target-arm: Store AIF bits in env->pstate for AArch32
[qemu/ar7.git] / target-arm / helper.c
blob01d1ef6679d17b8d6bd9d82d805aded901585ee6
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
9 #ifndef CONFIG_USER_ONLY
10 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
11 int access_type, int is_user,
12 hwaddr *phys_ptr, int *prot,
13 target_ulong *page_size);
14 #endif
16 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
18 int nregs;
20 /* VFP data registers are always little-endian. */
21 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
22 if (reg < nregs) {
23 stfq_le_p(buf, env->vfp.regs[reg]);
24 return 8;
26 if (arm_feature(env, ARM_FEATURE_NEON)) {
27 /* Aliases for Q regs. */
28 nregs += 16;
29 if (reg < nregs) {
30 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
31 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
32 return 16;
35 switch (reg - nregs) {
36 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
37 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
38 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
40 return 0;
43 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
45 int nregs;
47 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
48 if (reg < nregs) {
49 env->vfp.regs[reg] = ldfq_le_p(buf);
50 return 8;
52 if (arm_feature(env, ARM_FEATURE_NEON)) {
53 nregs += 16;
54 if (reg < nregs) {
55 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
56 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
57 return 16;
60 switch (reg - nregs) {
61 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
62 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
63 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
65 return 0;
68 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
70 switch (reg) {
71 case 0 ... 31:
72 /* 128 bit FP register */
73 stfq_le_p(buf, env->vfp.regs[reg * 2]);
74 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
75 return 16;
76 case 32:
77 /* FPSR */
78 stl_p(buf, vfp_get_fpsr(env));
79 return 4;
80 case 33:
81 /* FPCR */
82 stl_p(buf, vfp_get_fpcr(env));
83 return 4;
84 default:
85 return 0;
89 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
91 switch (reg) {
92 case 0 ... 31:
93 /* 128 bit FP register */
94 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
95 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
96 return 16;
97 case 32:
98 /* FPSR */
99 vfp_set_fpsr(env, ldl_p(buf));
100 return 4;
101 case 33:
102 /* FPCR */
103 vfp_set_fpcr(env, ldl_p(buf));
104 return 4;
105 default:
106 return 0;
110 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
112 if (cpreg_field_is_64bit(ri)) {
113 return CPREG_FIELD64(env, ri);
114 } else {
115 return CPREG_FIELD32(env, ri);
119 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
120 uint64_t value)
122 if (cpreg_field_is_64bit(ri)) {
123 CPREG_FIELD64(env, ri) = value;
124 } else {
125 CPREG_FIELD32(env, ri) = value;
129 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
131 /* Raw read of a coprocessor register (as needed for migration, etc). */
132 if (ri->type & ARM_CP_CONST) {
133 return ri->resetvalue;
134 } else if (ri->raw_readfn) {
135 return ri->raw_readfn(env, ri);
136 } else if (ri->readfn) {
137 return ri->readfn(env, ri);
138 } else {
139 return raw_read(env, ri);
143 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
144 uint64_t v)
146 /* Raw write of a coprocessor register (as needed for migration, etc).
147 * Note that constant registers are treated as write-ignored; the
148 * caller should check for success by whether a readback gives the
149 * value written.
151 if (ri->type & ARM_CP_CONST) {
152 return;
153 } else if (ri->raw_writefn) {
154 ri->raw_writefn(env, ri, v);
155 } else if (ri->writefn) {
156 ri->writefn(env, ri, v);
157 } else {
158 raw_write(env, ri, v);
162 bool write_cpustate_to_list(ARMCPU *cpu)
164 /* Write the coprocessor state from cpu->env to the (index,value) list. */
165 int i;
166 bool ok = true;
168 for (i = 0; i < cpu->cpreg_array_len; i++) {
169 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
170 const ARMCPRegInfo *ri;
172 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
173 if (!ri) {
174 ok = false;
175 continue;
177 if (ri->type & ARM_CP_NO_MIGRATE) {
178 continue;
180 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
182 return ok;
185 bool write_list_to_cpustate(ARMCPU *cpu)
187 int i;
188 bool ok = true;
190 for (i = 0; i < cpu->cpreg_array_len; i++) {
191 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
192 uint64_t v = cpu->cpreg_values[i];
193 const ARMCPRegInfo *ri;
195 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
196 if (!ri) {
197 ok = false;
198 continue;
200 if (ri->type & ARM_CP_NO_MIGRATE) {
201 continue;
203 /* Write value and confirm it reads back as written
204 * (to catch read-only registers and partially read-only
205 * registers where the incoming migration value doesn't match)
207 write_raw_cp_reg(&cpu->env, ri, v);
208 if (read_raw_cp_reg(&cpu->env, ri) != v) {
209 ok = false;
212 return ok;
215 static void add_cpreg_to_list(gpointer key, gpointer opaque)
217 ARMCPU *cpu = opaque;
218 uint64_t regidx;
219 const ARMCPRegInfo *ri;
221 regidx = *(uint32_t *)key;
222 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
224 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
225 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
226 /* The value array need not be initialized at this point */
227 cpu->cpreg_array_len++;
231 static void count_cpreg(gpointer key, gpointer opaque)
233 ARMCPU *cpu = opaque;
234 uint64_t regidx;
235 const ARMCPRegInfo *ri;
237 regidx = *(uint32_t *)key;
238 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
240 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
241 cpu->cpreg_array_len++;
245 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
247 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
248 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
250 if (aidx > bidx) {
251 return 1;
253 if (aidx < bidx) {
254 return -1;
256 return 0;
259 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
261 GList **plist = udata;
263 *plist = g_list_prepend(*plist, key);
266 void init_cpreg_list(ARMCPU *cpu)
268 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
269 * Note that we require cpreg_tuples[] to be sorted by key ID.
271 GList *keys = NULL;
272 int arraylen;
274 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
276 keys = g_list_sort(keys, cpreg_key_compare);
278 cpu->cpreg_array_len = 0;
280 g_list_foreach(keys, count_cpreg, cpu);
282 arraylen = cpu->cpreg_array_len;
283 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
284 cpu->cpreg_values = g_new(uint64_t, arraylen);
285 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
286 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
287 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
288 cpu->cpreg_array_len = 0;
290 g_list_foreach(keys, add_cpreg_to_list, cpu);
292 assert(cpu->cpreg_array_len == arraylen);
294 g_list_free(keys);
297 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
299 env->cp15.c3 = value;
300 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
303 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
305 if (env->cp15.c13_fcse != value) {
306 /* Unlike real hardware the qemu TLB uses virtual addresses,
307 * not modified virtual addresses, so this causes a TLB flush.
309 tlb_flush(env, 1);
310 env->cp15.c13_fcse = value;
314 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
315 uint64_t value)
317 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
318 /* For VMSA (when not using the LPAE long descriptor page table
319 * format) this register includes the ASID, so do a TLB flush.
320 * For PMSA it is purely a process ID and no action is needed.
322 tlb_flush(env, 1);
324 env->cp15.c13_context = value;
327 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
328 uint64_t value)
330 /* Invalidate all (TLBIALL) */
331 tlb_flush(env, 1);
334 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
335 uint64_t value)
337 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
338 tlb_flush_page(env, value & TARGET_PAGE_MASK);
341 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
342 uint64_t value)
344 /* Invalidate by ASID (TLBIASID) */
345 tlb_flush(env, value == 0);
348 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
349 uint64_t value)
351 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
352 tlb_flush_page(env, value & TARGET_PAGE_MASK);
355 static const ARMCPRegInfo cp_reginfo[] = {
356 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
357 * version" bits will read as a reserved value, which should cause
358 * Linux to not try to use the debug hardware.
360 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
361 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
362 /* MMU Domain access control / MPU write buffer control */
363 { .name = "DACR", .cp = 15,
364 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
365 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
366 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
367 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
368 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
369 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
370 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
372 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
373 /* ??? This covers not just the impdef TLB lockdown registers but also
374 * some v7VMSA registers relating to TEX remap, so it is overly broad.
376 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
377 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
378 /* MMU TLB control. Note that the wildcarding means we cover not just
379 * the unified TLB ops but also the dside/iside/inner-shareable variants.
381 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
382 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
383 .type = ARM_CP_NO_MIGRATE },
384 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
385 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
386 .type = ARM_CP_NO_MIGRATE },
387 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
388 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
389 .type = ARM_CP_NO_MIGRATE },
390 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
391 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
392 .type = ARM_CP_NO_MIGRATE },
393 /* Cache maintenance ops; some of this space may be overridden later. */
394 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
395 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
396 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
397 REGINFO_SENTINEL
400 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
401 /* Not all pre-v6 cores implemented this WFI, so this is slightly
402 * over-broad.
404 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
405 .access = PL1_W, .type = ARM_CP_WFI },
406 REGINFO_SENTINEL
409 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
410 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
411 * is UNPREDICTABLE; we choose to NOP as most implementations do).
413 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
414 .access = PL1_W, .type = ARM_CP_WFI },
415 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
416 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
417 * OMAPCP will override this space.
419 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
420 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
421 .resetvalue = 0 },
422 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
423 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
424 .resetvalue = 0 },
425 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
426 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
427 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
428 .resetvalue = 0 },
429 REGINFO_SENTINEL
432 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
433 uint64_t value)
435 if (env->cp15.c1_coproc != value) {
436 env->cp15.c1_coproc = value;
437 /* ??? Is this safe when called from within a TB? */
438 tb_flush(env);
442 static const ARMCPRegInfo v6_cp_reginfo[] = {
443 /* prefetch by MVA in v6, NOP in v7 */
444 { .name = "MVA_prefetch",
445 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
446 .access = PL1_W, .type = ARM_CP_NOP },
447 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
448 .access = PL0_W, .type = ARM_CP_NOP },
449 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
450 .access = PL0_W, .type = ARM_CP_NOP },
451 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
452 .access = PL0_W, .type = ARM_CP_NOP },
453 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
454 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
455 .resetvalue = 0, },
456 /* Watchpoint Fault Address Register : should actually only be present
457 * for 1136, 1176, 11MPCore.
459 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
460 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
461 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
462 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
463 .resetvalue = 0, .writefn = cpacr_write },
464 REGINFO_SENTINEL
467 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
469 /* Perfomance monitor registers user accessibility is controlled
470 * by PMUSERENR.
472 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
473 return CP_ACCESS_TRAP;
475 return CP_ACCESS_OK;
478 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
479 uint64_t value)
481 /* only the DP, X, D and E bits are writable */
482 env->cp15.c9_pmcr &= ~0x39;
483 env->cp15.c9_pmcr |= (value & 0x39);
486 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
487 uint64_t value)
489 value &= (1 << 31);
490 env->cp15.c9_pmcnten |= value;
493 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
494 uint64_t value)
496 value &= (1 << 31);
497 env->cp15.c9_pmcnten &= ~value;
500 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
501 uint64_t value)
503 env->cp15.c9_pmovsr &= ~value;
506 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
507 uint64_t value)
509 env->cp15.c9_pmxevtyper = value & 0xff;
512 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
515 env->cp15.c9_pmuserenr = value & 1;
518 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
519 uint64_t value)
521 /* We have no event counters so only the C bit can be changed */
522 value &= (1 << 31);
523 env->cp15.c9_pminten |= value;
526 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 value &= (1 << 31);
530 env->cp15.c9_pminten &= ~value;
533 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
534 uint64_t value)
536 /* Note that even though the AArch64 view of this register has bits
537 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
538 * architectural requirements for bits which are RES0 only in some
539 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
540 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
542 env->cp15.c12_vbar = value & ~0x1Ful;
545 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
547 ARMCPU *cpu = arm_env_get_cpu(env);
548 return cpu->ccsidr[env->cp15.c0_cssel];
551 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
552 uint64_t value)
554 env->cp15.c0_cssel = value & 0xf;
557 static const ARMCPRegInfo v7_cp_reginfo[] = {
558 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
559 * debug components
561 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
562 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
563 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
564 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
565 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
566 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
567 .access = PL1_W, .type = ARM_CP_NOP },
568 /* Performance monitors are implementation defined in v7,
569 * but with an ARM recommended set of registers, which we
570 * follow (although we don't actually implement any counters)
572 * Performance registers fall into three categories:
573 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
574 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
575 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
576 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
577 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
579 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
580 .access = PL0_RW, .resetvalue = 0,
581 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
582 .writefn = pmcntenset_write,
583 .accessfn = pmreg_access,
584 .raw_writefn = raw_write },
585 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
586 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
587 .accessfn = pmreg_access,
588 .writefn = pmcntenclr_write,
589 .type = ARM_CP_NO_MIGRATE },
590 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
591 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
592 .accessfn = pmreg_access,
593 .writefn = pmovsr_write,
594 .raw_writefn = raw_write },
595 /* Unimplemented so WI. */
596 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
597 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
598 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
599 * We choose to RAZ/WI.
601 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
602 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
603 .accessfn = pmreg_access },
604 /* Unimplemented, RAZ/WI. */
605 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
606 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
607 .accessfn = pmreg_access },
608 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
609 .access = PL0_RW,
610 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
611 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
612 .raw_writefn = raw_write },
613 /* Unimplemented, RAZ/WI. */
614 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
615 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
616 .accessfn = pmreg_access },
617 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
618 .access = PL0_R | PL1_RW,
619 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
620 .resetvalue = 0,
621 .writefn = pmuserenr_write, .raw_writefn = raw_write },
622 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
623 .access = PL1_RW,
624 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
625 .resetvalue = 0,
626 .writefn = pmintenset_write, .raw_writefn = raw_write },
627 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
628 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
629 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
630 .resetvalue = 0, .writefn = pmintenclr_write, },
631 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
632 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
633 .access = PL1_RW, .writefn = vbar_write,
634 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
635 .resetvalue = 0 },
636 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
637 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
638 .resetvalue = 0, },
639 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
640 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
641 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
642 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
643 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
644 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
645 .writefn = csselr_write, .resetvalue = 0 },
646 /* Auxiliary ID register: this actually has an IMPDEF value but for now
647 * just RAZ for all cores:
649 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
650 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
651 /* MAIR can just read-as-written because we don't implement caches
652 * and so don't need to care about memory attributes.
654 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
655 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
656 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
657 .resetvalue = 0 },
658 /* For non-long-descriptor page tables these are PRRR and NMRR;
659 * regardless they still act as reads-as-written for QEMU.
660 * The override is necessary because of the overly-broad TLB_LOCKDOWN
661 * definition.
663 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
664 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
665 .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
666 .resetfn = arm_cp_reset_ignore },
667 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
668 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
669 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
670 .resetfn = arm_cp_reset_ignore },
671 REGINFO_SENTINEL
674 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
675 uint64_t value)
677 value &= 1;
678 env->teecr = value;
681 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
683 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
684 return CP_ACCESS_TRAP;
686 return CP_ACCESS_OK;
689 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
690 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
691 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
692 .resetvalue = 0,
693 .writefn = teecr_write },
694 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
695 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
696 .accessfn = teehbr_access, .resetvalue = 0 },
697 REGINFO_SENTINEL
700 static const ARMCPRegInfo v6k_cp_reginfo[] = {
701 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
702 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
703 .access = PL0_RW,
704 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
705 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
706 .access = PL0_RW,
707 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
708 .resetfn = arm_cp_reset_ignore },
709 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
710 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
711 .access = PL0_R|PL1_W,
712 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
713 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
714 .access = PL0_R|PL1_W,
715 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
716 .resetfn = arm_cp_reset_ignore },
717 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
718 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
719 .access = PL1_RW,
720 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
721 REGINFO_SENTINEL
724 #ifndef CONFIG_USER_ONLY
726 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
728 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
729 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
730 return CP_ACCESS_TRAP;
732 return CP_ACCESS_OK;
735 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
737 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
738 if (arm_current_pl(env) == 0 &&
739 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
740 return CP_ACCESS_TRAP;
742 return CP_ACCESS_OK;
745 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
747 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
748 * EL0[PV]TEN is zero.
750 if (arm_current_pl(env) == 0 &&
751 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
752 return CP_ACCESS_TRAP;
754 return CP_ACCESS_OK;
757 static CPAccessResult gt_pct_access(CPUARMState *env,
758 const ARMCPRegInfo *ri)
760 return gt_counter_access(env, GTIMER_PHYS);
763 static CPAccessResult gt_vct_access(CPUARMState *env,
764 const ARMCPRegInfo *ri)
766 return gt_counter_access(env, GTIMER_VIRT);
769 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
771 return gt_timer_access(env, GTIMER_PHYS);
774 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
776 return gt_timer_access(env, GTIMER_VIRT);
779 static uint64_t gt_get_countervalue(CPUARMState *env)
781 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
784 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
786 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
788 if (gt->ctl & 1) {
789 /* Timer enabled: calculate and set current ISTATUS, irq, and
790 * reset timer to when ISTATUS next has to change
792 uint64_t count = gt_get_countervalue(&cpu->env);
793 /* Note that this must be unsigned 64 bit arithmetic: */
794 int istatus = count >= gt->cval;
795 uint64_t nexttick;
797 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
798 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
799 (istatus && !(gt->ctl & 2)));
800 if (istatus) {
801 /* Next transition is when count rolls back over to zero */
802 nexttick = UINT64_MAX;
803 } else {
804 /* Next transition is when we hit cval */
805 nexttick = gt->cval;
807 /* Note that the desired next expiry time might be beyond the
808 * signed-64-bit range of a QEMUTimer -- in this case we just
809 * set the timer for as far in the future as possible. When the
810 * timer expires we will reset the timer for any remaining period.
812 if (nexttick > INT64_MAX / GTIMER_SCALE) {
813 nexttick = INT64_MAX / GTIMER_SCALE;
815 timer_mod(cpu->gt_timer[timeridx], nexttick);
816 } else {
817 /* Timer disabled: ISTATUS and timer output always clear */
818 gt->ctl &= ~4;
819 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
820 timer_del(cpu->gt_timer[timeridx]);
824 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
826 ARMCPU *cpu = arm_env_get_cpu(env);
827 int timeridx = ri->opc1 & 1;
829 timer_del(cpu->gt_timer[timeridx]);
832 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
834 return gt_get_countervalue(env);
837 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
838 uint64_t value)
840 int timeridx = ri->opc1 & 1;
842 env->cp15.c14_timer[timeridx].cval = value;
843 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
846 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
848 int timeridx = ri->crm & 1;
850 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
851 gt_get_countervalue(env));
854 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
855 uint64_t value)
857 int timeridx = ri->crm & 1;
859 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
860 + sextract64(value, 0, 32);
861 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
864 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
865 uint64_t value)
867 ARMCPU *cpu = arm_env_get_cpu(env);
868 int timeridx = ri->crm & 1;
869 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
871 env->cp15.c14_timer[timeridx].ctl = value & 3;
872 if ((oldval ^ value) & 1) {
873 /* Enable toggled */
874 gt_recalc_timer(cpu, timeridx);
875 } else if ((oldval & value) & 2) {
876 /* IMASK toggled: don't need to recalculate,
877 * just set the interrupt line based on ISTATUS
879 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
880 (oldval & 4) && (value & 2));
884 void arm_gt_ptimer_cb(void *opaque)
886 ARMCPU *cpu = opaque;
888 gt_recalc_timer(cpu, GTIMER_PHYS);
891 void arm_gt_vtimer_cb(void *opaque)
893 ARMCPU *cpu = opaque;
895 gt_recalc_timer(cpu, GTIMER_VIRT);
898 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
899 /* Note that CNTFRQ is purely reads-as-written for the benefit
900 * of software; writing it doesn't actually change the timer frequency.
901 * Our reset value matches the fixed frequency we implement the timer at.
903 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
904 .type = ARM_CP_NO_MIGRATE,
905 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
906 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
907 .resetfn = arm_cp_reset_ignore,
909 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
910 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
911 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
912 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
913 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
915 /* overall control: mostly access permissions */
916 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
917 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
918 .access = PL1_RW,
919 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
920 .resetvalue = 0,
922 /* per-timer control */
923 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
924 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
925 .accessfn = gt_ptimer_access,
926 .fieldoffset = offsetoflow32(CPUARMState,
927 cp15.c14_timer[GTIMER_PHYS].ctl),
928 .resetfn = arm_cp_reset_ignore,
929 .writefn = gt_ctl_write, .raw_writefn = raw_write,
931 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
932 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
933 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
934 .accessfn = gt_ptimer_access,
935 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
936 .resetvalue = 0,
937 .writefn = gt_ctl_write, .raw_writefn = raw_write,
939 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
940 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
941 .accessfn = gt_vtimer_access,
942 .fieldoffset = offsetoflow32(CPUARMState,
943 cp15.c14_timer[GTIMER_VIRT].ctl),
944 .resetfn = arm_cp_reset_ignore,
945 .writefn = gt_ctl_write, .raw_writefn = raw_write,
947 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
948 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
949 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
950 .accessfn = gt_vtimer_access,
951 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
952 .resetvalue = 0,
953 .writefn = gt_ctl_write, .raw_writefn = raw_write,
955 /* TimerValue views: a 32 bit downcounting view of the underlying state */
956 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
957 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
958 .accessfn = gt_ptimer_access,
959 .readfn = gt_tval_read, .writefn = gt_tval_write,
961 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
962 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
963 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
964 .readfn = gt_tval_read, .writefn = gt_tval_write,
966 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
967 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
968 .accessfn = gt_vtimer_access,
969 .readfn = gt_tval_read, .writefn = gt_tval_write,
971 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
972 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
973 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
974 .readfn = gt_tval_read, .writefn = gt_tval_write,
976 /* The counter itself */
977 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
978 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
979 .accessfn = gt_pct_access,
980 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
982 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
983 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
984 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
985 .accessfn = gt_pct_access,
986 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
988 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
989 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
990 .accessfn = gt_vct_access,
991 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
993 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
994 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
995 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
996 .accessfn = gt_vct_access,
997 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
999 /* Comparison value, indicating when the timer goes off */
1000 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1001 .access = PL1_RW | PL0_R,
1002 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1003 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1004 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1005 .writefn = gt_cval_write, .raw_writefn = raw_write,
1007 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1008 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1009 .access = PL1_RW | PL0_R,
1010 .type = ARM_CP_IO,
1011 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1012 .resetvalue = 0, .accessfn = gt_vtimer_access,
1013 .writefn = gt_cval_write, .raw_writefn = raw_write,
1015 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1016 .access = PL1_RW | PL0_R,
1017 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1018 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1019 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1020 .writefn = gt_cval_write, .raw_writefn = raw_write,
1022 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1023 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1024 .access = PL1_RW | PL0_R,
1025 .type = ARM_CP_IO,
1026 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1027 .resetvalue = 0, .accessfn = gt_vtimer_access,
1028 .writefn = gt_cval_write, .raw_writefn = raw_write,
1030 REGINFO_SENTINEL
1033 #else
1034 /* In user-mode none of the generic timer registers are accessible,
1035 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1036 * so instead just don't register any of them.
1038 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1039 REGINFO_SENTINEL
1042 #endif
1044 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1046 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1047 env->cp15.c7_par = value;
1048 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1049 env->cp15.c7_par = value & 0xfffff6ff;
1050 } else {
1051 env->cp15.c7_par = value & 0xfffff1ff;
1055 #ifndef CONFIG_USER_ONLY
1056 /* get_phys_addr() isn't present for user-mode-only targets */
1058 /* Return true if extended addresses are enabled, ie this is an
1059 * LPAE implementation and we are using the long-descriptor translation
1060 * table format because the TTBCR EAE bit is set.
1062 static inline bool extended_addresses_enabled(CPUARMState *env)
1064 return arm_feature(env, ARM_FEATURE_LPAE)
1065 && (env->cp15.c2_control & (1U << 31));
1068 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1070 if (ri->opc2 & 4) {
1071 /* Other states are only available with TrustZone; in
1072 * a non-TZ implementation these registers don't exist
1073 * at all, which is an Uncategorized trap. This underdecoding
1074 * is safe because the reginfo is NO_MIGRATE.
1076 return CP_ACCESS_TRAP_UNCATEGORIZED;
1078 return CP_ACCESS_OK;
1081 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1083 hwaddr phys_addr;
1084 target_ulong page_size;
1085 int prot;
1086 int ret, is_user = ri->opc2 & 2;
1087 int access_type = ri->opc2 & 1;
1089 ret = get_phys_addr(env, value, access_type, is_user,
1090 &phys_addr, &prot, &page_size);
1091 if (extended_addresses_enabled(env)) {
1092 /* ret is a DFSR/IFSR value for the long descriptor
1093 * translation table format, but with WnR always clear.
1094 * Convert it to a 64-bit PAR.
1096 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1097 if (ret == 0) {
1098 par64 |= phys_addr & ~0xfffULL;
1099 /* We don't set the ATTR or SH fields in the PAR. */
1100 } else {
1101 par64 |= 1; /* F */
1102 par64 |= (ret & 0x3f) << 1; /* FS */
1103 /* Note that S2WLK and FSTAGE are always zero, because we don't
1104 * implement virtualization and therefore there can't be a stage 2
1105 * fault.
1108 env->cp15.c7_par = par64;
1109 env->cp15.c7_par_hi = par64 >> 32;
1110 } else {
1111 /* ret is a DFSR/IFSR value for the short descriptor
1112 * translation table format (with WnR always clear).
1113 * Convert it to a 32-bit PAR.
1115 if (ret == 0) {
1116 /* We do not set any attribute bits in the PAR */
1117 if (page_size == (1 << 24)
1118 && arm_feature(env, ARM_FEATURE_V7)) {
1119 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1120 } else {
1121 env->cp15.c7_par = phys_addr & 0xfffff000;
1123 } else {
1124 env->cp15.c7_par = ((ret & (1 << 10)) >> 5) |
1125 ((ret & (1 << 12)) >> 6) |
1126 ((ret & 0xf) << 1) | 1;
1128 env->cp15.c7_par_hi = 0;
1131 #endif
1133 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1134 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1135 .access = PL1_RW, .resetvalue = 0,
1136 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1137 .writefn = par_write },
1138 #ifndef CONFIG_USER_ONLY
1139 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1140 .access = PL1_W, .accessfn = ats_access,
1141 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1142 #endif
1143 REGINFO_SENTINEL
1146 /* Return basic MPU access permission bits. */
1147 static uint32_t simple_mpu_ap_bits(uint32_t val)
1149 uint32_t ret;
1150 uint32_t mask;
1151 int i;
1152 ret = 0;
1153 mask = 3;
1154 for (i = 0; i < 16; i += 2) {
1155 ret |= (val >> i) & mask;
1156 mask <<= 2;
1158 return ret;
1161 /* Pad basic MPU access permission bits to extended format. */
1162 static uint32_t extended_mpu_ap_bits(uint32_t val)
1164 uint32_t ret;
1165 uint32_t mask;
1166 int i;
1167 ret = 0;
1168 mask = 3;
1169 for (i = 0; i < 16; i += 2) {
1170 ret |= (val & mask) << i;
1171 mask <<= 2;
1173 return ret;
1176 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1177 uint64_t value)
1179 env->cp15.c5_data = extended_mpu_ap_bits(value);
1182 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1184 return simple_mpu_ap_bits(env->cp15.c5_data);
1187 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1188 uint64_t value)
1190 env->cp15.c5_insn = extended_mpu_ap_bits(value);
1193 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1195 return simple_mpu_ap_bits(env->cp15.c5_insn);
1198 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1199 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1200 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1201 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1202 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1203 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1204 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1205 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1206 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1207 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1208 .access = PL1_RW,
1209 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1210 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1211 .access = PL1_RW,
1212 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1213 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1214 .access = PL1_RW,
1215 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1216 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1217 .access = PL1_RW,
1218 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1219 /* Protection region base and size registers */
1220 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1221 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1222 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1223 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1224 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1225 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1226 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1227 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1228 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1229 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1230 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1231 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1232 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1233 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1234 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1235 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1236 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1237 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1238 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1239 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1240 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1241 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1242 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1243 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1244 REGINFO_SENTINEL
1247 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1248 uint64_t value)
1250 int maskshift = extract32(value, 0, 3);
1252 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1253 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1254 } else {
1255 value &= 7;
1257 /* Note that we always calculate c2_mask and c2_base_mask, but
1258 * they are only used for short-descriptor tables (ie if EAE is 0);
1259 * for long-descriptor tables the TTBCR fields are used differently
1260 * and the c2_mask and c2_base_mask values are meaningless.
1262 env->cp15.c2_control = value;
1263 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1264 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1267 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1268 uint64_t value)
1270 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1271 /* With LPAE the TTBCR could result in a change of ASID
1272 * via the TTBCR.A1 bit, so do a TLB flush.
1274 tlb_flush(env, 1);
1276 vmsa_ttbcr_raw_write(env, ri, value);
1279 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1281 env->cp15.c2_base_mask = 0xffffc000u;
1282 env->cp15.c2_control = 0;
1283 env->cp15.c2_mask = 0;
1286 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1287 uint64_t value)
1289 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1290 tlb_flush(env, 1);
1291 env->cp15.c2_control = value;
1294 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1295 uint64_t value)
1297 /* 64 bit accesses to the TTBRs can change the ASID and so we
1298 * must flush the TLB.
1300 if (cpreg_field_is_64bit(ri)) {
1301 tlb_flush(env, 1);
1303 raw_write(env, ri, value);
1306 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1307 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1308 .access = PL1_RW,
1309 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1310 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1311 .access = PL1_RW,
1312 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1313 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1314 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1315 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1316 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1317 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1318 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1319 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1320 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1321 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1322 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1323 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1324 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1325 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1326 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1327 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
1328 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1329 .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1330 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1331 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1332 .resetvalue = 0, },
1333 REGINFO_SENTINEL
1336 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1337 uint64_t value)
1339 env->cp15.c15_ticonfig = value & 0xe7;
1340 /* The OS_TYPE bit in this register changes the reported CPUID! */
1341 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1342 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1345 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1346 uint64_t value)
1348 env->cp15.c15_threadid = value & 0xffff;
1351 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1352 uint64_t value)
1354 /* Wait-for-interrupt (deprecated) */
1355 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1358 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1359 uint64_t value)
1361 /* On OMAP there are registers indicating the max/min index of dcache lines
1362 * containing a dirty line; cache flush operations have to reset these.
1364 env->cp15.c15_i_max = 0x000;
1365 env->cp15.c15_i_min = 0xff0;
1368 static const ARMCPRegInfo omap_cp_reginfo[] = {
1369 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1370 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1371 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1372 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1373 .access = PL1_RW, .type = ARM_CP_NOP },
1374 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1375 .access = PL1_RW,
1376 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1377 .writefn = omap_ticonfig_write },
1378 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1379 .access = PL1_RW,
1380 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1381 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1382 .access = PL1_RW, .resetvalue = 0xff0,
1383 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1384 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1385 .access = PL1_RW,
1386 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1387 .writefn = omap_threadid_write },
1388 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1389 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1390 .type = ARM_CP_NO_MIGRATE,
1391 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1392 /* TODO: Peripheral port remap register:
1393 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1394 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1395 * when MMU is off.
1397 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1398 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1399 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1400 .writefn = omap_cachemaint_write },
1401 { .name = "C9", .cp = 15, .crn = 9,
1402 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1403 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1404 REGINFO_SENTINEL
1407 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1408 uint64_t value)
1410 value &= 0x3fff;
1411 if (env->cp15.c15_cpar != value) {
1412 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1413 tb_flush(env);
1414 env->cp15.c15_cpar = value;
1418 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1419 { .name = "XSCALE_CPAR",
1420 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1421 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1422 .writefn = xscale_cpar_write, },
1423 { .name = "XSCALE_AUXCR",
1424 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1425 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1426 .resetvalue = 0, },
1427 REGINFO_SENTINEL
1430 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1431 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1432 * implementation of this implementation-defined space.
1433 * Ideally this should eventually disappear in favour of actually
1434 * implementing the correct behaviour for all cores.
1436 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1437 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1438 .access = PL1_RW,
1439 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1440 .resetvalue = 0 },
1441 REGINFO_SENTINEL
1444 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1445 /* Cache status: RAZ because we have no cache so it's always clean */
1446 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1447 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1448 .resetvalue = 0 },
1449 REGINFO_SENTINEL
1452 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1453 /* We never have a a block transfer operation in progress */
1454 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1455 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1456 .resetvalue = 0 },
1457 /* The cache ops themselves: these all NOP for QEMU */
1458 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1459 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1460 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1461 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1462 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1463 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1464 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1465 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1466 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1467 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1468 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1469 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1470 REGINFO_SENTINEL
1473 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1474 /* The cache test-and-clean instructions always return (1 << 30)
1475 * to indicate that there are no dirty cache lines.
1477 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1478 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1479 .resetvalue = (1 << 30) },
1480 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1481 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1482 .resetvalue = (1 << 30) },
1483 REGINFO_SENTINEL
1486 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1487 /* Ignore ReadBuffer accesses */
1488 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1489 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1490 .access = PL1_RW, .resetvalue = 0,
1491 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1492 REGINFO_SENTINEL
1495 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1497 CPUState *cs = CPU(arm_env_get_cpu(env));
1498 uint32_t mpidr = cs->cpu_index;
1499 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1500 * in later ARM ARM versions), or any of the higher affinity level fields,
1501 * so these bits always RAZ.
1503 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1504 mpidr |= (1U << 31);
1505 /* Cores which are uniprocessor (non-coherent)
1506 * but still implement the MP extensions set
1507 * bit 30. (For instance, A9UP.) However we do
1508 * not currently model any of those cores.
1511 return mpidr;
1514 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1515 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
1516 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1517 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1518 REGINFO_SENTINEL
1521 static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
1523 return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1526 static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
1527 uint64_t value)
1529 env->cp15.c7_par_hi = value >> 32;
1530 env->cp15.c7_par = value;
1533 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1535 env->cp15.c7_par_hi = 0;
1536 env->cp15.c7_par = 0;
1539 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1540 /* NOP AMAIR0/1: the override is because these clash with the rather
1541 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1543 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
1544 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1545 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1546 .resetvalue = 0 },
1547 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1548 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1549 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1550 .resetvalue = 0 },
1551 /* 64 bit access versions of the (dummy) debug registers */
1552 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1553 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1554 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1555 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1556 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1557 .access = PL1_RW, .type = ARM_CP_64BIT,
1558 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1559 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1560 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1561 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1562 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1563 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1564 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1565 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1566 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1567 REGINFO_SENTINEL
1570 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1572 return vfp_get_fpcr(env);
1575 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1576 uint64_t value)
1578 vfp_set_fpcr(env, value);
1581 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1583 return vfp_get_fpsr(env);
1586 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587 uint64_t value)
1589 vfp_set_fpsr(env, value);
1592 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
1593 const ARMCPRegInfo *ri)
1595 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1596 * SCTLR_EL1.UCI is set.
1598 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
1599 return CP_ACCESS_TRAP;
1601 return CP_ACCESS_OK;
1604 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
1605 uint64_t value)
1607 /* Invalidate by VA (AArch64 version) */
1608 uint64_t pageaddr = value << 12;
1609 tlb_flush_page(env, pageaddr);
1612 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
1613 uint64_t value)
1615 /* Invalidate by VA, all ASIDs (AArch64 version) */
1616 uint64_t pageaddr = value << 12;
1617 tlb_flush_page(env, pageaddr);
1620 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1621 uint64_t value)
1623 /* Invalidate by ASID (AArch64 version) */
1624 int asid = extract64(value, 48, 16);
1625 tlb_flush(env, asid == 0);
1628 static const ARMCPRegInfo v8_cp_reginfo[] = {
1629 /* Minimal set of EL0-visible registers. This will need to be expanded
1630 * significantly for system emulation of AArch64 CPUs.
1632 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
1633 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
1634 .access = PL0_RW, .type = ARM_CP_NZCV },
1635 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
1636 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
1637 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
1638 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
1639 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
1640 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
1641 /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
1642 * For system mode the DZP bit here will need to be computed, not constant.
1644 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
1645 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1646 .access = PL0_R, .type = ARM_CP_CONST,
1647 .resetvalue = 0x10 },
1648 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
1649 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
1650 .access = PL1_R, .type = ARM_CP_CURRENTEL },
1651 /* Cache ops: all NOPs since we don't emulate caches */
1652 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
1653 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
1654 .access = PL1_W, .type = ARM_CP_NOP },
1655 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
1656 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
1657 .access = PL1_W, .type = ARM_CP_NOP },
1658 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
1659 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
1660 .access = PL0_W, .type = ARM_CP_NOP,
1661 .accessfn = aa64_cacheop_access },
1662 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
1663 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1664 .access = PL1_W, .type = ARM_CP_NOP },
1665 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
1666 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1667 .access = PL1_W, .type = ARM_CP_NOP },
1668 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
1669 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
1670 .access = PL0_W, .type = ARM_CP_NOP,
1671 .accessfn = aa64_cacheop_access },
1672 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
1673 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1674 .access = PL1_W, .type = ARM_CP_NOP },
1675 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
1676 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
1677 .access = PL0_W, .type = ARM_CP_NOP,
1678 .accessfn = aa64_cacheop_access },
1679 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
1680 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
1681 .access = PL0_W, .type = ARM_CP_NOP,
1682 .accessfn = aa64_cacheop_access },
1683 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
1684 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1685 .access = PL1_W, .type = ARM_CP_NOP },
1686 /* TLBI operations */
1687 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
1688 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1689 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1690 .writefn = tlbiall_write },
1691 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
1692 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1693 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1694 .writefn = tlbi_aa64_va_write },
1695 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
1696 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1697 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1698 .writefn = tlbi_aa64_asid_write },
1699 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
1700 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1701 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1702 .writefn = tlbi_aa64_vaa_write },
1703 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
1704 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
1705 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1706 .writefn = tlbi_aa64_va_write },
1707 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
1708 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
1709 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1710 .writefn = tlbi_aa64_vaa_write },
1711 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
1712 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1713 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1714 .writefn = tlbiall_write },
1715 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
1716 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1717 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1718 .writefn = tlbi_aa64_va_write },
1719 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
1720 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1721 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1722 .writefn = tlbi_aa64_asid_write },
1723 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
1724 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1725 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1726 .writefn = tlbi_aa64_vaa_write },
1727 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
1728 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
1729 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1730 .writefn = tlbi_aa64_va_write },
1731 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
1732 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
1733 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1734 .writefn = tlbi_aa64_vaa_write },
1735 /* Dummy implementation of monitor debug system control register:
1736 * we don't support debug.
1738 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
1739 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
1740 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1741 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
1742 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
1743 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1744 .access = PL1_W, .type = ARM_CP_NOP },
1745 REGINFO_SENTINEL
1748 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1749 uint64_t value)
1751 env->cp15.c1_sys = value;
1752 /* ??? Lots of these bits are not implemented. */
1753 /* This may enable/disable the MMU, so do a TLB flush. */
1754 tlb_flush(env, 1);
1757 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
1759 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
1760 * but the AArch32 CTR has its own reginfo struct)
1762 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
1763 return CP_ACCESS_TRAP;
1765 return CP_ACCESS_OK;
1768 static void define_aarch64_debug_regs(ARMCPU *cpu)
1770 /* Define breakpoint and watchpoint registers. These do nothing
1771 * but read as written, for now.
1773 int i;
1775 for (i = 0; i < 16; i++) {
1776 ARMCPRegInfo dbgregs[] = {
1777 { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
1778 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1779 .access = PL1_RW,
1780 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
1781 { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
1782 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1783 .access = PL1_RW,
1784 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
1785 { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
1786 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1787 .access = PL1_RW,
1788 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
1789 { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
1790 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1791 .access = PL1_RW,
1792 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
1793 REGINFO_SENTINEL
1795 define_arm_cp_regs(cpu, dbgregs);
1799 void register_cp_regs_for_features(ARMCPU *cpu)
1801 /* Register all the coprocessor registers based on feature bits */
1802 CPUARMState *env = &cpu->env;
1803 if (arm_feature(env, ARM_FEATURE_M)) {
1804 /* M profile has no coprocessor registers */
1805 return;
1808 define_arm_cp_regs(cpu, cp_reginfo);
1809 if (arm_feature(env, ARM_FEATURE_V6)) {
1810 /* The ID registers all have impdef reset values */
1811 ARMCPRegInfo v6_idregs[] = {
1812 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1813 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1814 .resetvalue = cpu->id_pfr0 },
1815 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1816 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1817 .resetvalue = cpu->id_pfr1 },
1818 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1819 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1820 .resetvalue = cpu->id_dfr0 },
1821 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1822 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1823 .resetvalue = cpu->id_afr0 },
1824 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1825 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1826 .resetvalue = cpu->id_mmfr0 },
1827 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1828 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1829 .resetvalue = cpu->id_mmfr1 },
1830 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1831 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1832 .resetvalue = cpu->id_mmfr2 },
1833 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1834 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1835 .resetvalue = cpu->id_mmfr3 },
1836 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1837 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1838 .resetvalue = cpu->id_isar0 },
1839 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1840 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1841 .resetvalue = cpu->id_isar1 },
1842 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1843 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1844 .resetvalue = cpu->id_isar2 },
1845 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1846 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1847 .resetvalue = cpu->id_isar3 },
1848 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1849 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1850 .resetvalue = cpu->id_isar4 },
1851 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1852 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1853 .resetvalue = cpu->id_isar5 },
1854 /* 6..7 are as yet unallocated and must RAZ */
1855 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1856 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1857 .resetvalue = 0 },
1858 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1859 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1860 .resetvalue = 0 },
1861 REGINFO_SENTINEL
1863 define_arm_cp_regs(cpu, v6_idregs);
1864 define_arm_cp_regs(cpu, v6_cp_reginfo);
1865 } else {
1866 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1868 if (arm_feature(env, ARM_FEATURE_V6K)) {
1869 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1871 if (arm_feature(env, ARM_FEATURE_V7)) {
1872 /* v7 performance monitor control register: same implementor
1873 * field as main ID register, and we implement no event counters.
1875 ARMCPRegInfo pmcr = {
1876 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1877 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1878 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1879 .accessfn = pmreg_access, .writefn = pmcr_write,
1880 .raw_writefn = raw_write,
1882 ARMCPRegInfo clidr = {
1883 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
1884 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1885 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1887 define_one_arm_cp_reg(cpu, &pmcr);
1888 define_one_arm_cp_reg(cpu, &clidr);
1889 define_arm_cp_regs(cpu, v7_cp_reginfo);
1890 } else {
1891 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1893 if (arm_feature(env, ARM_FEATURE_V8)) {
1894 /* AArch64 ID registers, which all have impdef reset values */
1895 ARMCPRegInfo v8_idregs[] = {
1896 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
1897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
1898 .access = PL1_R, .type = ARM_CP_CONST,
1899 .resetvalue = cpu->id_aa64pfr0 },
1900 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
1901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
1902 .access = PL1_R, .type = ARM_CP_CONST,
1903 .resetvalue = cpu->id_aa64pfr1},
1904 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
1905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
1906 .access = PL1_R, .type = ARM_CP_CONST,
1907 .resetvalue = cpu->id_aa64dfr0 },
1908 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
1909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
1910 .access = PL1_R, .type = ARM_CP_CONST,
1911 .resetvalue = cpu->id_aa64dfr1 },
1912 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
1913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
1914 .access = PL1_R, .type = ARM_CP_CONST,
1915 .resetvalue = cpu->id_aa64afr0 },
1916 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
1917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
1918 .access = PL1_R, .type = ARM_CP_CONST,
1919 .resetvalue = cpu->id_aa64afr1 },
1920 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
1921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
1922 .access = PL1_R, .type = ARM_CP_CONST,
1923 .resetvalue = cpu->id_aa64isar0 },
1924 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
1925 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
1926 .access = PL1_R, .type = ARM_CP_CONST,
1927 .resetvalue = cpu->id_aa64isar1 },
1928 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
1929 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
1930 .access = PL1_R, .type = ARM_CP_CONST,
1931 .resetvalue = cpu->id_aa64mmfr0 },
1932 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
1933 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
1934 .access = PL1_R, .type = ARM_CP_CONST,
1935 .resetvalue = cpu->id_aa64mmfr1 },
1936 REGINFO_SENTINEL
1938 define_arm_cp_regs(cpu, v8_idregs);
1939 define_arm_cp_regs(cpu, v8_cp_reginfo);
1940 define_aarch64_debug_regs(cpu);
1942 if (arm_feature(env, ARM_FEATURE_MPU)) {
1943 /* These are the MPU registers prior to PMSAv6. Any new
1944 * PMSA core later than the ARM946 will require that we
1945 * implement the PMSAv6 or PMSAv7 registers, which are
1946 * completely different.
1948 assert(!arm_feature(env, ARM_FEATURE_V6));
1949 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1950 } else {
1951 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1953 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1954 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1956 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1957 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1959 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1960 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1962 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1963 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1965 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1966 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1968 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1969 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1971 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1972 define_arm_cp_regs(cpu, omap_cp_reginfo);
1974 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1975 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1977 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1978 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1980 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1981 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1983 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1984 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1986 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1987 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1988 * be read-only (ie write causes UNDEF exception).
1991 ARMCPRegInfo id_cp_reginfo[] = {
1992 /* Note that the MIDR isn't a simple constant register because
1993 * of the TI925 behaviour where writes to another register can
1994 * cause the MIDR value to change.
1996 * Unimplemented registers in the c15 0 0 0 space default to
1997 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1998 * and friends override accordingly.
2000 { .name = "MIDR",
2001 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2002 .access = PL1_R, .resetvalue = cpu->midr,
2003 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2004 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
2005 .type = ARM_CP_OVERRIDE },
2006 { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64,
2007 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0,
2008 .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST },
2009 { .name = "CTR",
2010 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
2011 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2012 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
2013 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
2014 .access = PL0_R, .accessfn = ctr_el0_access,
2015 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2016 { .name = "TCMTR",
2017 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
2018 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2019 { .name = "TLBTR",
2020 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
2021 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2022 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2023 { .name = "DUMMY",
2024 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
2025 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2026 { .name = "DUMMY",
2027 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
2028 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2029 { .name = "DUMMY",
2030 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
2031 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2032 { .name = "DUMMY",
2033 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
2034 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2035 { .name = "DUMMY",
2036 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
2037 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2038 REGINFO_SENTINEL
2040 ARMCPRegInfo crn0_wi_reginfo = {
2041 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
2042 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
2043 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
2045 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
2046 arm_feature(env, ARM_FEATURE_STRONGARM)) {
2047 ARMCPRegInfo *r;
2048 /* Register the blanket "writes ignored" value first to cover the
2049 * whole space. Then update the specific ID registers to allow write
2050 * access, so that they ignore writes rather than causing them to
2051 * UNDEF.
2053 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
2054 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
2055 r->access = PL1_RW;
2058 define_arm_cp_regs(cpu, id_cp_reginfo);
2061 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
2062 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
2065 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
2066 ARMCPRegInfo auxcr = {
2067 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
2068 .access = PL1_RW, .type = ARM_CP_CONST,
2069 .resetvalue = cpu->reset_auxcr
2071 define_one_arm_cp_reg(cpu, &auxcr);
2074 if (arm_feature(env, ARM_FEATURE_CBAR)) {
2075 ARMCPRegInfo cbar = {
2076 .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2077 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
2078 .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
2080 define_one_arm_cp_reg(cpu, &cbar);
2083 /* Generic registers whose values depend on the implementation */
2085 ARMCPRegInfo sctlr = {
2086 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
2087 .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2088 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2089 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
2090 .raw_writefn = raw_write,
2092 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2093 /* Normally we would always end the TB on an SCTLR write, but Linux
2094 * arch/arm/mach-pxa/sleep.S expects two instructions following
2095 * an MMU enable to execute from cache. Imitate this behaviour.
2097 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
2099 define_one_arm_cp_reg(cpu, &sctlr);
2103 ARMCPU *cpu_arm_init(const char *cpu_model)
2105 ARMCPU *cpu;
2106 ObjectClass *oc;
2108 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
2109 if (!oc) {
2110 return NULL;
2112 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
2114 /* TODO this should be set centrally, once possible */
2115 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
2117 return cpu;
2120 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
2122 CPUState *cs = CPU(cpu);
2123 CPUARMState *env = &cpu->env;
2125 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2126 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
2127 aarch64_fpu_gdb_set_reg,
2128 34, "aarch64-fpu.xml", 0);
2129 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2130 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2131 51, "arm-neon.xml", 0);
2132 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2133 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2134 35, "arm-vfp3.xml", 0);
2135 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2136 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2137 19, "arm-vfp.xml", 0);
2141 /* Sort alphabetically by type name, except for "any". */
2142 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
2144 ObjectClass *class_a = (ObjectClass *)a;
2145 ObjectClass *class_b = (ObjectClass *)b;
2146 const char *name_a, *name_b;
2148 name_a = object_class_get_name(class_a);
2149 name_b = object_class_get_name(class_b);
2150 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2151 return 1;
2152 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2153 return -1;
2154 } else {
2155 return strcmp(name_a, name_b);
2159 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
2161 ObjectClass *oc = data;
2162 CPUListState *s = user_data;
2163 const char *typename;
2164 char *name;
2166 typename = object_class_get_name(oc);
2167 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2168 (*s->cpu_fprintf)(s->file, " %s\n",
2169 name);
2170 g_free(name);
2173 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
2175 CPUListState s = {
2176 .file = f,
2177 .cpu_fprintf = cpu_fprintf,
2179 GSList *list;
2181 list = object_class_get_list(TYPE_ARM_CPU, false);
2182 list = g_slist_sort(list, arm_cpu_list_compare);
2183 (*cpu_fprintf)(f, "Available CPUs:\n");
2184 g_slist_foreach(list, arm_cpu_list_entry, &s);
2185 g_slist_free(list);
2186 #ifdef CONFIG_KVM
2187 /* The 'host' CPU type is dynamically registered only if KVM is
2188 * enabled, so we have to special-case it here:
2190 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
2191 #endif
2194 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
2196 ObjectClass *oc = data;
2197 CpuDefinitionInfoList **cpu_list = user_data;
2198 CpuDefinitionInfoList *entry;
2199 CpuDefinitionInfo *info;
2200 const char *typename;
2202 typename = object_class_get_name(oc);
2203 info = g_malloc0(sizeof(*info));
2204 info->name = g_strndup(typename,
2205 strlen(typename) - strlen("-" TYPE_ARM_CPU));
2207 entry = g_malloc0(sizeof(*entry));
2208 entry->value = info;
2209 entry->next = *cpu_list;
2210 *cpu_list = entry;
2213 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
2215 CpuDefinitionInfoList *cpu_list = NULL;
2216 GSList *list;
2218 list = object_class_get_list(TYPE_ARM_CPU, false);
2219 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
2220 g_slist_free(list);
2222 return cpu_list;
2225 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2226 void *opaque, int state,
2227 int crm, int opc1, int opc2)
2229 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2230 * add a single reginfo struct to the hash table.
2232 uint32_t *key = g_new(uint32_t, 1);
2233 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
2234 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2235 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
2236 /* The AArch32 view of a shared register sees the lower 32 bits
2237 * of a 64 bit backing field. It is not migratable as the AArch64
2238 * view handles that. AArch64 also handles reset.
2239 * We assume it is a cp15 register.
2241 r2->cp = 15;
2242 r2->type |= ARM_CP_NO_MIGRATE;
2243 r2->resetfn = arm_cp_reset_ignore;
2244 #ifdef HOST_WORDS_BIGENDIAN
2245 if (r2->fieldoffset) {
2246 r2->fieldoffset += sizeof(uint32_t);
2248 #endif
2250 if (state == ARM_CP_STATE_AA64) {
2251 /* To allow abbreviation of ARMCPRegInfo
2252 * definitions, we treat cp == 0 as equivalent to
2253 * the value for "standard guest-visible sysreg".
2255 if (r->cp == 0) {
2256 r2->cp = CP_REG_ARM64_SYSREG_CP;
2258 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
2259 r2->opc0, opc1, opc2);
2260 } else {
2261 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
2263 if (opaque) {
2264 r2->opaque = opaque;
2266 /* reginfo passed to helpers is correct for the actual access,
2267 * and is never ARM_CP_STATE_BOTH:
2269 r2->state = state;
2270 /* Make sure reginfo passed to helpers for wildcarded regs
2271 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2273 r2->crm = crm;
2274 r2->opc1 = opc1;
2275 r2->opc2 = opc2;
2276 /* By convention, for wildcarded registers only the first
2277 * entry is used for migration; the others are marked as
2278 * NO_MIGRATE so we don't try to transfer the register
2279 * multiple times. Special registers (ie NOP/WFI) are
2280 * never migratable.
2282 if ((r->type & ARM_CP_SPECIAL) ||
2283 ((r->crm == CP_ANY) && crm != 0) ||
2284 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2285 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2286 r2->type |= ARM_CP_NO_MIGRATE;
2289 /* Overriding of an existing definition must be explicitly
2290 * requested.
2292 if (!(r->type & ARM_CP_OVERRIDE)) {
2293 ARMCPRegInfo *oldreg;
2294 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2295 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2296 fprintf(stderr, "Register redefined: cp=%d %d bit "
2297 "crn=%d crm=%d opc1=%d opc2=%d, "
2298 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2299 r2->crn, r2->crm, r2->opc1, r2->opc2,
2300 oldreg->name, r2->name);
2301 g_assert_not_reached();
2304 g_hash_table_insert(cpu->cp_regs, key, r2);
2308 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2309 const ARMCPRegInfo *r, void *opaque)
2311 /* Define implementations of coprocessor registers.
2312 * We store these in a hashtable because typically
2313 * there are less than 150 registers in a space which
2314 * is 16*16*16*8*8 = 262144 in size.
2315 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2316 * If a register is defined twice then the second definition is
2317 * used, so this can be used to define some generic registers and
2318 * then override them with implementation specific variations.
2319 * At least one of the original and the second definition should
2320 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2321 * against accidental use.
2323 * The state field defines whether the register is to be
2324 * visible in the AArch32 or AArch64 execution state. If the
2325 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2326 * reginfo structure for the AArch32 view, which sees the lower
2327 * 32 bits of the 64 bit register.
2329 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2330 * be wildcarded. AArch64 registers are always considered to be 64
2331 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2332 * the register, if any.
2334 int crm, opc1, opc2, state;
2335 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
2336 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
2337 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
2338 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
2339 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
2340 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
2341 /* 64 bit registers have only CRm and Opc1 fields */
2342 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2343 /* op0 only exists in the AArch64 encodings */
2344 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
2345 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2346 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
2347 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2348 * encodes a minimum access level for the register. We roll this
2349 * runtime check into our general permission check code, so check
2350 * here that the reginfo's specified permissions are strict enough
2351 * to encompass the generic architectural permission check.
2353 if (r->state != ARM_CP_STATE_AA32) {
2354 int mask = 0;
2355 switch (r->opc1) {
2356 case 0: case 1: case 2:
2357 /* min_EL EL1 */
2358 mask = PL1_RW;
2359 break;
2360 case 3:
2361 /* min_EL EL0 */
2362 mask = PL0_RW;
2363 break;
2364 case 4:
2365 /* min_EL EL2 */
2366 mask = PL2_RW;
2367 break;
2368 case 5:
2369 /* unallocated encoding, so not possible */
2370 assert(false);
2371 break;
2372 case 6:
2373 /* min_EL EL3 */
2374 mask = PL3_RW;
2375 break;
2376 case 7:
2377 /* min_EL EL1, secure mode only (we don't check the latter) */
2378 mask = PL1_RW;
2379 break;
2380 default:
2381 /* broken reginfo with out-of-range opc1 */
2382 assert(false);
2383 break;
2385 /* assert our permissions are not too lax (stricter is fine) */
2386 assert((r->access & ~mask) == 0);
2389 /* Check that the register definition has enough info to handle
2390 * reads and writes if they are permitted.
2392 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
2393 if (r->access & PL3_R) {
2394 assert(r->fieldoffset || r->readfn);
2396 if (r->access & PL3_W) {
2397 assert(r->fieldoffset || r->writefn);
2400 /* Bad type field probably means missing sentinel at end of reg list */
2401 assert(cptype_valid(r->type));
2402 for (crm = crmmin; crm <= crmmax; crm++) {
2403 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
2404 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2405 for (state = ARM_CP_STATE_AA32;
2406 state <= ARM_CP_STATE_AA64; state++) {
2407 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
2408 continue;
2410 add_cpreg_to_hashtable(cpu, r, opaque, state,
2411 crm, opc1, opc2);
2418 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2419 const ARMCPRegInfo *regs, void *opaque)
2421 /* Define a whole list of registers */
2422 const ARMCPRegInfo *r;
2423 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2424 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2428 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2430 return g_hash_table_lookup(cpregs, &encoded_cp);
2433 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2434 uint64_t value)
2436 /* Helper coprocessor write function for write-ignore registers */
2439 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2441 /* Helper coprocessor write function for read-as-zero registers */
2442 return 0;
2445 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
2447 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2450 static int bad_mode_switch(CPUARMState *env, int mode)
2452 /* Return true if it is not valid for us to switch to
2453 * this CPU mode (ie all the UNPREDICTABLE cases in
2454 * the ARM ARM CPSRWriteByInstr pseudocode).
2456 switch (mode) {
2457 case ARM_CPU_MODE_USR:
2458 case ARM_CPU_MODE_SYS:
2459 case ARM_CPU_MODE_SVC:
2460 case ARM_CPU_MODE_ABT:
2461 case ARM_CPU_MODE_UND:
2462 case ARM_CPU_MODE_IRQ:
2463 case ARM_CPU_MODE_FIQ:
2464 return 0;
2465 default:
2466 return 1;
2470 uint32_t cpsr_read(CPUARMState *env)
2472 int ZF;
2473 ZF = (env->ZF == 0);
2474 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2475 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2476 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2477 | ((env->condexec_bits & 0xfc) << 8)
2478 | (env->GE << 16) | env->daif;
2481 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2483 if (mask & CPSR_NZCV) {
2484 env->ZF = (~val) & CPSR_Z;
2485 env->NF = val;
2486 env->CF = (val >> 29) & 1;
2487 env->VF = (val << 3) & 0x80000000;
2489 if (mask & CPSR_Q)
2490 env->QF = ((val & CPSR_Q) != 0);
2491 if (mask & CPSR_T)
2492 env->thumb = ((val & CPSR_T) != 0);
2493 if (mask & CPSR_IT_0_1) {
2494 env->condexec_bits &= ~3;
2495 env->condexec_bits |= (val >> 25) & 3;
2497 if (mask & CPSR_IT_2_7) {
2498 env->condexec_bits &= 3;
2499 env->condexec_bits |= (val >> 8) & 0xfc;
2501 if (mask & CPSR_GE) {
2502 env->GE = (val >> 16) & 0xf;
2505 env->daif &= ~(CPSR_AIF & mask);
2506 env->daif |= val & CPSR_AIF & mask;
2508 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2509 if (bad_mode_switch(env, val & CPSR_M)) {
2510 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2511 * We choose to ignore the attempt and leave the CPSR M field
2512 * untouched.
2514 mask &= ~CPSR_M;
2515 } else {
2516 switch_mode(env, val & CPSR_M);
2519 mask &= ~CACHED_CPSR_BITS;
2520 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2523 /* Sign/zero extend */
2524 uint32_t HELPER(sxtb16)(uint32_t x)
2526 uint32_t res;
2527 res = (uint16_t)(int8_t)x;
2528 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2529 return res;
2532 uint32_t HELPER(uxtb16)(uint32_t x)
2534 uint32_t res;
2535 res = (uint16_t)(uint8_t)x;
2536 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2537 return res;
2540 uint32_t HELPER(clz)(uint32_t x)
2542 return clz32(x);
2545 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2547 if (den == 0)
2548 return 0;
2549 if (num == INT_MIN && den == -1)
2550 return INT_MIN;
2551 return num / den;
2554 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2556 if (den == 0)
2557 return 0;
2558 return num / den;
2561 uint32_t HELPER(rbit)(uint32_t x)
2563 x = ((x & 0xff000000) >> 24)
2564 | ((x & 0x00ff0000) >> 8)
2565 | ((x & 0x0000ff00) << 8)
2566 | ((x & 0x000000ff) << 24);
2567 x = ((x & 0xf0f0f0f0) >> 4)
2568 | ((x & 0x0f0f0f0f) << 4);
2569 x = ((x & 0x88888888) >> 3)
2570 | ((x & 0x44444444) >> 1)
2571 | ((x & 0x22222222) << 1)
2572 | ((x & 0x11111111) << 3);
2573 return x;
2576 #if defined(CONFIG_USER_ONLY)
2578 void arm_cpu_do_interrupt(CPUState *cs)
2580 ARMCPU *cpu = ARM_CPU(cs);
2581 CPUARMState *env = &cpu->env;
2583 env->exception_index = -1;
2586 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2587 int mmu_idx)
2589 if (rw == 2) {
2590 env->exception_index = EXCP_PREFETCH_ABORT;
2591 env->cp15.c6_insn = address;
2592 } else {
2593 env->exception_index = EXCP_DATA_ABORT;
2594 env->cp15.c6_data = address;
2596 return 1;
2599 /* These should probably raise undefined insn exceptions. */
2600 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2602 cpu_abort(env, "v7m_mrs %d\n", reg);
2605 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2607 cpu_abort(env, "v7m_mrs %d\n", reg);
2608 return 0;
2611 void switch_mode(CPUARMState *env, int mode)
2613 if (mode != ARM_CPU_MODE_USR)
2614 cpu_abort(env, "Tried to switch out of user mode\n");
2617 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2619 cpu_abort(env, "banked r13 write\n");
2622 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2624 cpu_abort(env, "banked r13 read\n");
2625 return 0;
2628 #else
2630 /* Map CPU modes onto saved register banks. */
2631 int bank_number(int mode)
2633 switch (mode) {
2634 case ARM_CPU_MODE_USR:
2635 case ARM_CPU_MODE_SYS:
2636 return 0;
2637 case ARM_CPU_MODE_SVC:
2638 return 1;
2639 case ARM_CPU_MODE_ABT:
2640 return 2;
2641 case ARM_CPU_MODE_UND:
2642 return 3;
2643 case ARM_CPU_MODE_IRQ:
2644 return 4;
2645 case ARM_CPU_MODE_FIQ:
2646 return 5;
2648 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2651 void switch_mode(CPUARMState *env, int mode)
2653 int old_mode;
2654 int i;
2656 old_mode = env->uncached_cpsr & CPSR_M;
2657 if (mode == old_mode)
2658 return;
2660 if (old_mode == ARM_CPU_MODE_FIQ) {
2661 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2662 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2663 } else if (mode == ARM_CPU_MODE_FIQ) {
2664 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2665 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2668 i = bank_number(old_mode);
2669 env->banked_r13[i] = env->regs[13];
2670 env->banked_r14[i] = env->regs[14];
2671 env->banked_spsr[i] = env->spsr;
2673 i = bank_number(mode);
2674 env->regs[13] = env->banked_r13[i];
2675 env->regs[14] = env->banked_r14[i];
2676 env->spsr = env->banked_spsr[i];
2679 static void v7m_push(CPUARMState *env, uint32_t val)
2681 CPUState *cs = ENV_GET_CPU(env);
2682 env->regs[13] -= 4;
2683 stl_phys(cs->as, env->regs[13], val);
2686 static uint32_t v7m_pop(CPUARMState *env)
2688 CPUState *cs = ENV_GET_CPU(env);
2689 uint32_t val;
2690 val = ldl_phys(cs->as, env->regs[13]);
2691 env->regs[13] += 4;
2692 return val;
2695 /* Switch to V7M main or process stack pointer. */
2696 static void switch_v7m_sp(CPUARMState *env, int process)
2698 uint32_t tmp;
2699 if (env->v7m.current_sp != process) {
2700 tmp = env->v7m.other_sp;
2701 env->v7m.other_sp = env->regs[13];
2702 env->regs[13] = tmp;
2703 env->v7m.current_sp = process;
2707 static void do_v7m_exception_exit(CPUARMState *env)
2709 uint32_t type;
2710 uint32_t xpsr;
2712 type = env->regs[15];
2713 if (env->v7m.exception != 0)
2714 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2716 /* Switch to the target stack. */
2717 switch_v7m_sp(env, (type & 4) != 0);
2718 /* Pop registers. */
2719 env->regs[0] = v7m_pop(env);
2720 env->regs[1] = v7m_pop(env);
2721 env->regs[2] = v7m_pop(env);
2722 env->regs[3] = v7m_pop(env);
2723 env->regs[12] = v7m_pop(env);
2724 env->regs[14] = v7m_pop(env);
2725 env->regs[15] = v7m_pop(env);
2726 xpsr = v7m_pop(env);
2727 xpsr_write(env, xpsr, 0xfffffdff);
2728 /* Undo stack alignment. */
2729 if (xpsr & 0x200)
2730 env->regs[13] |= 4;
2731 /* ??? The exception return type specifies Thread/Handler mode. However
2732 this is also implied by the xPSR value. Not sure what to do
2733 if there is a mismatch. */
2734 /* ??? Likewise for mismatches between the CONTROL register and the stack
2735 pointer. */
2738 /* Exception names for debug logging; note that not all of these
2739 * precisely correspond to architectural exceptions.
2741 static const char * const excnames[] = {
2742 [EXCP_UDEF] = "Undefined Instruction",
2743 [EXCP_SWI] = "SVC",
2744 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2745 [EXCP_DATA_ABORT] = "Data Abort",
2746 [EXCP_IRQ] = "IRQ",
2747 [EXCP_FIQ] = "FIQ",
2748 [EXCP_BKPT] = "Breakpoint",
2749 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2750 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2751 [EXCP_STREX] = "QEMU intercept of STREX",
2754 static inline void arm_log_exception(int idx)
2756 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2757 const char *exc = NULL;
2759 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2760 exc = excnames[idx];
2762 if (!exc) {
2763 exc = "unknown";
2765 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2769 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2771 ARMCPU *cpu = ARM_CPU(cs);
2772 CPUARMState *env = &cpu->env;
2773 uint32_t xpsr = xpsr_read(env);
2774 uint32_t lr;
2775 uint32_t addr;
2777 arm_log_exception(env->exception_index);
2779 lr = 0xfffffff1;
2780 if (env->v7m.current_sp)
2781 lr |= 4;
2782 if (env->v7m.exception == 0)
2783 lr |= 8;
2785 /* For exceptions we just mark as pending on the NVIC, and let that
2786 handle it. */
2787 /* TODO: Need to escalate if the current priority is higher than the
2788 one we're raising. */
2789 switch (env->exception_index) {
2790 case EXCP_UDEF:
2791 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2792 return;
2793 case EXCP_SWI:
2794 /* The PC already points to the next instruction. */
2795 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2796 return;
2797 case EXCP_PREFETCH_ABORT:
2798 case EXCP_DATA_ABORT:
2799 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2800 return;
2801 case EXCP_BKPT:
2802 if (semihosting_enabled) {
2803 int nr;
2804 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2805 if (nr == 0xab) {
2806 env->regs[15] += 2;
2807 env->regs[0] = do_arm_semihosting(env);
2808 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2809 return;
2812 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2813 return;
2814 case EXCP_IRQ:
2815 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2816 break;
2817 case EXCP_EXCEPTION_EXIT:
2818 do_v7m_exception_exit(env);
2819 return;
2820 default:
2821 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2822 return; /* Never happens. Keep compiler happy. */
2825 /* Align stack pointer. */
2826 /* ??? Should only do this if Configuration Control Register
2827 STACKALIGN bit is set. */
2828 if (env->regs[13] & 4) {
2829 env->regs[13] -= 4;
2830 xpsr |= 0x200;
2832 /* Switch to the handler mode. */
2833 v7m_push(env, xpsr);
2834 v7m_push(env, env->regs[15]);
2835 v7m_push(env, env->regs[14]);
2836 v7m_push(env, env->regs[12]);
2837 v7m_push(env, env->regs[3]);
2838 v7m_push(env, env->regs[2]);
2839 v7m_push(env, env->regs[1]);
2840 v7m_push(env, env->regs[0]);
2841 switch_v7m_sp(env, 0);
2842 /* Clear IT bits */
2843 env->condexec_bits = 0;
2844 env->regs[14] = lr;
2845 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
2846 env->regs[15] = addr & 0xfffffffe;
2847 env->thumb = addr & 1;
2850 /* Handle a CPU exception. */
2851 void arm_cpu_do_interrupt(CPUState *cs)
2853 ARMCPU *cpu = ARM_CPU(cs);
2854 CPUARMState *env = &cpu->env;
2855 uint32_t addr;
2856 uint32_t mask;
2857 int new_mode;
2858 uint32_t offset;
2860 assert(!IS_M(env));
2862 arm_log_exception(env->exception_index);
2864 /* TODO: Vectored interrupt controller. */
2865 switch (env->exception_index) {
2866 case EXCP_UDEF:
2867 new_mode = ARM_CPU_MODE_UND;
2868 addr = 0x04;
2869 mask = CPSR_I;
2870 if (env->thumb)
2871 offset = 2;
2872 else
2873 offset = 4;
2874 break;
2875 case EXCP_SWI:
2876 if (semihosting_enabled) {
2877 /* Check for semihosting interrupt. */
2878 if (env->thumb) {
2879 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2880 & 0xff;
2881 } else {
2882 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2883 & 0xffffff;
2885 /* Only intercept calls from privileged modes, to provide some
2886 semblance of security. */
2887 if (((mask == 0x123456 && !env->thumb)
2888 || (mask == 0xab && env->thumb))
2889 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2890 env->regs[0] = do_arm_semihosting(env);
2891 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2892 return;
2895 new_mode = ARM_CPU_MODE_SVC;
2896 addr = 0x08;
2897 mask = CPSR_I;
2898 /* The PC already points to the next instruction. */
2899 offset = 0;
2900 break;
2901 case EXCP_BKPT:
2902 /* See if this is a semihosting syscall. */
2903 if (env->thumb && semihosting_enabled) {
2904 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2905 if (mask == 0xab
2906 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2907 env->regs[15] += 2;
2908 env->regs[0] = do_arm_semihosting(env);
2909 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2910 return;
2913 env->cp15.c5_insn = 2;
2914 /* Fall through to prefetch abort. */
2915 case EXCP_PREFETCH_ABORT:
2916 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
2917 env->cp15.c5_insn, env->cp15.c6_insn);
2918 new_mode = ARM_CPU_MODE_ABT;
2919 addr = 0x0c;
2920 mask = CPSR_A | CPSR_I;
2921 offset = 4;
2922 break;
2923 case EXCP_DATA_ABORT:
2924 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
2925 env->cp15.c5_data, env->cp15.c6_data);
2926 new_mode = ARM_CPU_MODE_ABT;
2927 addr = 0x10;
2928 mask = CPSR_A | CPSR_I;
2929 offset = 8;
2930 break;
2931 case EXCP_IRQ:
2932 new_mode = ARM_CPU_MODE_IRQ;
2933 addr = 0x18;
2934 /* Disable IRQ and imprecise data aborts. */
2935 mask = CPSR_A | CPSR_I;
2936 offset = 4;
2937 break;
2938 case EXCP_FIQ:
2939 new_mode = ARM_CPU_MODE_FIQ;
2940 addr = 0x1c;
2941 /* Disable FIQ, IRQ and imprecise data aborts. */
2942 mask = CPSR_A | CPSR_I | CPSR_F;
2943 offset = 4;
2944 break;
2945 default:
2946 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2947 return; /* Never happens. Keep compiler happy. */
2949 /* High vectors. */
2950 if (env->cp15.c1_sys & SCTLR_V) {
2951 /* when enabled, base address cannot be remapped. */
2952 addr += 0xffff0000;
2953 } else {
2954 /* ARM v7 architectures provide a vector base address register to remap
2955 * the interrupt vector table.
2956 * This register is only followed in non-monitor mode, and has a secure
2957 * and un-secure copy. Since the cpu is always in a un-secure operation
2958 * and is never in monitor mode this feature is always active.
2959 * Note: only bits 31:5 are valid.
2961 addr += env->cp15.c12_vbar;
2963 switch_mode (env, new_mode);
2964 env->spsr = cpsr_read(env);
2965 /* Clear IT bits. */
2966 env->condexec_bits = 0;
2967 /* Switch to the new mode, and to the correct instruction set. */
2968 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2969 env->daif |= mask;
2970 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2971 * and we should just guard the thumb mode on V4 */
2972 if (arm_feature(env, ARM_FEATURE_V4T)) {
2973 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
2975 env->regs[14] = env->regs[15] + offset;
2976 env->regs[15] = addr;
2977 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2980 /* Check section/page access permissions.
2981 Returns the page protection flags, or zero if the access is not
2982 permitted. */
2983 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2984 int access_type, int is_user)
2986 int prot_ro;
2988 if (domain_prot == 3) {
2989 return PAGE_READ | PAGE_WRITE;
2992 if (access_type == 1)
2993 prot_ro = 0;
2994 else
2995 prot_ro = PAGE_READ;
2997 switch (ap) {
2998 case 0:
2999 if (arm_feature(env, ARM_FEATURE_V7)) {
3000 return 0;
3002 if (access_type == 1)
3003 return 0;
3004 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
3005 case SCTLR_S:
3006 return is_user ? 0 : PAGE_READ;
3007 case SCTLR_R:
3008 return PAGE_READ;
3009 default:
3010 return 0;
3012 case 1:
3013 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
3014 case 2:
3015 if (is_user)
3016 return prot_ro;
3017 else
3018 return PAGE_READ | PAGE_WRITE;
3019 case 3:
3020 return PAGE_READ | PAGE_WRITE;
3021 case 4: /* Reserved. */
3022 return 0;
3023 case 5:
3024 return is_user ? 0 : prot_ro;
3025 case 6:
3026 return prot_ro;
3027 case 7:
3028 if (!arm_feature (env, ARM_FEATURE_V6K))
3029 return 0;
3030 return prot_ro;
3031 default:
3032 abort();
3036 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
3038 uint32_t table;
3040 if (address & env->cp15.c2_mask)
3041 table = env->cp15.ttbr1_el1 & 0xffffc000;
3042 else
3043 table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3045 table |= (address >> 18) & 0x3ffc;
3046 return table;
3049 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
3050 int is_user, hwaddr *phys_ptr,
3051 int *prot, target_ulong *page_size)
3053 CPUState *cs = ENV_GET_CPU(env);
3054 int code;
3055 uint32_t table;
3056 uint32_t desc;
3057 int type;
3058 int ap;
3059 int domain;
3060 int domain_prot;
3061 hwaddr phys_addr;
3063 /* Pagetable walk. */
3064 /* Lookup l1 descriptor. */
3065 table = get_level1_table_address(env, address);
3066 desc = ldl_phys(cs->as, table);
3067 type = (desc & 3);
3068 domain = (desc >> 5) & 0x0f;
3069 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3070 if (type == 0) {
3071 /* Section translation fault. */
3072 code = 5;
3073 goto do_fault;
3075 if (domain_prot == 0 || domain_prot == 2) {
3076 if (type == 2)
3077 code = 9; /* Section domain fault. */
3078 else
3079 code = 11; /* Page domain fault. */
3080 goto do_fault;
3082 if (type == 2) {
3083 /* 1Mb section. */
3084 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3085 ap = (desc >> 10) & 3;
3086 code = 13;
3087 *page_size = 1024 * 1024;
3088 } else {
3089 /* Lookup l2 entry. */
3090 if (type == 1) {
3091 /* Coarse pagetable. */
3092 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3093 } else {
3094 /* Fine pagetable. */
3095 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
3097 desc = ldl_phys(cs->as, table);
3098 switch (desc & 3) {
3099 case 0: /* Page translation fault. */
3100 code = 7;
3101 goto do_fault;
3102 case 1: /* 64k page. */
3103 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3104 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
3105 *page_size = 0x10000;
3106 break;
3107 case 2: /* 4k page. */
3108 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3109 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
3110 *page_size = 0x1000;
3111 break;
3112 case 3: /* 1k page. */
3113 if (type == 1) {
3114 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3115 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3116 } else {
3117 /* Page translation fault. */
3118 code = 7;
3119 goto do_fault;
3121 } else {
3122 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
3124 ap = (desc >> 4) & 3;
3125 *page_size = 0x400;
3126 break;
3127 default:
3128 /* Never happens, but compiler isn't smart enough to tell. */
3129 abort();
3131 code = 15;
3133 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3134 if (!*prot) {
3135 /* Access permission fault. */
3136 goto do_fault;
3138 *prot |= PAGE_EXEC;
3139 *phys_ptr = phys_addr;
3140 return 0;
3141 do_fault:
3142 return code | (domain << 4);
3145 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
3146 int is_user, hwaddr *phys_ptr,
3147 int *prot, target_ulong *page_size)
3149 CPUState *cs = ENV_GET_CPU(env);
3150 int code;
3151 uint32_t table;
3152 uint32_t desc;
3153 uint32_t xn;
3154 uint32_t pxn = 0;
3155 int type;
3156 int ap;
3157 int domain = 0;
3158 int domain_prot;
3159 hwaddr phys_addr;
3161 /* Pagetable walk. */
3162 /* Lookup l1 descriptor. */
3163 table = get_level1_table_address(env, address);
3164 desc = ldl_phys(cs->as, table);
3165 type = (desc & 3);
3166 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
3167 /* Section translation fault, or attempt to use the encoding
3168 * which is Reserved on implementations without PXN.
3170 code = 5;
3171 goto do_fault;
3173 if ((type == 1) || !(desc & (1 << 18))) {
3174 /* Page or Section. */
3175 domain = (desc >> 5) & 0x0f;
3177 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3178 if (domain_prot == 0 || domain_prot == 2) {
3179 if (type != 1) {
3180 code = 9; /* Section domain fault. */
3181 } else {
3182 code = 11; /* Page domain fault. */
3184 goto do_fault;
3186 if (type != 1) {
3187 if (desc & (1 << 18)) {
3188 /* Supersection. */
3189 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
3190 *page_size = 0x1000000;
3191 } else {
3192 /* Section. */
3193 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3194 *page_size = 0x100000;
3196 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
3197 xn = desc & (1 << 4);
3198 pxn = desc & 1;
3199 code = 13;
3200 } else {
3201 if (arm_feature(env, ARM_FEATURE_PXN)) {
3202 pxn = (desc >> 2) & 1;
3204 /* Lookup l2 entry. */
3205 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3206 desc = ldl_phys(cs->as, table);
3207 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
3208 switch (desc & 3) {
3209 case 0: /* Page translation fault. */
3210 code = 7;
3211 goto do_fault;
3212 case 1: /* 64k page. */
3213 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3214 xn = desc & (1 << 15);
3215 *page_size = 0x10000;
3216 break;
3217 case 2: case 3: /* 4k page. */
3218 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3219 xn = desc & 1;
3220 *page_size = 0x1000;
3221 break;
3222 default:
3223 /* Never happens, but compiler isn't smart enough to tell. */
3224 abort();
3226 code = 15;
3228 if (domain_prot == 3) {
3229 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3230 } else {
3231 if (pxn && !is_user) {
3232 xn = 1;
3234 if (xn && access_type == 2)
3235 goto do_fault;
3237 /* The simplified model uses AP[0] as an access control bit. */
3238 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3239 /* Access flag fault. */
3240 code = (code == 15) ? 6 : 3;
3241 goto do_fault;
3243 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3244 if (!*prot) {
3245 /* Access permission fault. */
3246 goto do_fault;
3248 if (!xn) {
3249 *prot |= PAGE_EXEC;
3252 *phys_ptr = phys_addr;
3253 return 0;
3254 do_fault:
3255 return code | (domain << 4);
3258 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3259 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3261 typedef enum {
3262 translation_fault = 1,
3263 access_fault = 2,
3264 permission_fault = 3,
3265 } MMUFaultType;
3267 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
3268 int access_type, int is_user,
3269 hwaddr *phys_ptr, int *prot,
3270 target_ulong *page_size_ptr)
3272 CPUState *cs = ENV_GET_CPU(env);
3273 /* Read an LPAE long-descriptor translation table. */
3274 MMUFaultType fault_type = translation_fault;
3275 uint32_t level = 1;
3276 uint32_t epd;
3277 uint32_t tsz;
3278 uint64_t ttbr;
3279 int ttbr_select;
3280 int n;
3281 hwaddr descaddr;
3282 uint32_t tableattrs;
3283 target_ulong page_size;
3284 uint32_t attrs;
3286 /* Determine whether this address is in the region controlled by
3287 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3288 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3289 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3291 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
3292 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
3293 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
3294 /* there is a ttbr0 region and we are in it (high bits all zero) */
3295 ttbr_select = 0;
3296 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
3297 /* there is a ttbr1 region and we are in it (high bits all one) */
3298 ttbr_select = 1;
3299 } else if (!t0sz) {
3300 /* ttbr0 region is "everything not in the ttbr1 region" */
3301 ttbr_select = 0;
3302 } else if (!t1sz) {
3303 /* ttbr1 region is "everything not in the ttbr0 region" */
3304 ttbr_select = 1;
3305 } else {
3306 /* in the gap between the two regions, this is a Translation fault */
3307 fault_type = translation_fault;
3308 goto do_fault;
3311 /* Note that QEMU ignores shareability and cacheability attributes,
3312 * so we don't need to do anything with the SH, ORGN, IRGN fields
3313 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3314 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3315 * implement any ASID-like capability so we can ignore it (instead
3316 * we will always flush the TLB any time the ASID is changed).
3318 if (ttbr_select == 0) {
3319 ttbr = env->cp15.ttbr0_el1;
3320 epd = extract32(env->cp15.c2_control, 7, 1);
3321 tsz = t0sz;
3322 } else {
3323 ttbr = env->cp15.ttbr1_el1;
3324 epd = extract32(env->cp15.c2_control, 23, 1);
3325 tsz = t1sz;
3328 if (epd) {
3329 /* Translation table walk disabled => Translation fault on TLB miss */
3330 goto do_fault;
3333 /* If the region is small enough we will skip straight to a 2nd level
3334 * lookup. This affects the number of bits of the address used in
3335 * combination with the TTBR to find the first descriptor. ('n' here
3336 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
3337 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
3339 if (tsz > 1) {
3340 level = 2;
3341 n = 14 - tsz;
3342 } else {
3343 n = 5 - tsz;
3346 /* Clear the vaddr bits which aren't part of the within-region address,
3347 * so that we don't have to special case things when calculating the
3348 * first descriptor address.
3350 address &= (0xffffffffU >> tsz);
3352 /* Now we can extract the actual base address from the TTBR */
3353 descaddr = extract64(ttbr, 0, 40);
3354 descaddr &= ~((1ULL << n) - 1);
3356 tableattrs = 0;
3357 for (;;) {
3358 uint64_t descriptor;
3360 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
3361 descriptor = ldq_phys(cs->as, descaddr);
3362 if (!(descriptor & 1) ||
3363 (!(descriptor & 2) && (level == 3))) {
3364 /* Invalid, or the Reserved level 3 encoding */
3365 goto do_fault;
3367 descaddr = descriptor & 0xfffffff000ULL;
3369 if ((descriptor & 2) && (level < 3)) {
3370 /* Table entry. The top five bits are attributes which may
3371 * propagate down through lower levels of the table (and
3372 * which are all arranged so that 0 means "no effect", so
3373 * we can gather them up by ORing in the bits at each level).
3375 tableattrs |= extract64(descriptor, 59, 5);
3376 level++;
3377 continue;
3379 /* Block entry at level 1 or 2, or page entry at level 3.
3380 * These are basically the same thing, although the number
3381 * of bits we pull in from the vaddr varies.
3383 page_size = (1 << (39 - (9 * level)));
3384 descaddr |= (address & (page_size - 1));
3385 /* Extract attributes from the descriptor and merge with table attrs */
3386 attrs = extract64(descriptor, 2, 10)
3387 | (extract64(descriptor, 52, 12) << 10);
3388 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3389 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
3390 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3391 * means "force PL1 access only", which means forcing AP[1] to 0.
3393 if (extract32(tableattrs, 2, 1)) {
3394 attrs &= ~(1 << 4);
3396 /* Since we're always in the Non-secure state, NSTable is ignored. */
3397 break;
3399 /* Here descaddr is the final physical address, and attributes
3400 * are all in attrs.
3402 fault_type = access_fault;
3403 if ((attrs & (1 << 8)) == 0) {
3404 /* Access flag */
3405 goto do_fault;
3407 fault_type = permission_fault;
3408 if (is_user && !(attrs & (1 << 4))) {
3409 /* Unprivileged access not enabled */
3410 goto do_fault;
3412 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3413 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
3414 /* XN or PXN */
3415 if (access_type == 2) {
3416 goto do_fault;
3418 *prot &= ~PAGE_EXEC;
3420 if (attrs & (1 << 5)) {
3421 /* Write access forbidden */
3422 if (access_type == 1) {
3423 goto do_fault;
3425 *prot &= ~PAGE_WRITE;
3428 *phys_ptr = descaddr;
3429 *page_size_ptr = page_size;
3430 return 0;
3432 do_fault:
3433 /* Long-descriptor format IFSR/DFSR value */
3434 return (1 << 9) | (fault_type << 2) | level;
3437 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
3438 int access_type, int is_user,
3439 hwaddr *phys_ptr, int *prot)
3441 int n;
3442 uint32_t mask;
3443 uint32_t base;
3445 *phys_ptr = address;
3446 for (n = 7; n >= 0; n--) {
3447 base = env->cp15.c6_region[n];
3448 if ((base & 1) == 0)
3449 continue;
3450 mask = 1 << ((base >> 1) & 0x1f);
3451 /* Keep this shift separate from the above to avoid an
3452 (undefined) << 32. */
3453 mask = (mask << 1) - 1;
3454 if (((base ^ address) & ~mask) == 0)
3455 break;
3457 if (n < 0)
3458 return 2;
3460 if (access_type == 2) {
3461 mask = env->cp15.c5_insn;
3462 } else {
3463 mask = env->cp15.c5_data;
3465 mask = (mask >> (n * 4)) & 0xf;
3466 switch (mask) {
3467 case 0:
3468 return 1;
3469 case 1:
3470 if (is_user)
3471 return 1;
3472 *prot = PAGE_READ | PAGE_WRITE;
3473 break;
3474 case 2:
3475 *prot = PAGE_READ;
3476 if (!is_user)
3477 *prot |= PAGE_WRITE;
3478 break;
3479 case 3:
3480 *prot = PAGE_READ | PAGE_WRITE;
3481 break;
3482 case 5:
3483 if (is_user)
3484 return 1;
3485 *prot = PAGE_READ;
3486 break;
3487 case 6:
3488 *prot = PAGE_READ;
3489 break;
3490 default:
3491 /* Bad permission. */
3492 return 1;
3494 *prot |= PAGE_EXEC;
3495 return 0;
3498 /* get_phys_addr - get the physical address for this virtual address
3500 * Find the physical address corresponding to the given virtual address,
3501 * by doing a translation table walk on MMU based systems or using the
3502 * MPU state on MPU based systems.
3504 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3505 * prot and page_size are not filled in, and the return value provides
3506 * information on why the translation aborted, in the format of a
3507 * DFSR/IFSR fault register, with the following caveats:
3508 * * we honour the short vs long DFSR format differences.
3509 * * the WnR bit is never set (the caller must do this).
3510 * * for MPU based systems we don't bother to return a full FSR format
3511 * value.
3513 * @env: CPUARMState
3514 * @address: virtual address to get physical address for
3515 * @access_type: 0 for read, 1 for write, 2 for execute
3516 * @is_user: 0 for privileged access, 1 for user
3517 * @phys_ptr: set to the physical address corresponding to the virtual address
3518 * @prot: set to the permissions for the page containing phys_ptr
3519 * @page_size: set to the size of the page containing phys_ptr
3521 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3522 int access_type, int is_user,
3523 hwaddr *phys_ptr, int *prot,
3524 target_ulong *page_size)
3526 /* Fast Context Switch Extension. */
3527 if (address < 0x02000000)
3528 address += env->cp15.c13_fcse;
3530 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
3531 /* MMU/MPU disabled. */
3532 *phys_ptr = address;
3533 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3534 *page_size = TARGET_PAGE_SIZE;
3535 return 0;
3536 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3537 *page_size = TARGET_PAGE_SIZE;
3538 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3539 prot);
3540 } else if (extended_addresses_enabled(env)) {
3541 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3542 prot, page_size);
3543 } else if (env->cp15.c1_sys & SCTLR_XP) {
3544 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3545 prot, page_size);
3546 } else {
3547 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3548 prot, page_size);
3552 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3553 int access_type, int mmu_idx)
3555 hwaddr phys_addr;
3556 target_ulong page_size;
3557 int prot;
3558 int ret, is_user;
3560 is_user = mmu_idx == MMU_USER_IDX;
3561 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3562 &page_size);
3563 if (ret == 0) {
3564 /* Map a single [sub]page. */
3565 phys_addr &= ~(hwaddr)0x3ff;
3566 address &= ~(uint32_t)0x3ff;
3567 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
3568 return 0;
3571 if (access_type == 2) {
3572 env->cp15.c5_insn = ret;
3573 env->cp15.c6_insn = address;
3574 env->exception_index = EXCP_PREFETCH_ABORT;
3575 } else {
3576 env->cp15.c5_data = ret;
3577 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3578 env->cp15.c5_data |= (1 << 11);
3579 env->cp15.c6_data = address;
3580 env->exception_index = EXCP_DATA_ABORT;
3582 return 1;
3585 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3587 ARMCPU *cpu = ARM_CPU(cs);
3588 hwaddr phys_addr;
3589 target_ulong page_size;
3590 int prot;
3591 int ret;
3593 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3595 if (ret != 0) {
3596 return -1;
3599 return phys_addr;
3602 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3604 if ((env->uncached_cpsr & CPSR_M) == mode) {
3605 env->regs[13] = val;
3606 } else {
3607 env->banked_r13[bank_number(mode)] = val;
3611 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3613 if ((env->uncached_cpsr & CPSR_M) == mode) {
3614 return env->regs[13];
3615 } else {
3616 return env->banked_r13[bank_number(mode)];
3620 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3622 switch (reg) {
3623 case 0: /* APSR */
3624 return xpsr_read(env) & 0xf8000000;
3625 case 1: /* IAPSR */
3626 return xpsr_read(env) & 0xf80001ff;
3627 case 2: /* EAPSR */
3628 return xpsr_read(env) & 0xff00fc00;
3629 case 3: /* xPSR */
3630 return xpsr_read(env) & 0xff00fdff;
3631 case 5: /* IPSR */
3632 return xpsr_read(env) & 0x000001ff;
3633 case 6: /* EPSR */
3634 return xpsr_read(env) & 0x0700fc00;
3635 case 7: /* IEPSR */
3636 return xpsr_read(env) & 0x0700edff;
3637 case 8: /* MSP */
3638 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3639 case 9: /* PSP */
3640 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3641 case 16: /* PRIMASK */
3642 return (env->daif & PSTATE_I) != 0;
3643 case 17: /* BASEPRI */
3644 case 18: /* BASEPRI_MAX */
3645 return env->v7m.basepri;
3646 case 19: /* FAULTMASK */
3647 return (env->daif & PSTATE_F) != 0;
3648 case 20: /* CONTROL */
3649 return env->v7m.control;
3650 default:
3651 /* ??? For debugging only. */
3652 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
3653 return 0;
3657 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3659 switch (reg) {
3660 case 0: /* APSR */
3661 xpsr_write(env, val, 0xf8000000);
3662 break;
3663 case 1: /* IAPSR */
3664 xpsr_write(env, val, 0xf8000000);
3665 break;
3666 case 2: /* EAPSR */
3667 xpsr_write(env, val, 0xfe00fc00);
3668 break;
3669 case 3: /* xPSR */
3670 xpsr_write(env, val, 0xfe00fc00);
3671 break;
3672 case 5: /* IPSR */
3673 /* IPSR bits are readonly. */
3674 break;
3675 case 6: /* EPSR */
3676 xpsr_write(env, val, 0x0600fc00);
3677 break;
3678 case 7: /* IEPSR */
3679 xpsr_write(env, val, 0x0600fc00);
3680 break;
3681 case 8: /* MSP */
3682 if (env->v7m.current_sp)
3683 env->v7m.other_sp = val;
3684 else
3685 env->regs[13] = val;
3686 break;
3687 case 9: /* PSP */
3688 if (env->v7m.current_sp)
3689 env->regs[13] = val;
3690 else
3691 env->v7m.other_sp = val;
3692 break;
3693 case 16: /* PRIMASK */
3694 if (val & 1) {
3695 env->daif |= PSTATE_I;
3696 } else {
3697 env->daif &= ~PSTATE_I;
3699 break;
3700 case 17: /* BASEPRI */
3701 env->v7m.basepri = val & 0xff;
3702 break;
3703 case 18: /* BASEPRI_MAX */
3704 val &= 0xff;
3705 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3706 env->v7m.basepri = val;
3707 break;
3708 case 19: /* FAULTMASK */
3709 if (val & 1) {
3710 env->daif |= PSTATE_F;
3711 } else {
3712 env->daif &= ~PSTATE_F;
3714 break;
3715 case 20: /* CONTROL */
3716 env->v7m.control = val & 3;
3717 switch_v7m_sp(env, (val & 2) != 0);
3718 break;
3719 default:
3720 /* ??? For debugging only. */
3721 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
3722 return;
3726 #endif
3728 /* Note that signed overflow is undefined in C. The following routines are
3729 careful to use unsigned types where modulo arithmetic is required.
3730 Failure to do so _will_ break on newer gcc. */
3732 /* Signed saturating arithmetic. */
3734 /* Perform 16-bit signed saturating addition. */
3735 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3737 uint16_t res;
3739 res = a + b;
3740 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3741 if (a & 0x8000)
3742 res = 0x8000;
3743 else
3744 res = 0x7fff;
3746 return res;
3749 /* Perform 8-bit signed saturating addition. */
3750 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3752 uint8_t res;
3754 res = a + b;
3755 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3756 if (a & 0x80)
3757 res = 0x80;
3758 else
3759 res = 0x7f;
3761 return res;
3764 /* Perform 16-bit signed saturating subtraction. */
3765 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3767 uint16_t res;
3769 res = a - b;
3770 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3771 if (a & 0x8000)
3772 res = 0x8000;
3773 else
3774 res = 0x7fff;
3776 return res;
3779 /* Perform 8-bit signed saturating subtraction. */
3780 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3782 uint8_t res;
3784 res = a - b;
3785 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3786 if (a & 0x80)
3787 res = 0x80;
3788 else
3789 res = 0x7f;
3791 return res;
3794 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3795 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3796 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3797 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3798 #define PFX q
3800 #include "op_addsub.h"
3802 /* Unsigned saturating arithmetic. */
3803 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3805 uint16_t res;
3806 res = a + b;
3807 if (res < a)
3808 res = 0xffff;
3809 return res;
3812 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3814 if (a > b)
3815 return a - b;
3816 else
3817 return 0;
3820 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3822 uint8_t res;
3823 res = a + b;
3824 if (res < a)
3825 res = 0xff;
3826 return res;
3829 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3831 if (a > b)
3832 return a - b;
3833 else
3834 return 0;
3837 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3838 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3839 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3840 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3841 #define PFX uq
3843 #include "op_addsub.h"
3845 /* Signed modulo arithmetic. */
3846 #define SARITH16(a, b, n, op) do { \
3847 int32_t sum; \
3848 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3849 RESULT(sum, n, 16); \
3850 if (sum >= 0) \
3851 ge |= 3 << (n * 2); \
3852 } while(0)
3854 #define SARITH8(a, b, n, op) do { \
3855 int32_t sum; \
3856 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3857 RESULT(sum, n, 8); \
3858 if (sum >= 0) \
3859 ge |= 1 << n; \
3860 } while(0)
3863 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3864 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3865 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3866 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3867 #define PFX s
3868 #define ARITH_GE
3870 #include "op_addsub.h"
3872 /* Unsigned modulo arithmetic. */
3873 #define ADD16(a, b, n) do { \
3874 uint32_t sum; \
3875 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3876 RESULT(sum, n, 16); \
3877 if ((sum >> 16) == 1) \
3878 ge |= 3 << (n * 2); \
3879 } while(0)
3881 #define ADD8(a, b, n) do { \
3882 uint32_t sum; \
3883 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3884 RESULT(sum, n, 8); \
3885 if ((sum >> 8) == 1) \
3886 ge |= 1 << n; \
3887 } while(0)
3889 #define SUB16(a, b, n) do { \
3890 uint32_t sum; \
3891 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3892 RESULT(sum, n, 16); \
3893 if ((sum >> 16) == 0) \
3894 ge |= 3 << (n * 2); \
3895 } while(0)
3897 #define SUB8(a, b, n) do { \
3898 uint32_t sum; \
3899 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3900 RESULT(sum, n, 8); \
3901 if ((sum >> 8) == 0) \
3902 ge |= 1 << n; \
3903 } while(0)
3905 #define PFX u
3906 #define ARITH_GE
3908 #include "op_addsub.h"
3910 /* Halved signed arithmetic. */
3911 #define ADD16(a, b, n) \
3912 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3913 #define SUB16(a, b, n) \
3914 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3915 #define ADD8(a, b, n) \
3916 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3917 #define SUB8(a, b, n) \
3918 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3919 #define PFX sh
3921 #include "op_addsub.h"
3923 /* Halved unsigned arithmetic. */
3924 #define ADD16(a, b, n) \
3925 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3926 #define SUB16(a, b, n) \
3927 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3928 #define ADD8(a, b, n) \
3929 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3930 #define SUB8(a, b, n) \
3931 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3932 #define PFX uh
3934 #include "op_addsub.h"
3936 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3938 if (a > b)
3939 return a - b;
3940 else
3941 return b - a;
3944 /* Unsigned sum of absolute byte differences. */
3945 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3947 uint32_t sum;
3948 sum = do_usad(a, b);
3949 sum += do_usad(a >> 8, b >> 8);
3950 sum += do_usad(a >> 16, b >>16);
3951 sum += do_usad(a >> 24, b >> 24);
3952 return sum;
3955 /* For ARMv6 SEL instruction. */
3956 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3958 uint32_t mask;
3960 mask = 0;
3961 if (flags & 1)
3962 mask |= 0xff;
3963 if (flags & 2)
3964 mask |= 0xff00;
3965 if (flags & 4)
3966 mask |= 0xff0000;
3967 if (flags & 8)
3968 mask |= 0xff000000;
3969 return (a & mask) | (b & ~mask);
3972 /* VFP support. We follow the convention used for VFP instructions:
3973 Single precision routines have a "s" suffix, double precision a
3974 "d" suffix. */
3976 /* Convert host exception flags to vfp form. */
3977 static inline int vfp_exceptbits_from_host(int host_bits)
3979 int target_bits = 0;
3981 if (host_bits & float_flag_invalid)
3982 target_bits |= 1;
3983 if (host_bits & float_flag_divbyzero)
3984 target_bits |= 2;
3985 if (host_bits & float_flag_overflow)
3986 target_bits |= 4;
3987 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3988 target_bits |= 8;
3989 if (host_bits & float_flag_inexact)
3990 target_bits |= 0x10;
3991 if (host_bits & float_flag_input_denormal)
3992 target_bits |= 0x80;
3993 return target_bits;
3996 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3998 int i;
3999 uint32_t fpscr;
4001 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
4002 | (env->vfp.vec_len << 16)
4003 | (env->vfp.vec_stride << 20);
4004 i = get_float_exception_flags(&env->vfp.fp_status);
4005 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4006 fpscr |= vfp_exceptbits_from_host(i);
4007 return fpscr;
4010 uint32_t vfp_get_fpscr(CPUARMState *env)
4012 return HELPER(vfp_get_fpscr)(env);
4015 /* Convert vfp exception flags to target form. */
4016 static inline int vfp_exceptbits_to_host(int target_bits)
4018 int host_bits = 0;
4020 if (target_bits & 1)
4021 host_bits |= float_flag_invalid;
4022 if (target_bits & 2)
4023 host_bits |= float_flag_divbyzero;
4024 if (target_bits & 4)
4025 host_bits |= float_flag_overflow;
4026 if (target_bits & 8)
4027 host_bits |= float_flag_underflow;
4028 if (target_bits & 0x10)
4029 host_bits |= float_flag_inexact;
4030 if (target_bits & 0x80)
4031 host_bits |= float_flag_input_denormal;
4032 return host_bits;
4035 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4037 int i;
4038 uint32_t changed;
4040 changed = env->vfp.xregs[ARM_VFP_FPSCR];
4041 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
4042 env->vfp.vec_len = (val >> 16) & 7;
4043 env->vfp.vec_stride = (val >> 20) & 3;
4045 changed ^= val;
4046 if (changed & (3 << 22)) {
4047 i = (val >> 22) & 3;
4048 switch (i) {
4049 case FPROUNDING_TIEEVEN:
4050 i = float_round_nearest_even;
4051 break;
4052 case FPROUNDING_POSINF:
4053 i = float_round_up;
4054 break;
4055 case FPROUNDING_NEGINF:
4056 i = float_round_down;
4057 break;
4058 case FPROUNDING_ZERO:
4059 i = float_round_to_zero;
4060 break;
4062 set_float_rounding_mode(i, &env->vfp.fp_status);
4064 if (changed & (1 << 24)) {
4065 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4066 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4068 if (changed & (1 << 25))
4069 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4071 i = vfp_exceptbits_to_host(val);
4072 set_float_exception_flags(i, &env->vfp.fp_status);
4073 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4076 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4078 HELPER(vfp_set_fpscr)(env, val);
4081 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4083 #define VFP_BINOP(name) \
4084 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4086 float_status *fpst = fpstp; \
4087 return float32_ ## name(a, b, fpst); \
4089 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4091 float_status *fpst = fpstp; \
4092 return float64_ ## name(a, b, fpst); \
4094 VFP_BINOP(add)
4095 VFP_BINOP(sub)
4096 VFP_BINOP(mul)
4097 VFP_BINOP(div)
4098 VFP_BINOP(min)
4099 VFP_BINOP(max)
4100 VFP_BINOP(minnum)
4101 VFP_BINOP(maxnum)
4102 #undef VFP_BINOP
4104 float32 VFP_HELPER(neg, s)(float32 a)
4106 return float32_chs(a);
4109 float64 VFP_HELPER(neg, d)(float64 a)
4111 return float64_chs(a);
4114 float32 VFP_HELPER(abs, s)(float32 a)
4116 return float32_abs(a);
4119 float64 VFP_HELPER(abs, d)(float64 a)
4121 return float64_abs(a);
4124 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4126 return float32_sqrt(a, &env->vfp.fp_status);
4129 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4131 return float64_sqrt(a, &env->vfp.fp_status);
4134 /* XXX: check quiet/signaling case */
4135 #define DO_VFP_cmp(p, type) \
4136 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4138 uint32_t flags; \
4139 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4140 case 0: flags = 0x6; break; \
4141 case -1: flags = 0x8; break; \
4142 case 1: flags = 0x2; break; \
4143 default: case 2: flags = 0x3; break; \
4145 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4146 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4148 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4150 uint32_t flags; \
4151 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4152 case 0: flags = 0x6; break; \
4153 case -1: flags = 0x8; break; \
4154 case 1: flags = 0x2; break; \
4155 default: case 2: flags = 0x3; break; \
4157 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4158 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4160 DO_VFP_cmp(s, float32)
4161 DO_VFP_cmp(d, float64)
4162 #undef DO_VFP_cmp
4164 /* Integer to float and float to integer conversions */
4166 #define CONV_ITOF(name, fsz, sign) \
4167 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4169 float_status *fpst = fpstp; \
4170 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4173 #define CONV_FTOI(name, fsz, sign, round) \
4174 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4176 float_status *fpst = fpstp; \
4177 if (float##fsz##_is_any_nan(x)) { \
4178 float_raise(float_flag_invalid, fpst); \
4179 return 0; \
4181 return float##fsz##_to_##sign##int32##round(x, fpst); \
4184 #define FLOAT_CONVS(name, p, fsz, sign) \
4185 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4186 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4187 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4189 FLOAT_CONVS(si, s, 32, )
4190 FLOAT_CONVS(si, d, 64, )
4191 FLOAT_CONVS(ui, s, 32, u)
4192 FLOAT_CONVS(ui, d, 64, u)
4194 #undef CONV_ITOF
4195 #undef CONV_FTOI
4196 #undef FLOAT_CONVS
4198 /* floating point conversion */
4199 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4201 float64 r = float32_to_float64(x, &env->vfp.fp_status);
4202 /* ARM requires that S<->D conversion of any kind of NaN generates
4203 * a quiet NaN by forcing the most significant frac bit to 1.
4205 return float64_maybe_silence_nan(r);
4208 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4210 float32 r = float64_to_float32(x, &env->vfp.fp_status);
4211 /* ARM requires that S<->D conversion of any kind of NaN generates
4212 * a quiet NaN by forcing the most significant frac bit to 1.
4214 return float32_maybe_silence_nan(r);
4217 /* VFP3 fixed point conversion. */
4218 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4219 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4220 void *fpstp) \
4222 float_status *fpst = fpstp; \
4223 float##fsz tmp; \
4224 tmp = itype##_to_##float##fsz(x, fpst); \
4225 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4228 /* Notice that we want only input-denormal exception flags from the
4229 * scalbn operation: the other possible flags (overflow+inexact if
4230 * we overflow to infinity, output-denormal) aren't correct for the
4231 * complete scale-and-convert operation.
4233 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4234 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4235 uint32_t shift, \
4236 void *fpstp) \
4238 float_status *fpst = fpstp; \
4239 int old_exc_flags = get_float_exception_flags(fpst); \
4240 float##fsz tmp; \
4241 if (float##fsz##_is_any_nan(x)) { \
4242 float_raise(float_flag_invalid, fpst); \
4243 return 0; \
4245 tmp = float##fsz##_scalbn(x, shift, fpst); \
4246 old_exc_flags |= get_float_exception_flags(fpst) \
4247 & float_flag_input_denormal; \
4248 set_float_exception_flags(old_exc_flags, fpst); \
4249 return float##fsz##_to_##itype##round(tmp, fpst); \
4252 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4253 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4254 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4255 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4257 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4258 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4259 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4261 VFP_CONV_FIX(sh, d, 64, 64, int16)
4262 VFP_CONV_FIX(sl, d, 64, 64, int32)
4263 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4264 VFP_CONV_FIX(uh, d, 64, 64, uint16)
4265 VFP_CONV_FIX(ul, d, 64, 64, uint32)
4266 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4267 VFP_CONV_FIX(sh, s, 32, 32, int16)
4268 VFP_CONV_FIX(sl, s, 32, 32, int32)
4269 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4270 VFP_CONV_FIX(uh, s, 32, 32, uint16)
4271 VFP_CONV_FIX(ul, s, 32, 32, uint32)
4272 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4273 #undef VFP_CONV_FIX
4274 #undef VFP_CONV_FIX_FLOAT
4275 #undef VFP_CONV_FLOAT_FIX_ROUND
4277 /* Set the current fp rounding mode and return the old one.
4278 * The argument is a softfloat float_round_ value.
4280 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
4282 float_status *fp_status = &env->vfp.fp_status;
4284 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4285 set_float_rounding_mode(rmode, fp_status);
4287 return prev_rmode;
4290 /* Set the current fp rounding mode in the standard fp status and return
4291 * the old one. This is for NEON instructions that need to change the
4292 * rounding mode but wish to use the standard FPSCR values for everything
4293 * else. Always set the rounding mode back to the correct value after
4294 * modifying it.
4295 * The argument is a softfloat float_round_ value.
4297 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
4299 float_status *fp_status = &env->vfp.standard_fp_status;
4301 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4302 set_float_rounding_mode(rmode, fp_status);
4304 return prev_rmode;
4307 /* Half precision conversions. */
4308 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
4310 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4311 float32 r = float16_to_float32(make_float16(a), ieee, s);
4312 if (ieee) {
4313 return float32_maybe_silence_nan(r);
4315 return r;
4318 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
4320 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4321 float16 r = float32_to_float16(a, ieee, s);
4322 if (ieee) {
4323 r = float16_maybe_silence_nan(r);
4325 return float16_val(r);
4328 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4330 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
4333 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4335 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
4338 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4340 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
4343 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4345 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
4348 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
4350 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4351 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
4352 if (ieee) {
4353 return float64_maybe_silence_nan(r);
4355 return r;
4358 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
4360 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4361 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
4362 if (ieee) {
4363 r = float16_maybe_silence_nan(r);
4365 return float16_val(r);
4368 #define float32_two make_float32(0x40000000)
4369 #define float32_three make_float32(0x40400000)
4370 #define float32_one_point_five make_float32(0x3fc00000)
4372 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4374 float_status *s = &env->vfp.standard_fp_status;
4375 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4376 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4377 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4378 float_raise(float_flag_input_denormal, s);
4380 return float32_two;
4382 return float32_sub(float32_two, float32_mul(a, b, s), s);
4385 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4387 float_status *s = &env->vfp.standard_fp_status;
4388 float32 product;
4389 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4390 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4391 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4392 float_raise(float_flag_input_denormal, s);
4394 return float32_one_point_five;
4396 product = float32_mul(a, b, s);
4397 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4400 /* NEON helpers. */
4402 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4403 * int->float conversions at run-time. */
4404 #define float64_256 make_float64(0x4070000000000000LL)
4405 #define float64_512 make_float64(0x4080000000000000LL)
4407 /* The algorithm that must be used to calculate the estimate
4408 * is specified by the ARM ARM.
4410 static float64 recip_estimate(float64 a, CPUARMState *env)
4412 /* These calculations mustn't set any fp exception flags,
4413 * so we use a local copy of the fp_status.
4415 float_status dummy_status = env->vfp.standard_fp_status;
4416 float_status *s = &dummy_status;
4417 /* q = (int)(a * 512.0) */
4418 float64 q = float64_mul(float64_512, a, s);
4419 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4421 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4422 q = int64_to_float64(q_int, s);
4423 q = float64_add(q, float64_half, s);
4424 q = float64_div(q, float64_512, s);
4425 q = float64_div(float64_one, q, s);
4427 /* s = (int)(256.0 * r + 0.5) */
4428 q = float64_mul(q, float64_256, s);
4429 q = float64_add(q, float64_half, s);
4430 q_int = float64_to_int64_round_to_zero(q, s);
4432 /* return (double)s / 256.0 */
4433 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4436 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
4438 float_status *s = &env->vfp.standard_fp_status;
4439 float64 f64;
4440 uint32_t val32 = float32_val(a);
4442 int result_exp;
4443 int a_exp = (val32 & 0x7f800000) >> 23;
4444 int sign = val32 & 0x80000000;
4446 if (float32_is_any_nan(a)) {
4447 if (float32_is_signaling_nan(a)) {
4448 float_raise(float_flag_invalid, s);
4450 return float32_default_nan;
4451 } else if (float32_is_infinity(a)) {
4452 return float32_set_sign(float32_zero, float32_is_neg(a));
4453 } else if (float32_is_zero_or_denormal(a)) {
4454 if (!float32_is_zero(a)) {
4455 float_raise(float_flag_input_denormal, s);
4457 float_raise(float_flag_divbyzero, s);
4458 return float32_set_sign(float32_infinity, float32_is_neg(a));
4459 } else if (a_exp >= 253) {
4460 float_raise(float_flag_underflow, s);
4461 return float32_set_sign(float32_zero, float32_is_neg(a));
4464 f64 = make_float64((0x3feULL << 52)
4465 | ((int64_t)(val32 & 0x7fffff) << 29));
4467 result_exp = 253 - a_exp;
4469 f64 = recip_estimate(f64, env);
4471 val32 = sign
4472 | ((result_exp & 0xff) << 23)
4473 | ((float64_val(f64) >> 29) & 0x7fffff);
4474 return make_float32(val32);
4477 /* The algorithm that must be used to calculate the estimate
4478 * is specified by the ARM ARM.
4480 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
4482 /* These calculations mustn't set any fp exception flags,
4483 * so we use a local copy of the fp_status.
4485 float_status dummy_status = env->vfp.standard_fp_status;
4486 float_status *s = &dummy_status;
4487 float64 q;
4488 int64_t q_int;
4490 if (float64_lt(a, float64_half, s)) {
4491 /* range 0.25 <= a < 0.5 */
4493 /* a in units of 1/512 rounded down */
4494 /* q0 = (int)(a * 512.0); */
4495 q = float64_mul(float64_512, a, s);
4496 q_int = float64_to_int64_round_to_zero(q, s);
4498 /* reciprocal root r */
4499 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
4500 q = int64_to_float64(q_int, s);
4501 q = float64_add(q, float64_half, s);
4502 q = float64_div(q, float64_512, s);
4503 q = float64_sqrt(q, s);
4504 q = float64_div(float64_one, q, s);
4505 } else {
4506 /* range 0.5 <= a < 1.0 */
4508 /* a in units of 1/256 rounded down */
4509 /* q1 = (int)(a * 256.0); */
4510 q = float64_mul(float64_256, a, s);
4511 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4513 /* reciprocal root r */
4514 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
4515 q = int64_to_float64(q_int, s);
4516 q = float64_add(q, float64_half, s);
4517 q = float64_div(q, float64_256, s);
4518 q = float64_sqrt(q, s);
4519 q = float64_div(float64_one, q, s);
4521 /* r in units of 1/256 rounded to nearest */
4522 /* s = (int)(256.0 * r + 0.5); */
4524 q = float64_mul(q, float64_256,s );
4525 q = float64_add(q, float64_half, s);
4526 q_int = float64_to_int64_round_to_zero(q, s);
4528 /* return (double)s / 256.0;*/
4529 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4532 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4534 float_status *s = &env->vfp.standard_fp_status;
4535 int result_exp;
4536 float64 f64;
4537 uint32_t val;
4538 uint64_t val64;
4540 val = float32_val(a);
4542 if (float32_is_any_nan(a)) {
4543 if (float32_is_signaling_nan(a)) {
4544 float_raise(float_flag_invalid, s);
4546 return float32_default_nan;
4547 } else if (float32_is_zero_or_denormal(a)) {
4548 if (!float32_is_zero(a)) {
4549 float_raise(float_flag_input_denormal, s);
4551 float_raise(float_flag_divbyzero, s);
4552 return float32_set_sign(float32_infinity, float32_is_neg(a));
4553 } else if (float32_is_neg(a)) {
4554 float_raise(float_flag_invalid, s);
4555 return float32_default_nan;
4556 } else if (float32_is_infinity(a)) {
4557 return float32_zero;
4560 /* Normalize to a double-precision value between 0.25 and 1.0,
4561 * preserving the parity of the exponent. */
4562 if ((val & 0x800000) == 0) {
4563 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4564 | (0x3feULL << 52)
4565 | ((uint64_t)(val & 0x7fffff) << 29));
4566 } else {
4567 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4568 | (0x3fdULL << 52)
4569 | ((uint64_t)(val & 0x7fffff) << 29));
4572 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
4574 f64 = recip_sqrt_estimate(f64, env);
4576 val64 = float64_val(f64);
4578 val = ((result_exp & 0xff) << 23)
4579 | ((val64 >> 29) & 0x7fffff);
4580 return make_float32(val);
4583 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4585 float64 f64;
4587 if ((a & 0x80000000) == 0) {
4588 return 0xffffffff;
4591 f64 = make_float64((0x3feULL << 52)
4592 | ((int64_t)(a & 0x7fffffff) << 21));
4594 f64 = recip_estimate (f64, env);
4596 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4599 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4601 float64 f64;
4603 if ((a & 0xc0000000) == 0) {
4604 return 0xffffffff;
4607 if (a & 0x80000000) {
4608 f64 = make_float64((0x3feULL << 52)
4609 | ((uint64_t)(a & 0x7fffffff) << 21));
4610 } else { /* bits 31-30 == '01' */
4611 f64 = make_float64((0x3fdULL << 52)
4612 | ((uint64_t)(a & 0x3fffffff) << 22));
4615 f64 = recip_sqrt_estimate(f64, env);
4617 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4620 /* VFPv4 fused multiply-accumulate */
4621 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4623 float_status *fpst = fpstp;
4624 return float32_muladd(a, b, c, 0, fpst);
4627 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4629 float_status *fpst = fpstp;
4630 return float64_muladd(a, b, c, 0, fpst);
4633 /* ARMv8 round to integral */
4634 float32 HELPER(rints_exact)(float32 x, void *fp_status)
4636 return float32_round_to_int(x, fp_status);
4639 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
4641 return float64_round_to_int(x, fp_status);
4644 float32 HELPER(rints)(float32 x, void *fp_status)
4646 int old_flags = get_float_exception_flags(fp_status), new_flags;
4647 float32 ret;
4649 ret = float32_round_to_int(x, fp_status);
4651 /* Suppress any inexact exceptions the conversion produced */
4652 if (!(old_flags & float_flag_inexact)) {
4653 new_flags = get_float_exception_flags(fp_status);
4654 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4657 return ret;
4660 float64 HELPER(rintd)(float64 x, void *fp_status)
4662 int old_flags = get_float_exception_flags(fp_status), new_flags;
4663 float64 ret;
4665 ret = float64_round_to_int(x, fp_status);
4667 new_flags = get_float_exception_flags(fp_status);
4669 /* Suppress any inexact exceptions the conversion produced */
4670 if (!(old_flags & float_flag_inexact)) {
4671 new_flags = get_float_exception_flags(fp_status);
4672 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4675 return ret;
4678 /* Convert ARM rounding mode to softfloat */
4679 int arm_rmode_to_sf(int rmode)
4681 switch (rmode) {
4682 case FPROUNDING_TIEAWAY:
4683 rmode = float_round_ties_away;
4684 break;
4685 case FPROUNDING_ODD:
4686 /* FIXME: add support for TIEAWAY and ODD */
4687 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
4688 rmode);
4689 case FPROUNDING_TIEEVEN:
4690 default:
4691 rmode = float_round_nearest_even;
4692 break;
4693 case FPROUNDING_POSINF:
4694 rmode = float_round_up;
4695 break;
4696 case FPROUNDING_NEGINF:
4697 rmode = float_round_down;
4698 break;
4699 case FPROUNDING_ZERO:
4700 rmode = float_round_to_zero;
4701 break;
4703 return rmode;