4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
40 #include "hw/boards.h"
42 /* This check must be after config-host.h is included */
44 #include <sys/eventfd.h>
47 #ifdef CONFIG_VALGRIND_H
48 #include <valgrind/memcheck.h>
51 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
52 #define PAGE_SIZE TARGET_PAGE_SIZE
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
60 #define DPRINTF(fmt, ...) \
64 #define KVM_MSI_HASHTAB_SIZE 256
66 typedef struct KVMSlot
69 ram_addr_t memory_size
;
75 typedef struct kvm_dirty_log KVMDirtyLog
;
84 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
85 bool coalesced_flush_in_progress
;
86 int broken_set_mem_region
;
89 int robust_singlestep
;
91 #ifdef KVM_CAP_SET_GUEST_DEBUG
92 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
98 /* The man page (and posix) say ioctl numbers are signed int, but
99 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
100 * unsigned, and treating them as signed here can break things */
101 unsigned irq_set_ioctl
;
102 unsigned int sigmask_len
;
103 #ifdef KVM_CAP_IRQ_ROUTING
104 struct kvm_irq_routing
*irq_routes
;
105 int nr_allocated_irq_routes
;
106 uint32_t *used_gsi_bitmap
;
107 unsigned int gsi_count
;
108 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
114 bool kvm_kernel_irqchip
;
115 bool kvm_async_interrupts_allowed
;
116 bool kvm_halt_in_kernel_allowed
;
117 bool kvm_eventfds_allowed
;
118 bool kvm_irqfds_allowed
;
119 bool kvm_msi_via_irqfd_allowed
;
120 bool kvm_gsi_routing_allowed
;
121 bool kvm_gsi_direct_mapping
;
123 bool kvm_readonly_mem_allowed
;
125 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
126 KVM_CAP_INFO(USER_MEMORY
),
127 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
131 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
135 for (i
= 0; i
< s
->nr_slots
; i
++) {
136 if (s
->slots
[i
].memory_size
== 0) {
141 fprintf(stderr
, "%s: no free slot available\n", __func__
);
145 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
151 for (i
= 0; i
< s
->nr_slots
; i
++) {
152 KVMSlot
*mem
= &s
->slots
[i
];
154 if (start_addr
== mem
->start_addr
&&
155 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
164 * Find overlapping slot with lowest start address
166 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
170 KVMSlot
*found
= NULL
;
173 for (i
= 0; i
< s
->nr_slots
; i
++) {
174 KVMSlot
*mem
= &s
->slots
[i
];
176 if (mem
->memory_size
== 0 ||
177 (found
&& found
->start_addr
< mem
->start_addr
)) {
181 if (end_addr
> mem
->start_addr
&&
182 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
190 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
195 for (i
= 0; i
< s
->nr_slots
; i
++) {
196 KVMSlot
*mem
= &s
->slots
[i
];
198 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
199 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
207 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
209 struct kvm_userspace_memory_region mem
;
211 mem
.slot
= slot
->slot
;
212 mem
.guest_phys_addr
= slot
->start_addr
;
213 mem
.userspace_addr
= (unsigned long)slot
->ram
;
214 mem
.flags
= slot
->flags
;
215 if (s
->migration_log
) {
216 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
219 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
220 /* Set the slot size to 0 before setting the slot to the desired
221 * value. This is needed based on KVM commit 75d61fbc. */
223 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
225 mem
.memory_size
= slot
->memory_size
;
226 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
229 int kvm_init_vcpu(CPUState
*cpu
)
231 KVMState
*s
= kvm_state
;
235 DPRINTF("kvm_init_vcpu\n");
237 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
239 DPRINTF("kvm_create_vcpu failed\n");
245 cpu
->kvm_vcpu_dirty
= true;
247 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
250 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
254 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
256 if (cpu
->kvm_run
== MAP_FAILED
) {
258 DPRINTF("mmap'ing vcpu state failed\n");
262 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
263 s
->coalesced_mmio_ring
=
264 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
267 ret
= kvm_arch_init_vcpu(cpu
);
273 * dirty pages logging control
276 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
279 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
280 if (readonly
&& kvm_readonly_mem_allowed
) {
281 flags
|= KVM_MEM_READONLY
;
286 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
288 KVMState
*s
= kvm_state
;
289 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
292 old_flags
= mem
->flags
;
294 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
297 /* If nothing changed effectively, no need to issue ioctl */
298 if (s
->migration_log
) {
299 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
302 if (flags
== old_flags
) {
306 return kvm_set_user_memory_region(s
, mem
);
309 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
310 ram_addr_t size
, bool log_dirty
)
312 KVMState
*s
= kvm_state
;
313 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
316 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
317 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
318 (hwaddr
)(phys_addr
+ size
- 1));
321 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
324 static void kvm_log_start(MemoryListener
*listener
,
325 MemoryRegionSection
*section
)
329 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
330 int128_get64(section
->size
), true);
336 static void kvm_log_stop(MemoryListener
*listener
,
337 MemoryRegionSection
*section
)
341 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
342 int128_get64(section
->size
), false);
348 static int kvm_set_migration_log(int enable
)
350 KVMState
*s
= kvm_state
;
354 s
->migration_log
= enable
;
356 for (i
= 0; i
< s
->nr_slots
; i
++) {
359 if (!mem
->memory_size
) {
362 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
365 err
= kvm_set_user_memory_region(s
, mem
);
373 /* get kvm's dirty pages bitmap and update qemu's */
374 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
375 unsigned long *bitmap
)
377 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
378 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
380 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
384 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
387 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
388 * This function updates qemu's dirty bitmap using
389 * memory_region_set_dirty(). This means all bits are set
392 * @start_add: start of logged region.
393 * @end_addr: end of logged region.
395 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
397 KVMState
*s
= kvm_state
;
398 unsigned long size
, allocated_size
= 0;
402 hwaddr start_addr
= section
->offset_within_address_space
;
403 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
405 d
.dirty_bitmap
= NULL
;
406 while (start_addr
< end_addr
) {
407 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
412 /* XXX bad kernel interface alert
413 * For dirty bitmap, kernel allocates array of size aligned to
414 * bits-per-long. But for case when the kernel is 64bits and
415 * the userspace is 32bits, userspace can't align to the same
416 * bits-per-long, since sizeof(long) is different between kernel
417 * and user space. This way, userspace will provide buffer which
418 * may be 4 bytes less than the kernel will use, resulting in
419 * userspace memory corruption (which is not detectable by valgrind
420 * too, in most cases).
421 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
422 * a hope that sizeof(long) wont become >8 any time soon.
424 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
425 /*HOST_LONG_BITS*/ 64) / 8;
426 if (!d
.dirty_bitmap
) {
427 d
.dirty_bitmap
= g_malloc(size
);
428 } else if (size
> allocated_size
) {
429 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
431 allocated_size
= size
;
432 memset(d
.dirty_bitmap
, 0, allocated_size
);
436 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
437 DPRINTF("ioctl failed %d\n", errno
);
442 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
443 start_addr
= mem
->start_addr
+ mem
->memory_size
;
445 g_free(d
.dirty_bitmap
);
450 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
451 MemoryRegionSection
*secion
,
452 hwaddr start
, hwaddr size
)
454 KVMState
*s
= kvm_state
;
456 if (s
->coalesced_mmio
) {
457 struct kvm_coalesced_mmio_zone zone
;
463 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
467 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
468 MemoryRegionSection
*secion
,
469 hwaddr start
, hwaddr size
)
471 KVMState
*s
= kvm_state
;
473 if (s
->coalesced_mmio
) {
474 struct kvm_coalesced_mmio_zone zone
;
480 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
484 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
488 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
496 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
500 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
502 /* VM wide version not implemented, use global one instead */
503 ret
= kvm_check_extension(s
, extension
);
509 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
510 bool assign
, uint32_t size
, bool datamatch
)
513 struct kvm_ioeventfd iofd
;
515 iofd
.datamatch
= datamatch
? val
: 0;
521 if (!kvm_enabled()) {
526 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
529 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
532 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
541 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
542 bool assign
, uint32_t size
, bool datamatch
)
544 struct kvm_ioeventfd kick
= {
545 .datamatch
= datamatch
? val
: 0,
547 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
552 if (!kvm_enabled()) {
556 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
559 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
561 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
569 static int kvm_check_many_ioeventfds(void)
571 /* Userspace can use ioeventfd for io notification. This requires a host
572 * that supports eventfd(2) and an I/O thread; since eventfd does not
573 * support SIGIO it cannot interrupt the vcpu.
575 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
576 * can avoid creating too many ioeventfds.
578 #if defined(CONFIG_EVENTFD)
581 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
582 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
583 if (ioeventfds
[i
] < 0) {
586 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
588 close(ioeventfds
[i
]);
593 /* Decide whether many devices are supported or not */
594 ret
= i
== ARRAY_SIZE(ioeventfds
);
597 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
598 close(ioeventfds
[i
]);
606 static const KVMCapabilityInfo
*
607 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
610 if (!kvm_check_extension(s
, list
->value
)) {
618 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
620 KVMState
*s
= kvm_state
;
623 MemoryRegion
*mr
= section
->mr
;
624 bool log_dirty
= memory_region_is_logging(mr
);
625 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
626 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
627 hwaddr start_addr
= section
->offset_within_address_space
;
628 ram_addr_t size
= int128_get64(section
->size
);
632 /* kvm works in page size chunks, but the function may be called
633 with sub-page size and unaligned start address. */
634 delta
= TARGET_PAGE_ALIGN(size
) - size
;
640 size
&= TARGET_PAGE_MASK
;
641 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
645 if (!memory_region_is_ram(mr
)) {
646 if (writeable
|| !kvm_readonly_mem_allowed
) {
648 } else if (!mr
->romd_mode
) {
649 /* If the memory device is not in romd_mode, then we actually want
650 * to remove the kvm memory slot so all accesses will trap. */
655 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
658 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
663 if (add
&& start_addr
>= mem
->start_addr
&&
664 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
665 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
666 /* The new slot fits into the existing one and comes with
667 * identical parameters - update flags and done. */
668 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
674 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
675 kvm_physical_sync_dirty_bitmap(section
);
678 /* unregister the overlapping slot */
679 mem
->memory_size
= 0;
680 err
= kvm_set_user_memory_region(s
, mem
);
682 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
683 __func__
, strerror(-err
));
687 /* Workaround for older KVM versions: we can't join slots, even not by
688 * unregistering the previous ones and then registering the larger
689 * slot. We have to maintain the existing fragmentation. Sigh.
691 * This workaround assumes that the new slot starts at the same
692 * address as the first existing one. If not or if some overlapping
693 * slot comes around later, we will fail (not seen in practice so far)
694 * - and actually require a recent KVM version. */
695 if (s
->broken_set_mem_region
&&
696 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
697 mem
= kvm_alloc_slot(s
);
698 mem
->memory_size
= old
.memory_size
;
699 mem
->start_addr
= old
.start_addr
;
701 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
703 err
= kvm_set_user_memory_region(s
, mem
);
705 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
710 start_addr
+= old
.memory_size
;
711 ram
+= old
.memory_size
;
712 size
-= old
.memory_size
;
716 /* register prefix slot */
717 if (old
.start_addr
< start_addr
) {
718 mem
= kvm_alloc_slot(s
);
719 mem
->memory_size
= start_addr
- old
.start_addr
;
720 mem
->start_addr
= old
.start_addr
;
722 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
724 err
= kvm_set_user_memory_region(s
, mem
);
726 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
727 __func__
, strerror(-err
));
729 fprintf(stderr
, "%s: This is probably because your kernel's " \
730 "PAGE_SIZE is too big. Please try to use 4k " \
731 "PAGE_SIZE!\n", __func__
);
737 /* register suffix slot */
738 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
739 ram_addr_t size_delta
;
741 mem
= kvm_alloc_slot(s
);
742 mem
->start_addr
= start_addr
+ size
;
743 size_delta
= mem
->start_addr
- old
.start_addr
;
744 mem
->memory_size
= old
.memory_size
- size_delta
;
745 mem
->ram
= old
.ram
+ size_delta
;
746 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
748 err
= kvm_set_user_memory_region(s
, mem
);
750 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
751 __func__
, strerror(-err
));
757 /* in case the KVM bug workaround already "consumed" the new slot */
764 mem
= kvm_alloc_slot(s
);
765 mem
->memory_size
= size
;
766 mem
->start_addr
= start_addr
;
768 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
770 err
= kvm_set_user_memory_region(s
, mem
);
772 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
778 static void kvm_region_add(MemoryListener
*listener
,
779 MemoryRegionSection
*section
)
781 memory_region_ref(section
->mr
);
782 kvm_set_phys_mem(section
, true);
785 static void kvm_region_del(MemoryListener
*listener
,
786 MemoryRegionSection
*section
)
788 kvm_set_phys_mem(section
, false);
789 memory_region_unref(section
->mr
);
792 static void kvm_log_sync(MemoryListener
*listener
,
793 MemoryRegionSection
*section
)
797 r
= kvm_physical_sync_dirty_bitmap(section
);
803 static void kvm_log_global_start(struct MemoryListener
*listener
)
807 r
= kvm_set_migration_log(1);
811 static void kvm_log_global_stop(struct MemoryListener
*listener
)
815 r
= kvm_set_migration_log(0);
819 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
820 MemoryRegionSection
*section
,
821 bool match_data
, uint64_t data
,
824 int fd
= event_notifier_get_fd(e
);
827 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
828 data
, true, int128_get64(section
->size
),
831 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
832 __func__
, strerror(-r
));
837 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
838 MemoryRegionSection
*section
,
839 bool match_data
, uint64_t data
,
842 int fd
= event_notifier_get_fd(e
);
845 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
846 data
, false, int128_get64(section
->size
),
853 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
854 MemoryRegionSection
*section
,
855 bool match_data
, uint64_t data
,
858 int fd
= event_notifier_get_fd(e
);
861 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
862 data
, true, int128_get64(section
->size
),
865 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
866 __func__
, strerror(-r
));
871 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
872 MemoryRegionSection
*section
,
873 bool match_data
, uint64_t data
,
877 int fd
= event_notifier_get_fd(e
);
880 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
881 data
, false, int128_get64(section
->size
),
888 static MemoryListener kvm_memory_listener
= {
889 .region_add
= kvm_region_add
,
890 .region_del
= kvm_region_del
,
891 .log_start
= kvm_log_start
,
892 .log_stop
= kvm_log_stop
,
893 .log_sync
= kvm_log_sync
,
894 .log_global_start
= kvm_log_global_start
,
895 .log_global_stop
= kvm_log_global_stop
,
896 .eventfd_add
= kvm_mem_ioeventfd_add
,
897 .eventfd_del
= kvm_mem_ioeventfd_del
,
898 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
899 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
903 static MemoryListener kvm_io_listener
= {
904 .eventfd_add
= kvm_io_ioeventfd_add
,
905 .eventfd_del
= kvm_io_ioeventfd_del
,
909 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
911 cpu
->interrupt_request
|= mask
;
913 if (!qemu_cpu_is_self(cpu
)) {
918 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
920 struct kvm_irq_level event
;
923 assert(kvm_async_interrupts_enabled());
927 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
929 perror("kvm_set_irq");
933 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
936 #ifdef KVM_CAP_IRQ_ROUTING
937 typedef struct KVMMSIRoute
{
938 struct kvm_irq_routing_entry kroute
;
939 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
942 static void set_gsi(KVMState
*s
, unsigned int gsi
)
944 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
947 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
949 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
952 void kvm_init_irq_routing(KVMState
*s
)
956 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
958 unsigned int gsi_bits
, i
;
960 /* Round up so we can search ints using ffs */
961 gsi_bits
= ALIGN(gsi_count
, 32);
962 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
963 s
->gsi_count
= gsi_count
;
965 /* Mark any over-allocated bits as already in use */
966 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
971 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
972 s
->nr_allocated_irq_routes
= 0;
974 if (!s
->direct_msi
) {
975 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
976 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
980 kvm_arch_init_irq_routing(s
);
983 void kvm_irqchip_commit_routes(KVMState
*s
)
987 s
->irq_routes
->flags
= 0;
988 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
992 static void kvm_add_routing_entry(KVMState
*s
,
993 struct kvm_irq_routing_entry
*entry
)
995 struct kvm_irq_routing_entry
*new;
998 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
999 n
= s
->nr_allocated_irq_routes
* 2;
1003 size
= sizeof(struct kvm_irq_routing
);
1004 size
+= n
* sizeof(*new);
1005 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1006 s
->nr_allocated_irq_routes
= n
;
1008 n
= s
->irq_routes
->nr
++;
1009 new = &s
->irq_routes
->entries
[n
];
1013 set_gsi(s
, entry
->gsi
);
1016 static int kvm_update_routing_entry(KVMState
*s
,
1017 struct kvm_irq_routing_entry
*new_entry
)
1019 struct kvm_irq_routing_entry
*entry
;
1022 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1023 entry
= &s
->irq_routes
->entries
[n
];
1024 if (entry
->gsi
!= new_entry
->gsi
) {
1028 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1032 *entry
= *new_entry
;
1034 kvm_irqchip_commit_routes(s
);
1042 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1044 struct kvm_irq_routing_entry e
= {};
1046 assert(pin
< s
->gsi_count
);
1049 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1051 e
.u
.irqchip
.irqchip
= irqchip
;
1052 e
.u
.irqchip
.pin
= pin
;
1053 kvm_add_routing_entry(s
, &e
);
1056 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1058 struct kvm_irq_routing_entry
*e
;
1061 if (kvm_gsi_direct_mapping()) {
1065 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1066 e
= &s
->irq_routes
->entries
[i
];
1067 if (e
->gsi
== virq
) {
1068 s
->irq_routes
->nr
--;
1069 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1075 static unsigned int kvm_hash_msi(uint32_t data
)
1077 /* This is optimized for IA32 MSI layout. However, no other arch shall
1078 * repeat the mistake of not providing a direct MSI injection API. */
1082 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1084 KVMMSIRoute
*route
, *next
;
1087 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1088 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1089 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1090 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1096 static int kvm_irqchip_get_virq(KVMState
*s
)
1098 uint32_t *word
= s
->used_gsi_bitmap
;
1099 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1104 /* Return the lowest unused GSI in the bitmap */
1105 for (i
= 0; i
< max_words
; i
++) {
1106 bit
= ffs(~word
[i
]);
1111 return bit
- 1 + i
* 32;
1113 if (!s
->direct_msi
&& retry
) {
1115 kvm_flush_dynamic_msi_routes(s
);
1122 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1124 unsigned int hash
= kvm_hash_msi(msg
.data
);
1127 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1128 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1129 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1130 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1137 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1142 if (s
->direct_msi
) {
1143 msi
.address_lo
= (uint32_t)msg
.address
;
1144 msi
.address_hi
= msg
.address
>> 32;
1145 msi
.data
= le32_to_cpu(msg
.data
);
1147 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1149 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1152 route
= kvm_lookup_msi_route(s
, msg
);
1156 virq
= kvm_irqchip_get_virq(s
);
1161 route
= g_malloc0(sizeof(KVMMSIRoute
));
1162 route
->kroute
.gsi
= virq
;
1163 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1164 route
->kroute
.flags
= 0;
1165 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1166 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1167 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1169 kvm_add_routing_entry(s
, &route
->kroute
);
1170 kvm_irqchip_commit_routes(s
);
1172 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1176 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1178 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1181 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1183 struct kvm_irq_routing_entry kroute
= {};
1186 if (kvm_gsi_direct_mapping()) {
1187 return msg
.data
& 0xffff;
1190 if (!kvm_gsi_routing_enabled()) {
1194 virq
= kvm_irqchip_get_virq(s
);
1200 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1202 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1203 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1204 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1206 kvm_add_routing_entry(s
, &kroute
);
1207 kvm_irqchip_commit_routes(s
);
1212 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1214 struct kvm_irq_routing_entry kroute
= {};
1216 if (kvm_gsi_direct_mapping()) {
1220 if (!kvm_irqchip_in_kernel()) {
1225 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1227 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1228 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1229 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1231 return kvm_update_routing_entry(s
, &kroute
);
1234 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1237 struct kvm_irqfd irqfd
= {
1240 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1244 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1245 irqfd
.resamplefd
= rfd
;
1248 if (!kvm_irqfds_enabled()) {
1252 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1255 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1257 struct kvm_irq_routing_entry kroute
;
1260 if (!kvm_gsi_routing_enabled()) {
1264 virq
= kvm_irqchip_get_virq(s
);
1270 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1272 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1273 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1274 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1275 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1276 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1278 kvm_add_routing_entry(s
, &kroute
);
1279 kvm_irqchip_commit_routes(s
);
1284 #else /* !KVM_CAP_IRQ_ROUTING */
1286 void kvm_init_irq_routing(KVMState
*s
)
1290 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1294 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1299 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1304 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1309 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1314 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1318 #endif /* !KVM_CAP_IRQ_ROUTING */
1320 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1321 EventNotifier
*rn
, int virq
)
1323 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1324 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1327 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1329 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1333 static int kvm_irqchip_create(KVMState
*s
)
1337 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1338 (!kvm_check_extension(s
, KVM_CAP_IRQCHIP
) &&
1339 (kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0) < 0))) {
1343 /* First probe and see if there's a arch-specific hook to create the
1344 * in-kernel irqchip for us */
1345 ret
= kvm_arch_irqchip_create(s
);
1348 } else if (ret
== 0) {
1349 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1351 fprintf(stderr
, "Create kernel irqchip failed\n");
1356 kvm_kernel_irqchip
= true;
1357 /* If we have an in-kernel IRQ chip then we must have asynchronous
1358 * interrupt delivery (though the reverse is not necessarily true)
1360 kvm_async_interrupts_allowed
= true;
1361 kvm_halt_in_kernel_allowed
= true;
1363 kvm_init_irq_routing(s
);
1368 /* Find number of supported CPUs using the recommended
1369 * procedure from the kernel API documentation to cope with
1370 * older kernels that may be missing capabilities.
1372 static int kvm_recommended_vcpus(KVMState
*s
)
1374 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1375 return (ret
) ? ret
: 4;
1378 static int kvm_max_vcpus(KVMState
*s
)
1380 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1381 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1384 int kvm_init(MachineClass
*mc
)
1386 static const char upgrade_note
[] =
1387 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1388 "(see http://sourceforge.net/projects/kvm).\n";
1393 { "SMP", smp_cpus
},
1394 { "hotpluggable", max_cpus
},
1397 int soft_vcpus_limit
, hard_vcpus_limit
;
1399 const KVMCapabilityInfo
*missing_cap
;
1402 const char *kvm_type
;
1404 s
= g_malloc0(sizeof(KVMState
));
1407 * On systems where the kernel can support different base page
1408 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1409 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1410 * page size for the system though.
1412 assert(TARGET_PAGE_SIZE
<= getpagesize());
1417 #ifdef KVM_CAP_SET_GUEST_DEBUG
1418 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1421 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1423 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1428 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1429 if (ret
< KVM_API_VERSION
) {
1433 fprintf(stderr
, "kvm version too old\n");
1437 if (ret
> KVM_API_VERSION
) {
1439 fprintf(stderr
, "kvm version not supported\n");
1443 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1445 /* If unspecified, use the default value */
1450 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1452 for (i
= 0; i
< s
->nr_slots
; i
++) {
1453 s
->slots
[i
].slot
= i
;
1456 /* check the vcpu limits */
1457 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1458 hard_vcpus_limit
= kvm_max_vcpus(s
);
1461 if (nc
->num
> soft_vcpus_limit
) {
1463 "Warning: Number of %s cpus requested (%d) exceeds "
1464 "the recommended cpus supported by KVM (%d)\n",
1465 nc
->name
, nc
->num
, soft_vcpus_limit
);
1467 if (nc
->num
> hard_vcpus_limit
) {
1468 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1469 "the maximum cpus supported by KVM (%d)\n",
1470 nc
->name
, nc
->num
, hard_vcpus_limit
);
1477 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1479 type
= mc
->kvm_type(kvm_type
);
1480 } else if (kvm_type
) {
1482 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1487 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1488 } while (ret
== -EINTR
);
1491 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1495 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1496 "your host kernel command line\n");
1502 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1505 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1509 fprintf(stderr
, "kvm does not support %s\n%s",
1510 missing_cap
->name
, upgrade_note
);
1514 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1516 s
->broken_set_mem_region
= 1;
1517 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1519 s
->broken_set_mem_region
= 0;
1522 #ifdef KVM_CAP_VCPU_EVENTS
1523 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1526 s
->robust_singlestep
=
1527 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1529 #ifdef KVM_CAP_DEBUGREGS
1530 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1533 #ifdef KVM_CAP_XSAVE
1534 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1538 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1541 #ifdef KVM_CAP_PIT_STATE2
1542 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1545 #ifdef KVM_CAP_IRQ_ROUTING
1546 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1549 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1551 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1552 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1553 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1556 #ifdef KVM_CAP_READONLY_MEM
1557 kvm_readonly_mem_allowed
=
1558 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1561 kvm_eventfds_allowed
=
1562 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1564 ret
= kvm_arch_init(s
);
1569 ret
= kvm_irqchip_create(s
);
1575 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1576 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1578 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1580 cpu_interrupt_handler
= kvm_handle_interrupt
;
1598 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1600 s
->sigmask_len
= sigmask_len
;
1603 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1607 uint8_t *ptr
= data
;
1609 for (i
= 0; i
< count
; i
++) {
1610 address_space_rw(&address_space_io
, port
, ptr
, size
,
1611 direction
== KVM_EXIT_IO_OUT
);
1616 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1618 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1619 run
->internal
.suberror
);
1621 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1624 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1625 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1626 i
, (uint64_t)run
->internal
.data
[i
]);
1629 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1630 fprintf(stderr
, "emulation failure\n");
1631 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1632 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1633 return EXCP_INTERRUPT
;
1636 /* FIXME: Should trigger a qmp message to let management know
1637 * something went wrong.
1642 void kvm_flush_coalesced_mmio_buffer(void)
1644 KVMState
*s
= kvm_state
;
1646 if (s
->coalesced_flush_in_progress
) {
1650 s
->coalesced_flush_in_progress
= true;
1652 if (s
->coalesced_mmio_ring
) {
1653 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1654 while (ring
->first
!= ring
->last
) {
1655 struct kvm_coalesced_mmio
*ent
;
1657 ent
= &ring
->coalesced_mmio
[ring
->first
];
1659 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1661 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1665 s
->coalesced_flush_in_progress
= false;
1668 static void do_kvm_cpu_synchronize_state(void *arg
)
1670 CPUState
*cpu
= arg
;
1672 if (!cpu
->kvm_vcpu_dirty
) {
1673 kvm_arch_get_registers(cpu
);
1674 cpu
->kvm_vcpu_dirty
= true;
1678 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1680 if (!cpu
->kvm_vcpu_dirty
) {
1681 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1685 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1687 CPUState
*cpu
= arg
;
1689 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1690 cpu
->kvm_vcpu_dirty
= false;
1693 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1695 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1698 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1700 CPUState
*cpu
= arg
;
1702 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1703 cpu
->kvm_vcpu_dirty
= false;
1706 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1708 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1711 void kvm_cpu_clean_state(CPUState
*cpu
)
1713 cpu
->kvm_vcpu_dirty
= false;
1716 int kvm_cpu_exec(CPUState
*cpu
)
1718 struct kvm_run
*run
= cpu
->kvm_run
;
1721 DPRINTF("kvm_cpu_exec()\n");
1723 if (kvm_arch_process_async_events(cpu
)) {
1724 cpu
->exit_request
= 0;
1729 if (cpu
->kvm_vcpu_dirty
) {
1730 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1731 cpu
->kvm_vcpu_dirty
= false;
1734 kvm_arch_pre_run(cpu
, run
);
1735 if (cpu
->exit_request
) {
1736 DPRINTF("interrupt exit requested\n");
1738 * KVM requires us to reenter the kernel after IO exits to complete
1739 * instruction emulation. This self-signal will ensure that we
1742 qemu_cpu_kick_self();
1744 qemu_mutex_unlock_iothread();
1746 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1748 qemu_mutex_lock_iothread();
1749 kvm_arch_post_run(cpu
, run
);
1752 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1753 DPRINTF("io window exit\n");
1754 ret
= EXCP_INTERRUPT
;
1757 fprintf(stderr
, "error: kvm run failed %s\n",
1758 strerror(-run_ret
));
1763 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1764 switch (run
->exit_reason
) {
1766 DPRINTF("handle_io\n");
1767 kvm_handle_io(run
->io
.port
,
1768 (uint8_t *)run
+ run
->io
.data_offset
,
1775 DPRINTF("handle_mmio\n");
1776 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1779 run
->mmio
.is_write
);
1782 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1783 DPRINTF("irq_window_open\n");
1784 ret
= EXCP_INTERRUPT
;
1786 case KVM_EXIT_SHUTDOWN
:
1787 DPRINTF("shutdown\n");
1788 qemu_system_reset_request();
1789 ret
= EXCP_INTERRUPT
;
1791 case KVM_EXIT_UNKNOWN
:
1792 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1793 (uint64_t)run
->hw
.hardware_exit_reason
);
1796 case KVM_EXIT_INTERNAL_ERROR
:
1797 ret
= kvm_handle_internal_error(cpu
, run
);
1799 case KVM_EXIT_SYSTEM_EVENT
:
1800 switch (run
->system_event
.type
) {
1801 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1802 qemu_system_shutdown_request();
1803 ret
= EXCP_INTERRUPT
;
1805 case KVM_SYSTEM_EVENT_RESET
:
1806 qemu_system_reset_request();
1807 ret
= EXCP_INTERRUPT
;
1810 DPRINTF("kvm_arch_handle_exit\n");
1811 ret
= kvm_arch_handle_exit(cpu
, run
);
1816 DPRINTF("kvm_arch_handle_exit\n");
1817 ret
= kvm_arch_handle_exit(cpu
, run
);
1823 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1824 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1827 cpu
->exit_request
= 0;
1831 int kvm_ioctl(KVMState
*s
, int type
, ...)
1838 arg
= va_arg(ap
, void *);
1841 trace_kvm_ioctl(type
, arg
);
1842 ret
= ioctl(s
->fd
, type
, arg
);
1849 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1856 arg
= va_arg(ap
, void *);
1859 trace_kvm_vm_ioctl(type
, arg
);
1860 ret
= ioctl(s
->vmfd
, type
, arg
);
1867 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1874 arg
= va_arg(ap
, void *);
1877 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1878 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1885 int kvm_device_ioctl(int fd
, int type
, ...)
1892 arg
= va_arg(ap
, void *);
1895 trace_kvm_device_ioctl(fd
, type
, arg
);
1896 ret
= ioctl(fd
, type
, arg
);
1903 int kvm_has_sync_mmu(void)
1905 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1908 int kvm_has_vcpu_events(void)
1910 return kvm_state
->vcpu_events
;
1913 int kvm_has_robust_singlestep(void)
1915 return kvm_state
->robust_singlestep
;
1918 int kvm_has_debugregs(void)
1920 return kvm_state
->debugregs
;
1923 int kvm_has_xsave(void)
1925 return kvm_state
->xsave
;
1928 int kvm_has_xcrs(void)
1930 return kvm_state
->xcrs
;
1933 int kvm_has_pit_state2(void)
1935 return kvm_state
->pit_state2
;
1938 int kvm_has_many_ioeventfds(void)
1940 if (!kvm_enabled()) {
1943 return kvm_state
->many_ioeventfds
;
1946 int kvm_has_gsi_routing(void)
1948 #ifdef KVM_CAP_IRQ_ROUTING
1949 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1955 int kvm_has_intx_set_mask(void)
1957 return kvm_state
->intx_set_mask
;
1960 void kvm_setup_guest_memory(void *start
, size_t size
)
1962 #ifdef CONFIG_VALGRIND_H
1963 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1965 if (!kvm_has_sync_mmu()) {
1966 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1969 perror("qemu_madvise");
1971 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1977 #ifdef KVM_CAP_SET_GUEST_DEBUG
1978 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1981 struct kvm_sw_breakpoint
*bp
;
1983 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1991 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1993 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1996 struct kvm_set_guest_debug_data
{
1997 struct kvm_guest_debug dbg
;
2002 static void kvm_invoke_set_guest_debug(void *data
)
2004 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2006 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2010 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2012 struct kvm_set_guest_debug_data data
;
2014 data
.dbg
.control
= reinject_trap
;
2016 if (cpu
->singlestep_enabled
) {
2017 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2019 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2022 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2026 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2027 target_ulong len
, int type
)
2029 struct kvm_sw_breakpoint
*bp
;
2032 if (type
== GDB_BREAKPOINT_SW
) {
2033 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2039 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2046 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2052 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2054 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2061 err
= kvm_update_guest_debug(cpu
, 0);
2069 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2070 target_ulong len
, int type
)
2072 struct kvm_sw_breakpoint
*bp
;
2075 if (type
== GDB_BREAKPOINT_SW
) {
2076 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2081 if (bp
->use_count
> 1) {
2086 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2091 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2094 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2101 err
= kvm_update_guest_debug(cpu
, 0);
2109 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2111 struct kvm_sw_breakpoint
*bp
, *next
;
2112 KVMState
*s
= cpu
->kvm_state
;
2115 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2116 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2117 /* Try harder to find a CPU that currently sees the breakpoint. */
2118 CPU_FOREACH(tmpcpu
) {
2119 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2124 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2127 kvm_arch_remove_all_hw_breakpoints();
2130 kvm_update_guest_debug(cpu
, 0);
2134 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2136 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2141 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2142 target_ulong len
, int type
)
2147 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2148 target_ulong len
, int type
)
2153 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2156 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2158 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2160 KVMState
*s
= kvm_state
;
2161 struct kvm_signal_mask
*sigmask
;
2165 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2168 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2170 sigmask
->len
= s
->sigmask_len
;
2171 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2172 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2177 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2179 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2182 int kvm_on_sigbus(int code
, void *addr
)
2184 return kvm_arch_on_sigbus(code
, addr
);
2187 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2190 struct kvm_create_device create_dev
;
2192 create_dev
.type
= type
;
2194 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2196 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2200 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2205 return test
? 0 : create_dev
.fd
;
2208 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2210 struct kvm_one_reg reg
;
2214 reg
.addr
= (uintptr_t) source
;
2215 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2217 trace_kvm_failed_reg_set(id
, strerror(r
));
2222 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2224 struct kvm_one_reg reg
;
2228 reg
.addr
= (uintptr_t) target
;
2229 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2231 trace_kvm_failed_reg_get(id
, strerror(r
));