xen: use get_uint() for "max-ram-below-4g" property
[qemu/ar7.git] / hw / i386 / xen / xen-hvm.c
blobcffa7e2017ac401817b12e4eb97048c24ab048da
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
11 #include "qemu/osdep.h"
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qmp-commands.h"
21 #include "qemu/error-report.h"
22 #include "qemu/range.h"
23 #include "sysemu/xen-mapcache.h"
24 #include "trace.h"
25 #include "exec/address-spaces.h"
27 #include <xen/hvm/ioreq.h>
28 #include <xen/hvm/params.h>
29 #include <xen/hvm/e820.h>
31 //#define DEBUG_XEN_HVM
33 #ifdef DEBUG_XEN_HVM
34 #define DPRINTF(fmt, ...) \
35 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
36 #else
37 #define DPRINTF(fmt, ...) \
38 do { } while (0)
39 #endif
41 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
42 static MemoryRegion *framebuffer;
43 static bool xen_in_migration;
45 /* Compatibility with older version */
47 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
48 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
49 * needs to be included before this block and hw/xen/xen_common.h needs to
50 * be included before xen/hvm/ioreq.h
52 #ifndef IOREQ_TYPE_VMWARE_PORT
53 #define IOREQ_TYPE_VMWARE_PORT 3
54 struct vmware_regs {
55 uint32_t esi;
56 uint32_t edi;
57 uint32_t ebx;
58 uint32_t ecx;
59 uint32_t edx;
61 typedef struct vmware_regs vmware_regs_t;
63 struct shared_vmport_iopage {
64 struct vmware_regs vcpu_vmport_regs[1];
66 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
67 #endif
69 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
71 return shared_page->vcpu_ioreq[i].vp_eport;
73 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
75 return &shared_page->vcpu_ioreq[vcpu];
78 #define BUFFER_IO_MAX_DELAY 100
80 typedef struct XenPhysmap {
81 hwaddr start_addr;
82 ram_addr_t size;
83 const char *name;
84 hwaddr phys_offset;
86 QLIST_ENTRY(XenPhysmap) list;
87 } XenPhysmap;
89 typedef struct XenIOState {
90 ioservid_t ioservid;
91 shared_iopage_t *shared_page;
92 shared_vmport_iopage_t *shared_vmport_page;
93 buffered_iopage_t *buffered_io_page;
94 QEMUTimer *buffered_io_timer;
95 CPUState **cpu_by_vcpu_id;
96 /* the evtchn port for polling the notification, */
97 evtchn_port_t *ioreq_local_port;
98 /* evtchn local port for buffered io */
99 evtchn_port_t bufioreq_local_port;
100 /* the evtchn fd for polling */
101 xenevtchn_handle *xce_handle;
102 /* which vcpu we are serving */
103 int send_vcpu;
105 struct xs_handle *xenstore;
106 MemoryListener memory_listener;
107 MemoryListener io_listener;
108 DeviceListener device_listener;
109 QLIST_HEAD(, XenPhysmap) physmap;
110 hwaddr free_phys_offset;
111 const XenPhysmap *log_for_dirtybit;
113 Notifier exit;
114 Notifier suspend;
115 Notifier wakeup;
116 } XenIOState;
118 /* Xen specific function for piix pci */
120 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
122 return irq_num + ((pci_dev->devfn >> 3) << 2);
125 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
127 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
128 irq_num & 3, level);
131 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
133 int i;
135 /* Scan for updates to PCI link routes (0x60-0x63). */
136 for (i = 0; i < len; i++) {
137 uint8_t v = (val >> (8 * i)) & 0xff;
138 if (v & 0x80) {
139 v = 0;
141 v &= 0xf;
142 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
143 xen_set_pci_link_route(xen_domid, address + i - 0x60, v);
148 int xen_is_pirq_msi(uint32_t msi_data)
150 /* If vector is 0, the msi is remapped into a pirq, passed as
151 * dest_id.
153 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
156 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
158 xen_inject_msi(xen_domid, addr, data);
161 static void xen_suspend_notifier(Notifier *notifier, void *data)
163 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
166 /* Xen Interrupt Controller */
168 static void xen_set_irq(void *opaque, int irq, int level)
170 xen_set_isa_irq_level(xen_domid, irq, level);
173 qemu_irq *xen_interrupt_controller_init(void)
175 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
178 /* Memory Ops */
180 static void xen_ram_init(PCMachineState *pcms,
181 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
183 MemoryRegion *sysmem = get_system_memory();
184 ram_addr_t block_len;
185 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(),
186 PC_MACHINE_MAX_RAM_BELOW_4G,
187 &error_abort);
189 /* Handle the machine opt max-ram-below-4g. It is basically doing
190 * min(xen limit, user limit).
192 if (!user_lowmem) {
193 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
195 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
196 user_lowmem = HVM_BELOW_4G_RAM_END;
199 if (ram_size >= user_lowmem) {
200 pcms->above_4g_mem_size = ram_size - user_lowmem;
201 pcms->below_4g_mem_size = user_lowmem;
202 } else {
203 pcms->above_4g_mem_size = 0;
204 pcms->below_4g_mem_size = ram_size;
206 if (!pcms->above_4g_mem_size) {
207 block_len = ram_size;
208 } else {
210 * Xen does not allocate the memory continuously, it keeps a
211 * hole of the size computed above or passed in.
213 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
215 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
216 &error_fatal);
217 *ram_memory_p = &ram_memory;
218 vmstate_register_ram_global(&ram_memory);
220 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
221 &ram_memory, 0, 0xa0000);
222 memory_region_add_subregion(sysmem, 0, &ram_640k);
223 /* Skip of the VGA IO memory space, it will be registered later by the VGA
224 * emulated device.
226 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
227 * the Options ROM, so it is registered here as RAM.
229 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
230 &ram_memory, 0xc0000,
231 pcms->below_4g_mem_size - 0xc0000);
232 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
233 if (pcms->above_4g_mem_size > 0) {
234 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
235 &ram_memory, 0x100000000ULL,
236 pcms->above_4g_mem_size);
237 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
241 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
242 Error **errp)
244 unsigned long nr_pfn;
245 xen_pfn_t *pfn_list;
246 int i;
248 if (runstate_check(RUN_STATE_INMIGRATE)) {
249 /* RAM already populated in Xen */
250 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
251 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
252 __func__, size, ram_addr);
253 return;
256 if (mr == &ram_memory) {
257 return;
260 trace_xen_ram_alloc(ram_addr, size);
262 nr_pfn = size >> TARGET_PAGE_BITS;
263 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
265 for (i = 0; i < nr_pfn; i++) {
266 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
269 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
270 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
271 ram_addr);
274 g_free(pfn_list);
277 static XenPhysmap *get_physmapping(XenIOState *state,
278 hwaddr start_addr, ram_addr_t size)
280 XenPhysmap *physmap = NULL;
282 start_addr &= TARGET_PAGE_MASK;
284 QLIST_FOREACH(physmap, &state->physmap, list) {
285 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
286 return physmap;
289 return NULL;
292 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
293 ram_addr_t size, void *opaque)
295 hwaddr addr = start_addr & TARGET_PAGE_MASK;
296 XenIOState *xen_io_state = opaque;
297 XenPhysmap *physmap = NULL;
299 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
300 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
301 return physmap->start_addr;
305 return start_addr;
308 static int xen_add_to_physmap(XenIOState *state,
309 hwaddr start_addr,
310 ram_addr_t size,
311 MemoryRegion *mr,
312 hwaddr offset_within_region)
314 unsigned long i = 0;
315 int rc = 0;
316 XenPhysmap *physmap = NULL;
317 hwaddr pfn, start_gpfn;
318 hwaddr phys_offset = memory_region_get_ram_addr(mr);
319 char path[80], value[17];
320 const char *mr_name;
322 if (get_physmapping(state, start_addr, size)) {
323 return 0;
325 if (size <= 0) {
326 return -1;
329 /* Xen can only handle a single dirty log region for now and we want
330 * the linear framebuffer to be that region.
331 * Avoid tracking any regions that is not videoram and avoid tracking
332 * the legacy vga region. */
333 if (mr == framebuffer && start_addr > 0xbffff) {
334 goto go_physmap;
336 return -1;
338 go_physmap:
339 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
340 start_addr, start_addr + size);
342 pfn = phys_offset >> TARGET_PAGE_BITS;
343 start_gpfn = start_addr >> TARGET_PAGE_BITS;
344 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
345 unsigned long idx = pfn + i;
346 xen_pfn_t gpfn = start_gpfn + i;
348 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
349 if (rc) {
350 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
351 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
352 return -rc;
356 mr_name = memory_region_name(mr);
358 physmap = g_malloc(sizeof (XenPhysmap));
360 physmap->start_addr = start_addr;
361 physmap->size = size;
362 physmap->name = mr_name;
363 physmap->phys_offset = phys_offset;
365 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
367 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
368 start_addr >> TARGET_PAGE_BITS,
369 (start_addr + size - 1) >> TARGET_PAGE_BITS,
370 XEN_DOMCTL_MEM_CACHEATTR_WB);
372 snprintf(path, sizeof(path),
373 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
374 xen_domid, (uint64_t)phys_offset);
375 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
376 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
377 return -1;
379 snprintf(path, sizeof(path),
380 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
381 xen_domid, (uint64_t)phys_offset);
382 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
383 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
384 return -1;
386 if (mr_name) {
387 snprintf(path, sizeof(path),
388 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
389 xen_domid, (uint64_t)phys_offset);
390 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
391 return -1;
395 return 0;
398 static int xen_remove_from_physmap(XenIOState *state,
399 hwaddr start_addr,
400 ram_addr_t size)
402 unsigned long i = 0;
403 int rc = 0;
404 XenPhysmap *physmap = NULL;
405 hwaddr phys_offset = 0;
407 physmap = get_physmapping(state, start_addr, size);
408 if (physmap == NULL) {
409 return -1;
412 phys_offset = physmap->phys_offset;
413 size = physmap->size;
415 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
416 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
418 size >>= TARGET_PAGE_BITS;
419 start_addr >>= TARGET_PAGE_BITS;
420 phys_offset >>= TARGET_PAGE_BITS;
421 for (i = 0; i < size; i++) {
422 xen_pfn_t idx = start_addr + i;
423 xen_pfn_t gpfn = phys_offset + i;
425 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
426 if (rc) {
427 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
428 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
429 return -rc;
433 QLIST_REMOVE(physmap, list);
434 if (state->log_for_dirtybit == physmap) {
435 state->log_for_dirtybit = NULL;
437 g_free(physmap);
439 return 0;
442 static void xen_set_memory(struct MemoryListener *listener,
443 MemoryRegionSection *section,
444 bool add)
446 XenIOState *state = container_of(listener, XenIOState, memory_listener);
447 hwaddr start_addr = section->offset_within_address_space;
448 ram_addr_t size = int128_get64(section->size);
449 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
450 hvmmem_type_t mem_type;
452 if (section->mr == &ram_memory) {
453 return;
454 } else {
455 if (add) {
456 xen_map_memory_section(xen_domid, state->ioservid,
457 section);
458 } else {
459 xen_unmap_memory_section(xen_domid, state->ioservid,
460 section);
464 if (!memory_region_is_ram(section->mr)) {
465 return;
468 if (log_dirty != add) {
469 return;
472 trace_xen_client_set_memory(start_addr, size, log_dirty);
474 start_addr &= TARGET_PAGE_MASK;
475 size = TARGET_PAGE_ALIGN(size);
477 if (add) {
478 if (!memory_region_is_rom(section->mr)) {
479 xen_add_to_physmap(state, start_addr, size,
480 section->mr, section->offset_within_region);
481 } else {
482 mem_type = HVMMEM_ram_ro;
483 if (xen_set_mem_type(xen_domid, mem_type,
484 start_addr >> TARGET_PAGE_BITS,
485 size >> TARGET_PAGE_BITS)) {
486 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
487 start_addr);
490 } else {
491 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
492 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
497 static void xen_region_add(MemoryListener *listener,
498 MemoryRegionSection *section)
500 memory_region_ref(section->mr);
501 xen_set_memory(listener, section, true);
504 static void xen_region_del(MemoryListener *listener,
505 MemoryRegionSection *section)
507 xen_set_memory(listener, section, false);
508 memory_region_unref(section->mr);
511 static void xen_io_add(MemoryListener *listener,
512 MemoryRegionSection *section)
514 XenIOState *state = container_of(listener, XenIOState, io_listener);
515 MemoryRegion *mr = section->mr;
517 if (mr->ops == &unassigned_io_ops) {
518 return;
521 memory_region_ref(mr);
523 xen_map_io_section(xen_domid, state->ioservid, section);
526 static void xen_io_del(MemoryListener *listener,
527 MemoryRegionSection *section)
529 XenIOState *state = container_of(listener, XenIOState, io_listener);
530 MemoryRegion *mr = section->mr;
532 if (mr->ops == &unassigned_io_ops) {
533 return;
536 xen_unmap_io_section(xen_domid, state->ioservid, section);
538 memory_region_unref(mr);
541 static void xen_device_realize(DeviceListener *listener,
542 DeviceState *dev)
544 XenIOState *state = container_of(listener, XenIOState, device_listener);
546 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
547 PCIDevice *pci_dev = PCI_DEVICE(dev);
549 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
553 static void xen_device_unrealize(DeviceListener *listener,
554 DeviceState *dev)
556 XenIOState *state = container_of(listener, XenIOState, device_listener);
558 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
559 PCIDevice *pci_dev = PCI_DEVICE(dev);
561 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
565 static void xen_sync_dirty_bitmap(XenIOState *state,
566 hwaddr start_addr,
567 ram_addr_t size)
569 hwaddr npages = size >> TARGET_PAGE_BITS;
570 const int width = sizeof(unsigned long) * 8;
571 unsigned long bitmap[DIV_ROUND_UP(npages, width)];
572 int rc, i, j;
573 const XenPhysmap *physmap = NULL;
575 physmap = get_physmapping(state, start_addr, size);
576 if (physmap == NULL) {
577 /* not handled */
578 return;
581 if (state->log_for_dirtybit == NULL) {
582 state->log_for_dirtybit = physmap;
583 } else if (state->log_for_dirtybit != physmap) {
584 /* Only one range for dirty bitmap can be tracked. */
585 return;
588 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
589 npages, bitmap);
590 if (rc < 0) {
591 #ifndef ENODATA
592 #define ENODATA ENOENT
593 #endif
594 if (errno == ENODATA) {
595 memory_region_set_dirty(framebuffer, 0, size);
596 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
597 ", 0x" TARGET_FMT_plx "): %s\n",
598 start_addr, start_addr + size, strerror(errno));
600 return;
603 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
604 unsigned long map = bitmap[i];
605 while (map != 0) {
606 j = ctzl(map);
607 map &= ~(1ul << j);
608 memory_region_set_dirty(framebuffer,
609 (i * width + j) * TARGET_PAGE_SIZE,
610 TARGET_PAGE_SIZE);
615 static void xen_log_start(MemoryListener *listener,
616 MemoryRegionSection *section,
617 int old, int new)
619 XenIOState *state = container_of(listener, XenIOState, memory_listener);
621 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
622 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
623 int128_get64(section->size));
627 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
628 int old, int new)
630 XenIOState *state = container_of(listener, XenIOState, memory_listener);
632 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
633 state->log_for_dirtybit = NULL;
634 /* Disable dirty bit tracking */
635 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
639 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
641 XenIOState *state = container_of(listener, XenIOState, memory_listener);
643 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
644 int128_get64(section->size));
647 static void xen_log_global_start(MemoryListener *listener)
649 if (xen_enabled()) {
650 xen_in_migration = true;
654 static void xen_log_global_stop(MemoryListener *listener)
656 xen_in_migration = false;
659 static MemoryListener xen_memory_listener = {
660 .region_add = xen_region_add,
661 .region_del = xen_region_del,
662 .log_start = xen_log_start,
663 .log_stop = xen_log_stop,
664 .log_sync = xen_log_sync,
665 .log_global_start = xen_log_global_start,
666 .log_global_stop = xen_log_global_stop,
667 .priority = 10,
670 static MemoryListener xen_io_listener = {
671 .region_add = xen_io_add,
672 .region_del = xen_io_del,
673 .priority = 10,
676 static DeviceListener xen_device_listener = {
677 .realize = xen_device_realize,
678 .unrealize = xen_device_unrealize,
681 /* get the ioreq packets from share mem */
682 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
684 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
686 if (req->state != STATE_IOREQ_READY) {
687 DPRINTF("I/O request not ready: "
688 "%x, ptr: %x, port: %"PRIx64", "
689 "data: %"PRIx64", count: %u, size: %u\n",
690 req->state, req->data_is_ptr, req->addr,
691 req->data, req->count, req->size);
692 return NULL;
695 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
697 req->state = STATE_IOREQ_INPROCESS;
698 return req;
701 /* use poll to get the port notification */
702 /* ioreq_vec--out,the */
703 /* retval--the number of ioreq packet */
704 static ioreq_t *cpu_get_ioreq(XenIOState *state)
706 int i;
707 evtchn_port_t port;
709 port = xenevtchn_pending(state->xce_handle);
710 if (port == state->bufioreq_local_port) {
711 timer_mod(state->buffered_io_timer,
712 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
713 return NULL;
716 if (port != -1) {
717 for (i = 0; i < max_cpus; i++) {
718 if (state->ioreq_local_port[i] == port) {
719 break;
723 if (i == max_cpus) {
724 hw_error("Fatal error while trying to get io event!\n");
727 /* unmask the wanted port again */
728 xenevtchn_unmask(state->xce_handle, port);
730 /* get the io packet from shared memory */
731 state->send_vcpu = i;
732 return cpu_get_ioreq_from_shared_memory(state, i);
735 /* read error or read nothing */
736 return NULL;
739 static uint32_t do_inp(uint32_t addr, unsigned long size)
741 switch (size) {
742 case 1:
743 return cpu_inb(addr);
744 case 2:
745 return cpu_inw(addr);
746 case 4:
747 return cpu_inl(addr);
748 default:
749 hw_error("inp: bad size: %04x %lx", addr, size);
753 static void do_outp(uint32_t addr,
754 unsigned long size, uint32_t val)
756 switch (size) {
757 case 1:
758 return cpu_outb(addr, val);
759 case 2:
760 return cpu_outw(addr, val);
761 case 4:
762 return cpu_outl(addr, val);
763 default:
764 hw_error("outp: bad size: %04x %lx", addr, size);
769 * Helper functions which read/write an object from/to physical guest
770 * memory, as part of the implementation of an ioreq.
772 * Equivalent to
773 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
774 * val, req->size, 0/1)
775 * except without the integer overflow problems.
777 static void rw_phys_req_item(hwaddr addr,
778 ioreq_t *req, uint32_t i, void *val, int rw)
780 /* Do everything unsigned so overflow just results in a truncated result
781 * and accesses to undesired parts of guest memory, which is up
782 * to the guest */
783 hwaddr offset = (hwaddr)req->size * i;
784 if (req->df) {
785 addr -= offset;
786 } else {
787 addr += offset;
789 cpu_physical_memory_rw(addr, val, req->size, rw);
792 static inline void read_phys_req_item(hwaddr addr,
793 ioreq_t *req, uint32_t i, void *val)
795 rw_phys_req_item(addr, req, i, val, 0);
797 static inline void write_phys_req_item(hwaddr addr,
798 ioreq_t *req, uint32_t i, void *val)
800 rw_phys_req_item(addr, req, i, val, 1);
804 static void cpu_ioreq_pio(ioreq_t *req)
806 uint32_t i;
808 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
809 req->data, req->count, req->size);
811 if (req->size > sizeof(uint32_t)) {
812 hw_error("PIO: bad size (%u)", req->size);
815 if (req->dir == IOREQ_READ) {
816 if (!req->data_is_ptr) {
817 req->data = do_inp(req->addr, req->size);
818 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
819 req->size);
820 } else {
821 uint32_t tmp;
823 for (i = 0; i < req->count; i++) {
824 tmp = do_inp(req->addr, req->size);
825 write_phys_req_item(req->data, req, i, &tmp);
828 } else if (req->dir == IOREQ_WRITE) {
829 if (!req->data_is_ptr) {
830 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
831 req->size);
832 do_outp(req->addr, req->size, req->data);
833 } else {
834 for (i = 0; i < req->count; i++) {
835 uint32_t tmp = 0;
837 read_phys_req_item(req->data, req, i, &tmp);
838 do_outp(req->addr, req->size, tmp);
844 static void cpu_ioreq_move(ioreq_t *req)
846 uint32_t i;
848 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
849 req->data, req->count, req->size);
851 if (req->size > sizeof(req->data)) {
852 hw_error("MMIO: bad size (%u)", req->size);
855 if (!req->data_is_ptr) {
856 if (req->dir == IOREQ_READ) {
857 for (i = 0; i < req->count; i++) {
858 read_phys_req_item(req->addr, req, i, &req->data);
860 } else if (req->dir == IOREQ_WRITE) {
861 for (i = 0; i < req->count; i++) {
862 write_phys_req_item(req->addr, req, i, &req->data);
865 } else {
866 uint64_t tmp;
868 if (req->dir == IOREQ_READ) {
869 for (i = 0; i < req->count; i++) {
870 read_phys_req_item(req->addr, req, i, &tmp);
871 write_phys_req_item(req->data, req, i, &tmp);
873 } else if (req->dir == IOREQ_WRITE) {
874 for (i = 0; i < req->count; i++) {
875 read_phys_req_item(req->data, req, i, &tmp);
876 write_phys_req_item(req->addr, req, i, &tmp);
882 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
884 X86CPU *cpu;
885 CPUX86State *env;
887 cpu = X86_CPU(current_cpu);
888 env = &cpu->env;
889 env->regs[R_EAX] = req->data;
890 env->regs[R_EBX] = vmport_regs->ebx;
891 env->regs[R_ECX] = vmport_regs->ecx;
892 env->regs[R_EDX] = vmport_regs->edx;
893 env->regs[R_ESI] = vmport_regs->esi;
894 env->regs[R_EDI] = vmport_regs->edi;
897 static void regs_from_cpu(vmware_regs_t *vmport_regs)
899 X86CPU *cpu = X86_CPU(current_cpu);
900 CPUX86State *env = &cpu->env;
902 vmport_regs->ebx = env->regs[R_EBX];
903 vmport_regs->ecx = env->regs[R_ECX];
904 vmport_regs->edx = env->regs[R_EDX];
905 vmport_regs->esi = env->regs[R_ESI];
906 vmport_regs->edi = env->regs[R_EDI];
909 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
911 vmware_regs_t *vmport_regs;
913 assert(state->shared_vmport_page);
914 vmport_regs =
915 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
916 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
918 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
919 regs_to_cpu(vmport_regs, req);
920 cpu_ioreq_pio(req);
921 regs_from_cpu(vmport_regs);
922 current_cpu = NULL;
925 static void handle_ioreq(XenIOState *state, ioreq_t *req)
927 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
928 req->addr, req->data, req->count, req->size);
930 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
931 (req->size < sizeof (target_ulong))) {
932 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
935 if (req->dir == IOREQ_WRITE)
936 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
937 req->addr, req->data, req->count, req->size);
939 switch (req->type) {
940 case IOREQ_TYPE_PIO:
941 cpu_ioreq_pio(req);
942 break;
943 case IOREQ_TYPE_COPY:
944 cpu_ioreq_move(req);
945 break;
946 case IOREQ_TYPE_VMWARE_PORT:
947 handle_vmport_ioreq(state, req);
948 break;
949 case IOREQ_TYPE_TIMEOFFSET:
950 break;
951 case IOREQ_TYPE_INVALIDATE:
952 xen_invalidate_map_cache();
953 break;
954 case IOREQ_TYPE_PCI_CONFIG: {
955 uint32_t sbdf = req->addr >> 32;
956 uint32_t val;
958 /* Fake a write to port 0xCF8 so that
959 * the config space access will target the
960 * correct device model.
962 val = (1u << 31) |
963 ((req->addr & 0x0f00) << 16) |
964 ((sbdf & 0xffff) << 8) |
965 (req->addr & 0xfc);
966 do_outp(0xcf8, 4, val);
968 /* Now issue the config space access via
969 * port 0xCFC
971 req->addr = 0xcfc | (req->addr & 0x03);
972 cpu_ioreq_pio(req);
973 break;
975 default:
976 hw_error("Invalid ioreq type 0x%x\n", req->type);
978 if (req->dir == IOREQ_READ) {
979 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
980 req->addr, req->data, req->count, req->size);
984 static int handle_buffered_iopage(XenIOState *state)
986 buffered_iopage_t *buf_page = state->buffered_io_page;
987 buf_ioreq_t *buf_req = NULL;
988 ioreq_t req;
989 int qw;
991 if (!buf_page) {
992 return 0;
995 memset(&req, 0x00, sizeof(req));
996 req.state = STATE_IOREQ_READY;
997 req.count = 1;
998 req.dir = IOREQ_WRITE;
1000 for (;;) {
1001 uint32_t rdptr = buf_page->read_pointer, wrptr;
1003 xen_rmb();
1004 wrptr = buf_page->write_pointer;
1005 xen_rmb();
1006 if (rdptr != buf_page->read_pointer) {
1007 continue;
1009 if (rdptr == wrptr) {
1010 break;
1012 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1013 req.size = 1U << buf_req->size;
1014 req.addr = buf_req->addr;
1015 req.data = buf_req->data;
1016 req.type = buf_req->type;
1017 xen_rmb();
1018 qw = (req.size == 8);
1019 if (qw) {
1020 if (rdptr + 1 == wrptr) {
1021 hw_error("Incomplete quad word buffered ioreq");
1023 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1024 IOREQ_BUFFER_SLOT_NUM];
1025 req.data |= ((uint64_t)buf_req->data) << 32;
1026 xen_rmb();
1029 handle_ioreq(state, &req);
1031 /* Only req.data may get updated by handle_ioreq(), albeit even that
1032 * should not happen as such data would never make it to the guest (we
1033 * can only usefully see writes here after all).
1035 assert(req.state == STATE_IOREQ_READY);
1036 assert(req.count == 1);
1037 assert(req.dir == IOREQ_WRITE);
1038 assert(!req.data_is_ptr);
1040 atomic_add(&buf_page->read_pointer, qw + 1);
1043 return req.count;
1046 static void handle_buffered_io(void *opaque)
1048 XenIOState *state = opaque;
1050 if (handle_buffered_iopage(state)) {
1051 timer_mod(state->buffered_io_timer,
1052 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1053 } else {
1054 timer_del(state->buffered_io_timer);
1055 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1059 static void cpu_handle_ioreq(void *opaque)
1061 XenIOState *state = opaque;
1062 ioreq_t *req = cpu_get_ioreq(state);
1064 handle_buffered_iopage(state);
1065 if (req) {
1066 ioreq_t copy = *req;
1068 xen_rmb();
1069 handle_ioreq(state, &copy);
1070 req->data = copy.data;
1072 if (req->state != STATE_IOREQ_INPROCESS) {
1073 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1074 "%x, ptr: %x, port: %"PRIx64", "
1075 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1076 req->state, req->data_is_ptr, req->addr,
1077 req->data, req->count, req->size, req->type);
1078 destroy_hvm_domain(false);
1079 return;
1082 xen_wmb(); /* Update ioreq contents /then/ update state. */
1085 * We do this before we send the response so that the tools
1086 * have the opportunity to pick up on the reset before the
1087 * guest resumes and does a hlt with interrupts disabled which
1088 * causes Xen to powerdown the domain.
1090 if (runstate_is_running()) {
1091 ShutdownCause request;
1093 if (qemu_shutdown_requested_get()) {
1094 destroy_hvm_domain(false);
1096 request = qemu_reset_requested_get();
1097 if (request) {
1098 qemu_system_reset(request);
1099 destroy_hvm_domain(true);
1103 req->state = STATE_IORESP_READY;
1104 xenevtchn_notify(state->xce_handle,
1105 state->ioreq_local_port[state->send_vcpu]);
1109 static void xen_main_loop_prepare(XenIOState *state)
1111 int evtchn_fd = -1;
1113 if (state->xce_handle != NULL) {
1114 evtchn_fd = xenevtchn_fd(state->xce_handle);
1117 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1118 state);
1120 if (evtchn_fd != -1) {
1121 CPUState *cpu_state;
1123 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1124 CPU_FOREACH(cpu_state) {
1125 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1126 __func__, cpu_state->cpu_index, cpu_state);
1127 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1129 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1134 static void xen_hvm_change_state_handler(void *opaque, int running,
1135 RunState rstate)
1137 XenIOState *state = opaque;
1139 if (running) {
1140 xen_main_loop_prepare(state);
1143 xen_set_ioreq_server_state(xen_domid,
1144 state->ioservid,
1145 (rstate == RUN_STATE_RUNNING));
1148 static void xen_exit_notifier(Notifier *n, void *data)
1150 XenIOState *state = container_of(n, XenIOState, exit);
1152 xenevtchn_close(state->xce_handle);
1153 xs_daemon_close(state->xenstore);
1156 static void xen_read_physmap(XenIOState *state)
1158 XenPhysmap *physmap = NULL;
1159 unsigned int len, num, i;
1160 char path[80], *value = NULL;
1161 char **entries = NULL;
1163 snprintf(path, sizeof(path),
1164 "/local/domain/0/device-model/%d/physmap", xen_domid);
1165 entries = xs_directory(state->xenstore, 0, path, &num);
1166 if (entries == NULL)
1167 return;
1169 for (i = 0; i < num; i++) {
1170 physmap = g_malloc(sizeof (XenPhysmap));
1171 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1172 snprintf(path, sizeof(path),
1173 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1174 xen_domid, entries[i]);
1175 value = xs_read(state->xenstore, 0, path, &len);
1176 if (value == NULL) {
1177 g_free(physmap);
1178 continue;
1180 physmap->start_addr = strtoull(value, NULL, 16);
1181 free(value);
1183 snprintf(path, sizeof(path),
1184 "/local/domain/0/device-model/%d/physmap/%s/size",
1185 xen_domid, entries[i]);
1186 value = xs_read(state->xenstore, 0, path, &len);
1187 if (value == NULL) {
1188 g_free(physmap);
1189 continue;
1191 physmap->size = strtoull(value, NULL, 16);
1192 free(value);
1194 snprintf(path, sizeof(path),
1195 "/local/domain/0/device-model/%d/physmap/%s/name",
1196 xen_domid, entries[i]);
1197 physmap->name = xs_read(state->xenstore, 0, path, &len);
1199 QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1201 free(entries);
1204 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1206 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1209 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1211 int i, rc;
1212 xen_pfn_t ioreq_pfn;
1213 xen_pfn_t bufioreq_pfn;
1214 evtchn_port_t bufioreq_evtchn;
1215 XenIOState *state;
1217 state = g_malloc0(sizeof (XenIOState));
1219 state->xce_handle = xenevtchn_open(NULL, 0);
1220 if (state->xce_handle == NULL) {
1221 perror("xen: event channel open");
1222 goto err;
1225 state->xenstore = xs_daemon_open();
1226 if (state->xenstore == NULL) {
1227 perror("xen: xenstore open");
1228 goto err;
1231 if (xen_domid_restrict) {
1232 rc = xen_restrict(xen_domid);
1233 if (rc < 0) {
1234 error_report("failed to restrict: error %d", errno);
1235 goto err;
1239 xen_create_ioreq_server(xen_domid, &state->ioservid);
1241 state->exit.notify = xen_exit_notifier;
1242 qemu_add_exit_notifier(&state->exit);
1244 state->suspend.notify = xen_suspend_notifier;
1245 qemu_register_suspend_notifier(&state->suspend);
1247 state->wakeup.notify = xen_wakeup_notifier;
1248 qemu_register_wakeup_notifier(&state->wakeup);
1250 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1251 &ioreq_pfn, &bufioreq_pfn,
1252 &bufioreq_evtchn);
1253 if (rc < 0) {
1254 error_report("failed to get ioreq server info: error %d handle=%p",
1255 errno, xen_xc);
1256 goto err;
1259 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1260 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1261 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1263 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1264 PROT_READ|PROT_WRITE,
1265 1, &ioreq_pfn, NULL);
1266 if (state->shared_page == NULL) {
1267 error_report("map shared IO page returned error %d handle=%p",
1268 errno, xen_xc);
1269 goto err;
1272 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1273 if (!rc) {
1274 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1275 state->shared_vmport_page =
1276 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1277 1, &ioreq_pfn, NULL);
1278 if (state->shared_vmport_page == NULL) {
1279 error_report("map shared vmport IO page returned error %d handle=%p",
1280 errno, xen_xc);
1281 goto err;
1283 } else if (rc != -ENOSYS) {
1284 error_report("get vmport regs pfn returned error %d, rc=%d",
1285 errno, rc);
1286 goto err;
1289 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1290 PROT_READ|PROT_WRITE,
1291 1, &bufioreq_pfn, NULL);
1292 if (state->buffered_io_page == NULL) {
1293 error_report("map buffered IO page returned error %d", errno);
1294 goto err;
1297 /* Note: cpus is empty at this point in init */
1298 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1300 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1301 if (rc < 0) {
1302 error_report("failed to enable ioreq server info: error %d handle=%p",
1303 errno, xen_xc);
1304 goto err;
1307 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1309 /* FIXME: how about if we overflow the page here? */
1310 for (i = 0; i < max_cpus; i++) {
1311 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1312 xen_vcpu_eport(state->shared_page, i));
1313 if (rc == -1) {
1314 error_report("shared evtchn %d bind error %d", i, errno);
1315 goto err;
1317 state->ioreq_local_port[i] = rc;
1320 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1321 bufioreq_evtchn);
1322 if (rc == -1) {
1323 error_report("buffered evtchn bind error %d", errno);
1324 goto err;
1326 state->bufioreq_local_port = rc;
1328 /* Init RAM management */
1329 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1330 xen_ram_init(pcms, ram_size, ram_memory);
1332 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1334 state->memory_listener = xen_memory_listener;
1335 QLIST_INIT(&state->physmap);
1336 memory_listener_register(&state->memory_listener, &address_space_memory);
1337 state->log_for_dirtybit = NULL;
1339 state->io_listener = xen_io_listener;
1340 memory_listener_register(&state->io_listener, &address_space_io);
1342 state->device_listener = xen_device_listener;
1343 device_listener_register(&state->device_listener);
1345 /* Initialize backend core & drivers */
1346 if (xen_be_init() != 0) {
1347 error_report("xen backend core setup failed");
1348 goto err;
1350 xen_be_register_common();
1351 xen_read_physmap(state);
1353 /* Disable ACPI build because Xen handles it */
1354 pcms->acpi_build_enabled = false;
1356 return;
1358 err:
1359 error_report("xen hardware virtual machine initialisation failed");
1360 exit(1);
1363 void destroy_hvm_domain(bool reboot)
1365 xc_interface *xc_handle;
1366 int sts;
1368 xc_handle = xc_interface_open(0, 0, 0);
1369 if (xc_handle == NULL) {
1370 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1371 } else {
1372 sts = xc_domain_shutdown(xc_handle, xen_domid,
1373 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1374 if (sts != 0) {
1375 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1376 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1377 sts, strerror(errno));
1378 } else {
1379 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1380 reboot ? "reboot" : "poweroff");
1382 xc_interface_close(xc_handle);
1386 void xen_register_framebuffer(MemoryRegion *mr)
1388 framebuffer = mr;
1391 void xen_shutdown_fatal_error(const char *fmt, ...)
1393 va_list ap;
1395 va_start(ap, fmt);
1396 vfprintf(stderr, fmt, ap);
1397 va_end(ap);
1398 fprintf(stderr, "Will destroy the domain.\n");
1399 /* destroy the domain */
1400 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1403 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1405 if (unlikely(xen_in_migration)) {
1406 int rc;
1407 ram_addr_t start_pfn, nb_pages;
1409 if (length == 0) {
1410 length = TARGET_PAGE_SIZE;
1412 start_pfn = start >> TARGET_PAGE_BITS;
1413 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1414 - start_pfn;
1415 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1416 if (rc) {
1417 fprintf(stderr,
1418 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1419 __func__, start, nb_pages, rc, strerror(-rc));
1424 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1426 if (enable) {
1427 memory_global_dirty_log_start();
1428 } else {
1429 memory_global_dirty_log_stop();