek_hack(FDrive *drv)
226 drv->last_sect = 0xFF;
227 drv->max_track = 0xFF;
230 static void fd_init(FDrive *drv)
232 /* Drive */
233 drv->perpendicular = 0;
234 /* Disk */
235 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
236 drv->last_sect = 0;
237 drv->max_track = 0;
238 drv->ro = true;
239 drv->media_changed = 1;
242 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
244 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
245 uint8_t last_sect, uint8_t num_sides)
247 return (((track * num_sides) + head) * last_sect) + sect - 1;
250 /* Returns current position, in sectors, for given drive */
251 static int fd_sector(FDrive *drv)
253 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
254 NUM_SIDES(drv));
257 /* Returns current position, in bytes, for given drive */
258 static int fd_offset(FDrive *drv)
260 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
261 return fd_sector(drv) << BDRV_SECTOR_BITS;
264 /* Seek to a new position:
265 * returns 0 if already on right track
266 * returns 1 if track changed
267 * returns 2 if track is invalid
268 * returns 3 if sector is invalid
269 * returns 4 if seek is disabled
271 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
272 int enable_seek)
274 uint32_t sector;
275 int ret;
277 if (track > drv->max_track ||
278 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
279 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
280 head, track, sect, 1,
281 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
282 drv->max_track, drv->last_sect);
283 return 2;
285 if (sect > drv->last_sect) {
286 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
287 head, track, sect, 1,
288 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
289 drv->max_track, drv->last_sect);
290 return 3;
292 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
293 ret = 0;
294 if (sector != fd_sector(drv)) {
295 #if 0
296 if (!enable_seek) {
297 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
298 " (max=%d %02x %02x)\n",
299 head, track, sect, 1, drv->max_track,
300 drv->last_sect);
301 return 4;
303 #endif
304 drv->head = head;
305 if (drv->track != track) {
306 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
307 drv->media_changed = 0;
309 ret = 1;
311 drv->track = track;
312 drv->sect = sect;
315 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
316 ret = 2;
319 return ret;
322 /* Set drive back to track 0 */
323 static void fd_recalibrate(FDrive *drv)
325 FLOPPY_DPRINTF("recalibrate\n");
326 fd_seek(drv, 0, 0, 1, 1);
330 * Determine geometry based on inserted diskette.
331 * Will not operate on an empty drive.
333 * @return: 0 on success, -1 if the drive is empty.
335 static int pick_geometry(FDrive *drv)
337 BlockBackend *blk = drv->blk;
338 const FDFormat *parse;
339 uint64_t nb_sectors, size;
340 int i;
341 int match, size_match, type_match;
342 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
344 /* We can only pick a geometry if we have a diskette. */
345 if (!drv->blk || !blk_is_inserted(drv->blk) ||
346 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
348 return -1;
351 /* We need to determine the likely geometry of the inserted medium.
352 * In order of preference, we look for:
353 * (1) The same drive type and number of sectors,
354 * (2) The same diskette size and number of sectors,
355 * (3) The same drive type.
357 * In all cases, matches that occur higher in the drive table will take
358 * precedence over matches that occur later in the table.
360 blk_get_geometry(blk, &nb_sectors);
361 match = size_match = type_match = -1;
362 for (i = 0; ; i++) {
363 parse = &fd_formats[i];
364 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
365 break;
367 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
368 if (nb_sectors == size) {
369 if (magic || parse->drive == drv->drive) {
370 /* (1) perfect match -- nb_sectors and drive type */
371 goto out;
372 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
373 /* (2) size match -- nb_sectors and physical medium size */
374 match = (match == -1) ? i : match;
375 } else {
376 /* This is suspicious -- Did the user misconfigure? */
377 size_match = (size_match == -1) ? i : size_match;
379 } else if (type_match == -1) {
380 if ((parse->drive == drv->drive) ||
381 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
382 /* (3) type match -- nb_sectors mismatch, but matches the type
383 * specified explicitly by the user, or matches the fallback
384 * default type when using the drive autodetect mechanism */
385 type_match = i;
390 /* No exact match found */
391 if (match == -1) {
392 if (size_match != -1) {
393 parse = &fd_formats[size_match];
394 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
395 "but inserted medium appears to be a "
396 "%"PRId64" sector '%s' type\n",
397 FloppyDriveType_str(drv->drive),
398 nb_sectors,
399 FloppyDriveType_str(parse->drive));
401 assert(type_match != -1 && "misconfigured fd_format");
402 match = type_match;
404 parse = &(fd_formats[match]);
406 out:
407 if (parse->max_head == 0) {
408 drv->flags &= ~FDISK_DBL_SIDES;
409 } else {
410 drv->flags |= FDISK_DBL_SIDES;
412 drv->max_track = parse->max_track;
413 drv->last_sect = parse->last_sect;
414 drv->disk = parse->drive;
415 drv->media_rate = parse->rate;
416 return 0;
419 static void pick_drive_type(FDrive *drv)
421 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
422 return;
425 if (pick_geometry(drv) == 0) {
426 drv->drive = drv->disk;
427 } else {
428 drv->drive = get_fallback_drive_type(drv);
431 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
434 /* Revalidate a disk drive after a disk change */
435 static void fd_revalidate(FDrive *drv)
437 int rc;
439 FLOPPY_DPRINTF("revalidate\n");
440 if (drv->blk != NULL) {
441 drv->ro = blk_is_read_only(drv->blk);
442 if (!blk_is_inserted(drv->blk)) {
443 FLOPPY_DPRINTF("No disk in drive\n");
444 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
445 fd_empty_seek_hack(drv);
446 } else if (!drv->media_validated) {
447 rc = pick_geometry(drv);
448 if (rc) {
449 FLOPPY_DPRINTF("Could not validate floppy drive media");
450 } else {
451 drv->media_validated = true;
452 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
453 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
454 drv->max_track, drv->last_sect,
455 drv->ro ? "ro" : "rw");
458 } else {
459 FLOPPY_DPRINTF("No drive connected\n");
460 drv->last_sect = 0;
461 drv->max_track = 0;
462 drv->flags &= ~FDISK_DBL_SIDES;
463 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
464 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
468 static void fd_change_cb(void *opaque, bool load, Error **errp)
470 FDrive *drive = opaque;
472 if (!load) {
473 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
474 } else {
475 if (!blkconf_apply_backend_options(drive->conf,
476 blk_is_read_only(drive->blk), false,
477 errp)) {
478 return;
482 drive->media_changed = 1;
483 drive->media_validated = false;
484 fd_revalidate(drive);
487 static const BlockDevOps fd_block_ops = {
488 .change_media_cb = fd_change_cb,
492 #define TYPE_FLOPPY_DRIVE "floppy"
493 #define FLOPPY_DRIVE(obj) \
494 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
496 typedef struct FloppyDrive {
497 DeviceState qdev;
498 uint32_t unit;
499 BlockConf conf;
500 FloppyDriveType type;
501 } FloppyDrive;
503 static Property floppy_drive_properties[] = {
504 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
505 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
506 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
507 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
508 FloppyDriveType),
509 DEFINE_PROP_END_OF_LIST(),
512 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
514 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
515 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
516 FDrive *drive;
517 bool read_only;
518 int ret;
520 if (dev->unit == -1) {
521 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
522 drive = get_drv(bus->fdc, dev->unit);
523 if (!drive->blk) {
524 break;
529 if (dev->unit >= MAX_FD) {
530 error_setg(errp, "Can't create floppy unit %d, bus supports "
531 "only %d units", dev->unit, MAX_FD);
532 return;
535 drive = get_drv(bus->fdc, dev->unit);
536 if (drive->blk) {
537 error_setg(errp, "Floppy unit %d is in use", dev->unit);
538 return;
541 if (!dev->conf.blk) {
542 /* Anonymous BlockBackend for an empty drive */
543 dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
544 ret = blk_attach_dev(dev->conf.blk, qdev);
545 assert(ret == 0);
547 /* Don't take write permissions on an empty drive to allow attaching a
548 * read-only node later */
549 read_only = true;
550 } else {
551 read_only = !blk_bs(dev->conf.blk) || blk_is_read_only(dev->conf.blk);
554 blkconf_blocksizes(&dev->conf);
555 if (dev->conf.logical_block_size != 512 ||
556 dev->conf.physical_block_size != 512)
558 error_setg(errp, "Physical and logical block size must "
559 "be 512 for floppy");
560 return;
563 /* rerror/werror aren't supported by fdc and therefore not even registered
564 * with qdev. So set the defaults manually before they are used in
565 * blkconf_apply_backend_options(). */
566 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
567 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
569 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
570 return;
573 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
574 * for empty drives. */
575 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
576 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
577 error_setg(errp, "fdc doesn't support drive option werror");
578 return;
580 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
581 error_setg(errp, "fdc doesn't support drive option rerror");
582 return;
585 drive->conf = &dev->conf;
586 drive->blk = dev->conf.blk;
587 drive->fdctrl = bus->fdc;
589 fd_init(drive);
590 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
592 /* Keep 'type' qdev property and FDrive->drive in sync */
593 drive->drive = dev->type;
594 pick_drive_type(drive);
595 dev->type = drive->drive;
597 fd_revalidate(drive);
600 static void floppy_drive_class_init(ObjectClass *klass, void *data)
602 DeviceClass *k = DEVICE_CLASS(klass);
603 k->realize = floppy_drive_realize;
604 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
605 k->bus_type = TYPE_FLOPPY_BUS;
606 k->props = floppy_drive_properties;
607 k->desc = "virtual floppy drive";
610 static const TypeInfo floppy_drive_info = {
611 .name = TYPE_FLOPPY_DRIVE,
612 .parent = TYPE_DEVICE,
613 .instance_size = sizeof(FloppyDrive),
614 .class_init = floppy_drive_class_init,
617 /********************************************************/
618 /* Intel 82078 floppy disk controller emulation */
620 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
621 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
622 static int fdctrl_transfer_handler (void *opaque, int nchan,
623 int dma_pos, int dma_len);
624 static void fdctrl_raise_irq(FDCtrl *fdctrl);
625 static FDrive *get_cur_drv(FDCtrl *fdctrl);
627 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
628 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
629 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
630 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
631 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
632 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
633 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
634 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
635 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
636 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
637 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
638 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
640 enum {
641 FD_DIR_WRITE = 0,
642 FD_DIR_READ = 1,
643 FD_DIR_SCANE = 2,
644 FD_DIR_SCANL = 3,
645 FD_DIR_SCANH = 4,
646 FD_DIR_VERIFY = 5,
649 enum {
650 FD_STATE_MULTI = 0x01, /* multi track flag */
651 FD_STATE_FORMAT = 0x02, /* format flag */
654 enum {
655 FD_REG_SRA = 0x00,
656 FD_REG_SRB = 0x01,
657 FD_REG_DOR = 0x02,
658 FD_REG_TDR = 0x03,
659 FD_REG_MSR = 0x04,
660 FD_REG_DSR = 0x04,
661 FD_REG_FIFO = 0x05,
662 FD_REG_DIR = 0x07,
663 FD_REG_CCR = 0x07,
666 enum {
667 FD_CMD_READ_TRACK = 0x02,
668 FD_CMD_SPECIFY = 0x03,
669 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
670 FD_CMD_WRITE = 0x05,
671 FD_CMD_READ = 0x06,
672 FD_CMD_RECALIBRATE = 0x07,
673 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
674 FD_CMD_WRITE_DELETED = 0x09,
675 FD_CMD_READ_ID = 0x0a,
676 FD_CMD_READ_DELETED = 0x0c,
677 FD_CMD_FORMAT_TRACK = 0x0d,
678 FD_CMD_DUMPREG = 0x0e,
679 FD_CMD_SEEK = 0x0f,
680 FD_CMD_VERSION = 0x10,
681 FD_CMD_SCAN_EQUAL = 0x11,
682 FD_CMD_PERPENDICULAR_MODE = 0x12,
683 FD_CMD_CONFIGURE = 0x13,
684 FD_CMD_LOCK = 0x14,
685 FD_CMD_VERIFY = 0x16,
686 FD_CMD_POWERDOWN_MODE = 0x17,
687 FD_CMD_PART_ID = 0x18,
688 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
689 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
690 FD_CMD_SAVE = 0x2e,
691 FD_CMD_OPTION = 0x33,
692 FD_CMD_RESTORE = 0x4e,
693 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
694 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
695 FD_CMD_FORMAT_AND_WRITE = 0xcd,
696 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
699 enum {
700 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
701 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
702 FD_CONFIG_POLL = 0x10, /* Poll enabled */
703 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
704 FD_CONFIG_EIS = 0x40, /* No implied seeks */
707 enum {
708 FD_SR0_DS0 = 0x01,
709 FD_SR0_DS1 = 0x02,
710 FD_SR0_HEAD = 0x04,
711 FD_SR0_EQPMT = 0x10,
712 FD_SR0_SEEK = 0x20,
713 FD_SR0_ABNTERM = 0x40,
714 FD_SR0_INVCMD = 0x80,
715 FD_SR0_RDYCHG = 0xc0,
718 enum {
719 FD_SR1_MA = 0x01, /* Missing address mark */
720 FD_SR1_NW = 0x02, /* Not writable */
721 FD_SR1_EC = 0x80, /* End of cylinder */
724 enum {
725 FD_SR2_SNS = 0x04, /* Scan not satisfied */
726 FD_SR2_SEH = 0x08, /* Scan equal hit */
729 enum {
730 FD_SRA_DIR = 0x01,
731 FD_SRA_nWP = 0x02,
732 FD_SRA_nINDX = 0x04,
733 FD_SRA_HDSEL = 0x08,
734 FD_SRA_nTRK0 = 0x10,
735 FD_SRA_STEP = 0x20,
736 FD_SRA_nDRV2 = 0x40,
737 FD_SRA_INTPEND = 0x80,
740 enum {
741 FD_SRB_MTR0 = 0x01,
742 FD_SRB_MTR1 = 0x02,
743 FD_SRB_WGATE = 0x04,
744 FD_SRB_RDATA = 0x08,
745 FD_SRB_WDATA = 0x10,
746 FD_SRB_DR0 = 0x20,
749 enum {
750 #if MAX_FD == 4
751 FD_DOR_SELMASK = 0x03,
752 #else
753 FD_DOR_SELMASK = 0x01,
754 #endif
755 FD_DOR_nRESET = 0x04,
756 FD_DOR_DMAEN = 0x08,
757 FD_DOR_MOTEN0 = 0x10,
758 FD_DOR_MOTEN1 = 0x20,
759 FD_DOR_MOTEN2 = 0x40,
760 FD_DOR_MOTEN3 = 0x80,
763 enum {
764 #if MAX_FD == 4
765 FD_TDR_BOOTSEL = 0x0c,
766 #else
767 FD_TDR_BOOTSEL = 0x04,
768 #endif
771 enum {
772 FD_DSR_DRATEMASK= 0x03,
773 FD_DSR_PWRDOWN = 0x40,
774 FD_DSR_SWRESET = 0x80,
777 enum {
778 FD_MSR_DRV0BUSY = 0x01,
779 FD_MSR_DRV1BUSY = 0x02,
780 FD_MSR_DRV2BUSY = 0x04,
781 FD_MSR_DRV3BUSY = 0x08,
782 FD_MSR_CMDBUSY = 0x10,
783 FD_MSR_NONDMA = 0x20,
784 FD_MSR_DIO = 0x40,
785 FD_MSR_RQM = 0x80,
788 enum {
789 FD_DIR_DSKCHG = 0x80,
793 * See chapter 5.0 "Controller phases" of the spec:
795 * Command phase:
796 * The host writes a command and its parameters into the FIFO. The command
797 * phase is completed when all parameters for the command have been supplied,
798 * and execution phase is entered.
800 * Execution phase:
801 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
802 * contains the payload now, otherwise it's unused. When all bytes of the
803 * required data have been transferred, the state is switched to either result
804 * phase (if the command produces status bytes) or directly back into the
805 * command phase for the next command.
807 * Result phase:
808 * The host reads out the FIFO, which contains one or more result bytes now.
810 enum {
811 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
812 FD_PHASE_RECONSTRUCT = 0,
814 FD_PHASE_COMMAND = 1,
815 FD_PHASE_EXECUTION = 2,
816 FD_PHASE_RESULT = 3,
819 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
820 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
822 struct FDCtrl {
823 MemoryRegion iomem;
824 qemu_irq irq;
825 /* Controller state */
826 QEMUTimer *result_timer;
827 int dma_chann;
828 uint8_t phase;
829 IsaDma *dma;
830 /* Controller's identification */
831 uint8_t version;
832 /* HW */
833 uint8_t sra;
834 uint8_t srb;
835 uint8_t dor;
836 uint8_t dor_vmstate; /* only used as temp during vmstate */
837 uint8_t tdr;
838 uint8_t dsr;
839 uint8_t msr;
840 uint8_t cur_drv;
841 uint8_t status0;
842 uint8_t status1;
843 uint8_t status2;
844 /* Command FIFO */
845 uint8_t *fifo;
846 int32_t fifo_size;
847 uint32_t data_pos;
848 uint32_t data_len;
849 uint8_t data_state;
850 uint8_t data_dir;
851 uint8_t eot; /* last wanted sector */
852 /* States kept only to be returned back */
853 /* precompensation */
854 uint8_t precomp_trk;
855 uint8_t config;
856 uint8_t lock;
857 /* Power down config (also with status regB access mode */
858 uint8_t pwrd;
859 /* Floppy drives */
860 FloppyBus bus;
861 uint8_t num_floppies;
862 FDrive drives[MAX_FD];
863 struct {
864 BlockBackend *blk;
865 FloppyDriveType type;
866 } qdev_for_drives[MAX_FD];
867 int reset_sensei;
868 uint32_t check_media_rate;
869 FloppyDriveType fallback; /* type=auto failure fallback */
870 /* Timers state */
871 uint8_t timer0;
872 uint8_t timer1;
873 PortioList portio_list;
876 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
878 return drv->fdctrl->fallback;
881 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
882 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
884 typedef struct FDCtrlSysBus {
885 /*< private >*/
886 SysBusDevice parent_obj;
887 /*< public >*/
889 struct FDCtrl state;
890 } FDCtrlSysBus;
892 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
894 typedef struct FDCtrlISABus {
895 ISADevice parent_obj;
897 uint32_t iobase;
898 uint32_t irq;
899 uint32_t dma;
900 struct FDCtrl state;
901 int32_t bootindexA;
902 int32_t bootindexB;
903 } FDCtrlISABus;
905 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
907 FDCtrl *fdctrl = opaque;
908 uint32_t retval;
910 reg &= 7;
911 switch (reg) {
912 case FD_REG_SRA:
913 retval = fdctrl_read_statusA(fdctrl);
914 break;
915 case FD_REG_SRB:
916 retval = fdctrl_read_statusB(fdctrl);
917 break;
918 case FD_REG_DOR:
919 retval = fdctrl_read_dor(fdctrl);
920 break;
921 case FD_REG_TDR:
922 retval = fdctrl_read_tape(fdctrl);
923 break;
924 case FD_REG_MSR:
925 retval = fdctrl_read_main_status(fdctrl);
926 break;
927 case FD_REG_FIFO:
928 retval = fdctrl_read_data(fdctrl);
929 break;
930 case FD_REG_DIR:
931 retval = fdctrl_read_dir(fdctrl);
932 break;
933 default:
934 retval = (uint32_t)(-1);
935 break;
937 trace_fdc_ioport_read(reg, retval);
939 return retval;
942 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
944 FDCtrl *fdctrl = opaque;
946 reg &= 7;
947 trace_fdc_ioport_write(reg, value);
948 switch (reg) {
949 case FD_REG_DOR:
950 fdctrl_write_dor(fdctrl, value);
951 break;
952 case FD_REG_TDR:
953 fdctrl_write_tape(fdctrl, value);
954 break;
955 case FD_REG_DSR:
956 fdctrl_write_rate(fdctrl, value);
957 break;
958 case FD_REG_FIFO:
959 fdctrl_write_data(fdctrl, value);
960 break;
961 case FD_REG_CCR:
962 fdctrl_write_ccr(fdctrl, value);
963 break;
964 default:
965 break;
969 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
970 unsigned ize)
972 return fdctrl_read(opaque, (uint32_t)reg);
975 static void fdctrl_write_mem (void *opaque, hwaddr reg,
976 uint64_t value, unsigned size)
978 fdctrl_write(opaque, (uint32_t)reg, value);
981 static const MemoryRegionOps fdctrl_mem_ops = {
982 .read = fdctrl_read_mem,
983 .write = fdctrl_write_mem,
984 .endianness = DEVICE_NATIVE_ENDIAN,
987 static const MemoryRegionOps fdctrl_mem_strict_ops = {
988 .read = fdctrl_read_mem,
989 .write = fdctrl_write_mem,
990 .endianness = DEVICE_NATIVE_ENDIAN,
991 .valid = {
992 .min_access_size = 1,
993 .max_access_size = 1,
997 static bool fdrive_media_changed_needed(void *opaque)
999 FDrive *drive = opaque;
1001 return (drive->blk != NULL && drive->media_changed != 1);
1004 static const VMStateDescription vmstate_fdrive_media_changed = {
1005 .name = "fdrive/media_changed",
1006 .version_id = 1,
1007 .minimum_version_id = 1,
1008 .needed = fdrive_media_changed_needed,
1009 .fields = (VMStateField[]) {
1010 VMSTATE_UINT8(media_changed, FDrive),
1011 VMSTATE_END_OF_LIST()
1015 static bool fdrive_media_rate_needed(void *opaque)
1017 FDrive *drive = opaque;
1019 return drive->fdctrl->check_media_rate;
1022 static const VMStateDescription vmstate_fdrive_media_rate = {
1023 .name = "fdrive/media_rate",
1024 .version_id = 1,
1025 .minimum_version_id = 1,
1026 .needed = fdrive_media_rate_needed,
1027 .fields = (VMStateField[]) {
1028 VMSTATE_UINT8(media_rate, FDrive),
1029 VMSTATE_END_OF_LIST()
1033 static bool fdrive_perpendicular_needed(void *opaque)
1035 FDrive *drive = opaque;
1037 return drive->perpendicular != 0;
1040 static const VMStateDescription vmstate_fdrive_perpendicular = {
1041 .name = "fdrive/perpendicular",
1042 .version_id = 1,
1043 .minimum_version_id = 1,
1044 .needed = fdrive_perpendicular_needed,
1045 .fields = (VMStateField[]) {
1046 VMSTATE_UINT8(perpendicular, FDrive),
1047 VMSTATE_END_OF_LIST()
1051 static int fdrive_post_load(void *opaque, int version_id)
1053 fd_revalidate(opaque);
1054 return 0;
1057 static const VMStateDescription vmstate_fdrive = {
1058 .name = "fdrive",
1059 .version_id = 1,
1060 .minimum_version_id = 1,
1061 .post_load = fdrive_post_load,
1062 .fields = (VMStateField[]) {
1063 VMSTATE_UINT8(head, FDrive),
1064 VMSTATE_UINT8(track, FDrive),
1065 VMSTATE_UINT8(sect, FDrive),
1066 VMSTATE_END_OF_LIST()
1068 .subsections = (const VMStateDescription*[]) {
1069 &vmstate_fdrive_media_changed,
1070 &vmstate_fdrive_media_rate,
1071 &vmstate_fdrive_perpendicular,
1072 NULL
1077 * Reconstructs the phase from register values according to the logic that was
1078 * implemented in qemu 2.3. This is the default value that is used if the phase
1079 * subsection is not present on migration.
1081 * Don't change this function to reflect newer qemu versions, it is part of
1082 * the migration ABI.
1084 static int reconstruct_phase(FDCtrl *fdctrl)
1086 if (fdctrl->msr & FD_MSR_NONDMA) {
1087 return FD_PHASE_EXECUTION;
1088 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1089 /* qemu 2.3 disabled RQM only during DMA transfers */
1090 return FD_PHASE_EXECUTION;
1091 } else if (fdctrl->msr & FD_MSR_DIO) {
1092 return FD_PHASE_RESULT;
1093 } else {
1094 return FD_PHASE_COMMAND;
1098 static int fdc_pre_save(void *opaque)
1100 FDCtrl *s = opaque;
1102 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1104 return 0;
1107 static int fdc_pre_load(void *opaque)
1109 FDCtrl *s = opaque;
1110 s->phase = FD_PHASE_RECONSTRUCT;
1111 return 0;
1114 static int fdc_post_load(void *opaque, int version_id)
1116 FDCtrl *s = opaque;
1118 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1119 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1121 if (s->phase == FD_PHASE_RECONSTRUCT) {
1122 s->phase = reconstruct_phase(s);
1125 return 0;
1128 static bool fdc_reset_sensei_needed(void *opaque)
1130 FDCtrl *s = opaque;
1132 return s->reset_sensei != 0;
1135 static const VMStateDescription vmstate_fdc_reset_sensei = {
1136 .name = "fdc/reset_sensei",
1137 .version_id = 1,
1138 .minimum_version_id = 1,
1139 .needed = fdc_reset_sensei_needed,
1140 .fields = (VMStateField[]) {
1141 VMSTATE_INT32(reset_sensei, FDCtrl),
1142 VMSTATE_END_OF_LIST()
1146 static bool fdc_result_timer_needed(void *opaque)
1148 FDCtrl *s = opaque;
1150 return timer_pending(s->result_timer);
1153 static const VMStateDescription vmstate_fdc_result_timer = {
1154 .name = "fdc/result_timer",
1155 .version_id = 1,
1156 .minimum_version_id = 1,
1157 .needed = fdc_result_timer_needed,
1158 .fields = (VMStateField[]) {
1159 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1160 VMSTATE_END_OF_LIST()
1164 static bool fdc_phase_needed(void *opaque)
1166 FDCtrl *fdctrl = opaque;
1168 return reconstruct_phase(fdctrl) != fdctrl->phase;
1171 static const VMStateDescription vmstate_fdc_phase = {
1172 .name = "fdc/phase",
1173 .version_id = 1,
1174 .minimum_version_id = 1,
1175 .needed = fdc_phase_needed,
1176 .fields = (VMStateField[]) {
1177 VMSTATE_UINT8(phase, FDCtrl),
1178 VMSTATE_END_OF_LIST()
1182 static const VMStateDescription vmstate_fdc = {
1183 .name = "fdc",
1184 .version_id = 2,
1185 .minimum_version_id = 2,
1186 .pre_save = fdc_pre_save,
1187 .pre_load = fdc_pre_load,
1188 .post_load = fdc_post_load,
1189 .fields = (VMStateField[]) {
1190 /* Controller State */
1191 VMSTATE_UINT8(sra, FDCtrl),
1192 VMSTATE_UINT8(srb, FDCtrl),
1193 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1194 VMSTATE_UINT8(tdr, FDCtrl),
1195 VMSTATE_UINT8(dsr, FDCtrl),
1196 VMSTATE_UINT8(msr, FDCtrl),
1197 VMSTATE_UINT8(status0, FDCtrl),
1198 VMSTATE_UINT8(status1, FDCtrl),
1199 VMSTATE_UINT8(status2, FDCtrl),
1200 /* Command FIFO */
1201 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1202 uint8_t),
1203 VMSTATE_UINT32(data_pos, FDCtrl),
1204 VMSTATE_UINT32(data_len, FDCtrl),
1205 VMSTATE_UINT8(data_state, FDCtrl),
1206 VMSTATE_UINT8(data_dir, FDCtrl),
1207 VMSTATE_UINT8(eot, FDCtrl),
1208 /* States kept only to be returned back */
1209 VMSTATE_UINT8(timer0, FDCtrl),
1210 VMSTATE_UINT8(timer1, FDCtrl),
1211 VMSTATE_UINT8(precomp_trk, FDCtrl),
1212 VMSTATE_UINT8(config, FDCtrl),
1213 VMSTATE_UINT8(lock, FDCtrl),
1214 VMSTATE_UINT8(pwrd, FDCtrl),
1215 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1216 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1217 vmstate_fdrive, FDrive),
1218 VMSTATE_END_OF_LIST()
1220 .subsections = (const VMStateDescription*[]) {
1221 &vmstate_fdc_reset_sensei,
1222 &vmstate_fdc_result_timer,
1223 &vmstate_fdc_phase,
1224 NULL
1228 static void fdctrl_external_reset_sysbus(DeviceState *d)
1230 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1231 FDCtrl *s = &sys->state;
1233 fdctrl_reset(s, 0);
1236 static void fdctrl_external_reset_isa(DeviceState *d)
1238 FDCtrlISABus *isa = ISA_FDC(d);
1239 FDCtrl *s = &isa->state;
1241 fdctrl_reset(s, 0);
1244 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1246 //FDCtrl *s = opaque;
1248 if (level) {
1249 // XXX
1250 FLOPPY_DPRINTF("TC pulsed\n");
1254 /* Change IRQ state */
1255 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1257 fdctrl->status0 = 0;
1258 if (!(fdctrl->sra & FD_SRA_INTPEND))
1259 return;
1260 FLOPPY_DPRINTF("Reset interrupt\n");
1261 qemu_set_irq(fdctrl->irq, 0);
1262 fdctrl->sra &= ~FD_SRA_INTPEND;
1265 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1267 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1268 qemu_set_irq(fdctrl->irq, 1);
1269 fdctrl->sra |= FD_SRA_INTPEND;
1272 fdctrl->reset_sensei = 0;
1273 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1276 /* Reset controller */
1277 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1279 int i;
1281 FLOPPY_DPRINTF("reset controller\n");
1282 fdctrl_reset_irq(fdctrl);
1283 /* Initialise controller */
1284 fdctrl->sra = 0;
1285 fdctrl->srb = 0xc0;
1286 if (!fdctrl->drives[1].blk) {
1287 fdctrl->sra |= FD_SRA_nDRV2;
1289 fdctrl->cur_drv = 0;
1290 fdctrl->dor = FD_DOR_nRESET;
1291 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1292 fdctrl->msr = FD_MSR_RQM;
1293 fdctrl->reset_sensei = 0;
1294 timer_del(fdctrl->result_timer);
1295 /* FIFO state */
1296 fdctrl->data_pos = 0;
1297 fdctrl->data_len = 0;
1298 fdctrl->data_state = 0;
1299 fdctrl->data_dir = FD_DIR_WRITE;
1300 for (i = 0; i < MAX_FD; i++)
1301 fd_recalibrate(&fdctrl->drives[i]);
1302 fdctrl_to_command_phase(fdctrl);
1303 if (do_irq) {
1304 fdctrl->status0 |= FD_SR0_RDYCHG;
1305 fdctrl_raise_irq(fdctrl);
1306 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1310 static inline FDrive *drv0(FDCtrl *fdctrl)
1312 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1315 static inline FDrive *drv1(FDCtrl *fdctrl)
1317 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1318 return &fdctrl->drives[1];
1319 else
1320 return &fdctrl->drives[0];
1323 #if MAX_FD == 4
1324 static inline FDrive *drv2(FDCtrl *fdctrl)
1326 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1327 return &fdctrl->drives[2];
1328 else
1329 return &fdctrl->drives[1];
1332 static inline FDrive *drv3(FDCtrl *fdctrl)
1334 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1335 return &fdctrl->drives[3];
1336 else
1337 return &fdctrl->drives[2];
1339 #endif
1341 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1343 switch (unit) {
1344 case 0: return drv0(fdctrl);
1345 case 1: return drv1(fdctrl);
1346 #if MAX_FD == 4
1347 case 2: return drv2(fdctrl);
1348 case 3: return drv3(fdctrl);
1349 #endif
1350 default: return NULL;
1354 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1356 return get_drv(fdctrl, fdctrl->cur_drv);
1359 /* Status A register : 0x00 (read-only) */
1360 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1362 uint32_t retval = fdctrl->sra;
1364 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1366 return retval;
1369 /* Status B register : 0x01 (read-only) */
1370 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1372 uint32_t retval = fdctrl->srb;
1374 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1376 return retval;
1379 /* Digital output register : 0x02 */
1380 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1382 uint32_t retval = fdctrl->dor;
1384 /* Selected drive */
1385 retval |= fdctrl->cur_drv;
1386 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1388 return retval;
1391 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1393 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1395 /* Motors */
1396 if (value & FD_DOR_MOTEN0)
1397 fdctrl->srb |= FD_SRB_MTR0;
1398 else
1399 fdctrl->srb &= ~FD_SRB_MTR0;
1400 if (value & FD_DOR_MOTEN1)
1401 fdctrl->srb |= FD_SRB_MTR1;
1402 else
1403 fdctrl->srb &= ~FD_SRB_MTR1;
1405 /* Drive */
1406 if (value & 1)
1407 fdctrl->srb |= FD_SRB_DR0;
1408 else
1409 fdctrl->srb &= ~FD_SRB_DR0;
1411 /* Reset */
1412 if (!(value & FD_DOR_nRESET)) {
1413 if (fdctrl->dor & FD_DOR_nRESET) {
1414 FLOPPY_DPRINTF("controller enter RESET state\n");
1416 } else {
1417 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1418 FLOPPY_DPRINTF("controller out of RESET state\n");
1419 fdctrl_reset(fdctrl, 1);
1420 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1423 /* Selected drive */
1424 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1426 fdctrl->dor = value;
1429 /* Tape drive register : 0x03 */
1430 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1432 uint32_t retval = fdctrl->tdr;
1434 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1436 return retval;
1439 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1441 /* Reset mode */
1442 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1443 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1444 return;
1446 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1447 /* Disk boot selection indicator */
1448 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1449 /* Tape indicators: never allow */
1452 /* Main status register : 0x04 (read) */
1453 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1455 uint32_t retval = fdctrl->msr;
1457 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1458 fdctrl->dor |= FD_DOR_nRESET;
1460 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1462 return retval;
1465 /* Data select rate register : 0x04 (write) */
1466 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1468 /* Reset mode */
1469 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1470 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1471 return;
1473 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1474 /* Reset: autoclear */
1475 if (value & FD_DSR_SWRESET) {
1476 fdctrl->dor &= ~FD_DOR_nRESET;
1477 fdctrl_reset(fdctrl, 1);
1478 fdctrl->dor |= FD_DOR_nRESET;
1480 if (value & FD_DSR_PWRDOWN) {
1481 fdctrl_reset(fdctrl, 1);
1483 fdctrl->dsr = value;
1486 /* Configuration control register: 0x07 (write) */
1487 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1489 /* Reset mode */
1490 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1491 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1492 return;
1494 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1496 /* Only the rate selection bits used in AT mode, and we
1497 * store those in the DSR.
1499 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1500 (value & FD_DSR_DRATEMASK);
1503 static int fdctrl_media_changed(FDrive *drv)
1505 return drv->media_changed;
1508 /* Digital input register : 0x07 (read-only) */
1509 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1511 uint32_t retval = 0;
1513 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1514 retval |= FD_DIR_DSKCHG;
1516 if (retval != 0) {
1517 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1520 return retval;
1523 /* Clear the FIFO and update the state for receiving the next command */
1524 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1526 fdctrl->phase = FD_PHASE_COMMAND;
1527 fdctrl->data_dir = FD_DIR_WRITE;
1528 fdctrl->data_pos = 0;
1529 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1530 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1531 fdctrl->msr |= FD_MSR_RQM;
1534 /* Update the state to allow the guest to read out the command status.
1535 * @fifo_len is the number of result bytes to be read out. */
1536 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1538 fdctrl->phase = FD_PHASE_RESULT;
1539 fdctrl->data_dir = FD_DIR_READ;
1540 fdctrl->data_len = fifo_len;
1541 fdctrl->data_pos = 0;
1542 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1545 /* Set an error: unimplemented/unknown command */
1546 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1548 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1549 fdctrl->fifo[0]);
1550 fdctrl->fifo[0] = FD_SR0_INVCMD;
1551 fdctrl_to_result_phase(fdctrl, 1);
1554 /* Seek to next sector
1555 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1556 * otherwise returns 1
1558 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1560 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1561 cur_drv->head, cur_drv->track, cur_drv->sect,
1562 fd_sector(cur_drv));
1563 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1564 error in fact */
1565 uint8_t new_head = cur_drv->head;
1566 uint8_t new_track = cur_drv->track;
1567 uint8_t new_sect = cur_drv->sect;
1569 int ret = 1;
1571 if (new_sect >= cur_drv->last_sect ||
1572 new_sect == fdctrl->eot) {
1573 new_sect = 1;
1574 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1575 if (new_head == 0 &&
1576 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1577 new_head = 1;
1578 } else {
1579 new_head = 0;
1580 new_track++;
1581 fdctrl->status0 |= FD_SR0_SEEK;
1582 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1583 ret = 0;
1586 } else {
1587 fdctrl->status0 |= FD_SR0_SEEK;
1588 new_track++;
1589 ret = 0;
1591 if (ret == 1) {
1592 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1593 new_head, new_track, new_sect, fd_sector(cur_drv));
1595 } else {
1596 new_sect++;
1598 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1599 return ret;
1602 /* Callback for transfer end (stop or abort) */
1603 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1604 uint8_t status1, uint8_t status2)
1606 FDrive *cur_drv;
1607 cur_drv = get_cur_drv(fdctrl);
1609 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1610 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1611 if (cur_drv->head) {
1612 fdctrl->status0 |= FD_SR0_HEAD;
1614 fdctrl->status0 |= status0;
1616 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1617 status0, status1, status2, fdctrl->status0);
1618 fdctrl->fifo[0] = fdctrl->status0;
1619 fdctrl->fifo[1] = status1;
1620 fdctrl->fifo[2] = status2;
1621 fdctrl->fifo[3] = cur_drv->track;
1622 fdctrl->fifo[4] = cur_drv->head;
1623 fdctrl->fifo[5] = cur_drv->sect;
1624 fdctrl->fifo[6] = FD_SECTOR_SC;
1625 fdctrl->data_dir = FD_DIR_READ;
1626 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1627 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1628 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1630 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1631 fdctrl->msr &= ~FD_MSR_NONDMA;
1633 fdctrl_to_result_phase(fdctrl, 7);
1634 fdctrl_raise_irq(fdctrl);
1637 /* Prepare a data transfer (either DMA or FIFO) */
1638 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1640 FDrive *cur_drv;
1641 uint8_t kh, kt, ks;
1643 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1644 cur_drv = get_cur_drv(fdctrl);
1645 kt = fdctrl->fifo[2];
1646 kh = fdctrl->fifo[3];
1647 ks = fdctrl->fifo[4];
1648 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1649 GET_CUR_DRV(fdctrl), kh, kt, ks,
1650 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1651 NUM_SIDES(cur_drv)));
1652 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1653 case 2:
1654 /* sect too big */
1655 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1656 fdctrl->fifo[3] = kt;
1657 fdctrl->fifo[4] = kh;
1658 fdctrl->fifo[5] = ks;
1659 return;
1660 case 3:
1661 /* track too big */
1662 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1663 fdctrl->fifo[3] = kt;
1664 fdctrl->fifo[4] = kh;
1665 fdctrl->fifo[5] = ks;
1666 return;
1667 case 4:
1668 /* No seek enabled */
1669 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1670 fdctrl->fifo[3] = kt;
1671 fdctrl->fifo[4] = kh;
1672 fdctrl->fifo[5] = ks;
1673 return;
1674 case 1:
1675 fdctrl->status0 |= FD_SR0_SEEK;
1676 break;
1677 default:
1678 break;
1681 /* Check the data rate. If the programmed data rate does not match
1682 * the currently inserted medium, the operation has to fail. */
1683 if (fdctrl->check_media_rate &&
1684 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1685 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1686 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1687 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1688 fdctrl->fifo[3] = kt;
1689 fdctrl->fifo[4] = kh;
1690 fdctrl->fifo[5] = ks;
1691 return;
1694 /* Set the FIFO state */
1695 fdctrl->data_dir = direction;
1696 fdctrl->data_pos = 0;
1697 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1698 if (fdctrl->fifo[0] & 0x80)
1699 fdctrl->data_state |= FD_STATE_MULTI;
1700 else
1701 fdctrl->data_state &= ~FD_STATE_MULTI;
1702 if (fdctrl->fifo[5] == 0) {
1703 fdctrl->data_len = fdctrl->fifo[8];
1704 } else {
1705 int tmp;
1706 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1707 tmp = (fdctrl->fifo[6] - ks + 1);
1708 if (fdctrl->fifo[0] & 0x80)
1709 tmp += fdctrl->fifo[6];
1710 fdctrl->data_len *= tmp;
1712 fdctrl->eot = fdctrl->fifo[6];
1713 if (fdctrl->dor & FD_DOR_DMAEN) {
1714 IsaDmaTransferMode dma_mode;
1715 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1716 bool dma_mode_ok;
1717 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1718 dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1719 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1720 dma_mode, direction,
1721 (128 << fdctrl->fifo[5]) *
1722 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1723 switch (direction) {
1724 case FD_DIR_SCANE:
1725 case FD_DIR_SCANL:
1726 case FD_DIR_SCANH:
1727 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1728 break;
1729 case FD_DIR_WRITE:
1730 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1731 break;
1732 case FD_DIR_READ:
1733 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1734 break;
1735 case FD_DIR_VERIFY:
1736 dma_mode_ok = true;
1737 break;
1738 default:
1739 dma_mode_ok = false;
1740 break;
1742 if (dma_mode_ok) {
1743 /* No access is allowed until DMA transfer has completed */
1744 fdctrl->msr &= ~FD_MSR_RQM;
1745 if (direction != FD_DIR_VERIFY) {
1746 /* Now, we just have to wait for the DMA controller to
1747 * recall us...
1749 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1750 k->schedule(fdctrl->dma);
1751 } else {
1752 /* Start transfer */
1753 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1754 fdctrl->data_len);
1756 return;
1757 } else {
1758 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1759 direction);
1762 FLOPPY_DPRINTF("start non-DMA transfer\n");
1763 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1764 if (direction != FD_DIR_WRITE)
1765 fdctrl->msr |= FD_MSR_DIO;
1766 /* IO based transfer: calculate len */
1767 fdctrl_raise_irq(fdctrl);
1770 /* Prepare a transfer of deleted data */
1771 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1773 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1775 /* We don't handle deleted data,
1776 * so we don't return *ANYTHING*
1778 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1781 /* handlers for DMA transfers */
1782 static int fdctrl_transfer_handler (void *opaque, int nchan,
1783 int dma_pos, int dma_len)
1785 FDCtrl *fdctrl;
1786 FDrive *cur_drv;
1787 int len, start_pos, rel_pos;
1788 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1789 IsaDmaClass *k;
1791 fdctrl = opaque;
1792 if (fdctrl->msr & FD_MSR_RQM) {
1793 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1794 return 0;
1796 k = ISADMA_GET_CLASS(fdctrl->dma);
1797 cur_drv = get_cur_drv(fdctrl);
1798 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1799 fdctrl->data_dir == FD_DIR_SCANH)
1800 status2 = FD_SR2_SNS;
1801 if (dma_len > fdctrl->data_len)
1802 dma_len = fdctrl->data_len;
1803 if (cur_drv->blk == NULL) {
1804 if (fdctrl->data_dir == FD_DIR_WRITE)
1805 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1806 else
1807 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1808 len = 0;
1809 goto transfer_error;
1811 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1812 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1813 len = dma_len - fdctrl->data_pos;
1814 if (len + rel_pos > FD_SECTOR_LEN)
1815 len = FD_SECTOR_LEN - rel_pos;
1816 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1817 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1818 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1819 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1820 fd_sector(cur_drv) * FD_SECTOR_LEN);
1821 if (fdctrl->data_dir != FD_DIR_WRITE ||
1822 len < FD_SECTOR_LEN || rel_pos != 0) {
1823 /* READ & SCAN commands and realign to a sector for WRITE */
1824 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1825 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1826 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1827 fd_sector(cur_drv));
1828 /* Sure, image size is too small... */
1829 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1832 switch (fdctrl->data_dir) {
1833 case FD_DIR_READ:
1834 /* READ commands */
1835 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1836 fdctrl->data_pos, len);
1837 break;
1838 case FD_DIR_WRITE:
1839 /* WRITE commands */
1840 if (cur_drv->ro) {
1841 /* Handle readonly medium early, no need to do DMA, touch the
1842 * LED or attempt any writes. A real floppy doesn't attempt
1843 * to write to readonly media either. */
1844 fdctrl_stop_transfer(fdctrl,
1845 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1846 0x00);
1847 goto transfer_error;
1850 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1851 fdctrl->data_pos, len);
1852 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1853 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1854 FLOPPY_DPRINTF("error writing sector %d\n",
1855 fd_sector(cur_drv));
1856 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1857 goto transfer_error;
1859 break;
1860 case FD_DIR_VERIFY:
1861 /* VERIFY commands */
1862 break;
1863 default:
1864 /* SCAN commands */
1866 uint8_t tmpbuf[FD_SECTOR_LEN];
1867 int ret;
1868 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1869 len);
1870 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1871 if (ret == 0) {
1872 status2 = FD_SR2_SEH;
1873 goto end_transfer;
1875 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1876 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1877 status2 = 0x00;
1878 goto end_transfer;
1881 break;
1883 fdctrl->data_pos += len;
1884 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1885 if (rel_pos == 0) {
1886 /* Seek to next sector */
1887 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1888 break;
1891 end_transfer:
1892 len = fdctrl->data_pos - start_pos;
1893 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1894 fdctrl->data_pos, len, fdctrl->data_len);
1895 if (fdctrl->data_dir == FD_DIR_SCANE ||
1896 fdctrl->data_dir == FD_DIR_SCANL ||
1897 fdctrl->data_dir == FD_DIR_SCANH)
1898 status2 = FD_SR2_SEH;
1899 fdctrl->data_len -= len;
1900 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1901 transfer_error:
1903 return len;
1906 /* Data register : 0x05 */
1907 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1909 FDrive *cur_drv;
1910 uint32_t retval = 0;
1911 uint32_t pos;
1913 cur_drv = get_cur_drv(fdctrl);
1914 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1915 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1916 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1917 return 0;
1920 /* If data_len spans multiple sectors, the current position in the FIFO
1921 * wraps around while fdctrl->data_pos is the real position in the whole
1922 * request. */
1923 pos = fdctrl->data_pos;
1924 pos %= FD_SECTOR_LEN;
1926 switch (fdctrl->phase) {
1927 case FD_PHASE_EXECUTION:
1928 assert(fdctrl->msr & FD_MSR_NONDMA);
1929 if (pos == 0) {
1930 if (fdctrl->data_pos != 0)
1931 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1932 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1933 fd_sector(cur_drv));
1934 return 0;
1936 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1937 BDRV_SECTOR_SIZE)
1938 < 0) {
1939 FLOPPY_DPRINTF("error getting sector %d\n",
1940 fd_sector(cur_drv));
1941 /* Sure, image size is too small... */
1942 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1946 if (++fdctrl->data_pos == fdctrl->data_len) {
1947 fdctrl->msr &= ~FD_MSR_RQM;
1948 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1950 break;
1952 case FD_PHASE_RESULT:
1953 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1954 if (++fdctrl->data_pos == fdctrl->data_len) {
1955 fdctrl->msr &= ~FD_MSR_RQM;
1956 fdctrl_to_command_phase(fdctrl);
1957 fdctrl_reset_irq(fdctrl);
1959 break;
1961 case FD_PHASE_COMMAND:
1962 default:
1963 abort();
1966 retval = fdctrl->fifo[pos];
1967 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1969 return retval;
1972 static void fdctrl_format_sector(FDCtrl *fdctrl)
1974 FDrive *cur_drv;
1975 uint8_t kh, kt, ks;
1977 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1978 cur_drv = get_cur_drv(fdctrl);
1979 kt = fdctrl->fifo[6];
1980 kh = fdctrl->fifo[7];
1981 ks = fdctrl->fifo[8];
1982 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1983 GET_CUR_DRV(fdctrl), kh, kt, ks,
1984 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1985 NUM_SIDES(cur_drv)));
1986 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1987 case 2:
1988 /* sect too big */
1989 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1990 fdctrl->fifo[3] = kt;
1991 fdctrl->fifo[4] = kh;
1992 fdctrl->fifo[5] = ks;
1993 return;
1994 case 3:
1995 /* track too big */
1996 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1997 fdctrl->fifo[3] = kt;
1998 fdctrl->fifo[4] = kh;
1999 fdctrl->fifo[5] = ks;
2000 return;
2001 case 4:
2002 /* No seek enabled */
2003 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
2004 fdctrl->fifo[3] = kt;
2005 fdctrl->fifo[4] = kh;
2006 fdctrl->fifo[5] = ks;
2007 return;
2008 case 1:
2009 fdctrl->status0 |= FD_SR0_SEEK;
2010 break;
2011 default:
2012 break;
2014 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2015 if (cur_drv->blk == NULL ||
2016 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2017 BDRV_SECTOR_SIZE, 0) < 0) {
2018 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2019 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2020 } else {
2021 if (cur_drv->sect == cur_drv->last_sect) {
2022 fdctrl->data_state &= ~FD_STATE_FORMAT;
2023 /* Last sector done */
2024 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2025 } else {
2026 /* More to do */
2027 fdctrl->data_pos = 0;
2028 fdctrl->data_len = 4;
2033 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2035 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2036 fdctrl->fifo[0] = fdctrl->lock << 4;
2037 fdctrl_to_result_phase(fdctrl, 1);
2040 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2042 FDrive *cur_drv = get_cur_drv(fdctrl);
2044 /* Drives position */
2045 fdctrl->fifo[0] = drv0(fdctrl)->track;
2046 fdctrl->fifo[1] = drv1(fdctrl)->track;
2047 #if MAX_FD == 4
2048 fdctrl->fifo[2] = drv2(fdctrl)->track;
2049 fdctrl->fifo[3] = drv3(fdctrl)->track;
2050 #else
2051 fdctrl->fifo[2] = 0;
2052 fdctrl->fifo[3] = 0;
2053 #endif
2054 /* timers */
2055 fdctrl->fifo[4] = fdctrl->timer0;
2056 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2057 fdctrl->fifo[6] = cur_drv->last_sect;
2058 fdctrl->fifo[7] = (fdctrl->lock << 7) |
2059 (cur_drv->perpendicular << 2);
2060 fdctrl->fifo[8] = fdctrl->config;
2061 fdctrl->fifo[9] = fdctrl->precomp_trk;
2062 fdctrl_to_result_phase(fdctrl, 10);
2065 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2067 /* Controller's version */
2068 fdctrl->fifo[0] = fdctrl->version;
2069 fdctrl_to_result_phase(fdctrl, 1);
2072 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2074 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2075 fdctrl_to_result_phase(fdctrl, 1);
2078 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2080 FDrive *cur_drv = get_cur_drv(fdctrl);
2082 /* Drives position */
2083 drv0(fdctrl)->track = fdctrl->fifo[3];
2084 drv1(fdctrl)->track = fdctrl->fifo[4];
2085 #if MAX_FD == 4
2086 drv2(fdctrl)->track = fdctrl->fifo[5];
2087 drv3(fdctrl)->track = fdctrl->fifo[6];
2088 #endif
2089 /* timers */
2090 fdctrl->timer0 = fdctrl->fifo[7];
2091 fdctrl->timer1 = fdctrl->fifo[8];
2092 cur_drv->last_sect = fdctrl->fifo[9];
2093 fdctrl->lock = fdctrl->fifo[10] >> 7;
2094 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2095 fdctrl->config = fdctrl->fifo[11];
2096 fdctrl->precomp_trk = fdctrl->fifo[12];
2097 fdctrl->pwrd = fdctrl->fifo[13];
2098 fdctrl_to_command_phase(fdctrl);
2101 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2103 FDrive *cur_drv = get_cur_drv(fdctrl);
2105 fdctrl->fifo[0] = 0;
2106 fdctrl->fifo[1] = 0;
2107 /* Drives position */
2108 fdctrl->fifo[2] = drv0(fdctrl)->track;
2109 fdctrl->fifo[3] = drv1(fdctrl)->track;
2110 #if MAX_FD == 4
2111 fdctrl->fifo[4] = drv2(fdctrl)->track;
2112 fdctrl->fifo[5] = drv3(fdctrl)->track;
2113 #else
2114 fdctrl->fifo[4] = 0;
2115 fdctrl->fifo[5] = 0;
2116 #endif
2117 /* timers */
2118 fdctrl->fifo[6] = fdctrl->timer0;
2119 fdctrl->fifo[7] = fdctrl->timer1;
2120 fdctrl->fifo[8] = cur_drv->last_sect;
2121 fdctrl->fifo[9] = (fdctrl->lock << 7) |
2122 (cur_drv->perpendicular << 2);
2123 fdctrl->fifo[10] = fdctrl->config;
2124 fdctrl->fifo[11] = fdctrl->precomp_trk;
2125 fdctrl->fifo[12] = fdctrl->pwrd;
2126 fdctrl->fifo[13] = 0;
2127 fdctrl->fifo[14] = 0;
2128 fdctrl_to_result_phase(fdctrl, 15);
2131 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2133 FDrive *cur_drv = get_cur_drv(fdctrl);
2135 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2136 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2137 (NANOSECONDS_PER_SECOND / 50));
2140 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2142 FDrive *cur_drv;
2144 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2145 cur_drv = get_cur_drv(fdctrl);
2146 fdctrl->data_state |= FD_STATE_FORMAT;
2147 if (fdctrl->fifo[0] & 0x80)
2148 fdctrl->data_state |= FD_STATE_MULTI;
2149 else
2150 fdctrl->data_state &= ~FD_STATE_MULTI;
2151 cur_drv->bps =
2152 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2153 #if 0
2154 cur_drv->last_sect =
2155 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2156 fdctrl->fifo[3] / 2;
2157 #else
2158 cur_drv->last_sect = fdctrl->fifo[3];
2159 #endif
2160 /* TODO: implement format using DMA expected by the Bochs BIOS
2161 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2162 * the sector with the specified fill byte
2164 fdctrl->data_state &= ~FD_STATE_FORMAT;
2165 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2168 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2170 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2171 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2172 if (fdctrl->fifo[2] & 1)
2173 fdctrl->dor &= ~FD_DOR_DMAEN;
2174 else
2175 fdctrl->dor |= FD_DOR_DMAEN;
2176 /* No result back */
2177 fdctrl_to_command_phase(fdctrl);
2180 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2182 FDrive *cur_drv;
2184 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2185 cur_drv = get_cur_drv(fdctrl);
2186 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2187 /* 1 Byte status back */
2188 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2189 (cur_drv->track == 0 ? 0x10 : 0x00) |
2190 (cur_drv->head << 2) |
2191 GET_CUR_DRV(fdctrl) |
2192 0x28;
2193 fdctrl_to_result_phase(fdctrl, 1);
2196 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2198 FDrive *cur_drv;
2200 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2201 cur_drv = get_cur_drv(fdctrl);
2202 fd_recalibrate(cur_drv);
2203 fdctrl_to_command_phase(fdctrl);
2204 /* Raise Interrupt */
2205 fdctrl->status0 |= FD_SR0_SEEK;
2206 fdctrl_raise_irq(fdctrl);
2209 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2211 FDrive *cur_drv = get_cur_drv(fdctrl);
2213 if (fdctrl->reset_sensei > 0) {
2214 fdctrl->fifo[0] =
2215 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2216 fdctrl->reset_sensei--;
2217 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2218 fdctrl->fifo[0] = FD_SR0_INVCMD;
2219 fdctrl_to_result_phase(fdctrl, 1);
2220 return;
2221 } else {
2222 fdctrl->fifo[0] =
2223 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2224 | GET_CUR_DRV(fdctrl);
2227 fdctrl->fifo[1] = cur_drv->track;
2228 fdctrl_to_result_phase(fdctrl, 2);
2229 fdctrl_reset_irq(fdctrl);
2230 fdctrl->status0 = FD_SR0_RDYCHG;
2233 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2235 FDrive *cur_drv;
2237 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2238 cur_drv = get_cur_drv(fdctrl);
2239 fdctrl_to_command_phase(fdctrl);
2240 /* The seek command just sends step pulses to the drive and doesn't care if
2241 * there is a medium inserted of if it's banging the head against the drive.
2243 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2244 /* Raise Interrupt */
2245 fdctrl->status0 |= FD_SR0_SEEK;
2246 fdctrl_raise_irq(fdctrl);
2249 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2251 FDrive *cur_drv = get_cur_drv(fdctrl);
2253 if (fdctrl->fifo[1] & 0x80)
2254 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2255 /* No result back */
2256 fdctrl_to_command_phase(fdctrl);
2259 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2261 fdctrl->config = fdctrl->fifo[2];
2262 fdctrl->precomp_trk = fdctrl->fifo[3];
2263 /* No result back */
2264 fdctrl_to_command_phase(fdctrl);
2267 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2269 fdctrl->pwrd = fdctrl->fifo[1];
2270 fdctrl->fifo[0] = fdctrl->fifo[1];
2271 fdctrl_to_result_phase(fdctrl, 1);
2274 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2276 /* No result back */
2277 fdctrl_to_command_phase(fdctrl);
2280 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2282 FDrive *cur_drv = get_cur_drv(fdctrl);
2283 uint32_t pos;
2285 pos = fdctrl->data_pos - 1;
2286 pos %= FD_SECTOR_LEN;
2287 if (fdctrl->fifo[pos] & 0x80) {
2288 /* Command parameters done */
2289 if (fdctrl->fifo[pos] & 0x40) {
2290 fdctrl->fifo[0] = fdctrl->fifo[1];
2291 fdctrl->fifo[2] = 0;
2292 fdctrl->fifo[3] = 0;
2293 fdctrl_to_result_phase(fdctrl, 4);
2294 } else {
2295 fdctrl_to_command_phase(fdctrl);
2297 } else if (fdctrl->data_len > 7) {
2298 /* ERROR */
2299 fdctrl->fifo[0] = 0x80 |
2300 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2301 fdctrl_to_result_phase(fdctrl, 1);
2305 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2307 FDrive *cur_drv;
2309 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2310 cur_drv = get_cur_drv(fdctrl);
2311 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2312 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2313 cur_drv->sect, 1);
2314 } else {
2315 fd_seek(cur_drv, cur_drv->head,
2316 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2318 fdctrl_to_command_phase(fdctrl);
2319 /* Raise Interrupt */
2320 fdctrl->status0 |= FD_SR0_SEEK;
2321 fdctrl_raise_irq(fdctrl);
2324 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2326 FDrive *cur_drv;
2328 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2329 cur_drv = get_cur_drv(fdctrl);
2330 if (fdctrl->fifo[2] > cur_drv->track) {
2331 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2332 } else {
2333 fd_seek(cur_drv, cur_drv->head,
2334 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2336 fdctrl_to_command_phase(fdctrl);
2337 /* Raise Interrupt */
2338 fdctrl->status0 |= FD_SR0_SEEK;
2339 fdctrl_raise_irq(fdctrl);
2343 * Handlers for the execution phase of each command
2345 typedef struct FDCtrlCommand {
2346 uint8_t value;
2347 uint8_t mask;
2348 const char* name;
2349 int parameters;
2350 void (*handler)(FDCtrl *fdctrl, int direction);
2351 int direction;
2352 } FDCtrlCommand;
2354 static const FDCtrlCommand handlers[] = {
2355 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2356 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2357 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2358 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2359 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2360 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2361 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2362 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2363 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2364 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2365 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2366 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2367 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2368 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2369 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2370 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2371 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2372 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2373 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2374 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2375 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2376 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2377 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2378 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2379 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2380 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2381 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2382 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2383 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2384 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2385 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2386 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2388 /* Associate command to an index in the 'handlers' array */
2389 static uint8_t command_to_handler[256];
2391 static const FDCtrlCommand *get_command(uint8_t cmd)
2393 int idx;
2395 idx = command_to_handler[cmd];
2396 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2397 return &handlers[idx];
2400 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2402 FDrive *cur_drv;
2403 const FDCtrlCommand *cmd;
2404 uint32_t pos;
2406 /* Reset mode */
2407 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2408 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2409 return;
2411 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2412 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2413 return;
2415 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2417 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2419 /* If data_len spans multiple sectors, the current position in the FIFO
2420 * wraps around while fdctrl->data_pos is the real position in the whole
2421 * request. */
2422 pos = fdctrl->data_pos++;
2423 pos %= FD_SECTOR_LEN;
2424 fdctrl->fifo[pos] = value;
2426 if (fdctrl->data_pos == fdctrl->data_len) {
2427 fdctrl->msr &= ~FD_MSR_RQM;
2430 switch (fdctrl->phase) {
2431 case FD_PHASE_EXECUTION:
2432 /* For DMA requests, RQM should be cleared during execution phase, so
2433 * we would have errored out above. */
2434 assert(fdctrl->msr & FD_MSR_NONDMA);
2436 /* FIFO data write */
2437 if (pos == FD_SECTOR_LEN - 1 ||
2438 fdctrl->data_pos == fdctrl->data_len) {
2439 cur_drv = get_cur_drv(fdctrl);
2440 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2441 BDRV_SECTOR_SIZE, 0) < 0) {
2442 FLOPPY_DPRINTF("error writing sector %d\n",
2443 fd_sector(cur_drv));
2444 break;
2446 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2447 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2448 fd_sector(cur_drv));
2449 break;
2453 /* Switch to result phase when done with the transfer */
2454 if (fdctrl->data_pos == fdctrl->data_len) {
2455 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2457 break;
2459 case FD_PHASE_COMMAND:
2460 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2461 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2463 if (pos == 0) {
2464 /* The first byte specifies the command. Now we start reading
2465 * as many parameters as this command requires. */
2466 cmd = get_command(value);
2467 fdctrl->data_len = cmd->parameters + 1;
2468 if (cmd->parameters) {
2469 fdctrl->msr |= FD_MSR_RQM;
2471 fdctrl->msr |= FD_MSR_CMDBUSY;
2474 if (fdctrl->data_pos == fdctrl->data_len) {
2475 /* We have all parameters now, execute the command */
2476 fdctrl->phase = FD_PHASE_EXECUTION;
2478 if (fdctrl->data_state & FD_STATE_FORMAT) {
2479 fdctrl_format_sector(fdctrl);
2480 break;
2483 cmd = get_command(fdctrl->fifo[0]);
2484 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2485 cmd->handler(fdctrl, cmd->direction);
2487 break;
2489 case FD_PHASE_RESULT:
2490 default:
2491 abort();
2495 static void fdctrl_result_timer(void *opaque)
2497 FDCtrl *fdctrl = opaque;
2498 FDrive *cur_drv = get_cur_drv(fdctrl);
2500 /* Pretend we are spinning.
2501 * This is needed for Coherent, which uses READ ID to check for
2502 * sector interleaving.
2504 if (cur_drv->last_sect != 0) {
2505 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2507 /* READ_ID can't automatically succeed! */
2508 if (fdctrl->check_media_rate &&
2509 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2510 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2511 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2512 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2513 } else {
2514 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2518 /* Init functions */
2519 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2520 Error **errp)
2522 unsigned int i;
2523 FDrive *drive;
2524 DeviceState *dev;
2525 BlockBackend *blk;
2526 Error *local_err = NULL;
2528 for (i = 0; i < MAX_FD; i++) {
2529 drive = &fdctrl->drives[i];
2530 drive->fdctrl = fdctrl;
2532 /* If the drive is not present, we skip creating the qdev device, but
2533 * still have to initialise the controller. */
2534 blk = fdctrl->qdev_for_drives[i].blk;
2535 if (!blk) {
2536 fd_init(drive);
2537 fd_revalidate(drive);
2538 continue;
2541 dev = qdev_create(&fdctrl->bus.bus, "floppy");
2542 qdev_prop_set_uint32(dev, "unit", i);
2543 qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2545 blk_ref(blk);
2546 blk_detach_dev(blk, fdc_dev);
2547 fdctrl->qdev_for_drives[i].blk = NULL;
2548 qdev_prop_set_drive(dev, "drive", blk, &local_err);
2549 blk_unref(blk);
2551 if (local_err) {
2552 error_propagate(errp, local_err);
2553 return;
2556 object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2557 if (local_err) {
2558 error_propagate(errp, local_err);
2559 return;
2564 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2566 DeviceState *dev;
2567 ISADevice *isadev;
2569 isadev = isa_try_create(bus, TYPE_ISA_FDC);
2570 if (!isadev) {
2571 return NULL;
2573 dev = DEVICE(isadev);
2575 if (fds[0]) {
2576 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2577 &error_fatal);
2579 if (fds[1]) {
2580 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2581 &error_fatal);
2583 qdev_init_nofail(dev);
2585 return isadev;
2588 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2589 hwaddr mmio_base, DriveInfo **fds)
2591 FDCtrl *fdctrl;
2592 DeviceState *dev;
2593 SysBusDevice *sbd;
2594 FDCtrlSysBus *sys;
2596 dev = qdev_create(NULL, "sysbus-fdc");
2597 sys = SYSBUS_FDC(dev);
2598 fdctrl = &sys->state;
2599 fdctrl->dma_chann = dma_chann; /* FIXME */
2600 if (fds[0]) {
2601 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2602 &error_fatal);
2604 if (fds[1]) {
2605 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2606 &error_fatal);
2608 qdev_init_nofail(dev);
2609 sbd = SYS_BUS_DEVICE(dev);
2610 sysbus_connect_irq(sbd, 0, irq);
2611 sysbus_mmio_map(sbd, 0, mmio_base);
2614 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2615 DriveInfo **fds, qemu_irq *fdc_tc)
2617 DeviceState *dev;
2618 FDCtrlSysBus *sys;
2620 dev = qdev_create(NULL, "SUNW,fdtwo");
2621 if (fds[0]) {
2622 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2623 &error_fatal);
2625 qdev_init_nofail(dev);
2626 sys = SYSBUS_FDC(dev);
2627 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2628 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2629 *fdc_tc = qdev_get_gpio_in(dev, 0);
2632 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2633 Error **errp)
2635 int i, j;
2636 static int command_tables_inited = 0;
2638 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2639 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2642 /* Fill 'command_to_handler' lookup table */
2643 if (!command_tables_inited) {
2644 command_tables_inited = 1;
2645 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2646 for (j = 0; j < sizeof(command_to_handler); j++) {
2647 if ((j & handlers[i].mask) == handlers[i].value) {
2648 command_to_handler[j] = i;
2654 FLOPPY_DPRINTF("init controller\n");
2655 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2656 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2657 fdctrl->fifo_size = 512;
2658 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2659 fdctrl_result_timer, fdctrl);
2661 fdctrl->version = 0x90; /* Intel 82078 controller */
2662 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2663 fdctrl->num_floppies = MAX_FD;
2665 if (fdctrl->dma_chann != -1) {
2666 IsaDmaClass *k;
2667 assert(fdctrl->dma);
2668 k = ISADMA_GET_CLASS(fdctrl->dma);
2669 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2670 &fdctrl_transfer_handler, fdctrl);
2673 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2674 fdctrl_connect_drives(fdctrl, dev, errp);
2677 static const MemoryRegionPortio fdc_portio_list[] = {
2678 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2679 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2680 PORTIO_END_OF_LIST(),
2683 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2685 ISADevice *isadev = ISA_DEVICE(dev);
2686 FDCtrlISABus *isa = ISA_FDC(dev);
2687 FDCtrl *fdctrl = &isa->state;
2688 Error *err = NULL;
2690 isa_register_portio_list(isadev, &fdctrl->portio_list,
2691 isa->iobase, fdc_portio_list, fdctrl,
2692 "fdc");
2694 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2695 fdctrl->dma_chann = isa->dma;
2696 if (fdctrl->dma_chann != -1) {
2697 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2698 if (!fdctrl->dma) {
2699 error_setg(errp, "ISA controller does not support DMA");
2700 return;
2704 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2705 fdctrl_realize_common(dev, fdctrl, &err);
2706 if (err != NULL) {
2707 error_propagate(errp, err);
2708 return;
2712 static void sysbus_fdc_initfn(Object *obj)
2714 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2715 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2716 FDCtrl *fdctrl = &sys->state;
2718 fdctrl->dma_chann = -1;
2720 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2721 "fdc", 0x08);
2722 sysbus_init_mmio(sbd, &fdctrl->iomem);
2725 static void sun4m_fdc_initfn(Object *obj)
2727 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2728 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2729 FDCtrl *fdctrl = &sys->state;
2731 fdctrl->dma_chann = -1;
2733 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2734 fdctrl, "fdctrl", 0x08);
2735 sysbus_init_mmio(sbd, &fdctrl->iomem);
2738 static void sysbus_fdc_common_initfn(Object *obj)
2740 DeviceState *dev = DEVICE(obj);
2741 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2742 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2743 FDCtrl *fdctrl = &sys->state;
2745 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2747 sysbus_init_irq(sbd, &fdctrl->irq);
2748 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2751 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2753 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2754 FDCtrl *fdctrl = &sys->state;
2756 fdctrl_realize_common(dev, fdctrl, errp);
2759 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2761 FDCtrlISABus *isa = ISA_FDC(fdc);
2763 return isa->state.drives[i].drive;
2766 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2767 uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2769 const FDFormat *fdf;
2771 *maxc = *maxh = *maxs = 0;
2772 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2773 if (fdf->drive != type) {
2774 continue;
2776 if (*maxc < fdf->max_track) {
2777 *maxc = fdf->max_track;
2779 if (*maxh < fdf->max_head) {
2780 *maxh = fdf->max_head;
2782 if (*maxs < fdf->last_sect) {
2783 *maxs = fdf->last_sect;
2786 (*maxc)--;
2789 static const VMStateDescription vmstate_isa_fdc ={
2790 .name = "fdc",
2791 .version_id = 2,
2792 .minimum_version_id = 2,
2793 .fields = (VMStateField[]) {
2794 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2795 VMSTATE_END_OF_LIST()
2799 static Property isa_fdc_properties[] = {
2800 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2801 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2802 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2803 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2804 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2805 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2806 0, true),
2807 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2808 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2809 FloppyDriveType),
2810 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2811 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2812 FloppyDriveType),
2813 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2814 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2815 FloppyDriveType),
2816 DEFINE_PROP_END_OF_LIST(),
2819 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2821 DeviceClass *dc = DEVICE_CLASS(klass);
2823 dc->realize = isabus_fdc_realize;
2824 dc->fw_name = "fdc";
2825 dc->reset = fdctrl_external_reset_isa;
2826 dc->vmsd = &vmstate_isa_fdc;
2827 dc->props = isa_fdc_properties;
2828 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2831 static void isabus_fdc_instance_init(Object *obj)
2833 FDCtrlISABus *isa = ISA_FDC(obj);
2835 device_add_bootindex_property(obj, &isa->bootindexA,
2836 "bootindexA", "/floppy@0",
2837 DEVICE(obj), NULL);
2838 device_add_bootindex_property(obj, &isa->bootindexB,
2839 "bootindexB", "/floppy@1",
2840 DEVICE(obj), NULL);
2843 static const TypeInfo isa_fdc_info = {
2844 .name = TYPE_ISA_FDC,
2845 .parent = TYPE_ISA_DEVICE,
2846 .instance_size = sizeof(FDCtrlISABus),
2847 .class_init = isabus_fdc_class_init,
2848 .instance_init = isabus_fdc_instance_init,
2851 static const VMStateDescription vmstate_sysbus_fdc ={
2852 .name = "fdc",
2853 .version_id = 2,
2854 .minimum_version_id = 2,
2855 .fields = (VMStateField[]) {
2856 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2857 VMSTATE_END_OF_LIST()
2861 static Property sysbus_fdc_properties[] = {
2862 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2863 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2864 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2865 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2866 FloppyDriveType),
2867 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2868 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2869 FloppyDriveType),
2870 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2871 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2872 FloppyDriveType),
2873 DEFINE_PROP_END_OF_LIST(),
2876 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2878 DeviceClass *dc = DEVICE_CLASS(klass);
2880 dc->props = sysbus_fdc_properties;
2881 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2884 static const TypeInfo sysbus_fdc_info = {
2885 .name = "sysbus-fdc",
2886 .parent = TYPE_SYSBUS_FDC,
2887 .instance_init = sysbus_fdc_initfn,
2888 .class_init = sysbus_fdc_class_init,
2891 static Property sun4m_fdc_properties[] = {
2892 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2893 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2894 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2895 FloppyDriveType),
2896 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2897 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2898 FloppyDriveType),
2899 DEFINE_PROP_END_OF_LIST(),
2902 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2904 DeviceClass *dc = DEVICE_CLASS(klass);
2906 dc->props = sun4m_fdc_properties;
2907 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2910 static const TypeInfo sun4m_fdc_info = {
2911 .name = "SUNW,fdtwo",
2912 .parent = TYPE_SYSBUS_FDC,
2913 .instance_init = sun4m_fdc_initfn,
2914 .class_init = sun4m_fdc_class_init,
2917 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2919 DeviceClass *dc = DEVICE_CLASS(klass);
2921 dc->realize = sysbus_fdc_common_realize;
2922 dc->reset = fdctrl_external_reset_sysbus;
2923 dc->vmsd = &vmstate_sysbus_fdc;
2926 static const TypeInfo sysbus_fdc_type_info = {
2927 .name = TYPE_SYSBUS_FDC,
2928 .parent = TYPE_SYS_BUS_DEVICE,
2929 .instance_size = sizeof(FDCtrlSysBus),
2930 .instance_init = sysbus_fdc_common_initfn,
2931 .abstract = true,
2932 .class_init = sysbus_fdc_common_class_init,
2935 static void fdc_register_types(void)
2937 type_register_static(&isa_fdc_info);
2938 type_register_static(&sysbus_fdc_type_info);
2939 type_register_static(&sysbus_fdc_info);
2940 type_register_static(&sun4m_fdc_info);
2941 type_register_static(&floppy_bus_info);
2942 type_register_static(&floppy_drive_info);
2945 type_init(fdc_register_types)