nsis: Add missing qemu-nbd.exe
[qemu/ar7.git] / tests / qtest / fuzz / generic_fuzz.c
blobae219540b4220e0ad5de23f7945dcfc14f3af582
1 /*
2 * Generic Virtual-Device Fuzzing Target
4 * Copyright Red Hat Inc., 2020
6 * Authors:
7 * Alexander Bulekov <alxndr@bu.edu>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
15 #include <wordexp.h>
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqos/libqtest.h"
19 #include "tests/qtest/libqos/pci-pc.h"
20 #include "fuzz.h"
21 #include "fork_fuzz.h"
22 #include "exec/address-spaces.h"
23 #include "string.h"
24 #include "exec/memory.h"
25 #include "exec/ramblock.h"
26 #include "exec/address-spaces.h"
27 #include "hw/qdev-core.h"
28 #include "hw/pci/pci.h"
29 #include "hw/boards.h"
30 #include "generic_fuzz_configs.h"
31 #include "hw/mem/sparse-mem.h"
34 * SEPARATOR is used to separate "operations" in the fuzz input
36 #define SEPARATOR "FUZZ"
38 enum cmds {
39 OP_IN,
40 OP_OUT,
41 OP_READ,
42 OP_WRITE,
43 OP_PCI_READ,
44 OP_PCI_WRITE,
45 OP_DISABLE_PCI,
46 OP_ADD_DMA_PATTERN,
47 OP_CLEAR_DMA_PATTERNS,
48 OP_CLOCK_STEP,
51 #define DEFAULT_TIMEOUT_US 100000
52 #define USEC_IN_SEC 1000000000
54 #define MAX_DMA_FILL_SIZE 0x10000
56 #define PCI_HOST_BRIDGE_CFG 0xcf8
57 #define PCI_HOST_BRIDGE_DATA 0xcfc
59 typedef struct {
60 ram_addr_t addr;
61 ram_addr_t size; /* The number of bytes until the end of the I/O region */
62 } address_range;
64 static useconds_t timeout = DEFAULT_TIMEOUT_US;
66 static bool qtest_log_enabled;
68 MemoryRegion *sparse_mem_mr;
71 * A pattern used to populate a DMA region or perform a memwrite. This is
72 * useful for e.g. populating tables of unique addresses.
73 * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
74 * Renders as: 00 01 02 00 03 02 00 05 02 00 07 02 ...
76 typedef struct {
77 uint8_t index; /* Index of a byte to increment by stride */
78 uint8_t stride; /* Increment each index'th byte by this amount */
79 size_t len;
80 const uint8_t *data;
81 } pattern;
83 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
84 static bool avoid_double_fetches;
86 static QTestState *qts_global; /* Need a global for the DMA callback */
89 * List of memory regions that are children of QOM objects specified by the
90 * user for fuzzing.
92 static GHashTable *fuzzable_memoryregions;
93 static GPtrArray *fuzzable_pci_devices;
95 struct get_io_cb_info {
96 int index;
97 int found;
98 address_range result;
101 static bool get_io_address_cb(Int128 start, Int128 size,
102 const MemoryRegion *mr,
103 hwaddr offset_in_region,
104 void *opaque)
106 struct get_io_cb_info *info = opaque;
107 if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
108 if (info->index == 0) {
109 info->result.addr = (ram_addr_t)start;
110 info->result.size = (ram_addr_t)size;
111 info->found = 1;
112 return true;
114 info->index--;
116 return false;
120 * List of dma regions populated since the last fuzzing command. Used to ensure
121 * that we only write to each DMA address once, to avoid race conditions when
122 * building reproducers.
124 static GArray *dma_regions;
126 static GArray *dma_patterns;
127 static int dma_pattern_index;
128 static bool pci_disabled;
131 * Allocate a block of memory and populate it with a pattern.
133 static void *pattern_alloc(pattern p, size_t len)
135 int i;
136 uint8_t *buf = g_malloc(len);
137 uint8_t sum = 0;
139 for (i = 0; i < len; ++i) {
140 buf[i] = p.data[i % p.len];
141 if ((i % p.len) == p.index) {
142 buf[i] += sum;
143 sum += p.stride;
146 return buf;
149 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
151 unsigned access_size_max = mr->ops->valid.max_access_size;
154 * Regions are assumed to support 1-4 byte accesses unless
155 * otherwise specified.
157 if (access_size_max == 0) {
158 access_size_max = 4;
161 /* Bound the maximum access by the alignment of the address. */
162 if (!mr->ops->impl.unaligned) {
163 unsigned align_size_max = addr & -addr;
164 if (align_size_max != 0 && align_size_max < access_size_max) {
165 access_size_max = align_size_max;
169 /* Don't attempt accesses larger than the maximum. */
170 if (l > access_size_max) {
171 l = access_size_max;
173 l = pow2floor(l);
175 return l;
179 * Call-back for functions that perform DMA reads from guest memory. Confirm
180 * that the region has not already been populated since the last loop in
181 * generic_fuzz(), avoiding potential race-conditions, which we don't have
182 * a good way for reproducing right now.
184 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
186 /* Are we in the generic-fuzzer or are we using another fuzz-target? */
187 if (!qts_global) {
188 return;
192 * Return immediately if:
193 * - We have no DMA patterns defined
194 * - The length of the DMA read request is zero
195 * - The DMA read is hitting an MR other than the machine's main RAM
196 * - The DMA request hits past the bounds of our RAM
198 if (dma_patterns->len == 0
199 || len == 0
200 || (mr != current_machine->ram && mr != sparse_mem_mr)) {
201 return;
205 * If we overlap with any existing dma_regions, split the range and only
206 * populate the non-overlapping parts.
208 address_range region;
209 bool double_fetch = false;
210 for (int i = 0;
211 i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
212 ++i) {
213 region = g_array_index(dma_regions, address_range, i);
214 if (addr < region.addr + region.size && addr + len > region.addr) {
215 double_fetch = true;
216 if (addr < region.addr
217 && avoid_double_fetches) {
218 fuzz_dma_read_cb(addr, region.addr - addr, mr);
220 if (addr + len > region.addr + region.size
221 && avoid_double_fetches) {
222 fuzz_dma_read_cb(region.addr + region.size,
223 addr + len - (region.addr + region.size), mr);
225 return;
229 /* Cap the length of the DMA access to something reasonable */
230 len = MIN(len, MAX_DMA_FILL_SIZE);
232 address_range ar = {addr, len};
233 g_array_append_val(dma_regions, ar);
234 pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
235 void *buf_base = pattern_alloc(p, ar.size);
236 void *buf = buf_base;
237 hwaddr l, addr1;
238 MemoryRegion *mr1;
239 while (len > 0) {
240 l = len;
241 mr1 = address_space_translate(first_cpu->as,
242 addr, &addr1, &l, true,
243 MEMTXATTRS_UNSPECIFIED);
245 if (!(memory_region_is_ram(mr1) ||
246 memory_region_is_romd(mr1)) && mr1 != sparse_mem_mr) {
247 l = memory_access_size(mr1, l, addr1);
248 } else {
249 /* ROM/RAM case */
250 if (qtest_log_enabled) {
252 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
253 * that will be written by qtest.c with a DMA tag, so we can reorder
254 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
255 * command.
257 fprintf(stderr, "[DMA] ");
258 if (double_fetch) {
259 fprintf(stderr, "[DOUBLE-FETCH] ");
261 fflush(stderr);
263 qtest_memwrite(qts_global, addr, buf, l);
265 len -= l;
266 buf += l;
267 addr += l;
270 g_free(buf_base);
272 /* Increment the index of the pattern for the next DMA access */
273 dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
277 * Here we want to convert a fuzzer-provided [io-region-index, offset] to
278 * a physical address. To do this, we iterate over all of the matched
279 * MemoryRegions. Check whether each region exists within the particular io
280 * space. Return the absolute address of the offset within the index'th region
281 * that is a subregion of the io_space and the distance until the end of the
282 * memory region.
284 static bool get_io_address(address_range *result, AddressSpace *as,
285 uint8_t index,
286 uint32_t offset) {
287 FlatView *view;
288 view = as->current_map;
289 g_assert(view);
290 struct get_io_cb_info cb_info = {};
292 cb_info.index = index;
295 * Loop around the FlatView until we match "index" number of
296 * fuzzable_memoryregions, or until we know that there are no matching
297 * memory_regions.
299 do {
300 flatview_for_each_range(view, get_io_address_cb , &cb_info);
301 } while (cb_info.index != index && !cb_info.found);
303 *result = cb_info.result;
304 if (result->size) {
305 offset = offset % result->size;
306 result->addr += offset;
307 result->size -= offset;
309 return cb_info.found;
312 static bool get_pio_address(address_range *result,
313 uint8_t index, uint16_t offset)
316 * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
317 * can contain an addr that extends past the PIO space. When we pass this
318 * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
319 * up fuzzing a completely different MemoryRegion/Device. Therefore, check
320 * that the address here is within the PIO space limits.
322 bool found = get_io_address(result, &address_space_io, index, offset);
323 return result->addr <= 0xFFFF ? found : false;
326 static bool get_mmio_address(address_range *result,
327 uint8_t index, uint32_t offset)
329 return get_io_address(result, &address_space_memory, index, offset);
332 static void op_in(QTestState *s, const unsigned char * data, size_t len)
334 enum Sizes {Byte, Word, Long, end_sizes};
335 struct {
336 uint8_t size;
337 uint8_t base;
338 uint16_t offset;
339 } a;
340 address_range abs;
342 if (len < sizeof(a)) {
343 return;
345 memcpy(&a, data, sizeof(a));
346 if (get_pio_address(&abs, a.base, a.offset) == 0) {
347 return;
350 switch (a.size %= end_sizes) {
351 case Byte:
352 qtest_inb(s, abs.addr);
353 break;
354 case Word:
355 if (abs.size >= 2) {
356 qtest_inw(s, abs.addr);
358 break;
359 case Long:
360 if (abs.size >= 4) {
361 qtest_inl(s, abs.addr);
363 break;
367 static void op_out(QTestState *s, const unsigned char * data, size_t len)
369 enum Sizes {Byte, Word, Long, end_sizes};
370 struct {
371 uint8_t size;
372 uint8_t base;
373 uint16_t offset;
374 uint32_t value;
375 } a;
376 address_range abs;
378 if (len < sizeof(a)) {
379 return;
381 memcpy(&a, data, sizeof(a));
383 if (get_pio_address(&abs, a.base, a.offset) == 0) {
384 return;
387 switch (a.size %= end_sizes) {
388 case Byte:
389 qtest_outb(s, abs.addr, a.value & 0xFF);
390 break;
391 case Word:
392 if (abs.size >= 2) {
393 qtest_outw(s, abs.addr, a.value & 0xFFFF);
395 break;
396 case Long:
397 if (abs.size >= 4) {
398 qtest_outl(s, abs.addr, a.value);
400 break;
404 static void op_read(QTestState *s, const unsigned char * data, size_t len)
406 enum Sizes {Byte, Word, Long, Quad, end_sizes};
407 struct {
408 uint8_t size;
409 uint8_t base;
410 uint32_t offset;
411 } a;
412 address_range abs;
414 if (len < sizeof(a)) {
415 return;
417 memcpy(&a, data, sizeof(a));
419 if (get_mmio_address(&abs, a.base, a.offset) == 0) {
420 return;
423 switch (a.size %= end_sizes) {
424 case Byte:
425 qtest_readb(s, abs.addr);
426 break;
427 case Word:
428 if (abs.size >= 2) {
429 qtest_readw(s, abs.addr);
431 break;
432 case Long:
433 if (abs.size >= 4) {
434 qtest_readl(s, abs.addr);
436 break;
437 case Quad:
438 if (abs.size >= 8) {
439 qtest_readq(s, abs.addr);
441 break;
445 static void op_write(QTestState *s, const unsigned char * data, size_t len)
447 enum Sizes {Byte, Word, Long, Quad, end_sizes};
448 struct {
449 uint8_t size;
450 uint8_t base;
451 uint32_t offset;
452 uint64_t value;
453 } a;
454 address_range abs;
456 if (len < sizeof(a)) {
457 return;
459 memcpy(&a, data, sizeof(a));
461 if (get_mmio_address(&abs, a.base, a.offset) == 0) {
462 return;
465 switch (a.size %= end_sizes) {
466 case Byte:
467 qtest_writeb(s, abs.addr, a.value & 0xFF);
468 break;
469 case Word:
470 if (abs.size >= 2) {
471 qtest_writew(s, abs.addr, a.value & 0xFFFF);
473 break;
474 case Long:
475 if (abs.size >= 4) {
476 qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
478 break;
479 case Quad:
480 if (abs.size >= 8) {
481 qtest_writeq(s, abs.addr, a.value);
483 break;
487 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
489 enum Sizes {Byte, Word, Long, end_sizes};
490 struct {
491 uint8_t size;
492 uint8_t base;
493 uint8_t offset;
494 } a;
495 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
496 return;
498 memcpy(&a, data, sizeof(a));
499 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
500 a.base % fuzzable_pci_devices->len);
501 int devfn = dev->devfn;
502 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
503 switch (a.size %= end_sizes) {
504 case Byte:
505 qtest_inb(s, PCI_HOST_BRIDGE_DATA);
506 break;
507 case Word:
508 qtest_inw(s, PCI_HOST_BRIDGE_DATA);
509 break;
510 case Long:
511 qtest_inl(s, PCI_HOST_BRIDGE_DATA);
512 break;
516 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
518 enum Sizes {Byte, Word, Long, end_sizes};
519 struct {
520 uint8_t size;
521 uint8_t base;
522 uint8_t offset;
523 uint32_t value;
524 } a;
525 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
526 return;
528 memcpy(&a, data, sizeof(a));
529 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
530 a.base % fuzzable_pci_devices->len);
531 int devfn = dev->devfn;
532 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
533 switch (a.size %= end_sizes) {
534 case Byte:
535 qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
536 break;
537 case Word:
538 qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
539 break;
540 case Long:
541 qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
542 break;
546 static void op_add_dma_pattern(QTestState *s,
547 const unsigned char *data, size_t len)
549 struct {
551 * index and stride can be used to increment the index-th byte of the
552 * pattern by the value stride, for each loop of the pattern.
554 uint8_t index;
555 uint8_t stride;
556 } a;
558 if (len < sizeof(a) + 1) {
559 return;
561 memcpy(&a, data, sizeof(a));
562 pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
563 p.index = a.index % p.len;
564 g_array_append_val(dma_patterns, p);
565 return;
568 static void op_clear_dma_patterns(QTestState *s,
569 const unsigned char *data, size_t len)
571 g_array_set_size(dma_patterns, 0);
572 dma_pattern_index = 0;
575 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
577 qtest_clock_step_next(s);
580 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
582 pci_disabled = true;
585 static void handle_timeout(int sig)
587 if (qtest_log_enabled) {
588 fprintf(stderr, "[Timeout]\n");
589 fflush(stderr);
593 * If there is a crash, libfuzzer/ASAN forks a child to run an
594 * "llvm-symbolizer" process for printing out a pretty stacktrace. It
595 * communicates with this child using a pipe. If we timeout+Exit, while
596 * libfuzzer is still communicating with the llvm-symbolizer child, we will
597 * be left with an orphan llvm-symbolizer process. Sometimes, this appears
598 * to lead to a deadlock in the forkserver. Use waitpid to check if there
599 * are any waitable children. If so, exit out of the signal-handler, and
600 * let libfuzzer finish communicating with the child, and exit, on its own.
602 if (waitpid(-1, NULL, WNOHANG) == 0) {
603 return;
606 _Exit(0);
610 * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
611 * Some commands can be variable-width, so we use a separator, SEPARATOR, to
612 * specify the boundaries between commands. SEPARATOR is used to separate
613 * "operations" in the fuzz input. Why use a separator, instead of just using
614 * the operations' length to identify operation boundaries?
615 * 1. This is a simple way to support variable-length operations
616 * 2. This adds "stability" to the input.
617 * For example take the input "AbBcgDefg", where there is no separator and
618 * Opcodes are capitalized.
619 * Simply, by removing the first byte, we end up with a very different
620 * sequence:
621 * BbcGdefg...
622 * By adding a separator, we avoid this problem:
623 * Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
624 * Since B uses two additional bytes as operands, the first "B" will be
625 * ignored. The fuzzer actively tries to reduce inputs, so such unused
626 * bytes are likely to be pruned, eventually.
628 * SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
629 * SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
630 * -dict), though this should not be necessary.
632 * As a result, the stream of bytes is converted into a sequence of commands.
633 * In a simplified example where SEPARATOR is 0xFF:
634 * 00 01 02 FF 03 04 05 06 FF 01 FF ...
635 * becomes this sequence of commands:
636 * 00 01 02 -> op00 (0102) -> in (0102, 2)
637 * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
638 * 01 -> op01 (-,0) -> out (-,0)
639 * ...
641 * Note here that it is the job of the individual opcode functions to check
642 * that enough data was provided. I.e. in the last command out (,0), out needs
643 * to check that there is not enough data provided to select an address/value
644 * for the operation.
646 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
648 void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
649 [OP_IN] = op_in,
650 [OP_OUT] = op_out,
651 [OP_READ] = op_read,
652 [OP_WRITE] = op_write,
653 [OP_PCI_READ] = op_pci_read,
654 [OP_PCI_WRITE] = op_pci_write,
655 [OP_DISABLE_PCI] = op_disable_pci,
656 [OP_ADD_DMA_PATTERN] = op_add_dma_pattern,
657 [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
658 [OP_CLOCK_STEP] = op_clock_step,
660 const unsigned char *cmd = Data;
661 const unsigned char *nextcmd;
662 size_t cmd_len;
663 uint8_t op;
665 if (fork() == 0) {
667 * Sometimes the fuzzer will find inputs that take quite a long time to
668 * process. Often times, these inputs do not result in new coverage.
669 * Even if these inputs might be interesting, they can slow down the
670 * fuzzer, overall. Set a timeout to avoid hurting performance, too much
672 if (timeout) {
673 struct sigaction sact;
674 struct itimerval timer;
676 sigemptyset(&sact.sa_mask);
677 sact.sa_flags = SA_NODEFER;
678 sact.sa_handler = handle_timeout;
679 sigaction(SIGALRM, &sact, NULL);
681 memset(&timer, 0, sizeof(timer));
682 timer.it_value.tv_sec = timeout / USEC_IN_SEC;
683 timer.it_value.tv_usec = timeout % USEC_IN_SEC;
684 setitimer(ITIMER_VIRTUAL, &timer, NULL);
687 op_clear_dma_patterns(s, NULL, 0);
688 pci_disabled = false;
690 while (cmd && Size) {
691 /* Get the length until the next command or end of input */
692 nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
693 cmd_len = nextcmd ? nextcmd - cmd : Size;
695 if (cmd_len > 0) {
696 /* Interpret the first byte of the command as an opcode */
697 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
698 ops[op](s, cmd + 1, cmd_len - 1);
700 /* Run the main loop */
701 flush_events(s);
703 /* Advance to the next command */
704 cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
705 Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
706 g_array_set_size(dma_regions, 0);
708 _Exit(0);
709 } else {
710 flush_events(s);
711 wait(0);
715 static void usage(void)
717 printf("Please specify the following environment variables:\n");
718 printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
719 printf("QEMU_FUZZ_OBJECTS= "
720 "a space separated list of QOM type names for objects to fuzz\n");
721 printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
722 "Try to avoid racy DMA double fetch bugs? %d by default\n",
723 avoid_double_fetches);
724 printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
725 "0 to disable. %d by default\n", timeout);
726 exit(0);
729 static int locate_fuzz_memory_regions(Object *child, void *opaque)
731 const char *name;
732 MemoryRegion *mr;
733 if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
734 mr = MEMORY_REGION(child);
735 if ((memory_region_is_ram(mr) ||
736 memory_region_is_ram_device(mr) ||
737 memory_region_is_rom(mr)) == false) {
738 name = object_get_canonical_path_component(child);
740 * We don't want duplicate pointers to the same MemoryRegion, so
741 * try to remove copies of the pointer, before adding it.
743 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
746 return 0;
749 static int locate_fuzz_objects(Object *child, void *opaque)
751 char *pattern = opaque;
752 if (g_pattern_match_simple(pattern, object_get_typename(child))) {
753 /* Find and save ptrs to any child MemoryRegions */
754 object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
757 * We matched an object. If its a PCI device, store a pointer to it so
758 * we can map BARs and fuzz its config space.
760 if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
762 * Don't want duplicate pointers to the same PCIDevice, so remove
763 * copies of the pointer, before adding it.
765 g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
766 g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
768 } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
769 if (g_pattern_match_simple(pattern,
770 object_get_canonical_path_component(child))) {
771 MemoryRegion *mr;
772 mr = MEMORY_REGION(child);
773 if ((memory_region_is_ram(mr) ||
774 memory_region_is_ram_device(mr) ||
775 memory_region_is_rom(mr)) == false) {
776 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
780 return 0;
784 static void pci_enum(gpointer pcidev, gpointer bus)
786 PCIDevice *dev = pcidev;
787 QPCIDevice *qdev;
788 int i;
790 qdev = qpci_device_find(bus, dev->devfn);
791 g_assert(qdev != NULL);
792 for (i = 0; i < 6; i++) {
793 if (dev->io_regions[i].size) {
794 qpci_iomap(qdev, i, NULL);
797 qpci_device_enable(qdev);
798 g_free(qdev);
801 static void generic_pre_fuzz(QTestState *s)
803 GHashTableIter iter;
804 MemoryRegion *mr;
805 QPCIBus *pcibus;
806 char **result;
808 if (!getenv("QEMU_FUZZ_OBJECTS")) {
809 usage();
811 if (getenv("QTEST_LOG")) {
812 qtest_log_enabled = 1;
814 if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
815 avoid_double_fetches = 1;
817 if (getenv("QEMU_FUZZ_TIMEOUT")) {
818 timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
820 qts_global = s;
823 * Create a special device that we can use to back DMA buffers at very
824 * high memory addresses
826 sparse_mem_mr = sparse_mem_init(0, UINT64_MAX);
828 dma_regions = g_array_new(false, false, sizeof(address_range));
829 dma_patterns = g_array_new(false, false, sizeof(pattern));
831 fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
832 fuzzable_pci_devices = g_ptr_array_new();
834 result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
835 for (int i = 0; result[i] != NULL; i++) {
836 printf("Matching objects by name %s\n", result[i]);
837 object_child_foreach_recursive(qdev_get_machine(),
838 locate_fuzz_objects,
839 result[i]);
841 g_strfreev(result);
842 printf("This process will try to fuzz the following MemoryRegions:\n");
844 g_hash_table_iter_init(&iter, fuzzable_memoryregions);
845 while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
846 printf(" * %s (size %lx)\n",
847 object_get_canonical_path_component(&(mr->parent_obj)),
848 (uint64_t)mr->size);
851 if (!g_hash_table_size(fuzzable_memoryregions)) {
852 printf("No fuzzable memory regions found...\n");
853 exit(1);
856 pcibus = qpci_new_pc(s, NULL);
857 g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
858 qpci_free_pc(pcibus);
860 counter_shm_init();
864 * When libfuzzer gives us two inputs to combine, return a new input with the
865 * following structure:
867 * Input 1 (data1)
868 * SEPARATOR
869 * Clear out the DMA Patterns
870 * SEPARATOR
871 * Disable the pci_read/write instructions
872 * SEPARATOR
873 * Input 2 (data2)
875 * The idea is to collate the core behaviors of the two inputs.
876 * For example:
877 * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
878 * device functionality A
879 * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
880 * functionality B
882 * This function attempts to produce an input that:
883 * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
884 * functionality A device, replaces the DMA patterns with a single
885 * patten, and triggers device functionality B.
887 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
888 uint8_t *data2, size_t size2, uint8_t *out,
889 size_t max_out_size, unsigned int seed)
891 size_t copy_len = 0, size = 0;
893 /* Check that we have enough space for data1 and at least part of data2 */
894 if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
895 return 0;
898 /* Copy_Len in the first input */
899 copy_len = size1;
900 memcpy(out + size, data1, copy_len);
901 size += copy_len;
902 max_out_size -= copy_len;
904 /* Append a separator */
905 copy_len = strlen(SEPARATOR);
906 memcpy(out + size, SEPARATOR, copy_len);
907 size += copy_len;
908 max_out_size -= copy_len;
910 /* Clear out the DMA Patterns */
911 copy_len = 1;
912 if (copy_len) {
913 out[size] = OP_CLEAR_DMA_PATTERNS;
915 size += copy_len;
916 max_out_size -= copy_len;
918 /* Append a separator */
919 copy_len = strlen(SEPARATOR);
920 memcpy(out + size, SEPARATOR, copy_len);
921 size += copy_len;
922 max_out_size -= copy_len;
924 /* Disable PCI ops. Assume data1 took care of setting up PCI */
925 copy_len = 1;
926 if (copy_len) {
927 out[size] = OP_DISABLE_PCI;
929 size += copy_len;
930 max_out_size -= copy_len;
932 /* Append a separator */
933 copy_len = strlen(SEPARATOR);
934 memcpy(out + size, SEPARATOR, copy_len);
935 size += copy_len;
936 max_out_size -= copy_len;
938 /* Copy_Len over the second input */
939 copy_len = MIN(size2, max_out_size);
940 memcpy(out + size, data2, copy_len);
941 size += copy_len;
942 max_out_size -= copy_len;
944 return size;
948 static GString *generic_fuzz_cmdline(FuzzTarget *t)
950 GString *cmd_line = g_string_new(TARGET_NAME);
951 if (!getenv("QEMU_FUZZ_ARGS")) {
952 usage();
954 g_string_append_printf(cmd_line, " -display none \
955 -machine accel=qtest, \
956 -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
957 return cmd_line;
960 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
962 gchar *args;
963 const generic_fuzz_config *config;
964 g_assert(t->opaque);
966 config = t->opaque;
967 setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
968 if (config->argfunc) {
969 args = config->argfunc();
970 setenv("QEMU_FUZZ_ARGS", args, 1);
971 g_free(args);
972 } else {
973 g_assert_nonnull(config->args);
974 setenv("QEMU_FUZZ_ARGS", config->args, 1);
976 setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
977 return generic_fuzz_cmdline(t);
980 static void register_generic_fuzz_targets(void)
982 fuzz_add_target(&(FuzzTarget){
983 .name = "generic-fuzz",
984 .description = "Fuzz based on any qemu command-line args. ",
985 .get_init_cmdline = generic_fuzz_cmdline,
986 .pre_fuzz = generic_pre_fuzz,
987 .fuzz = generic_fuzz,
988 .crossover = generic_fuzz_crossover
991 GString *name;
992 const generic_fuzz_config *config;
994 for (int i = 0;
995 i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
996 i++) {
997 config = predefined_configs + i;
998 name = g_string_new("generic-fuzz");
999 g_string_append_printf(name, "-%s", config->name);
1000 fuzz_add_target(&(FuzzTarget){
1001 .name = name->str,
1002 .description = "Predefined generic-fuzz config.",
1003 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
1004 .pre_fuzz = generic_pre_fuzz,
1005 .fuzz = generic_fuzz,
1006 .crossover = generic_fuzz_crossover,
1007 .opaque = (void *)config
1012 fuzz_target_init(register_generic_fuzz_targets);