target-s390x: add a cpu_mmu_idx_to_asc function
[qemu/ar7.git] / hw / arm / omap1.c
blobde2b289257c713f718339ad2391503410c70bf04
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "hw/boards.h"
21 #include "hw/hw.h"
22 #include "hw/arm/arm.h"
23 #include "hw/arm/omap.h"
24 #include "sysemu/sysemu.h"
25 #include "hw/arm/soc_dma.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "qemu/range.h"
29 #include "hw/sysbus.h"
31 /* Should signal the TCMI/GPMC */
32 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
34 uint8_t ret;
36 OMAP_8B_REG(addr);
37 cpu_physical_memory_read(addr, &ret, 1);
38 return ret;
41 void omap_badwidth_write8(void *opaque, hwaddr addr,
42 uint32_t value)
44 uint8_t val8 = value;
46 OMAP_8B_REG(addr);
47 cpu_physical_memory_write(addr, &val8, 1);
50 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
52 uint16_t ret;
54 OMAP_16B_REG(addr);
55 cpu_physical_memory_read(addr, &ret, 2);
56 return ret;
59 void omap_badwidth_write16(void *opaque, hwaddr addr,
60 uint32_t value)
62 uint16_t val16 = value;
64 OMAP_16B_REG(addr);
65 cpu_physical_memory_write(addr, &val16, 2);
68 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
70 uint32_t ret;
72 OMAP_32B_REG(addr);
73 cpu_physical_memory_read(addr, &ret, 4);
74 return ret;
77 void omap_badwidth_write32(void *opaque, hwaddr addr,
78 uint32_t value)
80 OMAP_32B_REG(addr);
81 cpu_physical_memory_write(addr, &value, 4);
84 /* MPU OS timers */
85 struct omap_mpu_timer_s {
86 MemoryRegion iomem;
87 qemu_irq irq;
88 omap_clk clk;
89 uint32_t val;
90 int64_t time;
91 QEMUTimer *timer;
92 QEMUBH *tick;
93 int64_t rate;
94 int it_ena;
96 int enable;
97 int ptv;
98 int ar;
99 int st;
100 uint32_t reset_val;
103 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
105 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
107 if (timer->st && timer->enable && timer->rate)
108 return timer->val - muldiv64(distance >> (timer->ptv + 1),
109 timer->rate, get_ticks_per_sec());
110 else
111 return timer->val;
114 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
116 timer->val = omap_timer_read(timer);
117 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
120 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
122 int64_t expires;
124 if (timer->enable && timer->st && timer->rate) {
125 timer->val = timer->reset_val; /* Should skip this on clk enable */
126 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
127 get_ticks_per_sec(), timer->rate);
129 /* If timer expiry would be sooner than in about 1 ms and
130 * auto-reload isn't set, then fire immediately. This is a hack
131 * to make systems like PalmOS run in acceptable time. PalmOS
132 * sets the interval to a very low value and polls the status bit
133 * in a busy loop when it wants to sleep just a couple of CPU
134 * ticks. */
135 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
136 timer_mod(timer->timer, timer->time + expires);
137 else
138 qemu_bh_schedule(timer->tick);
139 } else
140 timer_del(timer->timer);
143 static void omap_timer_fire(void *opaque)
145 struct omap_mpu_timer_s *timer = opaque;
147 if (!timer->ar) {
148 timer->val = 0;
149 timer->st = 0;
152 if (timer->it_ena)
153 /* Edge-triggered irq */
154 qemu_irq_pulse(timer->irq);
157 static void omap_timer_tick(void *opaque)
159 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
161 omap_timer_sync(timer);
162 omap_timer_fire(timer);
163 omap_timer_update(timer);
166 static void omap_timer_clk_update(void *opaque, int line, int on)
168 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
170 omap_timer_sync(timer);
171 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
172 omap_timer_update(timer);
175 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
177 omap_clk_adduser(timer->clk,
178 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
179 timer->rate = omap_clk_getrate(timer->clk);
182 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
183 unsigned size)
185 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
187 if (size != 4) {
188 return omap_badwidth_read32(opaque, addr);
191 switch (addr) {
192 case 0x00: /* CNTL_TIMER */
193 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
195 case 0x04: /* LOAD_TIM */
196 break;
198 case 0x08: /* READ_TIM */
199 return omap_timer_read(s);
202 OMAP_BAD_REG(addr);
203 return 0;
206 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
207 uint64_t value, unsigned size)
209 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
211 if (size != 4) {
212 omap_badwidth_write32(opaque, addr, value);
213 return;
216 switch (addr) {
217 case 0x00: /* CNTL_TIMER */
218 omap_timer_sync(s);
219 s->enable = (value >> 5) & 1;
220 s->ptv = (value >> 2) & 7;
221 s->ar = (value >> 1) & 1;
222 s->st = value & 1;
223 omap_timer_update(s);
224 return;
226 case 0x04: /* LOAD_TIM */
227 s->reset_val = value;
228 return;
230 case 0x08: /* READ_TIM */
231 OMAP_RO_REG(addr);
232 break;
234 default:
235 OMAP_BAD_REG(addr);
239 static const MemoryRegionOps omap_mpu_timer_ops = {
240 .read = omap_mpu_timer_read,
241 .write = omap_mpu_timer_write,
242 .endianness = DEVICE_LITTLE_ENDIAN,
245 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
247 timer_del(s->timer);
248 s->enable = 0;
249 s->reset_val = 31337;
250 s->val = 0;
251 s->ptv = 0;
252 s->ar = 0;
253 s->st = 0;
254 s->it_ena = 1;
257 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
258 hwaddr base,
259 qemu_irq irq, omap_clk clk)
261 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
262 g_malloc0(sizeof(struct omap_mpu_timer_s));
264 s->irq = irq;
265 s->clk = clk;
266 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
267 s->tick = qemu_bh_new(omap_timer_fire, s);
268 omap_mpu_timer_reset(s);
269 omap_timer_clk_setup(s);
271 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
272 "omap-mpu-timer", 0x100);
274 memory_region_add_subregion(system_memory, base, &s->iomem);
276 return s;
279 /* Watchdog timer */
280 struct omap_watchdog_timer_s {
281 struct omap_mpu_timer_s timer;
282 MemoryRegion iomem;
283 uint8_t last_wr;
284 int mode;
285 int free;
286 int reset;
289 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
290 unsigned size)
292 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
294 if (size != 2) {
295 return omap_badwidth_read16(opaque, addr);
298 switch (addr) {
299 case 0x00: /* CNTL_TIMER */
300 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
301 (s->timer.st << 7) | (s->free << 1);
303 case 0x04: /* READ_TIMER */
304 return omap_timer_read(&s->timer);
306 case 0x08: /* TIMER_MODE */
307 return s->mode << 15;
310 OMAP_BAD_REG(addr);
311 return 0;
314 static void omap_wd_timer_write(void *opaque, hwaddr addr,
315 uint64_t value, unsigned size)
317 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
319 if (size != 2) {
320 omap_badwidth_write16(opaque, addr, value);
321 return;
324 switch (addr) {
325 case 0x00: /* CNTL_TIMER */
326 omap_timer_sync(&s->timer);
327 s->timer.ptv = (value >> 9) & 7;
328 s->timer.ar = (value >> 8) & 1;
329 s->timer.st = (value >> 7) & 1;
330 s->free = (value >> 1) & 1;
331 omap_timer_update(&s->timer);
332 break;
334 case 0x04: /* LOAD_TIMER */
335 s->timer.reset_val = value & 0xffff;
336 break;
338 case 0x08: /* TIMER_MODE */
339 if (!s->mode && ((value >> 15) & 1))
340 omap_clk_get(s->timer.clk);
341 s->mode |= (value >> 15) & 1;
342 if (s->last_wr == 0xf5) {
343 if ((value & 0xff) == 0xa0) {
344 if (s->mode) {
345 s->mode = 0;
346 omap_clk_put(s->timer.clk);
348 } else {
349 /* XXX: on T|E hardware somehow this has no effect,
350 * on Zire 71 it works as specified. */
351 s->reset = 1;
352 qemu_system_reset_request();
355 s->last_wr = value & 0xff;
356 break;
358 default:
359 OMAP_BAD_REG(addr);
363 static const MemoryRegionOps omap_wd_timer_ops = {
364 .read = omap_wd_timer_read,
365 .write = omap_wd_timer_write,
366 .endianness = DEVICE_NATIVE_ENDIAN,
369 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
371 timer_del(s->timer.timer);
372 if (!s->mode)
373 omap_clk_get(s->timer.clk);
374 s->mode = 1;
375 s->free = 1;
376 s->reset = 0;
377 s->timer.enable = 1;
378 s->timer.it_ena = 1;
379 s->timer.reset_val = 0xffff;
380 s->timer.val = 0;
381 s->timer.st = 0;
382 s->timer.ptv = 0;
383 s->timer.ar = 0;
384 omap_timer_update(&s->timer);
387 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
388 hwaddr base,
389 qemu_irq irq, omap_clk clk)
391 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
392 g_malloc0(sizeof(struct omap_watchdog_timer_s));
394 s->timer.irq = irq;
395 s->timer.clk = clk;
396 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
397 omap_wd_timer_reset(s);
398 omap_timer_clk_setup(&s->timer);
400 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
401 "omap-wd-timer", 0x100);
402 memory_region_add_subregion(memory, base, &s->iomem);
404 return s;
407 /* 32-kHz timer */
408 struct omap_32khz_timer_s {
409 struct omap_mpu_timer_s timer;
410 MemoryRegion iomem;
413 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
414 unsigned size)
416 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
417 int offset = addr & OMAP_MPUI_REG_MASK;
419 if (size != 4) {
420 return omap_badwidth_read32(opaque, addr);
423 switch (offset) {
424 case 0x00: /* TVR */
425 return s->timer.reset_val;
427 case 0x04: /* TCR */
428 return omap_timer_read(&s->timer);
430 case 0x08: /* CR */
431 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
433 default:
434 break;
436 OMAP_BAD_REG(addr);
437 return 0;
440 static void omap_os_timer_write(void *opaque, hwaddr addr,
441 uint64_t value, unsigned size)
443 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
444 int offset = addr & OMAP_MPUI_REG_MASK;
446 if (size != 4) {
447 omap_badwidth_write32(opaque, addr, value);
448 return;
451 switch (offset) {
452 case 0x00: /* TVR */
453 s->timer.reset_val = value & 0x00ffffff;
454 break;
456 case 0x04: /* TCR */
457 OMAP_RO_REG(addr);
458 break;
460 case 0x08: /* CR */
461 s->timer.ar = (value >> 3) & 1;
462 s->timer.it_ena = (value >> 2) & 1;
463 if (s->timer.st != (value & 1) || (value & 2)) {
464 omap_timer_sync(&s->timer);
465 s->timer.enable = value & 1;
466 s->timer.st = value & 1;
467 omap_timer_update(&s->timer);
469 break;
471 default:
472 OMAP_BAD_REG(addr);
476 static const MemoryRegionOps omap_os_timer_ops = {
477 .read = omap_os_timer_read,
478 .write = omap_os_timer_write,
479 .endianness = DEVICE_NATIVE_ENDIAN,
482 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
484 timer_del(s->timer.timer);
485 s->timer.enable = 0;
486 s->timer.it_ena = 0;
487 s->timer.reset_val = 0x00ffffff;
488 s->timer.val = 0;
489 s->timer.st = 0;
490 s->timer.ptv = 0;
491 s->timer.ar = 1;
494 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
495 hwaddr base,
496 qemu_irq irq, omap_clk clk)
498 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
499 g_malloc0(sizeof(struct omap_32khz_timer_s));
501 s->timer.irq = irq;
502 s->timer.clk = clk;
503 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
504 omap_os_timer_reset(s);
505 omap_timer_clk_setup(&s->timer);
507 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
508 "omap-os-timer", 0x800);
509 memory_region_add_subregion(memory, base, &s->iomem);
511 return s;
514 /* Ultra Low-Power Device Module */
515 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
516 unsigned size)
518 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
519 uint16_t ret;
521 if (size != 2) {
522 return omap_badwidth_read16(opaque, addr);
525 switch (addr) {
526 case 0x14: /* IT_STATUS */
527 ret = s->ulpd_pm_regs[addr >> 2];
528 s->ulpd_pm_regs[addr >> 2] = 0;
529 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
530 return ret;
532 case 0x18: /* Reserved */
533 case 0x1c: /* Reserved */
534 case 0x20: /* Reserved */
535 case 0x28: /* Reserved */
536 case 0x2c: /* Reserved */
537 OMAP_BAD_REG(addr);
538 /* fall through */
539 case 0x00: /* COUNTER_32_LSB */
540 case 0x04: /* COUNTER_32_MSB */
541 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
542 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
543 case 0x10: /* GAUGING_CTRL */
544 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
545 case 0x30: /* CLOCK_CTRL */
546 case 0x34: /* SOFT_REQ */
547 case 0x38: /* COUNTER_32_FIQ */
548 case 0x3c: /* DPLL_CTRL */
549 case 0x40: /* STATUS_REQ */
550 /* XXX: check clk::usecount state for every clock */
551 case 0x48: /* LOCL_TIME */
552 case 0x4c: /* APLL_CTRL */
553 case 0x50: /* POWER_CTRL */
554 return s->ulpd_pm_regs[addr >> 2];
557 OMAP_BAD_REG(addr);
558 return 0;
561 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
562 uint16_t diff, uint16_t value)
564 if (diff & (1 << 4)) /* USB_MCLK_EN */
565 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
566 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
567 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
570 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
571 uint16_t diff, uint16_t value)
573 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
574 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
575 if (diff & (1 << 1)) /* SOFT_COM_REQ */
576 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
577 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
578 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
579 if (diff & (1 << 3)) /* SOFT_USB_REQ */
580 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
583 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
584 uint64_t value, unsigned size)
586 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
587 int64_t now, ticks;
588 int div, mult;
589 static const int bypass_div[4] = { 1, 2, 4, 4 };
590 uint16_t diff;
592 if (size != 2) {
593 omap_badwidth_write16(opaque, addr, value);
594 return;
597 switch (addr) {
598 case 0x00: /* COUNTER_32_LSB */
599 case 0x04: /* COUNTER_32_MSB */
600 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
601 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
602 case 0x14: /* IT_STATUS */
603 case 0x40: /* STATUS_REQ */
604 OMAP_RO_REG(addr);
605 break;
607 case 0x10: /* GAUGING_CTRL */
608 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
609 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
610 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
612 if (value & 1)
613 s->ulpd_gauge_start = now;
614 else {
615 now -= s->ulpd_gauge_start;
617 /* 32-kHz ticks */
618 ticks = muldiv64(now, 32768, get_ticks_per_sec());
619 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
620 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
621 if (ticks >> 32) /* OVERFLOW_32K */
622 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
624 /* High frequency ticks */
625 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
626 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
627 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
628 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
629 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
631 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
632 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
635 s->ulpd_pm_regs[addr >> 2] = value;
636 break;
638 case 0x18: /* Reserved */
639 case 0x1c: /* Reserved */
640 case 0x20: /* Reserved */
641 case 0x28: /* Reserved */
642 case 0x2c: /* Reserved */
643 OMAP_BAD_REG(addr);
644 /* fall through */
645 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
646 case 0x38: /* COUNTER_32_FIQ */
647 case 0x48: /* LOCL_TIME */
648 case 0x50: /* POWER_CTRL */
649 s->ulpd_pm_regs[addr >> 2] = value;
650 break;
652 case 0x30: /* CLOCK_CTRL */
653 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
654 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
655 omap_ulpd_clk_update(s, diff, value);
656 break;
658 case 0x34: /* SOFT_REQ */
659 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
660 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
661 omap_ulpd_req_update(s, diff, value);
662 break;
664 case 0x3c: /* DPLL_CTRL */
665 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
666 * omitted altogether, probably a typo. */
667 /* This register has identical semantics with DPLL(1:3) control
668 * registers, see omap_dpll_write() */
669 diff = s->ulpd_pm_regs[addr >> 2] & value;
670 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
671 if (diff & (0x3ff << 2)) {
672 if (value & (1 << 4)) { /* PLL_ENABLE */
673 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
674 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
675 } else {
676 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
677 mult = 1;
679 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
682 /* Enter the desired mode. */
683 s->ulpd_pm_regs[addr >> 2] =
684 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
685 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
687 /* Act as if the lock is restored. */
688 s->ulpd_pm_regs[addr >> 2] |= 2;
689 break;
691 case 0x4c: /* APLL_CTRL */
692 diff = s->ulpd_pm_regs[addr >> 2] & value;
693 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
694 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
695 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
696 (value & (1 << 0)) ? "apll" : "dpll4"));
697 break;
699 default:
700 OMAP_BAD_REG(addr);
704 static const MemoryRegionOps omap_ulpd_pm_ops = {
705 .read = omap_ulpd_pm_read,
706 .write = omap_ulpd_pm_write,
707 .endianness = DEVICE_NATIVE_ENDIAN,
710 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
712 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
713 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
714 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
715 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
716 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
717 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
718 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
719 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
720 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
721 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
722 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
723 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
724 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
725 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
726 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
727 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
728 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
729 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
730 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
731 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
732 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
733 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
734 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
737 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
738 hwaddr base,
739 struct omap_mpu_state_s *mpu)
741 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
742 "omap-ulpd-pm", 0x800);
743 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
744 omap_ulpd_pm_reset(mpu);
747 /* OMAP Pin Configuration */
748 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
749 unsigned size)
751 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
753 if (size != 4) {
754 return omap_badwidth_read32(opaque, addr);
757 switch (addr) {
758 case 0x00: /* FUNC_MUX_CTRL_0 */
759 case 0x04: /* FUNC_MUX_CTRL_1 */
760 case 0x08: /* FUNC_MUX_CTRL_2 */
761 return s->func_mux_ctrl[addr >> 2];
763 case 0x0c: /* COMP_MODE_CTRL_0 */
764 return s->comp_mode_ctrl[0];
766 case 0x10: /* FUNC_MUX_CTRL_3 */
767 case 0x14: /* FUNC_MUX_CTRL_4 */
768 case 0x18: /* FUNC_MUX_CTRL_5 */
769 case 0x1c: /* FUNC_MUX_CTRL_6 */
770 case 0x20: /* FUNC_MUX_CTRL_7 */
771 case 0x24: /* FUNC_MUX_CTRL_8 */
772 case 0x28: /* FUNC_MUX_CTRL_9 */
773 case 0x2c: /* FUNC_MUX_CTRL_A */
774 case 0x30: /* FUNC_MUX_CTRL_B */
775 case 0x34: /* FUNC_MUX_CTRL_C */
776 case 0x38: /* FUNC_MUX_CTRL_D */
777 return s->func_mux_ctrl[(addr >> 2) - 1];
779 case 0x40: /* PULL_DWN_CTRL_0 */
780 case 0x44: /* PULL_DWN_CTRL_1 */
781 case 0x48: /* PULL_DWN_CTRL_2 */
782 case 0x4c: /* PULL_DWN_CTRL_3 */
783 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
785 case 0x50: /* GATE_INH_CTRL_0 */
786 return s->gate_inh_ctrl[0];
788 case 0x60: /* VOLTAGE_CTRL_0 */
789 return s->voltage_ctrl[0];
791 case 0x70: /* TEST_DBG_CTRL_0 */
792 return s->test_dbg_ctrl[0];
794 case 0x80: /* MOD_CONF_CTRL_0 */
795 return s->mod_conf_ctrl[0];
798 OMAP_BAD_REG(addr);
799 return 0;
802 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
803 uint32_t diff, uint32_t value)
805 if (s->compat1509) {
806 if (diff & (1 << 9)) /* BLUETOOTH */
807 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
808 (~value >> 9) & 1);
809 if (diff & (1 << 7)) /* USB.CLKO */
810 omap_clk_onoff(omap_findclk(s, "usb.clko"),
811 (value >> 7) & 1);
815 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
816 uint32_t diff, uint32_t value)
818 if (s->compat1509) {
819 if (diff & (1U << 31)) {
820 /* MCBSP3_CLK_HIZ_DI */
821 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
823 if (diff & (1 << 1)) {
824 /* CLK32K */
825 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
830 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
831 uint32_t diff, uint32_t value)
833 if (diff & (1U << 31)) {
834 /* CONF_MOD_UART3_CLK_MODE_R */
835 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
836 omap_findclk(s, ((value >> 31) & 1) ?
837 "ck_48m" : "armper_ck"));
839 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
840 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
841 omap_findclk(s, ((value >> 30) & 1) ?
842 "ck_48m" : "armper_ck"));
843 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
844 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
845 omap_findclk(s, ((value >> 29) & 1) ?
846 "ck_48m" : "armper_ck"));
847 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
848 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
849 omap_findclk(s, ((value >> 23) & 1) ?
850 "ck_48m" : "armper_ck"));
851 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
852 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
853 omap_findclk(s, ((value >> 12) & 1) ?
854 "ck_48m" : "armper_ck"));
855 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
856 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
859 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
860 uint64_t value, unsigned size)
862 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
863 uint32_t diff;
865 if (size != 4) {
866 omap_badwidth_write32(opaque, addr, value);
867 return;
870 switch (addr) {
871 case 0x00: /* FUNC_MUX_CTRL_0 */
872 diff = s->func_mux_ctrl[addr >> 2] ^ value;
873 s->func_mux_ctrl[addr >> 2] = value;
874 omap_pin_funcmux0_update(s, diff, value);
875 return;
877 case 0x04: /* FUNC_MUX_CTRL_1 */
878 diff = s->func_mux_ctrl[addr >> 2] ^ value;
879 s->func_mux_ctrl[addr >> 2] = value;
880 omap_pin_funcmux1_update(s, diff, value);
881 return;
883 case 0x08: /* FUNC_MUX_CTRL_2 */
884 s->func_mux_ctrl[addr >> 2] = value;
885 return;
887 case 0x0c: /* COMP_MODE_CTRL_0 */
888 s->comp_mode_ctrl[0] = value;
889 s->compat1509 = (value != 0x0000eaef);
890 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
891 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
892 return;
894 case 0x10: /* FUNC_MUX_CTRL_3 */
895 case 0x14: /* FUNC_MUX_CTRL_4 */
896 case 0x18: /* FUNC_MUX_CTRL_5 */
897 case 0x1c: /* FUNC_MUX_CTRL_6 */
898 case 0x20: /* FUNC_MUX_CTRL_7 */
899 case 0x24: /* FUNC_MUX_CTRL_8 */
900 case 0x28: /* FUNC_MUX_CTRL_9 */
901 case 0x2c: /* FUNC_MUX_CTRL_A */
902 case 0x30: /* FUNC_MUX_CTRL_B */
903 case 0x34: /* FUNC_MUX_CTRL_C */
904 case 0x38: /* FUNC_MUX_CTRL_D */
905 s->func_mux_ctrl[(addr >> 2) - 1] = value;
906 return;
908 case 0x40: /* PULL_DWN_CTRL_0 */
909 case 0x44: /* PULL_DWN_CTRL_1 */
910 case 0x48: /* PULL_DWN_CTRL_2 */
911 case 0x4c: /* PULL_DWN_CTRL_3 */
912 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
913 return;
915 case 0x50: /* GATE_INH_CTRL_0 */
916 s->gate_inh_ctrl[0] = value;
917 return;
919 case 0x60: /* VOLTAGE_CTRL_0 */
920 s->voltage_ctrl[0] = value;
921 return;
923 case 0x70: /* TEST_DBG_CTRL_0 */
924 s->test_dbg_ctrl[0] = value;
925 return;
927 case 0x80: /* MOD_CONF_CTRL_0 */
928 diff = s->mod_conf_ctrl[0] ^ value;
929 s->mod_conf_ctrl[0] = value;
930 omap_pin_modconf1_update(s, diff, value);
931 return;
933 default:
934 OMAP_BAD_REG(addr);
938 static const MemoryRegionOps omap_pin_cfg_ops = {
939 .read = omap_pin_cfg_read,
940 .write = omap_pin_cfg_write,
941 .endianness = DEVICE_NATIVE_ENDIAN,
944 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
946 /* Start in Compatibility Mode. */
947 mpu->compat1509 = 1;
948 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
949 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
950 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
951 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
952 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
953 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
954 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
955 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
956 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
957 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
960 static void omap_pin_cfg_init(MemoryRegion *system_memory,
961 hwaddr base,
962 struct omap_mpu_state_s *mpu)
964 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
965 "omap-pin-cfg", 0x800);
966 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
967 omap_pin_cfg_reset(mpu);
970 /* Device Identification, Die Identification */
971 static uint64_t omap_id_read(void *opaque, hwaddr addr,
972 unsigned size)
974 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
976 if (size != 4) {
977 return omap_badwidth_read32(opaque, addr);
980 switch (addr) {
981 case 0xfffe1800: /* DIE_ID_LSB */
982 return 0xc9581f0e;
983 case 0xfffe1804: /* DIE_ID_MSB */
984 return 0xa8858bfa;
986 case 0xfffe2000: /* PRODUCT_ID_LSB */
987 return 0x00aaaafc;
988 case 0xfffe2004: /* PRODUCT_ID_MSB */
989 return 0xcafeb574;
991 case 0xfffed400: /* JTAG_ID_LSB */
992 switch (s->mpu_model) {
993 case omap310:
994 return 0x03310315;
995 case omap1510:
996 return 0x03310115;
997 default:
998 hw_error("%s: bad mpu model\n", __FUNCTION__);
1000 break;
1002 case 0xfffed404: /* JTAG_ID_MSB */
1003 switch (s->mpu_model) {
1004 case omap310:
1005 return 0xfb57402f;
1006 case omap1510:
1007 return 0xfb47002f;
1008 default:
1009 hw_error("%s: bad mpu model\n", __FUNCTION__);
1011 break;
1014 OMAP_BAD_REG(addr);
1015 return 0;
1018 static void omap_id_write(void *opaque, hwaddr addr,
1019 uint64_t value, unsigned size)
1021 if (size != 4) {
1022 omap_badwidth_write32(opaque, addr, value);
1023 return;
1026 OMAP_BAD_REG(addr);
1029 static const MemoryRegionOps omap_id_ops = {
1030 .read = omap_id_read,
1031 .write = omap_id_write,
1032 .endianness = DEVICE_NATIVE_ENDIAN,
1035 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1037 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1038 "omap-id", 0x100000000ULL);
1039 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1040 0xfffe1800, 0x800);
1041 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1042 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1043 0xfffed400, 0x100);
1044 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1045 if (!cpu_is_omap15xx(mpu)) {
1046 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1047 &mpu->id_iomem, 0xfffe2000, 0x800);
1048 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1052 /* MPUI Control (Dummy) */
1053 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1054 unsigned size)
1056 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1058 if (size != 4) {
1059 return omap_badwidth_read32(opaque, addr);
1062 switch (addr) {
1063 case 0x00: /* CTRL */
1064 return s->mpui_ctrl;
1065 case 0x04: /* DEBUG_ADDR */
1066 return 0x01ffffff;
1067 case 0x08: /* DEBUG_DATA */
1068 return 0xffffffff;
1069 case 0x0c: /* DEBUG_FLAG */
1070 return 0x00000800;
1071 case 0x10: /* STATUS */
1072 return 0x00000000;
1074 /* Not in OMAP310 */
1075 case 0x14: /* DSP_STATUS */
1076 case 0x18: /* DSP_BOOT_CONFIG */
1077 return 0x00000000;
1078 case 0x1c: /* DSP_MPUI_CONFIG */
1079 return 0x0000ffff;
1082 OMAP_BAD_REG(addr);
1083 return 0;
1086 static void omap_mpui_write(void *opaque, hwaddr addr,
1087 uint64_t value, unsigned size)
1089 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1091 if (size != 4) {
1092 omap_badwidth_write32(opaque, addr, value);
1093 return;
1096 switch (addr) {
1097 case 0x00: /* CTRL */
1098 s->mpui_ctrl = value & 0x007fffff;
1099 break;
1101 case 0x04: /* DEBUG_ADDR */
1102 case 0x08: /* DEBUG_DATA */
1103 case 0x0c: /* DEBUG_FLAG */
1104 case 0x10: /* STATUS */
1105 /* Not in OMAP310 */
1106 case 0x14: /* DSP_STATUS */
1107 OMAP_RO_REG(addr);
1108 break;
1109 case 0x18: /* DSP_BOOT_CONFIG */
1110 case 0x1c: /* DSP_MPUI_CONFIG */
1111 break;
1113 default:
1114 OMAP_BAD_REG(addr);
1118 static const MemoryRegionOps omap_mpui_ops = {
1119 .read = omap_mpui_read,
1120 .write = omap_mpui_write,
1121 .endianness = DEVICE_NATIVE_ENDIAN,
1124 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1126 s->mpui_ctrl = 0x0003ff1b;
1129 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1130 struct omap_mpu_state_s *mpu)
1132 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1133 "omap-mpui", 0x100);
1134 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1136 omap_mpui_reset(mpu);
1139 /* TIPB Bridges */
1140 struct omap_tipb_bridge_s {
1141 qemu_irq abort;
1142 MemoryRegion iomem;
1144 int width_intr;
1145 uint16_t control;
1146 uint16_t alloc;
1147 uint16_t buffer;
1148 uint16_t enh_control;
1151 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1152 unsigned size)
1154 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1156 if (size < 2) {
1157 return omap_badwidth_read16(opaque, addr);
1160 switch (addr) {
1161 case 0x00: /* TIPB_CNTL */
1162 return s->control;
1163 case 0x04: /* TIPB_BUS_ALLOC */
1164 return s->alloc;
1165 case 0x08: /* MPU_TIPB_CNTL */
1166 return s->buffer;
1167 case 0x0c: /* ENHANCED_TIPB_CNTL */
1168 return s->enh_control;
1169 case 0x10: /* ADDRESS_DBG */
1170 case 0x14: /* DATA_DEBUG_LOW */
1171 case 0x18: /* DATA_DEBUG_HIGH */
1172 return 0xffff;
1173 case 0x1c: /* DEBUG_CNTR_SIG */
1174 return 0x00f8;
1177 OMAP_BAD_REG(addr);
1178 return 0;
1181 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1182 uint64_t value, unsigned size)
1184 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1186 if (size < 2) {
1187 omap_badwidth_write16(opaque, addr, value);
1188 return;
1191 switch (addr) {
1192 case 0x00: /* TIPB_CNTL */
1193 s->control = value & 0xffff;
1194 break;
1196 case 0x04: /* TIPB_BUS_ALLOC */
1197 s->alloc = value & 0x003f;
1198 break;
1200 case 0x08: /* MPU_TIPB_CNTL */
1201 s->buffer = value & 0x0003;
1202 break;
1204 case 0x0c: /* ENHANCED_TIPB_CNTL */
1205 s->width_intr = !(value & 2);
1206 s->enh_control = value & 0x000f;
1207 break;
1209 case 0x10: /* ADDRESS_DBG */
1210 case 0x14: /* DATA_DEBUG_LOW */
1211 case 0x18: /* DATA_DEBUG_HIGH */
1212 case 0x1c: /* DEBUG_CNTR_SIG */
1213 OMAP_RO_REG(addr);
1214 break;
1216 default:
1217 OMAP_BAD_REG(addr);
1221 static const MemoryRegionOps omap_tipb_bridge_ops = {
1222 .read = omap_tipb_bridge_read,
1223 .write = omap_tipb_bridge_write,
1224 .endianness = DEVICE_NATIVE_ENDIAN,
1227 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1229 s->control = 0xffff;
1230 s->alloc = 0x0009;
1231 s->buffer = 0x0000;
1232 s->enh_control = 0x000f;
1235 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1236 MemoryRegion *memory, hwaddr base,
1237 qemu_irq abort_irq, omap_clk clk)
1239 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1240 g_malloc0(sizeof(struct omap_tipb_bridge_s));
1242 s->abort = abort_irq;
1243 omap_tipb_bridge_reset(s);
1245 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1246 "omap-tipb-bridge", 0x100);
1247 memory_region_add_subregion(memory, base, &s->iomem);
1249 return s;
1252 /* Dummy Traffic Controller's Memory Interface */
1253 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1254 unsigned size)
1256 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1257 uint32_t ret;
1259 if (size != 4) {
1260 return omap_badwidth_read32(opaque, addr);
1263 switch (addr) {
1264 case 0x00: /* IMIF_PRIO */
1265 case 0x04: /* EMIFS_PRIO */
1266 case 0x08: /* EMIFF_PRIO */
1267 case 0x0c: /* EMIFS_CONFIG */
1268 case 0x10: /* EMIFS_CS0_CONFIG */
1269 case 0x14: /* EMIFS_CS1_CONFIG */
1270 case 0x18: /* EMIFS_CS2_CONFIG */
1271 case 0x1c: /* EMIFS_CS3_CONFIG */
1272 case 0x24: /* EMIFF_MRS */
1273 case 0x28: /* TIMEOUT1 */
1274 case 0x2c: /* TIMEOUT2 */
1275 case 0x30: /* TIMEOUT3 */
1276 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1277 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1278 return s->tcmi_regs[addr >> 2];
1280 case 0x20: /* EMIFF_SDRAM_CONFIG */
1281 ret = s->tcmi_regs[addr >> 2];
1282 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1283 /* XXX: We can try using the VGA_DIRTY flag for this */
1284 return ret;
1287 OMAP_BAD_REG(addr);
1288 return 0;
1291 static void omap_tcmi_write(void *opaque, hwaddr addr,
1292 uint64_t value, unsigned size)
1294 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1296 if (size != 4) {
1297 omap_badwidth_write32(opaque, addr, value);
1298 return;
1301 switch (addr) {
1302 case 0x00: /* IMIF_PRIO */
1303 case 0x04: /* EMIFS_PRIO */
1304 case 0x08: /* EMIFF_PRIO */
1305 case 0x10: /* EMIFS_CS0_CONFIG */
1306 case 0x14: /* EMIFS_CS1_CONFIG */
1307 case 0x18: /* EMIFS_CS2_CONFIG */
1308 case 0x1c: /* EMIFS_CS3_CONFIG */
1309 case 0x20: /* EMIFF_SDRAM_CONFIG */
1310 case 0x24: /* EMIFF_MRS */
1311 case 0x28: /* TIMEOUT1 */
1312 case 0x2c: /* TIMEOUT2 */
1313 case 0x30: /* TIMEOUT3 */
1314 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1315 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1316 s->tcmi_regs[addr >> 2] = value;
1317 break;
1318 case 0x0c: /* EMIFS_CONFIG */
1319 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1320 break;
1322 default:
1323 OMAP_BAD_REG(addr);
1327 static const MemoryRegionOps omap_tcmi_ops = {
1328 .read = omap_tcmi_read,
1329 .write = omap_tcmi_write,
1330 .endianness = DEVICE_NATIVE_ENDIAN,
1333 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1335 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1336 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1337 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1338 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1339 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1340 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1341 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1342 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1343 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1344 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1345 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1346 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1347 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1348 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1349 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1352 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1353 struct omap_mpu_state_s *mpu)
1355 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1356 "omap-tcmi", 0x100);
1357 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1358 omap_tcmi_reset(mpu);
1361 /* Digital phase-locked loops control */
1362 struct dpll_ctl_s {
1363 MemoryRegion iomem;
1364 uint16_t mode;
1365 omap_clk dpll;
1368 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1369 unsigned size)
1371 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1373 if (size != 2) {
1374 return omap_badwidth_read16(opaque, addr);
1377 if (addr == 0x00) /* CTL_REG */
1378 return s->mode;
1380 OMAP_BAD_REG(addr);
1381 return 0;
1384 static void omap_dpll_write(void *opaque, hwaddr addr,
1385 uint64_t value, unsigned size)
1387 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1388 uint16_t diff;
1389 static const int bypass_div[4] = { 1, 2, 4, 4 };
1390 int div, mult;
1392 if (size != 2) {
1393 omap_badwidth_write16(opaque, addr, value);
1394 return;
1397 if (addr == 0x00) { /* CTL_REG */
1398 /* See omap_ulpd_pm_write() too */
1399 diff = s->mode & value;
1400 s->mode = value & 0x2fff;
1401 if (diff & (0x3ff << 2)) {
1402 if (value & (1 << 4)) { /* PLL_ENABLE */
1403 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1404 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1405 } else {
1406 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1407 mult = 1;
1409 omap_clk_setrate(s->dpll, div, mult);
1412 /* Enter the desired mode. */
1413 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1415 /* Act as if the lock is restored. */
1416 s->mode |= 2;
1417 } else {
1418 OMAP_BAD_REG(addr);
1422 static const MemoryRegionOps omap_dpll_ops = {
1423 .read = omap_dpll_read,
1424 .write = omap_dpll_write,
1425 .endianness = DEVICE_NATIVE_ENDIAN,
1428 static void omap_dpll_reset(struct dpll_ctl_s *s)
1430 s->mode = 0x2002;
1431 omap_clk_setrate(s->dpll, 1, 1);
1434 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1435 hwaddr base, omap_clk clk)
1437 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1438 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1440 s->dpll = clk;
1441 omap_dpll_reset(s);
1443 memory_region_add_subregion(memory, base, &s->iomem);
1444 return s;
1447 /* MPU Clock/Reset/Power Mode Control */
1448 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1449 unsigned size)
1451 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1453 if (size != 2) {
1454 return omap_badwidth_read16(opaque, addr);
1457 switch (addr) {
1458 case 0x00: /* ARM_CKCTL */
1459 return s->clkm.arm_ckctl;
1461 case 0x04: /* ARM_IDLECT1 */
1462 return s->clkm.arm_idlect1;
1464 case 0x08: /* ARM_IDLECT2 */
1465 return s->clkm.arm_idlect2;
1467 case 0x0c: /* ARM_EWUPCT */
1468 return s->clkm.arm_ewupct;
1470 case 0x10: /* ARM_RSTCT1 */
1471 return s->clkm.arm_rstct1;
1473 case 0x14: /* ARM_RSTCT2 */
1474 return s->clkm.arm_rstct2;
1476 case 0x18: /* ARM_SYSST */
1477 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1479 case 0x1c: /* ARM_CKOUT1 */
1480 return s->clkm.arm_ckout1;
1482 case 0x20: /* ARM_CKOUT2 */
1483 break;
1486 OMAP_BAD_REG(addr);
1487 return 0;
1490 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1491 uint16_t diff, uint16_t value)
1493 omap_clk clk;
1495 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1496 if (value & (1 << 14))
1497 /* Reserved */;
1498 else {
1499 clk = omap_findclk(s, "arminth_ck");
1500 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1503 if (diff & (1 << 12)) { /* ARM_TIMXO */
1504 clk = omap_findclk(s, "armtim_ck");
1505 if (value & (1 << 12))
1506 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1507 else
1508 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1510 /* XXX: en_dspck */
1511 if (diff & (3 << 10)) { /* DSPMMUDIV */
1512 clk = omap_findclk(s, "dspmmu_ck");
1513 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1515 if (diff & (3 << 8)) { /* TCDIV */
1516 clk = omap_findclk(s, "tc_ck");
1517 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1519 if (diff & (3 << 6)) { /* DSPDIV */
1520 clk = omap_findclk(s, "dsp_ck");
1521 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1523 if (diff & (3 << 4)) { /* ARMDIV */
1524 clk = omap_findclk(s, "arm_ck");
1525 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1527 if (diff & (3 << 2)) { /* LCDDIV */
1528 clk = omap_findclk(s, "lcd_ck");
1529 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1531 if (diff & (3 << 0)) { /* PERDIV */
1532 clk = omap_findclk(s, "armper_ck");
1533 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1537 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1538 uint16_t diff, uint16_t value)
1540 omap_clk clk;
1542 if (value & (1 << 11)) { /* SETARM_IDLE */
1543 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1545 if (!(value & (1 << 10))) /* WKUP_MODE */
1546 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1548 #define SET_CANIDLE(clock, bit) \
1549 if (diff & (1 << bit)) { \
1550 clk = omap_findclk(s, clock); \
1551 omap_clk_canidle(clk, (value >> bit) & 1); \
1553 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1554 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1555 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1556 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1557 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1558 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1559 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1560 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1561 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1562 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1563 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1564 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1565 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1566 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1569 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1570 uint16_t diff, uint16_t value)
1572 omap_clk clk;
1574 #define SET_ONOFF(clock, bit) \
1575 if (diff & (1 << bit)) { \
1576 clk = omap_findclk(s, clock); \
1577 omap_clk_onoff(clk, (value >> bit) & 1); \
1579 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1580 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1581 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1582 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1583 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1584 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1585 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1586 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1587 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1588 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1589 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1592 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1593 uint16_t diff, uint16_t value)
1595 omap_clk clk;
1597 if (diff & (3 << 4)) { /* TCLKOUT */
1598 clk = omap_findclk(s, "tclk_out");
1599 switch ((value >> 4) & 3) {
1600 case 1:
1601 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1602 omap_clk_onoff(clk, 1);
1603 break;
1604 case 2:
1605 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1606 omap_clk_onoff(clk, 1);
1607 break;
1608 default:
1609 omap_clk_onoff(clk, 0);
1612 if (diff & (3 << 2)) { /* DCLKOUT */
1613 clk = omap_findclk(s, "dclk_out");
1614 switch ((value >> 2) & 3) {
1615 case 0:
1616 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1617 break;
1618 case 1:
1619 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1620 break;
1621 case 2:
1622 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1623 break;
1624 case 3:
1625 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1626 break;
1629 if (diff & (3 << 0)) { /* ACLKOUT */
1630 clk = omap_findclk(s, "aclk_out");
1631 switch ((value >> 0) & 3) {
1632 case 1:
1633 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1634 omap_clk_onoff(clk, 1);
1635 break;
1636 case 2:
1637 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1638 omap_clk_onoff(clk, 1);
1639 break;
1640 case 3:
1641 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1642 omap_clk_onoff(clk, 1);
1643 break;
1644 default:
1645 omap_clk_onoff(clk, 0);
1650 static void omap_clkm_write(void *opaque, hwaddr addr,
1651 uint64_t value, unsigned size)
1653 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1654 uint16_t diff;
1655 omap_clk clk;
1656 static const char *clkschemename[8] = {
1657 "fully synchronous", "fully asynchronous", "synchronous scalable",
1658 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1661 if (size != 2) {
1662 omap_badwidth_write16(opaque, addr, value);
1663 return;
1666 switch (addr) {
1667 case 0x00: /* ARM_CKCTL */
1668 diff = s->clkm.arm_ckctl ^ value;
1669 s->clkm.arm_ckctl = value & 0x7fff;
1670 omap_clkm_ckctl_update(s, diff, value);
1671 return;
1673 case 0x04: /* ARM_IDLECT1 */
1674 diff = s->clkm.arm_idlect1 ^ value;
1675 s->clkm.arm_idlect1 = value & 0x0fff;
1676 omap_clkm_idlect1_update(s, diff, value);
1677 return;
1679 case 0x08: /* ARM_IDLECT2 */
1680 diff = s->clkm.arm_idlect2 ^ value;
1681 s->clkm.arm_idlect2 = value & 0x07ff;
1682 omap_clkm_idlect2_update(s, diff, value);
1683 return;
1685 case 0x0c: /* ARM_EWUPCT */
1686 s->clkm.arm_ewupct = value & 0x003f;
1687 return;
1689 case 0x10: /* ARM_RSTCT1 */
1690 diff = s->clkm.arm_rstct1 ^ value;
1691 s->clkm.arm_rstct1 = value & 0x0007;
1692 if (value & 9) {
1693 qemu_system_reset_request();
1694 s->clkm.cold_start = 0xa;
1696 if (diff & ~value & 4) { /* DSP_RST */
1697 omap_mpui_reset(s);
1698 omap_tipb_bridge_reset(s->private_tipb);
1699 omap_tipb_bridge_reset(s->public_tipb);
1701 if (diff & 2) { /* DSP_EN */
1702 clk = omap_findclk(s, "dsp_ck");
1703 omap_clk_canidle(clk, (~value >> 1) & 1);
1705 return;
1707 case 0x14: /* ARM_RSTCT2 */
1708 s->clkm.arm_rstct2 = value & 0x0001;
1709 return;
1711 case 0x18: /* ARM_SYSST */
1712 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1713 s->clkm.clocking_scheme = (value >> 11) & 7;
1714 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1715 clkschemename[s->clkm.clocking_scheme]);
1717 s->clkm.cold_start &= value & 0x3f;
1718 return;
1720 case 0x1c: /* ARM_CKOUT1 */
1721 diff = s->clkm.arm_ckout1 ^ value;
1722 s->clkm.arm_ckout1 = value & 0x003f;
1723 omap_clkm_ckout1_update(s, diff, value);
1724 return;
1726 case 0x20: /* ARM_CKOUT2 */
1727 default:
1728 OMAP_BAD_REG(addr);
1732 static const MemoryRegionOps omap_clkm_ops = {
1733 .read = omap_clkm_read,
1734 .write = omap_clkm_write,
1735 .endianness = DEVICE_NATIVE_ENDIAN,
1738 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1739 unsigned size)
1741 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1742 CPUState *cpu = CPU(s->cpu);
1744 if (size != 2) {
1745 return omap_badwidth_read16(opaque, addr);
1748 switch (addr) {
1749 case 0x04: /* DSP_IDLECT1 */
1750 return s->clkm.dsp_idlect1;
1752 case 0x08: /* DSP_IDLECT2 */
1753 return s->clkm.dsp_idlect2;
1755 case 0x14: /* DSP_RSTCT2 */
1756 return s->clkm.dsp_rstct2;
1758 case 0x18: /* DSP_SYSST */
1759 cpu = CPU(s->cpu);
1760 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1761 (cpu->halted << 6); /* Quite useless... */
1764 OMAP_BAD_REG(addr);
1765 return 0;
1768 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1769 uint16_t diff, uint16_t value)
1771 omap_clk clk;
1773 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1776 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1777 uint16_t diff, uint16_t value)
1779 omap_clk clk;
1781 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1784 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1785 uint64_t value, unsigned size)
1787 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1788 uint16_t diff;
1790 if (size != 2) {
1791 omap_badwidth_write16(opaque, addr, value);
1792 return;
1795 switch (addr) {
1796 case 0x04: /* DSP_IDLECT1 */
1797 diff = s->clkm.dsp_idlect1 ^ value;
1798 s->clkm.dsp_idlect1 = value & 0x01f7;
1799 omap_clkdsp_idlect1_update(s, diff, value);
1800 break;
1802 case 0x08: /* DSP_IDLECT2 */
1803 s->clkm.dsp_idlect2 = value & 0x0037;
1804 diff = s->clkm.dsp_idlect1 ^ value;
1805 omap_clkdsp_idlect2_update(s, diff, value);
1806 break;
1808 case 0x14: /* DSP_RSTCT2 */
1809 s->clkm.dsp_rstct2 = value & 0x0001;
1810 break;
1812 case 0x18: /* DSP_SYSST */
1813 s->clkm.cold_start &= value & 0x3f;
1814 break;
1816 default:
1817 OMAP_BAD_REG(addr);
1821 static const MemoryRegionOps omap_clkdsp_ops = {
1822 .read = omap_clkdsp_read,
1823 .write = omap_clkdsp_write,
1824 .endianness = DEVICE_NATIVE_ENDIAN,
1827 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1829 if (s->wdt && s->wdt->reset)
1830 s->clkm.cold_start = 0x6;
1831 s->clkm.clocking_scheme = 0;
1832 omap_clkm_ckctl_update(s, ~0, 0x3000);
1833 s->clkm.arm_ckctl = 0x3000;
1834 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1835 s->clkm.arm_idlect1 = 0x0400;
1836 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1837 s->clkm.arm_idlect2 = 0x0100;
1838 s->clkm.arm_ewupct = 0x003f;
1839 s->clkm.arm_rstct1 = 0x0000;
1840 s->clkm.arm_rstct2 = 0x0000;
1841 s->clkm.arm_ckout1 = 0x0015;
1842 s->clkm.dpll1_mode = 0x2002;
1843 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1844 s->clkm.dsp_idlect1 = 0x0040;
1845 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1846 s->clkm.dsp_idlect2 = 0x0000;
1847 s->clkm.dsp_rstct2 = 0x0000;
1850 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1851 hwaddr dsp_base, struct omap_mpu_state_s *s)
1853 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1854 "omap-clkm", 0x100);
1855 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1856 "omap-clkdsp", 0x1000);
1858 s->clkm.arm_idlect1 = 0x03ff;
1859 s->clkm.arm_idlect2 = 0x0100;
1860 s->clkm.dsp_idlect1 = 0x0002;
1861 omap_clkm_reset(s);
1862 s->clkm.cold_start = 0x3a;
1864 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1865 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1868 /* MPU I/O */
1869 struct omap_mpuio_s {
1870 qemu_irq irq;
1871 qemu_irq kbd_irq;
1872 qemu_irq *in;
1873 qemu_irq handler[16];
1874 qemu_irq wakeup;
1875 MemoryRegion iomem;
1877 uint16_t inputs;
1878 uint16_t outputs;
1879 uint16_t dir;
1880 uint16_t edge;
1881 uint16_t mask;
1882 uint16_t ints;
1884 uint16_t debounce;
1885 uint16_t latch;
1886 uint8_t event;
1888 uint8_t buttons[5];
1889 uint8_t row_latch;
1890 uint8_t cols;
1891 int kbd_mask;
1892 int clk;
1895 static void omap_mpuio_set(void *opaque, int line, int level)
1897 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1898 uint16_t prev = s->inputs;
1900 if (level)
1901 s->inputs |= 1 << line;
1902 else
1903 s->inputs &= ~(1 << line);
1905 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1906 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1907 s->ints |= 1 << line;
1908 qemu_irq_raise(s->irq);
1909 /* TODO: wakeup */
1911 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1912 (s->event >> 1) == line) /* PIN_SELECT */
1913 s->latch = s->inputs;
1917 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1919 int i;
1920 uint8_t *row, rows = 0, cols = ~s->cols;
1922 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1923 if (*row & cols)
1924 rows |= i;
1926 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1927 s->row_latch = ~rows;
1930 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1931 unsigned size)
1933 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1934 int offset = addr & OMAP_MPUI_REG_MASK;
1935 uint16_t ret;
1937 if (size != 2) {
1938 return omap_badwidth_read16(opaque, addr);
1941 switch (offset) {
1942 case 0x00: /* INPUT_LATCH */
1943 return s->inputs;
1945 case 0x04: /* OUTPUT_REG */
1946 return s->outputs;
1948 case 0x08: /* IO_CNTL */
1949 return s->dir;
1951 case 0x10: /* KBR_LATCH */
1952 return s->row_latch;
1954 case 0x14: /* KBC_REG */
1955 return s->cols;
1957 case 0x18: /* GPIO_EVENT_MODE_REG */
1958 return s->event;
1960 case 0x1c: /* GPIO_INT_EDGE_REG */
1961 return s->edge;
1963 case 0x20: /* KBD_INT */
1964 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1966 case 0x24: /* GPIO_INT */
1967 ret = s->ints;
1968 s->ints &= s->mask;
1969 if (ret)
1970 qemu_irq_lower(s->irq);
1971 return ret;
1973 case 0x28: /* KBD_MASKIT */
1974 return s->kbd_mask;
1976 case 0x2c: /* GPIO_MASKIT */
1977 return s->mask;
1979 case 0x30: /* GPIO_DEBOUNCING_REG */
1980 return s->debounce;
1982 case 0x34: /* GPIO_LATCH_REG */
1983 return s->latch;
1986 OMAP_BAD_REG(addr);
1987 return 0;
1990 static void omap_mpuio_write(void *opaque, hwaddr addr,
1991 uint64_t value, unsigned size)
1993 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1994 int offset = addr & OMAP_MPUI_REG_MASK;
1995 uint16_t diff;
1996 int ln;
1998 if (size != 2) {
1999 omap_badwidth_write16(opaque, addr, value);
2000 return;
2003 switch (offset) {
2004 case 0x04: /* OUTPUT_REG */
2005 diff = (s->outputs ^ value) & ~s->dir;
2006 s->outputs = value;
2007 while ((ln = ctz32(diff)) != 32) {
2008 if (s->handler[ln])
2009 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2010 diff &= ~(1 << ln);
2012 break;
2014 case 0x08: /* IO_CNTL */
2015 diff = s->outputs & (s->dir ^ value);
2016 s->dir = value;
2018 value = s->outputs & ~s->dir;
2019 while ((ln = ctz32(diff)) != 32) {
2020 if (s->handler[ln])
2021 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2022 diff &= ~(1 << ln);
2024 break;
2026 case 0x14: /* KBC_REG */
2027 s->cols = value;
2028 omap_mpuio_kbd_update(s);
2029 break;
2031 case 0x18: /* GPIO_EVENT_MODE_REG */
2032 s->event = value & 0x1f;
2033 break;
2035 case 0x1c: /* GPIO_INT_EDGE_REG */
2036 s->edge = value;
2037 break;
2039 case 0x28: /* KBD_MASKIT */
2040 s->kbd_mask = value & 1;
2041 omap_mpuio_kbd_update(s);
2042 break;
2044 case 0x2c: /* GPIO_MASKIT */
2045 s->mask = value;
2046 break;
2048 case 0x30: /* GPIO_DEBOUNCING_REG */
2049 s->debounce = value & 0x1ff;
2050 break;
2052 case 0x00: /* INPUT_LATCH */
2053 case 0x10: /* KBR_LATCH */
2054 case 0x20: /* KBD_INT */
2055 case 0x24: /* GPIO_INT */
2056 case 0x34: /* GPIO_LATCH_REG */
2057 OMAP_RO_REG(addr);
2058 return;
2060 default:
2061 OMAP_BAD_REG(addr);
2062 return;
2066 static const MemoryRegionOps omap_mpuio_ops = {
2067 .read = omap_mpuio_read,
2068 .write = omap_mpuio_write,
2069 .endianness = DEVICE_NATIVE_ENDIAN,
2072 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2074 s->inputs = 0;
2075 s->outputs = 0;
2076 s->dir = ~0;
2077 s->event = 0;
2078 s->edge = 0;
2079 s->kbd_mask = 0;
2080 s->mask = 0;
2081 s->debounce = 0;
2082 s->latch = 0;
2083 s->ints = 0;
2084 s->row_latch = 0x1f;
2085 s->clk = 1;
2088 static void omap_mpuio_onoff(void *opaque, int line, int on)
2090 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2092 s->clk = on;
2093 if (on)
2094 omap_mpuio_kbd_update(s);
2097 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2098 hwaddr base,
2099 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2100 omap_clk clk)
2102 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2103 g_malloc0(sizeof(struct omap_mpuio_s));
2105 s->irq = gpio_int;
2106 s->kbd_irq = kbd_int;
2107 s->wakeup = wakeup;
2108 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2109 omap_mpuio_reset(s);
2111 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2112 "omap-mpuio", 0x800);
2113 memory_region_add_subregion(memory, base, &s->iomem);
2115 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2117 return s;
2120 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2122 return s->in;
2125 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2127 if (line >= 16 || line < 0)
2128 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2129 s->handler[line] = handler;
2132 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2134 if (row >= 5 || row < 0)
2135 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2137 if (down)
2138 s->buttons[row] |= 1 << col;
2139 else
2140 s->buttons[row] &= ~(1 << col);
2142 omap_mpuio_kbd_update(s);
2145 /* MicroWire Interface */
2146 struct omap_uwire_s {
2147 MemoryRegion iomem;
2148 qemu_irq txirq;
2149 qemu_irq rxirq;
2150 qemu_irq txdrq;
2152 uint16_t txbuf;
2153 uint16_t rxbuf;
2154 uint16_t control;
2155 uint16_t setup[5];
2157 uWireSlave *chip[4];
2160 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2162 int chipselect = (s->control >> 10) & 3; /* INDEX */
2163 uWireSlave *slave = s->chip[chipselect];
2165 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2166 if (s->control & (1 << 12)) /* CS_CMD */
2167 if (slave && slave->send)
2168 slave->send(slave->opaque,
2169 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2170 s->control &= ~(1 << 14); /* CSRB */
2171 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2172 * a DRQ. When is the level IRQ supposed to be reset? */
2175 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2176 if (s->control & (1 << 12)) /* CS_CMD */
2177 if (slave && slave->receive)
2178 s->rxbuf = slave->receive(slave->opaque);
2179 s->control |= 1 << 15; /* RDRB */
2180 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2181 * a DRQ. When is the level IRQ supposed to be reset? */
2185 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2186 unsigned size)
2188 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2189 int offset = addr & OMAP_MPUI_REG_MASK;
2191 if (size != 2) {
2192 return omap_badwidth_read16(opaque, addr);
2195 switch (offset) {
2196 case 0x00: /* RDR */
2197 s->control &= ~(1 << 15); /* RDRB */
2198 return s->rxbuf;
2200 case 0x04: /* CSR */
2201 return s->control;
2203 case 0x08: /* SR1 */
2204 return s->setup[0];
2205 case 0x0c: /* SR2 */
2206 return s->setup[1];
2207 case 0x10: /* SR3 */
2208 return s->setup[2];
2209 case 0x14: /* SR4 */
2210 return s->setup[3];
2211 case 0x18: /* SR5 */
2212 return s->setup[4];
2215 OMAP_BAD_REG(addr);
2216 return 0;
2219 static void omap_uwire_write(void *opaque, hwaddr addr,
2220 uint64_t value, unsigned size)
2222 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2223 int offset = addr & OMAP_MPUI_REG_MASK;
2225 if (size != 2) {
2226 omap_badwidth_write16(opaque, addr, value);
2227 return;
2230 switch (offset) {
2231 case 0x00: /* TDR */
2232 s->txbuf = value; /* TD */
2233 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2234 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2235 (s->control & (1 << 12)))) { /* CS_CMD */
2236 s->control |= 1 << 14; /* CSRB */
2237 omap_uwire_transfer_start(s);
2239 break;
2241 case 0x04: /* CSR */
2242 s->control = value & 0x1fff;
2243 if (value & (1 << 13)) /* START */
2244 omap_uwire_transfer_start(s);
2245 break;
2247 case 0x08: /* SR1 */
2248 s->setup[0] = value & 0x003f;
2249 break;
2251 case 0x0c: /* SR2 */
2252 s->setup[1] = value & 0x0fc0;
2253 break;
2255 case 0x10: /* SR3 */
2256 s->setup[2] = value & 0x0003;
2257 break;
2259 case 0x14: /* SR4 */
2260 s->setup[3] = value & 0x0001;
2261 break;
2263 case 0x18: /* SR5 */
2264 s->setup[4] = value & 0x000f;
2265 break;
2267 default:
2268 OMAP_BAD_REG(addr);
2269 return;
2273 static const MemoryRegionOps omap_uwire_ops = {
2274 .read = omap_uwire_read,
2275 .write = omap_uwire_write,
2276 .endianness = DEVICE_NATIVE_ENDIAN,
2279 static void omap_uwire_reset(struct omap_uwire_s *s)
2281 s->control = 0;
2282 s->setup[0] = 0;
2283 s->setup[1] = 0;
2284 s->setup[2] = 0;
2285 s->setup[3] = 0;
2286 s->setup[4] = 0;
2289 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2290 hwaddr base,
2291 qemu_irq txirq, qemu_irq rxirq,
2292 qemu_irq dma,
2293 omap_clk clk)
2295 struct omap_uwire_s *s = (struct omap_uwire_s *)
2296 g_malloc0(sizeof(struct omap_uwire_s));
2298 s->txirq = txirq;
2299 s->rxirq = rxirq;
2300 s->txdrq = dma;
2301 omap_uwire_reset(s);
2303 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2304 memory_region_add_subregion(system_memory, base, &s->iomem);
2306 return s;
2309 void omap_uwire_attach(struct omap_uwire_s *s,
2310 uWireSlave *slave, int chipselect)
2312 if (chipselect < 0 || chipselect > 3) {
2313 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2314 exit(-1);
2317 s->chip[chipselect] = slave;
2320 /* Pseudonoise Pulse-Width Light Modulator */
2321 struct omap_pwl_s {
2322 MemoryRegion iomem;
2323 uint8_t output;
2324 uint8_t level;
2325 uint8_t enable;
2326 int clk;
2329 static void omap_pwl_update(struct omap_pwl_s *s)
2331 int output = (s->clk && s->enable) ? s->level : 0;
2333 if (output != s->output) {
2334 s->output = output;
2335 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2339 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2340 unsigned size)
2342 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2343 int offset = addr & OMAP_MPUI_REG_MASK;
2345 if (size != 1) {
2346 return omap_badwidth_read8(opaque, addr);
2349 switch (offset) {
2350 case 0x00: /* PWL_LEVEL */
2351 return s->level;
2352 case 0x04: /* PWL_CTRL */
2353 return s->enable;
2355 OMAP_BAD_REG(addr);
2356 return 0;
2359 static void omap_pwl_write(void *opaque, hwaddr addr,
2360 uint64_t value, unsigned size)
2362 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2363 int offset = addr & OMAP_MPUI_REG_MASK;
2365 if (size != 1) {
2366 omap_badwidth_write8(opaque, addr, value);
2367 return;
2370 switch (offset) {
2371 case 0x00: /* PWL_LEVEL */
2372 s->level = value;
2373 omap_pwl_update(s);
2374 break;
2375 case 0x04: /* PWL_CTRL */
2376 s->enable = value & 1;
2377 omap_pwl_update(s);
2378 break;
2379 default:
2380 OMAP_BAD_REG(addr);
2381 return;
2385 static const MemoryRegionOps omap_pwl_ops = {
2386 .read = omap_pwl_read,
2387 .write = omap_pwl_write,
2388 .endianness = DEVICE_NATIVE_ENDIAN,
2391 static void omap_pwl_reset(struct omap_pwl_s *s)
2393 s->output = 0;
2394 s->level = 0;
2395 s->enable = 0;
2396 s->clk = 1;
2397 omap_pwl_update(s);
2400 static void omap_pwl_clk_update(void *opaque, int line, int on)
2402 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2404 s->clk = on;
2405 omap_pwl_update(s);
2408 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2409 hwaddr base,
2410 omap_clk clk)
2412 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2414 omap_pwl_reset(s);
2416 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2417 "omap-pwl", 0x800);
2418 memory_region_add_subregion(system_memory, base, &s->iomem);
2420 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2421 return s;
2424 /* Pulse-Width Tone module */
2425 struct omap_pwt_s {
2426 MemoryRegion iomem;
2427 uint8_t frc;
2428 uint8_t vrc;
2429 uint8_t gcr;
2430 omap_clk clk;
2433 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2434 unsigned size)
2436 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2437 int offset = addr & OMAP_MPUI_REG_MASK;
2439 if (size != 1) {
2440 return omap_badwidth_read8(opaque, addr);
2443 switch (offset) {
2444 case 0x00: /* FRC */
2445 return s->frc;
2446 case 0x04: /* VCR */
2447 return s->vrc;
2448 case 0x08: /* GCR */
2449 return s->gcr;
2451 OMAP_BAD_REG(addr);
2452 return 0;
2455 static void omap_pwt_write(void *opaque, hwaddr addr,
2456 uint64_t value, unsigned size)
2458 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2459 int offset = addr & OMAP_MPUI_REG_MASK;
2461 if (size != 1) {
2462 omap_badwidth_write8(opaque, addr, value);
2463 return;
2466 switch (offset) {
2467 case 0x00: /* FRC */
2468 s->frc = value & 0x3f;
2469 break;
2470 case 0x04: /* VRC */
2471 if ((value ^ s->vrc) & 1) {
2472 if (value & 1)
2473 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2474 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2475 ((omap_clk_getrate(s->clk) >> 3) /
2476 /* Pre-multiplexer divider */
2477 ((s->gcr & 2) ? 1 : 154) /
2478 /* Octave multiplexer */
2479 (2 << (value & 3)) *
2480 /* 101/107 divider */
2481 ((value & (1 << 2)) ? 101 : 107) *
2482 /* 49/55 divider */
2483 ((value & (1 << 3)) ? 49 : 55) *
2484 /* 50/63 divider */
2485 ((value & (1 << 4)) ? 50 : 63) *
2486 /* 80/127 divider */
2487 ((value & (1 << 5)) ? 80 : 127) /
2488 (107 * 55 * 63 * 127)));
2489 else
2490 printf("%s: silence!\n", __FUNCTION__);
2492 s->vrc = value & 0x7f;
2493 break;
2494 case 0x08: /* GCR */
2495 s->gcr = value & 3;
2496 break;
2497 default:
2498 OMAP_BAD_REG(addr);
2499 return;
2503 static const MemoryRegionOps omap_pwt_ops = {
2504 .read =omap_pwt_read,
2505 .write = omap_pwt_write,
2506 .endianness = DEVICE_NATIVE_ENDIAN,
2509 static void omap_pwt_reset(struct omap_pwt_s *s)
2511 s->frc = 0;
2512 s->vrc = 0;
2513 s->gcr = 0;
2516 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2517 hwaddr base,
2518 omap_clk clk)
2520 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2521 s->clk = clk;
2522 omap_pwt_reset(s);
2524 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2525 "omap-pwt", 0x800);
2526 memory_region_add_subregion(system_memory, base, &s->iomem);
2527 return s;
2530 /* Real-time Clock module */
2531 struct omap_rtc_s {
2532 MemoryRegion iomem;
2533 qemu_irq irq;
2534 qemu_irq alarm;
2535 QEMUTimer *clk;
2537 uint8_t interrupts;
2538 uint8_t status;
2539 int16_t comp_reg;
2540 int running;
2541 int pm_am;
2542 int auto_comp;
2543 int round;
2544 struct tm alarm_tm;
2545 time_t alarm_ti;
2547 struct tm current_tm;
2548 time_t ti;
2549 uint64_t tick;
2552 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2554 /* s->alarm is level-triggered */
2555 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2558 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2560 s->alarm_ti = mktimegm(&s->alarm_tm);
2561 if (s->alarm_ti == -1)
2562 printf("%s: conversion failed\n", __FUNCTION__);
2565 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2566 unsigned size)
2568 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2569 int offset = addr & OMAP_MPUI_REG_MASK;
2570 uint8_t i;
2572 if (size != 1) {
2573 return omap_badwidth_read8(opaque, addr);
2576 switch (offset) {
2577 case 0x00: /* SECONDS_REG */
2578 return to_bcd(s->current_tm.tm_sec);
2580 case 0x04: /* MINUTES_REG */
2581 return to_bcd(s->current_tm.tm_min);
2583 case 0x08: /* HOURS_REG */
2584 if (s->pm_am)
2585 return ((s->current_tm.tm_hour > 11) << 7) |
2586 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2587 else
2588 return to_bcd(s->current_tm.tm_hour);
2590 case 0x0c: /* DAYS_REG */
2591 return to_bcd(s->current_tm.tm_mday);
2593 case 0x10: /* MONTHS_REG */
2594 return to_bcd(s->current_tm.tm_mon + 1);
2596 case 0x14: /* YEARS_REG */
2597 return to_bcd(s->current_tm.tm_year % 100);
2599 case 0x18: /* WEEK_REG */
2600 return s->current_tm.tm_wday;
2602 case 0x20: /* ALARM_SECONDS_REG */
2603 return to_bcd(s->alarm_tm.tm_sec);
2605 case 0x24: /* ALARM_MINUTES_REG */
2606 return to_bcd(s->alarm_tm.tm_min);
2608 case 0x28: /* ALARM_HOURS_REG */
2609 if (s->pm_am)
2610 return ((s->alarm_tm.tm_hour > 11) << 7) |
2611 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2612 else
2613 return to_bcd(s->alarm_tm.tm_hour);
2615 case 0x2c: /* ALARM_DAYS_REG */
2616 return to_bcd(s->alarm_tm.tm_mday);
2618 case 0x30: /* ALARM_MONTHS_REG */
2619 return to_bcd(s->alarm_tm.tm_mon + 1);
2621 case 0x34: /* ALARM_YEARS_REG */
2622 return to_bcd(s->alarm_tm.tm_year % 100);
2624 case 0x40: /* RTC_CTRL_REG */
2625 return (s->pm_am << 3) | (s->auto_comp << 2) |
2626 (s->round << 1) | s->running;
2628 case 0x44: /* RTC_STATUS_REG */
2629 i = s->status;
2630 s->status &= ~0x3d;
2631 return i;
2633 case 0x48: /* RTC_INTERRUPTS_REG */
2634 return s->interrupts;
2636 case 0x4c: /* RTC_COMP_LSB_REG */
2637 return ((uint16_t) s->comp_reg) & 0xff;
2639 case 0x50: /* RTC_COMP_MSB_REG */
2640 return ((uint16_t) s->comp_reg) >> 8;
2643 OMAP_BAD_REG(addr);
2644 return 0;
2647 static void omap_rtc_write(void *opaque, hwaddr addr,
2648 uint64_t value, unsigned size)
2650 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2651 int offset = addr & OMAP_MPUI_REG_MASK;
2652 struct tm new_tm;
2653 time_t ti[2];
2655 if (size != 1) {
2656 omap_badwidth_write8(opaque, addr, value);
2657 return;
2660 switch (offset) {
2661 case 0x00: /* SECONDS_REG */
2662 #ifdef ALMDEBUG
2663 printf("RTC SEC_REG <-- %02x\n", value);
2664 #endif
2665 s->ti -= s->current_tm.tm_sec;
2666 s->ti += from_bcd(value);
2667 return;
2669 case 0x04: /* MINUTES_REG */
2670 #ifdef ALMDEBUG
2671 printf("RTC MIN_REG <-- %02x\n", value);
2672 #endif
2673 s->ti -= s->current_tm.tm_min * 60;
2674 s->ti += from_bcd(value) * 60;
2675 return;
2677 case 0x08: /* HOURS_REG */
2678 #ifdef ALMDEBUG
2679 printf("RTC HRS_REG <-- %02x\n", value);
2680 #endif
2681 s->ti -= s->current_tm.tm_hour * 3600;
2682 if (s->pm_am) {
2683 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2684 s->ti += ((value >> 7) & 1) * 43200;
2685 } else
2686 s->ti += from_bcd(value & 0x3f) * 3600;
2687 return;
2689 case 0x0c: /* DAYS_REG */
2690 #ifdef ALMDEBUG
2691 printf("RTC DAY_REG <-- %02x\n", value);
2692 #endif
2693 s->ti -= s->current_tm.tm_mday * 86400;
2694 s->ti += from_bcd(value) * 86400;
2695 return;
2697 case 0x10: /* MONTHS_REG */
2698 #ifdef ALMDEBUG
2699 printf("RTC MTH_REG <-- %02x\n", value);
2700 #endif
2701 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2702 new_tm.tm_mon = from_bcd(value);
2703 ti[0] = mktimegm(&s->current_tm);
2704 ti[1] = mktimegm(&new_tm);
2706 if (ti[0] != -1 && ti[1] != -1) {
2707 s->ti -= ti[0];
2708 s->ti += ti[1];
2709 } else {
2710 /* A less accurate version */
2711 s->ti -= s->current_tm.tm_mon * 2592000;
2712 s->ti += from_bcd(value) * 2592000;
2714 return;
2716 case 0x14: /* YEARS_REG */
2717 #ifdef ALMDEBUG
2718 printf("RTC YRS_REG <-- %02x\n", value);
2719 #endif
2720 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2721 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2722 ti[0] = mktimegm(&s->current_tm);
2723 ti[1] = mktimegm(&new_tm);
2725 if (ti[0] != -1 && ti[1] != -1) {
2726 s->ti -= ti[0];
2727 s->ti += ti[1];
2728 } else {
2729 /* A less accurate version */
2730 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2731 s->ti += (time_t)from_bcd(value) * 31536000;
2733 return;
2735 case 0x18: /* WEEK_REG */
2736 return; /* Ignored */
2738 case 0x20: /* ALARM_SECONDS_REG */
2739 #ifdef ALMDEBUG
2740 printf("ALM SEC_REG <-- %02x\n", value);
2741 #endif
2742 s->alarm_tm.tm_sec = from_bcd(value);
2743 omap_rtc_alarm_update(s);
2744 return;
2746 case 0x24: /* ALARM_MINUTES_REG */
2747 #ifdef ALMDEBUG
2748 printf("ALM MIN_REG <-- %02x\n", value);
2749 #endif
2750 s->alarm_tm.tm_min = from_bcd(value);
2751 omap_rtc_alarm_update(s);
2752 return;
2754 case 0x28: /* ALARM_HOURS_REG */
2755 #ifdef ALMDEBUG
2756 printf("ALM HRS_REG <-- %02x\n", value);
2757 #endif
2758 if (s->pm_am)
2759 s->alarm_tm.tm_hour =
2760 ((from_bcd(value & 0x3f)) % 12) +
2761 ((value >> 7) & 1) * 12;
2762 else
2763 s->alarm_tm.tm_hour = from_bcd(value);
2764 omap_rtc_alarm_update(s);
2765 return;
2767 case 0x2c: /* ALARM_DAYS_REG */
2768 #ifdef ALMDEBUG
2769 printf("ALM DAY_REG <-- %02x\n", value);
2770 #endif
2771 s->alarm_tm.tm_mday = from_bcd(value);
2772 omap_rtc_alarm_update(s);
2773 return;
2775 case 0x30: /* ALARM_MONTHS_REG */
2776 #ifdef ALMDEBUG
2777 printf("ALM MON_REG <-- %02x\n", value);
2778 #endif
2779 s->alarm_tm.tm_mon = from_bcd(value);
2780 omap_rtc_alarm_update(s);
2781 return;
2783 case 0x34: /* ALARM_YEARS_REG */
2784 #ifdef ALMDEBUG
2785 printf("ALM YRS_REG <-- %02x\n", value);
2786 #endif
2787 s->alarm_tm.tm_year = from_bcd(value);
2788 omap_rtc_alarm_update(s);
2789 return;
2791 case 0x40: /* RTC_CTRL_REG */
2792 #ifdef ALMDEBUG
2793 printf("RTC CONTROL <-- %02x\n", value);
2794 #endif
2795 s->pm_am = (value >> 3) & 1;
2796 s->auto_comp = (value >> 2) & 1;
2797 s->round = (value >> 1) & 1;
2798 s->running = value & 1;
2799 s->status &= 0xfd;
2800 s->status |= s->running << 1;
2801 return;
2803 case 0x44: /* RTC_STATUS_REG */
2804 #ifdef ALMDEBUG
2805 printf("RTC STATUSL <-- %02x\n", value);
2806 #endif
2807 s->status &= ~((value & 0xc0) ^ 0x80);
2808 omap_rtc_interrupts_update(s);
2809 return;
2811 case 0x48: /* RTC_INTERRUPTS_REG */
2812 #ifdef ALMDEBUG
2813 printf("RTC INTRS <-- %02x\n", value);
2814 #endif
2815 s->interrupts = value;
2816 return;
2818 case 0x4c: /* RTC_COMP_LSB_REG */
2819 #ifdef ALMDEBUG
2820 printf("RTC COMPLSB <-- %02x\n", value);
2821 #endif
2822 s->comp_reg &= 0xff00;
2823 s->comp_reg |= 0x00ff & value;
2824 return;
2826 case 0x50: /* RTC_COMP_MSB_REG */
2827 #ifdef ALMDEBUG
2828 printf("RTC COMPMSB <-- %02x\n", value);
2829 #endif
2830 s->comp_reg &= 0x00ff;
2831 s->comp_reg |= 0xff00 & (value << 8);
2832 return;
2834 default:
2835 OMAP_BAD_REG(addr);
2836 return;
2840 static const MemoryRegionOps omap_rtc_ops = {
2841 .read = omap_rtc_read,
2842 .write = omap_rtc_write,
2843 .endianness = DEVICE_NATIVE_ENDIAN,
2846 static void omap_rtc_tick(void *opaque)
2848 struct omap_rtc_s *s = opaque;
2850 if (s->round) {
2851 /* Round to nearest full minute. */
2852 if (s->current_tm.tm_sec < 30)
2853 s->ti -= s->current_tm.tm_sec;
2854 else
2855 s->ti += 60 - s->current_tm.tm_sec;
2857 s->round = 0;
2860 localtime_r(&s->ti, &s->current_tm);
2862 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2863 s->status |= 0x40;
2864 omap_rtc_interrupts_update(s);
2867 if (s->interrupts & 0x04)
2868 switch (s->interrupts & 3) {
2869 case 0:
2870 s->status |= 0x04;
2871 qemu_irq_pulse(s->irq);
2872 break;
2873 case 1:
2874 if (s->current_tm.tm_sec)
2875 break;
2876 s->status |= 0x08;
2877 qemu_irq_pulse(s->irq);
2878 break;
2879 case 2:
2880 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2881 break;
2882 s->status |= 0x10;
2883 qemu_irq_pulse(s->irq);
2884 break;
2885 case 3:
2886 if (s->current_tm.tm_sec ||
2887 s->current_tm.tm_min || s->current_tm.tm_hour)
2888 break;
2889 s->status |= 0x20;
2890 qemu_irq_pulse(s->irq);
2891 break;
2894 /* Move on */
2895 if (s->running)
2896 s->ti ++;
2897 s->tick += 1000;
2900 * Every full hour add a rough approximation of the compensation
2901 * register to the 32kHz Timer (which drives the RTC) value.
2903 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2904 s->tick += s->comp_reg * 1000 / 32768;
2906 timer_mod(s->clk, s->tick);
2909 static void omap_rtc_reset(struct omap_rtc_s *s)
2911 struct tm tm;
2913 s->interrupts = 0;
2914 s->comp_reg = 0;
2915 s->running = 0;
2916 s->pm_am = 0;
2917 s->auto_comp = 0;
2918 s->round = 0;
2919 s->tick = qemu_clock_get_ms(rtc_clock);
2920 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2921 s->alarm_tm.tm_mday = 0x01;
2922 s->status = 1 << 7;
2923 qemu_get_timedate(&tm, 0);
2924 s->ti = mktimegm(&tm);
2926 omap_rtc_alarm_update(s);
2927 omap_rtc_tick(s);
2930 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2931 hwaddr base,
2932 qemu_irq timerirq, qemu_irq alarmirq,
2933 omap_clk clk)
2935 struct omap_rtc_s *s = (struct omap_rtc_s *)
2936 g_malloc0(sizeof(struct omap_rtc_s));
2938 s->irq = timerirq;
2939 s->alarm = alarmirq;
2940 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2942 omap_rtc_reset(s);
2944 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2945 "omap-rtc", 0x800);
2946 memory_region_add_subregion(system_memory, base, &s->iomem);
2948 return s;
2951 /* Multi-channel Buffered Serial Port interfaces */
2952 struct omap_mcbsp_s {
2953 MemoryRegion iomem;
2954 qemu_irq txirq;
2955 qemu_irq rxirq;
2956 qemu_irq txdrq;
2957 qemu_irq rxdrq;
2959 uint16_t spcr[2];
2960 uint16_t rcr[2];
2961 uint16_t xcr[2];
2962 uint16_t srgr[2];
2963 uint16_t mcr[2];
2964 uint16_t pcr;
2965 uint16_t rcer[8];
2966 uint16_t xcer[8];
2967 int tx_rate;
2968 int rx_rate;
2969 int tx_req;
2970 int rx_req;
2972 I2SCodec *codec;
2973 QEMUTimer *source_timer;
2974 QEMUTimer *sink_timer;
2977 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2979 int irq;
2981 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2982 case 0:
2983 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2984 break;
2985 case 3:
2986 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2987 break;
2988 default:
2989 irq = 0;
2990 break;
2993 if (irq)
2994 qemu_irq_pulse(s->rxirq);
2996 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2997 case 0:
2998 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2999 break;
3000 case 3:
3001 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3002 break;
3003 default:
3004 irq = 0;
3005 break;
3008 if (irq)
3009 qemu_irq_pulse(s->txirq);
3012 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3014 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3015 s->spcr[0] |= 1 << 2; /* RFULL */
3016 s->spcr[0] |= 1 << 1; /* RRDY */
3017 qemu_irq_raise(s->rxdrq);
3018 omap_mcbsp_intr_update(s);
3021 static void omap_mcbsp_source_tick(void *opaque)
3023 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3024 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3026 if (!s->rx_rate)
3027 return;
3028 if (s->rx_req)
3029 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3031 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3033 omap_mcbsp_rx_newdata(s);
3034 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3035 get_ticks_per_sec());
3038 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3040 if (!s->codec || !s->codec->rts)
3041 omap_mcbsp_source_tick(s);
3042 else if (s->codec->in.len) {
3043 s->rx_req = s->codec->in.len;
3044 omap_mcbsp_rx_newdata(s);
3048 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3050 timer_del(s->source_timer);
3053 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3055 s->spcr[0] &= ~(1 << 1); /* RRDY */
3056 qemu_irq_lower(s->rxdrq);
3057 omap_mcbsp_intr_update(s);
3060 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3062 s->spcr[1] |= 1 << 1; /* XRDY */
3063 qemu_irq_raise(s->txdrq);
3064 omap_mcbsp_intr_update(s);
3067 static void omap_mcbsp_sink_tick(void *opaque)
3069 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3070 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3072 if (!s->tx_rate)
3073 return;
3074 if (s->tx_req)
3075 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3077 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3079 omap_mcbsp_tx_newdata(s);
3080 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3081 get_ticks_per_sec());
3084 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3086 if (!s->codec || !s->codec->cts)
3087 omap_mcbsp_sink_tick(s);
3088 else if (s->codec->out.size) {
3089 s->tx_req = s->codec->out.size;
3090 omap_mcbsp_tx_newdata(s);
3094 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3096 s->spcr[1] &= ~(1 << 1); /* XRDY */
3097 qemu_irq_lower(s->txdrq);
3098 omap_mcbsp_intr_update(s);
3099 if (s->codec && s->codec->cts)
3100 s->codec->tx_swallow(s->codec->opaque);
3103 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3105 s->tx_req = 0;
3106 omap_mcbsp_tx_done(s);
3107 timer_del(s->sink_timer);
3110 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3112 int prev_rx_rate, prev_tx_rate;
3113 int rx_rate = 0, tx_rate = 0;
3114 int cpu_rate = 1500000; /* XXX */
3116 /* TODO: check CLKSTP bit */
3117 if (s->spcr[1] & (1 << 6)) { /* GRST */
3118 if (s->spcr[0] & (1 << 0)) { /* RRST */
3119 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3120 (s->pcr & (1 << 8))) { /* CLKRM */
3121 if (~s->pcr & (1 << 7)) /* SCLKME */
3122 rx_rate = cpu_rate /
3123 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3124 } else
3125 if (s->codec)
3126 rx_rate = s->codec->rx_rate;
3129 if (s->spcr[1] & (1 << 0)) { /* XRST */
3130 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3131 (s->pcr & (1 << 9))) { /* CLKXM */
3132 if (~s->pcr & (1 << 7)) /* SCLKME */
3133 tx_rate = cpu_rate /
3134 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3135 } else
3136 if (s->codec)
3137 tx_rate = s->codec->tx_rate;
3140 prev_tx_rate = s->tx_rate;
3141 prev_rx_rate = s->rx_rate;
3142 s->tx_rate = tx_rate;
3143 s->rx_rate = rx_rate;
3145 if (s->codec)
3146 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3148 if (!prev_tx_rate && tx_rate)
3149 omap_mcbsp_tx_start(s);
3150 else if (s->tx_rate && !tx_rate)
3151 omap_mcbsp_tx_stop(s);
3153 if (!prev_rx_rate && rx_rate)
3154 omap_mcbsp_rx_start(s);
3155 else if (prev_tx_rate && !tx_rate)
3156 omap_mcbsp_rx_stop(s);
3159 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3160 unsigned size)
3162 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3163 int offset = addr & OMAP_MPUI_REG_MASK;
3164 uint16_t ret;
3166 if (size != 2) {
3167 return omap_badwidth_read16(opaque, addr);
3170 switch (offset) {
3171 case 0x00: /* DRR2 */
3172 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3173 return 0x0000;
3174 /* Fall through. */
3175 case 0x02: /* DRR1 */
3176 if (s->rx_req < 2) {
3177 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3178 omap_mcbsp_rx_done(s);
3179 } else {
3180 s->tx_req -= 2;
3181 if (s->codec && s->codec->in.len >= 2) {
3182 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3183 ret |= s->codec->in.fifo[s->codec->in.start ++];
3184 s->codec->in.len -= 2;
3185 } else
3186 ret = 0x0000;
3187 if (!s->tx_req)
3188 omap_mcbsp_rx_done(s);
3189 return ret;
3191 return 0x0000;
3193 case 0x04: /* DXR2 */
3194 case 0x06: /* DXR1 */
3195 return 0x0000;
3197 case 0x08: /* SPCR2 */
3198 return s->spcr[1];
3199 case 0x0a: /* SPCR1 */
3200 return s->spcr[0];
3201 case 0x0c: /* RCR2 */
3202 return s->rcr[1];
3203 case 0x0e: /* RCR1 */
3204 return s->rcr[0];
3205 case 0x10: /* XCR2 */
3206 return s->xcr[1];
3207 case 0x12: /* XCR1 */
3208 return s->xcr[0];
3209 case 0x14: /* SRGR2 */
3210 return s->srgr[1];
3211 case 0x16: /* SRGR1 */
3212 return s->srgr[0];
3213 case 0x18: /* MCR2 */
3214 return s->mcr[1];
3215 case 0x1a: /* MCR1 */
3216 return s->mcr[0];
3217 case 0x1c: /* RCERA */
3218 return s->rcer[0];
3219 case 0x1e: /* RCERB */
3220 return s->rcer[1];
3221 case 0x20: /* XCERA */
3222 return s->xcer[0];
3223 case 0x22: /* XCERB */
3224 return s->xcer[1];
3225 case 0x24: /* PCR0 */
3226 return s->pcr;
3227 case 0x26: /* RCERC */
3228 return s->rcer[2];
3229 case 0x28: /* RCERD */
3230 return s->rcer[3];
3231 case 0x2a: /* XCERC */
3232 return s->xcer[2];
3233 case 0x2c: /* XCERD */
3234 return s->xcer[3];
3235 case 0x2e: /* RCERE */
3236 return s->rcer[4];
3237 case 0x30: /* RCERF */
3238 return s->rcer[5];
3239 case 0x32: /* XCERE */
3240 return s->xcer[4];
3241 case 0x34: /* XCERF */
3242 return s->xcer[5];
3243 case 0x36: /* RCERG */
3244 return s->rcer[6];
3245 case 0x38: /* RCERH */
3246 return s->rcer[7];
3247 case 0x3a: /* XCERG */
3248 return s->xcer[6];
3249 case 0x3c: /* XCERH */
3250 return s->xcer[7];
3253 OMAP_BAD_REG(addr);
3254 return 0;
3257 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3258 uint32_t value)
3260 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3261 int offset = addr & OMAP_MPUI_REG_MASK;
3263 switch (offset) {
3264 case 0x00: /* DRR2 */
3265 case 0x02: /* DRR1 */
3266 OMAP_RO_REG(addr);
3267 return;
3269 case 0x04: /* DXR2 */
3270 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3271 return;
3272 /* Fall through. */
3273 case 0x06: /* DXR1 */
3274 if (s->tx_req > 1) {
3275 s->tx_req -= 2;
3276 if (s->codec && s->codec->cts) {
3277 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3278 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3280 if (s->tx_req < 2)
3281 omap_mcbsp_tx_done(s);
3282 } else
3283 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3284 return;
3286 case 0x08: /* SPCR2 */
3287 s->spcr[1] &= 0x0002;
3288 s->spcr[1] |= 0x03f9 & value;
3289 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3290 if (~value & 1) /* XRST */
3291 s->spcr[1] &= ~6;
3292 omap_mcbsp_req_update(s);
3293 return;
3294 case 0x0a: /* SPCR1 */
3295 s->spcr[0] &= 0x0006;
3296 s->spcr[0] |= 0xf8f9 & value;
3297 if (value & (1 << 15)) /* DLB */
3298 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3299 if (~value & 1) { /* RRST */
3300 s->spcr[0] &= ~6;
3301 s->rx_req = 0;
3302 omap_mcbsp_rx_done(s);
3304 omap_mcbsp_req_update(s);
3305 return;
3307 case 0x0c: /* RCR2 */
3308 s->rcr[1] = value & 0xffff;
3309 return;
3310 case 0x0e: /* RCR1 */
3311 s->rcr[0] = value & 0x7fe0;
3312 return;
3313 case 0x10: /* XCR2 */
3314 s->xcr[1] = value & 0xffff;
3315 return;
3316 case 0x12: /* XCR1 */
3317 s->xcr[0] = value & 0x7fe0;
3318 return;
3319 case 0x14: /* SRGR2 */
3320 s->srgr[1] = value & 0xffff;
3321 omap_mcbsp_req_update(s);
3322 return;
3323 case 0x16: /* SRGR1 */
3324 s->srgr[0] = value & 0xffff;
3325 omap_mcbsp_req_update(s);
3326 return;
3327 case 0x18: /* MCR2 */
3328 s->mcr[1] = value & 0x03e3;
3329 if (value & 3) /* XMCM */
3330 printf("%s: Tx channel selection mode enable attempt\n",
3331 __FUNCTION__);
3332 return;
3333 case 0x1a: /* MCR1 */
3334 s->mcr[0] = value & 0x03e1;
3335 if (value & 1) /* RMCM */
3336 printf("%s: Rx channel selection mode enable attempt\n",
3337 __FUNCTION__);
3338 return;
3339 case 0x1c: /* RCERA */
3340 s->rcer[0] = value & 0xffff;
3341 return;
3342 case 0x1e: /* RCERB */
3343 s->rcer[1] = value & 0xffff;
3344 return;
3345 case 0x20: /* XCERA */
3346 s->xcer[0] = value & 0xffff;
3347 return;
3348 case 0x22: /* XCERB */
3349 s->xcer[1] = value & 0xffff;
3350 return;
3351 case 0x24: /* PCR0 */
3352 s->pcr = value & 0x7faf;
3353 return;
3354 case 0x26: /* RCERC */
3355 s->rcer[2] = value & 0xffff;
3356 return;
3357 case 0x28: /* RCERD */
3358 s->rcer[3] = value & 0xffff;
3359 return;
3360 case 0x2a: /* XCERC */
3361 s->xcer[2] = value & 0xffff;
3362 return;
3363 case 0x2c: /* XCERD */
3364 s->xcer[3] = value & 0xffff;
3365 return;
3366 case 0x2e: /* RCERE */
3367 s->rcer[4] = value & 0xffff;
3368 return;
3369 case 0x30: /* RCERF */
3370 s->rcer[5] = value & 0xffff;
3371 return;
3372 case 0x32: /* XCERE */
3373 s->xcer[4] = value & 0xffff;
3374 return;
3375 case 0x34: /* XCERF */
3376 s->xcer[5] = value & 0xffff;
3377 return;
3378 case 0x36: /* RCERG */
3379 s->rcer[6] = value & 0xffff;
3380 return;
3381 case 0x38: /* RCERH */
3382 s->rcer[7] = value & 0xffff;
3383 return;
3384 case 0x3a: /* XCERG */
3385 s->xcer[6] = value & 0xffff;
3386 return;
3387 case 0x3c: /* XCERH */
3388 s->xcer[7] = value & 0xffff;
3389 return;
3392 OMAP_BAD_REG(addr);
3395 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3396 uint32_t value)
3398 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3399 int offset = addr & OMAP_MPUI_REG_MASK;
3401 if (offset == 0x04) { /* DXR */
3402 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3403 return;
3404 if (s->tx_req > 3) {
3405 s->tx_req -= 4;
3406 if (s->codec && s->codec->cts) {
3407 s->codec->out.fifo[s->codec->out.len ++] =
3408 (value >> 24) & 0xff;
3409 s->codec->out.fifo[s->codec->out.len ++] =
3410 (value >> 16) & 0xff;
3411 s->codec->out.fifo[s->codec->out.len ++] =
3412 (value >> 8) & 0xff;
3413 s->codec->out.fifo[s->codec->out.len ++] =
3414 (value >> 0) & 0xff;
3416 if (s->tx_req < 4)
3417 omap_mcbsp_tx_done(s);
3418 } else
3419 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3420 return;
3423 omap_badwidth_write16(opaque, addr, value);
3426 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3427 uint64_t value, unsigned size)
3429 switch (size) {
3430 case 2:
3431 omap_mcbsp_writeh(opaque, addr, value);
3432 break;
3433 case 4:
3434 omap_mcbsp_writew(opaque, addr, value);
3435 break;
3436 default:
3437 omap_badwidth_write16(opaque, addr, value);
3441 static const MemoryRegionOps omap_mcbsp_ops = {
3442 .read = omap_mcbsp_read,
3443 .write = omap_mcbsp_write,
3444 .endianness = DEVICE_NATIVE_ENDIAN,
3447 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3449 memset(&s->spcr, 0, sizeof(s->spcr));
3450 memset(&s->rcr, 0, sizeof(s->rcr));
3451 memset(&s->xcr, 0, sizeof(s->xcr));
3452 s->srgr[0] = 0x0001;
3453 s->srgr[1] = 0x2000;
3454 memset(&s->mcr, 0, sizeof(s->mcr));
3455 memset(&s->pcr, 0, sizeof(s->pcr));
3456 memset(&s->rcer, 0, sizeof(s->rcer));
3457 memset(&s->xcer, 0, sizeof(s->xcer));
3458 s->tx_req = 0;
3459 s->rx_req = 0;
3460 s->tx_rate = 0;
3461 s->rx_rate = 0;
3462 timer_del(s->source_timer);
3463 timer_del(s->sink_timer);
3466 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3467 hwaddr base,
3468 qemu_irq txirq, qemu_irq rxirq,
3469 qemu_irq *dma, omap_clk clk)
3471 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3472 g_malloc0(sizeof(struct omap_mcbsp_s));
3474 s->txirq = txirq;
3475 s->rxirq = rxirq;
3476 s->txdrq = dma[0];
3477 s->rxdrq = dma[1];
3478 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3479 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3480 omap_mcbsp_reset(s);
3482 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3483 memory_region_add_subregion(system_memory, base, &s->iomem);
3485 return s;
3488 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3490 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3492 if (s->rx_rate) {
3493 s->rx_req = s->codec->in.len;
3494 omap_mcbsp_rx_newdata(s);
3498 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3500 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3502 if (s->tx_rate) {
3503 s->tx_req = s->codec->out.size;
3504 omap_mcbsp_tx_newdata(s);
3508 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3510 s->codec = slave;
3511 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3512 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3515 /* LED Pulse Generators */
3516 struct omap_lpg_s {
3517 MemoryRegion iomem;
3518 QEMUTimer *tm;
3520 uint8_t control;
3521 uint8_t power;
3522 int64_t on;
3523 int64_t period;
3524 int clk;
3525 int cycle;
3528 static void omap_lpg_tick(void *opaque)
3530 struct omap_lpg_s *s = opaque;
3532 if (s->cycle)
3533 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3534 else
3535 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3537 s->cycle = !s->cycle;
3538 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3541 static void omap_lpg_update(struct omap_lpg_s *s)
3543 int64_t on, period = 1, ticks = 1000;
3544 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3546 if (~s->control & (1 << 6)) /* LPGRES */
3547 on = 0;
3548 else if (s->control & (1 << 7)) /* PERM_ON */
3549 on = period;
3550 else {
3551 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3552 256 / 32);
3553 on = (s->clk && s->power) ? muldiv64(ticks,
3554 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3557 timer_del(s->tm);
3558 if (on == period && s->on < s->period)
3559 printf("%s: LED is on\n", __FUNCTION__);
3560 else if (on == 0 && s->on)
3561 printf("%s: LED is off\n", __FUNCTION__);
3562 else if (on && (on != s->on || period != s->period)) {
3563 s->cycle = 0;
3564 s->on = on;
3565 s->period = period;
3566 omap_lpg_tick(s);
3567 return;
3570 s->on = on;
3571 s->period = period;
3574 static void omap_lpg_reset(struct omap_lpg_s *s)
3576 s->control = 0x00;
3577 s->power = 0x00;
3578 s->clk = 1;
3579 omap_lpg_update(s);
3582 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3583 unsigned size)
3585 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3586 int offset = addr & OMAP_MPUI_REG_MASK;
3588 if (size != 1) {
3589 return omap_badwidth_read8(opaque, addr);
3592 switch (offset) {
3593 case 0x00: /* LCR */
3594 return s->control;
3596 case 0x04: /* PMR */
3597 return s->power;
3600 OMAP_BAD_REG(addr);
3601 return 0;
3604 static void omap_lpg_write(void *opaque, hwaddr addr,
3605 uint64_t value, unsigned size)
3607 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3608 int offset = addr & OMAP_MPUI_REG_MASK;
3610 if (size != 1) {
3611 omap_badwidth_write8(opaque, addr, value);
3612 return;
3615 switch (offset) {
3616 case 0x00: /* LCR */
3617 if (~value & (1 << 6)) /* LPGRES */
3618 omap_lpg_reset(s);
3619 s->control = value & 0xff;
3620 omap_lpg_update(s);
3621 return;
3623 case 0x04: /* PMR */
3624 s->power = value & 0x01;
3625 omap_lpg_update(s);
3626 return;
3628 default:
3629 OMAP_BAD_REG(addr);
3630 return;
3634 static const MemoryRegionOps omap_lpg_ops = {
3635 .read = omap_lpg_read,
3636 .write = omap_lpg_write,
3637 .endianness = DEVICE_NATIVE_ENDIAN,
3640 static void omap_lpg_clk_update(void *opaque, int line, int on)
3642 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3644 s->clk = on;
3645 omap_lpg_update(s);
3648 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3649 hwaddr base, omap_clk clk)
3651 struct omap_lpg_s *s = (struct omap_lpg_s *)
3652 g_malloc0(sizeof(struct omap_lpg_s));
3654 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3656 omap_lpg_reset(s);
3658 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3659 memory_region_add_subregion(system_memory, base, &s->iomem);
3661 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3663 return s;
3666 /* MPUI Peripheral Bridge configuration */
3667 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3668 unsigned size)
3670 if (size != 2) {
3671 return omap_badwidth_read16(opaque, addr);
3674 if (addr == OMAP_MPUI_BASE) /* CMR */
3675 return 0xfe4d;
3677 OMAP_BAD_REG(addr);
3678 return 0;
3681 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3682 uint64_t value, unsigned size)
3684 /* FIXME: infinite loop */
3685 omap_badwidth_write16(opaque, addr, value);
3688 static const MemoryRegionOps omap_mpui_io_ops = {
3689 .read = omap_mpui_io_read,
3690 .write = omap_mpui_io_write,
3691 .endianness = DEVICE_NATIVE_ENDIAN,
3694 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3695 struct omap_mpu_state_s *mpu)
3697 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3698 "omap-mpui-io", 0x7fff);
3699 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3700 &mpu->mpui_io_iomem);
3703 /* General chip reset */
3704 static void omap1_mpu_reset(void *opaque)
3706 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3708 omap_dma_reset(mpu->dma);
3709 omap_mpu_timer_reset(mpu->timer[0]);
3710 omap_mpu_timer_reset(mpu->timer[1]);
3711 omap_mpu_timer_reset(mpu->timer[2]);
3712 omap_wd_timer_reset(mpu->wdt);
3713 omap_os_timer_reset(mpu->os_timer);
3714 omap_lcdc_reset(mpu->lcd);
3715 omap_ulpd_pm_reset(mpu);
3716 omap_pin_cfg_reset(mpu);
3717 omap_mpui_reset(mpu);
3718 omap_tipb_bridge_reset(mpu->private_tipb);
3719 omap_tipb_bridge_reset(mpu->public_tipb);
3720 omap_dpll_reset(mpu->dpll[0]);
3721 omap_dpll_reset(mpu->dpll[1]);
3722 omap_dpll_reset(mpu->dpll[2]);
3723 omap_uart_reset(mpu->uart[0]);
3724 omap_uart_reset(mpu->uart[1]);
3725 omap_uart_reset(mpu->uart[2]);
3726 omap_mmc_reset(mpu->mmc);
3727 omap_mpuio_reset(mpu->mpuio);
3728 omap_uwire_reset(mpu->microwire);
3729 omap_pwl_reset(mpu->pwl);
3730 omap_pwt_reset(mpu->pwt);
3731 omap_rtc_reset(mpu->rtc);
3732 omap_mcbsp_reset(mpu->mcbsp1);
3733 omap_mcbsp_reset(mpu->mcbsp2);
3734 omap_mcbsp_reset(mpu->mcbsp3);
3735 omap_lpg_reset(mpu->led[0]);
3736 omap_lpg_reset(mpu->led[1]);
3737 omap_clkm_reset(mpu);
3738 cpu_reset(CPU(mpu->cpu));
3741 static const struct omap_map_s {
3742 hwaddr phys_dsp;
3743 hwaddr phys_mpu;
3744 uint32_t size;
3745 const char *name;
3746 } omap15xx_dsp_mm[] = {
3747 /* Strobe 0 */
3748 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3749 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3750 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3751 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3752 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3753 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3754 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3755 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3756 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3757 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3758 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3759 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3760 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3761 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3762 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3763 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3764 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3765 /* Strobe 1 */
3766 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3768 { 0 }
3771 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3772 const struct omap_map_s *map)
3774 MemoryRegion *io;
3776 for (; map->phys_dsp; map ++) {
3777 io = g_new(MemoryRegion, 1);
3778 memory_region_init_alias(io, NULL, map->name,
3779 system_memory, map->phys_mpu, map->size);
3780 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3784 void omap_mpu_wakeup(void *opaque, int irq, int req)
3786 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3787 CPUState *cpu = CPU(mpu->cpu);
3789 if (cpu->halted) {
3790 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3794 static const struct dma_irq_map omap1_dma_irq_map[] = {
3795 { 0, OMAP_INT_DMA_CH0_6 },
3796 { 0, OMAP_INT_DMA_CH1_7 },
3797 { 0, OMAP_INT_DMA_CH2_8 },
3798 { 0, OMAP_INT_DMA_CH3 },
3799 { 0, OMAP_INT_DMA_CH4 },
3800 { 0, OMAP_INT_DMA_CH5 },
3801 { 1, OMAP_INT_1610_DMA_CH6 },
3802 { 1, OMAP_INT_1610_DMA_CH7 },
3803 { 1, OMAP_INT_1610_DMA_CH8 },
3804 { 1, OMAP_INT_1610_DMA_CH9 },
3805 { 1, OMAP_INT_1610_DMA_CH10 },
3806 { 1, OMAP_INT_1610_DMA_CH11 },
3807 { 1, OMAP_INT_1610_DMA_CH12 },
3808 { 1, OMAP_INT_1610_DMA_CH13 },
3809 { 1, OMAP_INT_1610_DMA_CH14 },
3810 { 1, OMAP_INT_1610_DMA_CH15 }
3813 /* DMA ports for OMAP1 */
3814 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3815 hwaddr addr)
3817 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3820 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3821 hwaddr addr)
3823 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3824 addr);
3827 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3828 hwaddr addr)
3830 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3833 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3834 hwaddr addr)
3836 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3839 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3840 hwaddr addr)
3842 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3845 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3846 hwaddr addr)
3848 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3851 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3852 unsigned long sdram_size,
3853 const char *core)
3855 int i;
3856 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3857 g_malloc0(sizeof(struct omap_mpu_state_s));
3858 qemu_irq dma_irqs[6];
3859 DriveInfo *dinfo;
3860 SysBusDevice *busdev;
3862 if (!core)
3863 core = "ti925t";
3865 /* Core */
3866 s->mpu_model = omap310;
3867 s->cpu = cpu_arm_init(core);
3868 if (s->cpu == NULL) {
3869 fprintf(stderr, "Unable to find CPU definition\n");
3870 exit(1);
3872 s->sdram_size = sdram_size;
3873 s->sram_size = OMAP15XX_SRAM_SIZE;
3875 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3877 /* Clocks */
3878 omap_clk_init(s);
3880 /* Memory-mapped stuff */
3881 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3882 s->sdram_size);
3883 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3884 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3885 &error_abort);
3886 vmstate_register_ram_global(&s->imif_ram);
3887 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3889 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3891 s->ih[0] = qdev_create(NULL, "omap-intc");
3892 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3893 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3894 qdev_init_nofail(s->ih[0]);
3895 busdev = SYS_BUS_DEVICE(s->ih[0]);
3896 sysbus_connect_irq(busdev, 0,
3897 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3898 sysbus_connect_irq(busdev, 1,
3899 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3900 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3901 s->ih[1] = qdev_create(NULL, "omap-intc");
3902 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3903 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3904 qdev_init_nofail(s->ih[1]);
3905 busdev = SYS_BUS_DEVICE(s->ih[1]);
3906 sysbus_connect_irq(busdev, 0,
3907 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3908 /* The second interrupt controller's FIQ output is not wired up */
3909 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3911 for (i = 0; i < 6; i++) {
3912 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3913 omap1_dma_irq_map[i].intr);
3915 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3916 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3917 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3919 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3920 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3921 s->port[imif ].addr_valid = omap_validate_imif_addr;
3922 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3923 s->port[local ].addr_valid = omap_validate_local_addr;
3924 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3926 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3927 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3928 OMAP_EMIFF_BASE, s->sdram_size);
3929 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3930 OMAP_IMIF_BASE, s->sram_size);
3932 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3934 omap_findclk(s, "mputim_ck"));
3935 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3936 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3937 omap_findclk(s, "mputim_ck"));
3938 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3939 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3940 omap_findclk(s, "mputim_ck"));
3942 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3943 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3944 omap_findclk(s, "armwdt_ck"));
3946 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3947 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3948 omap_findclk(s, "clk32-kHz"));
3950 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3951 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3952 omap_dma_get_lcdch(s->dma),
3953 omap_findclk(s, "lcd_ck"));
3955 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3956 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3957 omap_id_init(system_memory, s);
3959 omap_mpui_init(system_memory, 0xfffec900, s);
3961 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3962 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3963 omap_findclk(s, "tipb_ck"));
3964 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3965 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3966 omap_findclk(s, "tipb_ck"));
3968 omap_tcmi_init(system_memory, 0xfffecc00, s);
3970 s->uart[0] = omap_uart_init(0xfffb0000,
3971 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3972 omap_findclk(s, "uart1_ck"),
3973 omap_findclk(s, "uart1_ck"),
3974 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3975 "uart1",
3976 serial_hds[0]);
3977 s->uart[1] = omap_uart_init(0xfffb0800,
3978 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3979 omap_findclk(s, "uart2_ck"),
3980 omap_findclk(s, "uart2_ck"),
3981 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3982 "uart2",
3983 serial_hds[0] ? serial_hds[1] : NULL);
3984 s->uart[2] = omap_uart_init(0xfffb9800,
3985 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3986 omap_findclk(s, "uart3_ck"),
3987 omap_findclk(s, "uart3_ck"),
3988 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3989 "uart3",
3990 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3992 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3993 omap_findclk(s, "dpll1"));
3994 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3995 omap_findclk(s, "dpll2"));
3996 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3997 omap_findclk(s, "dpll3"));
3999 dinfo = drive_get(IF_SD, 0, 0);
4000 if (!dinfo) {
4001 fprintf(stderr, "qemu: missing SecureDigital device\n");
4002 exit(1);
4004 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4005 blk_by_legacy_dinfo(dinfo),
4006 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4007 &s->drq[OMAP_DMA_MMC_TX],
4008 omap_findclk(s, "mmc_ck"));
4010 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4011 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4012 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4013 s->wakeup, omap_findclk(s, "clk32-kHz"));
4015 s->gpio = qdev_create(NULL, "omap-gpio");
4016 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4017 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4018 qdev_init_nofail(s->gpio);
4019 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4020 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4021 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4023 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4024 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4025 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4026 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4028 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4029 omap_findclk(s, "armxor_ck"));
4030 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4031 omap_findclk(s, "armxor_ck"));
4033 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4034 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4035 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4036 qdev_init_nofail(s->i2c[0]);
4037 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4038 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4039 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4040 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4041 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4043 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4044 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4045 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4046 omap_findclk(s, "clk32-kHz"));
4048 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4049 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4050 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4051 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4052 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4053 qdev_get_gpio_in(s->ih[0],
4054 OMAP_INT_310_McBSP2_TX),
4055 qdev_get_gpio_in(s->ih[0],
4056 OMAP_INT_310_McBSP2_RX),
4057 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4058 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4059 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4060 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4061 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4063 s->led[0] = omap_lpg_init(system_memory,
4064 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4065 s->led[1] = omap_lpg_init(system_memory,
4066 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4068 /* Register mappings not currenlty implemented:
4069 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4070 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4071 * USB W2FC fffb4000 - fffb47ff
4072 * Camera Interface fffb6800 - fffb6fff
4073 * USB Host fffba000 - fffba7ff
4074 * FAC fffba800 - fffbafff
4075 * HDQ/1-Wire fffbc000 - fffbc7ff
4076 * TIPB switches fffbc800 - fffbcfff
4077 * Mailbox fffcf000 - fffcf7ff
4078 * Local bus IF fffec100 - fffec1ff
4079 * Local bus MMU fffec200 - fffec2ff
4080 * DSP MMU fffed200 - fffed2ff
4083 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4084 omap_setup_mpui_io(system_memory, s);
4086 qemu_register_reset(omap1_mpu_reset, s);
4088 return s;