4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
33 #include "qmp-commands.h"
35 #include "qemu-thread.h"
38 #include "main-loop.h"
46 #include <sys/prctl.h>
49 #define PR_MCE_KILL 33
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
60 #endif /* CONFIG_LINUX */
62 static CPUArchState
*next_cpu
;
64 /***********************************************************/
65 /* guest cycle counter */
67 /* Conversion factor from emulated instructions to virtual clock ticks. */
68 static int icount_time_shift
;
69 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
70 #define MAX_ICOUNT_SHIFT 10
71 /* Compensate for varying guest execution speed. */
72 static int64_t qemu_icount_bias
;
73 static QEMUTimer
*icount_rt_timer
;
74 static QEMUTimer
*icount_vm_timer
;
75 static QEMUTimer
*icount_warp_timer
;
76 static int64_t vm_clock_warp_start
;
77 static int64_t qemu_icount
;
79 typedef struct TimersState
{
80 int64_t cpu_ticks_prev
;
81 int64_t cpu_ticks_offset
;
82 int64_t cpu_clock_offset
;
83 int32_t cpu_ticks_enabled
;
87 TimersState timers_state
;
89 /* Return the virtual CPU time, based on the instruction counter. */
90 int64_t cpu_get_icount(void)
93 CPUArchState
*env
= cpu_single_env
;
97 if (!can_do_io(env
)) {
98 fprintf(stderr
, "Bad clock read\n");
100 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
102 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
105 /* return the host CPU cycle counter and handle stop/restart */
106 int64_t cpu_get_ticks(void)
109 return cpu_get_icount();
111 if (!timers_state
.cpu_ticks_enabled
) {
112 return timers_state
.cpu_ticks_offset
;
115 ticks
= cpu_get_real_ticks();
116 if (timers_state
.cpu_ticks_prev
> ticks
) {
117 /* Note: non increasing ticks may happen if the host uses
119 timers_state
.cpu_ticks_offset
+= timers_state
.cpu_ticks_prev
- ticks
;
121 timers_state
.cpu_ticks_prev
= ticks
;
122 return ticks
+ timers_state
.cpu_ticks_offset
;
126 /* return the host CPU monotonic timer and handle stop/restart */
127 int64_t cpu_get_clock(void)
130 if (!timers_state
.cpu_ticks_enabled
) {
131 return timers_state
.cpu_clock_offset
;
134 return ti
+ timers_state
.cpu_clock_offset
;
138 /* enable cpu_get_ticks() */
139 void cpu_enable_ticks(void)
141 if (!timers_state
.cpu_ticks_enabled
) {
142 timers_state
.cpu_ticks_offset
-= cpu_get_real_ticks();
143 timers_state
.cpu_clock_offset
-= get_clock();
144 timers_state
.cpu_ticks_enabled
= 1;
148 /* disable cpu_get_ticks() : the clock is stopped. You must not call
149 cpu_get_ticks() after that. */
150 void cpu_disable_ticks(void)
152 if (timers_state
.cpu_ticks_enabled
) {
153 timers_state
.cpu_ticks_offset
= cpu_get_ticks();
154 timers_state
.cpu_clock_offset
= cpu_get_clock();
155 timers_state
.cpu_ticks_enabled
= 0;
159 /* Correlation between real and virtual time is always going to be
160 fairly approximate, so ignore small variation.
161 When the guest is idle real and virtual time will be aligned in
163 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
165 static void icount_adjust(void)
170 static int64_t last_delta
;
171 /* If the VM is not running, then do nothing. */
172 if (!runstate_is_running()) {
175 cur_time
= cpu_get_clock();
176 cur_icount
= qemu_get_clock_ns(vm_clock
);
177 delta
= cur_icount
- cur_time
;
178 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
180 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
181 && icount_time_shift
> 0) {
182 /* The guest is getting too far ahead. Slow time down. */
186 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
187 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
188 /* The guest is getting too far behind. Speed time up. */
192 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
195 static void icount_adjust_rt(void *opaque
)
197 qemu_mod_timer(icount_rt_timer
,
198 qemu_get_clock_ms(rt_clock
) + 1000);
202 static void icount_adjust_vm(void *opaque
)
204 qemu_mod_timer(icount_vm_timer
,
205 qemu_get_clock_ns(vm_clock
) + get_ticks_per_sec() / 10);
209 static int64_t qemu_icount_round(int64_t count
)
211 return (count
+ (1 << icount_time_shift
) - 1) >> icount_time_shift
;
214 static void icount_warp_rt(void *opaque
)
216 if (vm_clock_warp_start
== -1) {
220 if (runstate_is_running()) {
221 int64_t clock
= qemu_get_clock_ns(rt_clock
);
222 int64_t warp_delta
= clock
- vm_clock_warp_start
;
223 if (use_icount
== 1) {
224 qemu_icount_bias
+= warp_delta
;
227 * In adaptive mode, do not let the vm_clock run too
228 * far ahead of real time.
230 int64_t cur_time
= cpu_get_clock();
231 int64_t cur_icount
= qemu_get_clock_ns(vm_clock
);
232 int64_t delta
= cur_time
- cur_icount
;
233 qemu_icount_bias
+= MIN(warp_delta
, delta
);
235 if (qemu_clock_expired(vm_clock
)) {
239 vm_clock_warp_start
= -1;
242 void qtest_clock_warp(int64_t dest
)
244 int64_t clock
= qemu_get_clock_ns(vm_clock
);
245 assert(qtest_enabled());
246 while (clock
< dest
) {
247 int64_t deadline
= qemu_clock_deadline(vm_clock
);
248 int64_t warp
= MIN(dest
- clock
, deadline
);
249 qemu_icount_bias
+= warp
;
250 qemu_run_timers(vm_clock
);
251 clock
= qemu_get_clock_ns(vm_clock
);
256 void qemu_clock_warp(QEMUClock
*clock
)
261 * There are too many global variables to make the "warp" behavior
262 * applicable to other clocks. But a clock argument removes the
263 * need for if statements all over the place.
265 if (clock
!= vm_clock
|| !use_icount
) {
270 * If the CPUs have been sleeping, advance the vm_clock timer now. This
271 * ensures that the deadline for the timer is computed correctly below.
272 * This also makes sure that the insn counter is synchronized before the
273 * CPU starts running, in case the CPU is woken by an event other than
274 * the earliest vm_clock timer.
276 icount_warp_rt(NULL
);
277 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock
)) {
278 qemu_del_timer(icount_warp_timer
);
282 if (qtest_enabled()) {
283 /* When testing, qtest commands advance icount. */
287 vm_clock_warp_start
= qemu_get_clock_ns(rt_clock
);
288 deadline
= qemu_clock_deadline(vm_clock
);
291 * Ensure the vm_clock proceeds even when the virtual CPU goes to
292 * sleep. Otherwise, the CPU might be waiting for a future timer
293 * interrupt to wake it up, but the interrupt never comes because
294 * the vCPU isn't running any insns and thus doesn't advance the
297 * An extreme solution for this problem would be to never let VCPUs
298 * sleep in icount mode if there is a pending vm_clock timer; rather
299 * time could just advance to the next vm_clock event. Instead, we
300 * do stop VCPUs and only advance vm_clock after some "real" time,
301 * (related to the time left until the next event) has passed. This
302 * rt_clock timer will do this. This avoids that the warps are too
303 * visible externally---for example, you will not be sending network
304 * packets continuously instead of every 100ms.
306 qemu_mod_timer(icount_warp_timer
, vm_clock_warp_start
+ deadline
);
312 static const VMStateDescription vmstate_timers
= {
315 .minimum_version_id
= 1,
316 .minimum_version_id_old
= 1,
317 .fields
= (VMStateField
[]) {
318 VMSTATE_INT64(cpu_ticks_offset
, TimersState
),
319 VMSTATE_INT64(dummy
, TimersState
),
320 VMSTATE_INT64_V(cpu_clock_offset
, TimersState
, 2),
321 VMSTATE_END_OF_LIST()
325 void configure_icount(const char *option
)
327 vmstate_register(NULL
, 0, &vmstate_timers
, &timers_state
);
332 icount_warp_timer
= qemu_new_timer_ns(rt_clock
, icount_warp_rt
, NULL
);
333 if (strcmp(option
, "auto") != 0) {
334 icount_time_shift
= strtol(option
, NULL
, 0);
341 /* 125MIPS seems a reasonable initial guess at the guest speed.
342 It will be corrected fairly quickly anyway. */
343 icount_time_shift
= 3;
345 /* Have both realtime and virtual time triggers for speed adjustment.
346 The realtime trigger catches emulated time passing too slowly,
347 the virtual time trigger catches emulated time passing too fast.
348 Realtime triggers occur even when idle, so use them less frequently
350 icount_rt_timer
= qemu_new_timer_ms(rt_clock
, icount_adjust_rt
, NULL
);
351 qemu_mod_timer(icount_rt_timer
,
352 qemu_get_clock_ms(rt_clock
) + 1000);
353 icount_vm_timer
= qemu_new_timer_ns(vm_clock
, icount_adjust_vm
, NULL
);
354 qemu_mod_timer(icount_vm_timer
,
355 qemu_get_clock_ns(vm_clock
) + get_ticks_per_sec() / 10);
358 /***********************************************************/
359 void hw_error(const char *fmt
, ...)
365 fprintf(stderr
, "qemu: hardware error: ");
366 vfprintf(stderr
, fmt
, ap
);
367 fprintf(stderr
, "\n");
368 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
369 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
371 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
373 cpu_dump_state(env
, stderr
, fprintf
, 0);
380 void cpu_synchronize_all_states(void)
384 for (cpu
= first_cpu
; cpu
; cpu
= cpu
->next_cpu
) {
385 cpu_synchronize_state(cpu
);
389 void cpu_synchronize_all_post_reset(void)
393 for (cpu
= first_cpu
; cpu
; cpu
= cpu
->next_cpu
) {
394 cpu_synchronize_post_reset(cpu
);
398 void cpu_synchronize_all_post_init(void)
402 for (cpu
= first_cpu
; cpu
; cpu
= cpu
->next_cpu
) {
403 cpu_synchronize_post_init(cpu
);
407 int cpu_is_stopped(CPUArchState
*env
)
409 return !runstate_is_running() || env
->stopped
;
412 static void do_vm_stop(RunState state
)
414 if (runstate_is_running()) {
418 vm_state_notify(0, state
);
421 monitor_protocol_event(QEVENT_STOP
, NULL
);
425 static int cpu_can_run(CPUArchState
*env
)
430 if (env
->stopped
|| !runstate_is_running()) {
436 static bool cpu_thread_is_idle(CPUArchState
*env
)
438 if (env
->stop
|| env
->queued_work_first
) {
441 if (env
->stopped
|| !runstate_is_running()) {
444 if (!env
->halted
|| qemu_cpu_has_work(env
) ||
445 (kvm_enabled() && kvm_irqchip_in_kernel())) {
451 bool all_cpu_threads_idle(void)
455 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
456 if (!cpu_thread_is_idle(env
)) {
463 static void cpu_handle_guest_debug(CPUArchState
*env
)
465 gdb_set_stop_cpu(env
);
466 qemu_system_debug_request();
470 static void cpu_signal(int sig
)
472 if (cpu_single_env
) {
473 cpu_exit(cpu_single_env
);
479 static void sigbus_reraise(void)
482 struct sigaction action
;
484 memset(&action
, 0, sizeof(action
));
485 action
.sa_handler
= SIG_DFL
;
486 if (!sigaction(SIGBUS
, &action
, NULL
)) {
489 sigaddset(&set
, SIGBUS
);
490 sigprocmask(SIG_UNBLOCK
, &set
, NULL
);
492 perror("Failed to re-raise SIGBUS!\n");
496 static void sigbus_handler(int n
, struct qemu_signalfd_siginfo
*siginfo
,
499 if (kvm_on_sigbus(siginfo
->ssi_code
,
500 (void *)(intptr_t)siginfo
->ssi_addr
)) {
505 static void qemu_init_sigbus(void)
507 struct sigaction action
;
509 memset(&action
, 0, sizeof(action
));
510 action
.sa_flags
= SA_SIGINFO
;
511 action
.sa_sigaction
= (void (*)(int, siginfo_t
*, void*))sigbus_handler
;
512 sigaction(SIGBUS
, &action
, NULL
);
514 prctl(PR_MCE_KILL
, PR_MCE_KILL_SET
, PR_MCE_KILL_EARLY
, 0, 0);
517 static void qemu_kvm_eat_signals(CPUArchState
*env
)
519 struct timespec ts
= { 0, 0 };
525 sigemptyset(&waitset
);
526 sigaddset(&waitset
, SIG_IPI
);
527 sigaddset(&waitset
, SIGBUS
);
530 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
531 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
532 perror("sigtimedwait");
538 if (kvm_on_sigbus_vcpu(env
, siginfo
.si_code
, siginfo
.si_addr
)) {
546 r
= sigpending(&chkset
);
548 perror("sigpending");
551 } while (sigismember(&chkset
, SIG_IPI
) || sigismember(&chkset
, SIGBUS
));
554 #else /* !CONFIG_LINUX */
556 static void qemu_init_sigbus(void)
560 static void qemu_kvm_eat_signals(CPUArchState
*env
)
563 #endif /* !CONFIG_LINUX */
566 static void dummy_signal(int sig
)
570 static void qemu_kvm_init_cpu_signals(CPUArchState
*env
)
574 struct sigaction sigact
;
576 memset(&sigact
, 0, sizeof(sigact
));
577 sigact
.sa_handler
= dummy_signal
;
578 sigaction(SIG_IPI
, &sigact
, NULL
);
580 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
581 sigdelset(&set
, SIG_IPI
);
582 sigdelset(&set
, SIGBUS
);
583 r
= kvm_set_signal_mask(env
, &set
);
585 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
590 static void qemu_tcg_init_cpu_signals(void)
593 struct sigaction sigact
;
595 memset(&sigact
, 0, sizeof(sigact
));
596 sigact
.sa_handler
= cpu_signal
;
597 sigaction(SIG_IPI
, &sigact
, NULL
);
600 sigaddset(&set
, SIG_IPI
);
601 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
605 static void qemu_kvm_init_cpu_signals(CPUArchState
*env
)
610 static void qemu_tcg_init_cpu_signals(void)
615 QemuMutex qemu_global_mutex
;
616 static QemuCond qemu_io_proceeded_cond
;
617 static bool iothread_requesting_mutex
;
619 static QemuThread io_thread
;
621 static QemuThread
*tcg_cpu_thread
;
622 static QemuCond
*tcg_halt_cond
;
625 static QemuCond qemu_cpu_cond
;
627 static QemuCond qemu_pause_cond
;
628 static QemuCond qemu_work_cond
;
630 void qemu_init_cpu_loop(void)
633 qemu_cond_init(&qemu_cpu_cond
);
634 qemu_cond_init(&qemu_pause_cond
);
635 qemu_cond_init(&qemu_work_cond
);
636 qemu_cond_init(&qemu_io_proceeded_cond
);
637 qemu_mutex_init(&qemu_global_mutex
);
639 qemu_thread_get_self(&io_thread
);
642 void run_on_cpu(CPUArchState
*env
, void (*func
)(void *data
), void *data
)
644 struct qemu_work_item wi
;
646 if (qemu_cpu_is_self(env
)) {
653 if (!env
->queued_work_first
) {
654 env
->queued_work_first
= &wi
;
656 env
->queued_work_last
->next
= &wi
;
658 env
->queued_work_last
= &wi
;
664 CPUArchState
*self_env
= cpu_single_env
;
666 qemu_cond_wait(&qemu_work_cond
, &qemu_global_mutex
);
667 cpu_single_env
= self_env
;
671 static void flush_queued_work(CPUArchState
*env
)
673 struct qemu_work_item
*wi
;
675 if (!env
->queued_work_first
) {
679 while ((wi
= env
->queued_work_first
)) {
680 env
->queued_work_first
= wi
->next
;
684 env
->queued_work_last
= NULL
;
685 qemu_cond_broadcast(&qemu_work_cond
);
688 static void qemu_wait_io_event_common(CPUArchState
*env
)
693 qemu_cond_signal(&qemu_pause_cond
);
695 flush_queued_work(env
);
696 env
->thread_kicked
= false;
699 static void qemu_tcg_wait_io_event(void)
703 while (all_cpu_threads_idle()) {
704 /* Start accounting real time to the virtual clock if the CPUs
706 qemu_clock_warp(vm_clock
);
707 qemu_cond_wait(tcg_halt_cond
, &qemu_global_mutex
);
710 while (iothread_requesting_mutex
) {
711 qemu_cond_wait(&qemu_io_proceeded_cond
, &qemu_global_mutex
);
714 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
715 qemu_wait_io_event_common(env
);
719 static void qemu_kvm_wait_io_event(CPUArchState
*env
)
721 while (cpu_thread_is_idle(env
)) {
722 qemu_cond_wait(env
->halt_cond
, &qemu_global_mutex
);
725 qemu_kvm_eat_signals(env
);
726 qemu_wait_io_event_common(env
);
729 static void *qemu_kvm_cpu_thread_fn(void *arg
)
731 CPUArchState
*env
= arg
;
734 qemu_mutex_lock(&qemu_global_mutex
);
735 qemu_thread_get_self(env
->thread
);
736 env
->thread_id
= qemu_get_thread_id();
737 cpu_single_env
= env
;
739 r
= kvm_init_vcpu(env
);
741 fprintf(stderr
, "kvm_init_vcpu failed: %s\n", strerror(-r
));
745 qemu_kvm_init_cpu_signals(env
);
747 /* signal CPU creation */
749 qemu_cond_signal(&qemu_cpu_cond
);
752 if (cpu_can_run(env
)) {
753 r
= kvm_cpu_exec(env
);
754 if (r
== EXCP_DEBUG
) {
755 cpu_handle_guest_debug(env
);
758 qemu_kvm_wait_io_event(env
);
764 static void *qemu_dummy_cpu_thread_fn(void *arg
)
767 fprintf(stderr
, "qtest is not supported under Windows\n");
770 CPUArchState
*env
= arg
;
774 qemu_mutex_lock_iothread();
775 qemu_thread_get_self(env
->thread
);
776 env
->thread_id
= qemu_get_thread_id();
778 sigemptyset(&waitset
);
779 sigaddset(&waitset
, SIG_IPI
);
781 /* signal CPU creation */
783 qemu_cond_signal(&qemu_cpu_cond
);
785 cpu_single_env
= env
;
787 cpu_single_env
= NULL
;
788 qemu_mutex_unlock_iothread();
791 r
= sigwait(&waitset
, &sig
);
792 } while (r
== -1 && (errno
== EAGAIN
|| errno
== EINTR
));
797 qemu_mutex_lock_iothread();
798 cpu_single_env
= env
;
799 qemu_wait_io_event_common(env
);
806 static void tcg_exec_all(void);
808 static void *qemu_tcg_cpu_thread_fn(void *arg
)
810 CPUArchState
*env
= arg
;
812 qemu_tcg_init_cpu_signals();
813 qemu_thread_get_self(env
->thread
);
815 /* signal CPU creation */
816 qemu_mutex_lock(&qemu_global_mutex
);
817 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
818 env
->thread_id
= qemu_get_thread_id();
821 qemu_cond_signal(&qemu_cpu_cond
);
823 /* wait for initial kick-off after machine start */
824 while (first_cpu
->stopped
) {
825 qemu_cond_wait(tcg_halt_cond
, &qemu_global_mutex
);
827 /* process any pending work */
828 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
829 qemu_wait_io_event_common(env
);
835 if (use_icount
&& qemu_clock_deadline(vm_clock
) <= 0) {
838 qemu_tcg_wait_io_event();
844 static void qemu_cpu_kick_thread(CPUArchState
*env
)
849 err
= pthread_kill(env
->thread
->thread
, SIG_IPI
);
851 fprintf(stderr
, "qemu:%s: %s", __func__
, strerror(err
));
855 if (!qemu_cpu_is_self(env
)) {
856 SuspendThread(env
->hThread
);
858 ResumeThread(env
->hThread
);
863 void qemu_cpu_kick(void *_env
)
865 CPUArchState
*env
= _env
;
867 qemu_cond_broadcast(env
->halt_cond
);
868 if (!tcg_enabled() && !env
->thread_kicked
) {
869 qemu_cpu_kick_thread(env
);
870 env
->thread_kicked
= true;
874 void qemu_cpu_kick_self(void)
877 assert(cpu_single_env
);
879 if (!cpu_single_env
->thread_kicked
) {
880 qemu_cpu_kick_thread(cpu_single_env
);
881 cpu_single_env
->thread_kicked
= true;
888 int qemu_cpu_is_self(void *_env
)
890 CPUArchState
*env
= _env
;
892 return qemu_thread_is_self(env
->thread
);
895 void qemu_mutex_lock_iothread(void)
897 if (!tcg_enabled()) {
898 qemu_mutex_lock(&qemu_global_mutex
);
900 iothread_requesting_mutex
= true;
901 if (qemu_mutex_trylock(&qemu_global_mutex
)) {
902 qemu_cpu_kick_thread(first_cpu
);
903 qemu_mutex_lock(&qemu_global_mutex
);
905 iothread_requesting_mutex
= false;
906 qemu_cond_broadcast(&qemu_io_proceeded_cond
);
910 void qemu_mutex_unlock_iothread(void)
912 qemu_mutex_unlock(&qemu_global_mutex
);
915 static int all_vcpus_paused(void)
917 CPUArchState
*penv
= first_cpu
;
920 if (!penv
->stopped
) {
923 penv
= penv
->next_cpu
;
929 void pause_all_vcpus(void)
931 CPUArchState
*penv
= first_cpu
;
933 qemu_clock_enable(vm_clock
, false);
937 penv
= penv
->next_cpu
;
940 if (!qemu_thread_is_self(&io_thread
)) {
942 if (!kvm_enabled()) {
946 penv
= penv
->next_cpu
;
952 while (!all_vcpus_paused()) {
953 qemu_cond_wait(&qemu_pause_cond
, &qemu_global_mutex
);
957 penv
= penv
->next_cpu
;
962 void resume_all_vcpus(void)
964 CPUArchState
*penv
= first_cpu
;
966 qemu_clock_enable(vm_clock
, true);
971 penv
= penv
->next_cpu
;
975 static void qemu_tcg_init_vcpu(void *_env
)
977 CPUArchState
*env
= _env
;
979 /* share a single thread for all cpus with TCG */
980 if (!tcg_cpu_thread
) {
981 env
->thread
= g_malloc0(sizeof(QemuThread
));
982 env
->halt_cond
= g_malloc0(sizeof(QemuCond
));
983 qemu_cond_init(env
->halt_cond
);
984 tcg_halt_cond
= env
->halt_cond
;
985 qemu_thread_create(env
->thread
, qemu_tcg_cpu_thread_fn
, env
,
986 QEMU_THREAD_JOINABLE
);
988 env
->hThread
= qemu_thread_get_handle(env
->thread
);
990 while (env
->created
== 0) {
991 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
993 tcg_cpu_thread
= env
->thread
;
995 env
->thread
= tcg_cpu_thread
;
996 env
->halt_cond
= tcg_halt_cond
;
1000 static void qemu_kvm_start_vcpu(CPUArchState
*env
)
1002 env
->thread
= g_malloc0(sizeof(QemuThread
));
1003 env
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1004 qemu_cond_init(env
->halt_cond
);
1005 qemu_thread_create(env
->thread
, qemu_kvm_cpu_thread_fn
, env
,
1006 QEMU_THREAD_JOINABLE
);
1007 while (env
->created
== 0) {
1008 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1012 static void qemu_dummy_start_vcpu(CPUArchState
*env
)
1014 env
->thread
= g_malloc0(sizeof(QemuThread
));
1015 env
->halt_cond
= g_malloc0(sizeof(QemuCond
));
1016 qemu_cond_init(env
->halt_cond
);
1017 qemu_thread_create(env
->thread
, qemu_dummy_cpu_thread_fn
, env
,
1018 QEMU_THREAD_JOINABLE
);
1019 while (env
->created
== 0) {
1020 qemu_cond_wait(&qemu_cpu_cond
, &qemu_global_mutex
);
1024 void qemu_init_vcpu(void *_env
)
1026 CPUArchState
*env
= _env
;
1028 env
->nr_cores
= smp_cores
;
1029 env
->nr_threads
= smp_threads
;
1031 if (kvm_enabled()) {
1032 qemu_kvm_start_vcpu(env
);
1033 } else if (tcg_enabled()) {
1034 qemu_tcg_init_vcpu(env
);
1036 qemu_dummy_start_vcpu(env
);
1040 void cpu_stop_current(void)
1042 if (cpu_single_env
) {
1043 cpu_single_env
->stop
= 0;
1044 cpu_single_env
->stopped
= 1;
1045 cpu_exit(cpu_single_env
);
1046 qemu_cond_signal(&qemu_pause_cond
);
1050 void vm_stop(RunState state
)
1052 if (!qemu_thread_is_self(&io_thread
)) {
1053 qemu_system_vmstop_request(state
);
1055 * FIXME: should not return to device code in case
1056 * vm_stop() has been requested.
1064 /* does a state transition even if the VM is already stopped,
1065 current state is forgotten forever */
1066 void vm_stop_force_state(RunState state
)
1068 if (runstate_is_running()) {
1071 runstate_set(state
);
1075 static int tcg_cpu_exec(CPUArchState
*env
)
1078 #ifdef CONFIG_PROFILER
1082 #ifdef CONFIG_PROFILER
1083 ti
= profile_getclock();
1088 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
1089 env
->icount_decr
.u16
.low
= 0;
1090 env
->icount_extra
= 0;
1091 count
= qemu_icount_round(qemu_clock_deadline(vm_clock
));
1092 qemu_icount
+= count
;
1093 decr
= (count
> 0xffff) ? 0xffff : count
;
1095 env
->icount_decr
.u16
.low
= decr
;
1096 env
->icount_extra
= count
;
1098 ret
= cpu_exec(env
);
1099 #ifdef CONFIG_PROFILER
1100 qemu_time
+= profile_getclock() - ti
;
1103 /* Fold pending instructions back into the
1104 instruction counter, and clear the interrupt flag. */
1105 qemu_icount
-= (env
->icount_decr
.u16
.low
1106 + env
->icount_extra
);
1107 env
->icount_decr
.u32
= 0;
1108 env
->icount_extra
= 0;
1113 static void tcg_exec_all(void)
1117 /* Account partial waits to the vm_clock. */
1118 qemu_clock_warp(vm_clock
);
1120 if (next_cpu
== NULL
) {
1121 next_cpu
= first_cpu
;
1123 for (; next_cpu
!= NULL
&& !exit_request
; next_cpu
= next_cpu
->next_cpu
) {
1124 CPUArchState
*env
= next_cpu
;
1126 qemu_clock_enable(vm_clock
,
1127 (env
->singlestep_enabled
& SSTEP_NOTIMER
) == 0);
1129 if (cpu_can_run(env
)) {
1130 r
= tcg_cpu_exec(env
);
1131 if (r
== EXCP_DEBUG
) {
1132 cpu_handle_guest_debug(env
);
1135 } else if (env
->stop
|| env
->stopped
) {
1142 void set_numa_modes(void)
1147 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1148 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1149 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
1156 void set_cpu_log(const char *optarg
)
1159 const CPULogItem
*item
;
1161 mask
= cpu_str_to_log_mask(optarg
);
1163 printf("Log items (comma separated):\n");
1164 for (item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1165 printf("%-10s %s\n", item
->name
, item
->help
);
1172 void set_cpu_log_filename(const char *optarg
)
1174 cpu_set_log_filename(optarg
);
1177 void list_cpus(FILE *f
, fprintf_function cpu_fprintf
, const char *optarg
)
1179 /* XXX: implement xxx_cpu_list for targets that still miss it */
1180 #if defined(cpu_list_id)
1181 cpu_list_id(f
, cpu_fprintf
, optarg
);
1182 #elif defined(cpu_list)
1183 cpu_list(f
, cpu_fprintf
); /* deprecated */
1187 CpuInfoList
*qmp_query_cpus(Error
**errp
)
1189 CpuInfoList
*head
= NULL
, *cur_item
= NULL
;
1192 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1195 cpu_synchronize_state(env
);
1197 info
= g_malloc0(sizeof(*info
));
1198 info
->value
= g_malloc0(sizeof(*info
->value
));
1199 info
->value
->CPU
= env
->cpu_index
;
1200 info
->value
->current
= (env
== first_cpu
);
1201 info
->value
->halted
= env
->halted
;
1202 info
->value
->thread_id
= env
->thread_id
;
1203 #if defined(TARGET_I386)
1204 info
->value
->has_pc
= true;
1205 info
->value
->pc
= env
->eip
+ env
->segs
[R_CS
].base
;
1206 #elif defined(TARGET_PPC)
1207 info
->value
->has_nip
= true;
1208 info
->value
->nip
= env
->nip
;
1209 #elif defined(TARGET_SPARC)
1210 info
->value
->has_pc
= true;
1211 info
->value
->pc
= env
->pc
;
1212 info
->value
->has_npc
= true;
1213 info
->value
->npc
= env
->npc
;
1214 #elif defined(TARGET_MIPS)
1215 info
->value
->has_PC
= true;
1216 info
->value
->PC
= env
->active_tc
.PC
;
1219 /* XXX: waiting for the qapi to support GSList */
1221 head
= cur_item
= info
;
1223 cur_item
->next
= info
;
1231 void qmp_memsave(int64_t addr
, int64_t size
, const char *filename
,
1232 bool has_cpu
, int64_t cpu_index
, Error
**errp
)
1243 for (env
= first_cpu
; env
; env
= env
->next_cpu
) {
1244 if (cpu_index
== env
->cpu_index
) {
1250 error_set(errp
, QERR_INVALID_PARAMETER_VALUE
, "cpu-index",
1255 f
= fopen(filename
, "wb");
1257 error_set(errp
, QERR_OPEN_FILE_FAILED
, filename
);
1265 cpu_memory_rw_debug(env
, addr
, buf
, l
, 0);
1266 if (fwrite(buf
, 1, l
, f
) != l
) {
1267 error_set(errp
, QERR_IO_ERROR
);
1278 void qmp_pmemsave(int64_t addr
, int64_t size
, const char *filename
,
1285 f
= fopen(filename
, "wb");
1287 error_set(errp
, QERR_OPEN_FILE_FAILED
, filename
);
1295 cpu_physical_memory_rw(addr
, buf
, l
, 0);
1296 if (fwrite(buf
, 1, l
, f
) != l
) {
1297 error_set(errp
, QERR_IO_ERROR
);
1308 void qmp_inject_nmi(Error
**errp
)
1310 #if defined(TARGET_I386)
1313 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1314 if (!env
->apic_state
) {
1315 cpu_interrupt(env
, CPU_INTERRUPT_NMI
);
1317 apic_deliver_nmi(env
->apic_state
);
1321 error_set(errp
, QERR_UNSUPPORTED
);