target/mips: Prefer fast cpu_env() over slower CPU QOM cast macro
[qemu/ar7.git] / hw / i386 / x86.c
blobffbda48917fd2a264a5555fa7713c50b1618429c
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-visit-common.h"
31 #include "qapi/clone-visitor.h"
32 #include "qapi/qapi-visit-machine.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/whpx.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/replay.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/xen.h"
41 #include "trace.h"
43 #include "hw/i386/x86.h"
44 #include "target/i386/cpu.h"
45 #include "hw/i386/topology.h"
46 #include "hw/i386/fw_cfg.h"
47 #include "hw/intc/i8259.h"
48 #include "hw/rtc/mc146818rtc.h"
49 #include "target/i386/sev.h"
51 #include "hw/acpi/cpu_hotplug.h"
52 #include "hw/irq.h"
53 #include "hw/nmi.h"
54 #include "hw/loader.h"
55 #include "multiboot.h"
56 #include "elf.h"
57 #include "standard-headers/asm-x86/bootparam.h"
58 #include CONFIG_DEVICES
59 #include "kvm/kvm_i386.h"
61 #ifdef CONFIG_XEN_EMU
62 #include "hw/xen/xen.h"
63 #include "hw/i386/kvm/xen_evtchn.h"
64 #endif
66 /* Physical Address of PVH entry point read from kernel ELF NOTE */
67 static size_t pvh_start_addr;
69 static void init_topo_info(X86CPUTopoInfo *topo_info,
70 const X86MachineState *x86ms)
72 MachineState *ms = MACHINE(x86ms);
74 topo_info->dies_per_pkg = ms->smp.dies;
75 topo_info->cores_per_die = ms->smp.cores;
76 topo_info->threads_per_core = ms->smp.threads;
80 * Calculates initial APIC ID for a specific CPU index
82 * Currently we need to be able to calculate the APIC ID from the CPU index
83 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
84 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
85 * all CPUs up to max_cpus.
87 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
88 unsigned int cpu_index)
90 X86CPUTopoInfo topo_info;
92 init_topo_info(&topo_info, x86ms);
94 return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
98 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
100 Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
102 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
103 goto out;
105 qdev_realize(DEVICE(cpu), NULL, errp);
107 out:
108 object_unref(cpu);
111 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
113 int i;
114 const CPUArchIdList *possible_cpus;
115 MachineState *ms = MACHINE(x86ms);
116 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
118 x86_cpu_set_default_version(default_cpu_version);
121 * Calculates the limit to CPU APIC ID values
123 * Limit for the APIC ID value, so that all
124 * CPU APIC IDs are < x86ms->apic_id_limit.
126 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
128 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
129 ms->smp.max_cpus - 1) + 1;
132 * Can we support APIC ID 255 or higher? With KVM, that requires
133 * both in-kernel lapic and X2APIC userspace API.
135 * kvm_enabled() must go first to ensure that kvm_* references are
136 * not emitted for the linker to consume (kvm_enabled() is
137 * a literal `0` in configurations where kvm_* aren't defined)
139 if (kvm_enabled() && x86ms->apic_id_limit > 255 &&
140 kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) {
141 error_report("current -smp configuration requires kernel "
142 "irqchip and X2APIC API support.");
143 exit(EXIT_FAILURE);
146 if (kvm_enabled()) {
147 kvm_set_max_apic_id(x86ms->apic_id_limit);
150 if (!kvm_irqchip_in_kernel()) {
151 apic_set_max_apic_id(x86ms->apic_id_limit);
154 possible_cpus = mc->possible_cpu_arch_ids(ms);
155 for (i = 0; i < ms->smp.cpus; i++) {
156 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
160 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
162 MC146818RtcState *rtc = MC146818_RTC(s);
164 if (cpus_count > 0xff) {
166 * If the number of CPUs can't be represented in 8 bits, the
167 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
168 * to make old BIOSes fail more predictably.
170 mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
171 } else {
172 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
176 static int x86_apic_cmp(const void *a, const void *b)
178 CPUArchId *apic_a = (CPUArchId *)a;
179 CPUArchId *apic_b = (CPUArchId *)b;
181 return apic_a->arch_id - apic_b->arch_id;
185 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
186 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
187 * entry corresponding to CPU's apic_id returns NULL.
189 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
191 CPUArchId apic_id, *found_cpu;
193 apic_id.arch_id = id;
194 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
195 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
196 x86_apic_cmp);
197 if (found_cpu && idx) {
198 *idx = found_cpu - ms->possible_cpus->cpus;
200 return found_cpu;
203 void x86_cpu_plug(HotplugHandler *hotplug_dev,
204 DeviceState *dev, Error **errp)
206 CPUArchId *found_cpu;
207 Error *local_err = NULL;
208 X86CPU *cpu = X86_CPU(dev);
209 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
211 if (x86ms->acpi_dev) {
212 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
213 if (local_err) {
214 goto out;
218 /* increment the number of CPUs */
219 x86ms->boot_cpus++;
220 if (x86ms->rtc) {
221 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
223 if (x86ms->fw_cfg) {
224 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
227 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
228 found_cpu->cpu = CPU(dev);
229 out:
230 error_propagate(errp, local_err);
233 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
234 DeviceState *dev, Error **errp)
236 int idx = -1;
237 X86CPU *cpu = X86_CPU(dev);
238 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
240 if (!x86ms->acpi_dev) {
241 error_setg(errp, "CPU hot unplug not supported without ACPI");
242 return;
245 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
246 assert(idx != -1);
247 if (idx == 0) {
248 error_setg(errp, "Boot CPU is unpluggable");
249 return;
252 hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
253 errp);
256 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
257 DeviceState *dev, Error **errp)
259 CPUArchId *found_cpu;
260 Error *local_err = NULL;
261 X86CPU *cpu = X86_CPU(dev);
262 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
264 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
265 if (local_err) {
266 goto out;
269 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
270 found_cpu->cpu = NULL;
271 qdev_unrealize(dev);
273 /* decrement the number of CPUs */
274 x86ms->boot_cpus--;
275 /* Update the number of CPUs in CMOS */
276 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
277 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
278 out:
279 error_propagate(errp, local_err);
282 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
283 DeviceState *dev, Error **errp)
285 int idx;
286 CPUState *cs;
287 CPUArchId *cpu_slot;
288 X86CPUTopoIDs topo_ids;
289 X86CPU *cpu = X86_CPU(dev);
290 CPUX86State *env = &cpu->env;
291 MachineState *ms = MACHINE(hotplug_dev);
292 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
293 unsigned int smp_cores = ms->smp.cores;
294 unsigned int smp_threads = ms->smp.threads;
295 X86CPUTopoInfo topo_info;
297 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
298 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
299 ms->cpu_type);
300 return;
303 if (x86ms->acpi_dev) {
304 Error *local_err = NULL;
306 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
307 &local_err);
308 if (local_err) {
309 error_propagate(errp, local_err);
310 return;
314 init_topo_info(&topo_info, x86ms);
316 env->nr_dies = ms->smp.dies;
319 * If APIC ID is not set,
320 * set it based on socket/die/core/thread properties.
322 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
323 int max_socket = (ms->smp.max_cpus - 1) /
324 smp_threads / smp_cores / ms->smp.dies;
327 * die-id was optional in QEMU 4.0 and older, so keep it optional
328 * if there's only one die per socket.
330 if (cpu->die_id < 0 && ms->smp.dies == 1) {
331 cpu->die_id = 0;
334 if (cpu->socket_id < 0) {
335 error_setg(errp, "CPU socket-id is not set");
336 return;
337 } else if (cpu->socket_id > max_socket) {
338 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
339 cpu->socket_id, max_socket);
340 return;
342 if (cpu->die_id < 0) {
343 error_setg(errp, "CPU die-id is not set");
344 return;
345 } else if (cpu->die_id > ms->smp.dies - 1) {
346 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
347 cpu->die_id, ms->smp.dies - 1);
348 return;
350 if (cpu->core_id < 0) {
351 error_setg(errp, "CPU core-id is not set");
352 return;
353 } else if (cpu->core_id > (smp_cores - 1)) {
354 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
355 cpu->core_id, smp_cores - 1);
356 return;
358 if (cpu->thread_id < 0) {
359 error_setg(errp, "CPU thread-id is not set");
360 return;
361 } else if (cpu->thread_id > (smp_threads - 1)) {
362 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
363 cpu->thread_id, smp_threads - 1);
364 return;
367 topo_ids.pkg_id = cpu->socket_id;
368 topo_ids.die_id = cpu->die_id;
369 topo_ids.core_id = cpu->core_id;
370 topo_ids.smt_id = cpu->thread_id;
371 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
374 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
375 if (!cpu_slot) {
376 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
377 error_setg(errp,
378 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
379 " APIC ID %" PRIu32 ", valid index range 0:%d",
380 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
381 cpu->apic_id, ms->possible_cpus->len - 1);
382 return;
385 if (cpu_slot->cpu) {
386 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
387 idx, cpu->apic_id);
388 return;
391 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
392 * so that machine_query_hotpluggable_cpus would show correct values
394 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
395 * once -smp refactoring is complete and there will be CPU private
396 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
397 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
398 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
399 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
400 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
401 topo_ids.pkg_id);
402 return;
404 cpu->socket_id = topo_ids.pkg_id;
406 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
407 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
408 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
409 return;
411 cpu->die_id = topo_ids.die_id;
413 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
414 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
415 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
416 topo_ids.core_id);
417 return;
419 cpu->core_id = topo_ids.core_id;
421 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
422 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
423 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
424 topo_ids.smt_id);
425 return;
427 cpu->thread_id = topo_ids.smt_id;
430 * kvm_enabled() must go first to ensure that kvm_* references are
431 * not emitted for the linker to consume (kvm_enabled() is
432 * a literal `0` in configurations where kvm_* aren't defined)
434 if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
435 !kvm_hv_vpindex_settable()) {
436 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
437 return;
440 cs = CPU(cpu);
441 cs->cpu_index = idx;
443 numa_cpu_pre_plug(cpu_slot, dev, errp);
446 CpuInstanceProperties
447 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
449 MachineClass *mc = MACHINE_GET_CLASS(ms);
450 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
452 assert(cpu_index < possible_cpus->len);
453 return possible_cpus->cpus[cpu_index].props;
456 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
458 X86CPUTopoIDs topo_ids;
459 X86MachineState *x86ms = X86_MACHINE(ms);
460 X86CPUTopoInfo topo_info;
462 init_topo_info(&topo_info, x86ms);
464 assert(idx < ms->possible_cpus->len);
465 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
466 &topo_info, &topo_ids);
467 return topo_ids.pkg_id % ms->numa_state->num_nodes;
470 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
472 X86MachineState *x86ms = X86_MACHINE(ms);
473 unsigned int max_cpus = ms->smp.max_cpus;
474 X86CPUTopoInfo topo_info;
475 int i;
477 if (ms->possible_cpus) {
479 * make sure that max_cpus hasn't changed since the first use, i.e.
480 * -smp hasn't been parsed after it
482 assert(ms->possible_cpus->len == max_cpus);
483 return ms->possible_cpus;
486 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
487 sizeof(CPUArchId) * max_cpus);
488 ms->possible_cpus->len = max_cpus;
490 init_topo_info(&topo_info, x86ms);
492 for (i = 0; i < ms->possible_cpus->len; i++) {
493 X86CPUTopoIDs topo_ids;
495 ms->possible_cpus->cpus[i].type = ms->cpu_type;
496 ms->possible_cpus->cpus[i].vcpus_count = 1;
497 ms->possible_cpus->cpus[i].arch_id =
498 x86_cpu_apic_id_from_index(x86ms, i);
499 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
500 &topo_info, &topo_ids);
501 ms->possible_cpus->cpus[i].props.has_socket_id = true;
502 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
503 if (ms->smp.dies > 1) {
504 ms->possible_cpus->cpus[i].props.has_die_id = true;
505 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
507 ms->possible_cpus->cpus[i].props.has_core_id = true;
508 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
509 ms->possible_cpus->cpus[i].props.has_thread_id = true;
510 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
512 return ms->possible_cpus;
515 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
517 /* cpu index isn't used */
518 CPUState *cs;
520 CPU_FOREACH(cs) {
521 X86CPU *cpu = X86_CPU(cs);
523 if (cpu_is_apic_enabled(cpu->apic_state)) {
524 apic_deliver_nmi(cpu->apic_state);
525 } else {
526 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
531 static long get_file_size(FILE *f)
533 long where, size;
535 /* XXX: on Unix systems, using fstat() probably makes more sense */
537 where = ftell(f);
538 fseek(f, 0, SEEK_END);
539 size = ftell(f);
540 fseek(f, where, SEEK_SET);
542 return size;
545 /* TSC handling */
546 uint64_t cpu_get_tsc(CPUX86State *env)
548 return cpus_get_elapsed_ticks();
551 /* IRQ handling */
552 static void pic_irq_request(void *opaque, int irq, int level)
554 CPUState *cs = first_cpu;
555 X86CPU *cpu = X86_CPU(cs);
557 trace_x86_pic_interrupt(irq, level);
558 if (cpu_is_apic_enabled(cpu->apic_state) && !kvm_irqchip_in_kernel() &&
559 !whpx_apic_in_platform()) {
560 CPU_FOREACH(cs) {
561 cpu = X86_CPU(cs);
562 if (apic_accept_pic_intr(cpu->apic_state)) {
563 apic_deliver_pic_intr(cpu->apic_state, level);
566 } else {
567 if (level) {
568 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
569 } else {
570 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
575 qemu_irq x86_allocate_cpu_irq(void)
577 return qemu_allocate_irq(pic_irq_request, NULL, 0);
580 int cpu_get_pic_interrupt(CPUX86State *env)
582 X86CPU *cpu = env_archcpu(env);
583 int intno;
585 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
586 intno = apic_get_interrupt(cpu->apic_state);
587 if (intno >= 0) {
588 return intno;
590 /* read the irq from the PIC */
591 if (!apic_accept_pic_intr(cpu->apic_state)) {
592 return -1;
596 intno = pic_read_irq(isa_pic);
597 return intno;
600 DeviceState *cpu_get_current_apic(void)
602 if (current_cpu) {
603 X86CPU *cpu = X86_CPU(current_cpu);
604 return cpu->apic_state;
605 } else {
606 return NULL;
610 void gsi_handler(void *opaque, int n, int level)
612 GSIState *s = opaque;
614 trace_x86_gsi_interrupt(n, level);
615 switch (n) {
616 case 0 ... ISA_NUM_IRQS - 1:
617 if (s->i8259_irq[n]) {
618 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
619 qemu_set_irq(s->i8259_irq[n], level);
621 /* fall through */
622 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
623 #ifdef CONFIG_XEN_EMU
625 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
626 * routing actually works properly under Xen). And then to
627 * *either* the PIRQ handling or the I/OAPIC depending on
628 * whether the former wants it.
630 if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
631 break;
633 #endif
634 qemu_set_irq(s->ioapic_irq[n], level);
635 break;
636 case IO_APIC_SECONDARY_IRQBASE
637 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
638 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
639 break;
643 void ioapic_init_gsi(GSIState *gsi_state, Object *parent)
645 DeviceState *dev;
646 SysBusDevice *d;
647 unsigned int i;
649 assert(parent);
650 if (kvm_ioapic_in_kernel()) {
651 dev = qdev_new(TYPE_KVM_IOAPIC);
652 } else {
653 dev = qdev_new(TYPE_IOAPIC);
655 object_property_add_child(parent, "ioapic", OBJECT(dev));
656 d = SYS_BUS_DEVICE(dev);
657 sysbus_realize_and_unref(d, &error_fatal);
658 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
660 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
661 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
665 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
667 DeviceState *dev;
668 SysBusDevice *d;
669 unsigned int i;
671 dev = qdev_new(TYPE_IOAPIC);
672 d = SYS_BUS_DEVICE(dev);
673 sysbus_realize_and_unref(d, &error_fatal);
674 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
676 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
677 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
679 return dev;
682 struct setup_data {
683 uint64_t next;
684 uint32_t type;
685 uint32_t len;
686 uint8_t data[];
687 } __attribute__((packed));
691 * The entry point into the kernel for PVH boot is different from
692 * the native entry point. The PVH entry is defined by the x86/HVM
693 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
695 * This function is passed to load_elf() when it is called from
696 * load_elfboot() which then additionally checks for an ELF Note of
697 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
698 * parse the PVH entry address from the ELF Note.
700 * Due to trickery in elf_opts.h, load_elf() is actually available as
701 * load_elf32() or load_elf64() and this routine needs to be able
702 * to deal with being called as 32 or 64 bit.
704 * The address of the PVH entry point is saved to the 'pvh_start_addr'
705 * global variable. (although the entry point is 32-bit, the kernel
706 * binary can be either 32-bit or 64-bit).
708 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
710 size_t *elf_note_data_addr;
712 /* Check if ELF Note header passed in is valid */
713 if (arg1 == NULL) {
714 return 0;
717 if (is64) {
718 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
719 uint64_t nhdr_size64 = sizeof(struct elf64_note);
720 uint64_t phdr_align = *(uint64_t *)arg2;
721 uint64_t nhdr_namesz = nhdr64->n_namesz;
723 elf_note_data_addr =
724 ((void *)nhdr64) + nhdr_size64 +
725 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
727 pvh_start_addr = *elf_note_data_addr;
728 } else {
729 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
730 uint32_t nhdr_size32 = sizeof(struct elf32_note);
731 uint32_t phdr_align = *(uint32_t *)arg2;
732 uint32_t nhdr_namesz = nhdr32->n_namesz;
734 elf_note_data_addr =
735 ((void *)nhdr32) + nhdr_size32 +
736 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
738 pvh_start_addr = *(uint32_t *)elf_note_data_addr;
741 return pvh_start_addr;
744 static bool load_elfboot(const char *kernel_filename,
745 int kernel_file_size,
746 uint8_t *header,
747 size_t pvh_xen_start_addr,
748 FWCfgState *fw_cfg)
750 uint32_t flags = 0;
751 uint32_t mh_load_addr = 0;
752 uint32_t elf_kernel_size = 0;
753 uint64_t elf_entry;
754 uint64_t elf_low, elf_high;
755 int kernel_size;
757 if (ldl_p(header) != 0x464c457f) {
758 return false; /* no elfboot */
761 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
762 flags = elf_is64 ?
763 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
765 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
766 error_report("elfboot unsupported flags = %x", flags);
767 exit(1);
770 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
771 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
772 NULL, &elf_note_type, &elf_entry,
773 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
774 0, 0);
776 if (kernel_size < 0) {
777 error_report("Error while loading elf kernel");
778 exit(1);
780 mh_load_addr = elf_low;
781 elf_kernel_size = elf_high - elf_low;
783 if (pvh_start_addr == 0) {
784 error_report("Error loading uncompressed kernel without PVH ELF Note");
785 exit(1);
787 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
788 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
789 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
791 return true;
794 void x86_load_linux(X86MachineState *x86ms,
795 FWCfgState *fw_cfg,
796 int acpi_data_size,
797 bool pvh_enabled)
799 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
800 uint16_t protocol;
801 int setup_size, kernel_size, cmdline_size;
802 int dtb_size, setup_data_offset;
803 uint32_t initrd_max;
804 uint8_t header[8192], *setup, *kernel;
805 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
806 FILE *f;
807 char *vmode;
808 MachineState *machine = MACHINE(x86ms);
809 struct setup_data *setup_data;
810 const char *kernel_filename = machine->kernel_filename;
811 const char *initrd_filename = machine->initrd_filename;
812 const char *dtb_filename = machine->dtb;
813 const char *kernel_cmdline = machine->kernel_cmdline;
814 SevKernelLoaderContext sev_load_ctx = {};
816 /* Align to 16 bytes as a paranoia measure */
817 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
819 /* load the kernel header */
820 f = fopen(kernel_filename, "rb");
821 if (!f) {
822 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
823 kernel_filename, strerror(errno));
824 exit(1);
827 kernel_size = get_file_size(f);
828 if (!kernel_size ||
829 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
830 MIN(ARRAY_SIZE(header), kernel_size)) {
831 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
832 kernel_filename, strerror(errno));
833 exit(1);
836 /* kernel protocol version */
837 if (ldl_p(header + 0x202) == 0x53726448) {
838 protocol = lduw_p(header + 0x206);
839 } else {
841 * This could be a multiboot kernel. If it is, let's stop treating it
842 * like a Linux kernel.
843 * Note: some multiboot images could be in the ELF format (the same of
844 * PVH), so we try multiboot first since we check the multiboot magic
845 * header before to load it.
847 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
848 kernel_cmdline, kernel_size, header)) {
849 return;
852 * Check if the file is an uncompressed kernel file (ELF) and load it,
853 * saving the PVH entry point used by the x86/HVM direct boot ABI.
854 * If load_elfboot() is successful, populate the fw_cfg info.
856 if (pvh_enabled &&
857 load_elfboot(kernel_filename, kernel_size,
858 header, pvh_start_addr, fw_cfg)) {
859 fclose(f);
861 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
862 strlen(kernel_cmdline) + 1);
863 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
865 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
866 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
867 header, sizeof(header));
869 /* load initrd */
870 if (initrd_filename) {
871 GMappedFile *mapped_file;
872 gsize initrd_size;
873 gchar *initrd_data;
874 GError *gerr = NULL;
876 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
877 if (!mapped_file) {
878 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
879 initrd_filename, gerr->message);
880 exit(1);
882 x86ms->initrd_mapped_file = mapped_file;
884 initrd_data = g_mapped_file_get_contents(mapped_file);
885 initrd_size = g_mapped_file_get_length(mapped_file);
886 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
887 if (initrd_size >= initrd_max) {
888 fprintf(stderr, "qemu: initrd is too large, cannot support."
889 "(max: %"PRIu32", need %"PRId64")\n",
890 initrd_max, (uint64_t)initrd_size);
891 exit(1);
894 initrd_addr = (initrd_max - initrd_size) & ~4095;
896 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
897 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
898 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
899 initrd_size);
902 option_rom[nb_option_roms].bootindex = 0;
903 option_rom[nb_option_roms].name = "pvh.bin";
904 nb_option_roms++;
906 return;
908 protocol = 0;
911 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
912 /* Low kernel */
913 real_addr = 0x90000;
914 cmdline_addr = 0x9a000 - cmdline_size;
915 prot_addr = 0x10000;
916 } else if (protocol < 0x202) {
917 /* High but ancient kernel */
918 real_addr = 0x90000;
919 cmdline_addr = 0x9a000 - cmdline_size;
920 prot_addr = 0x100000;
921 } else {
922 /* High and recent kernel */
923 real_addr = 0x10000;
924 cmdline_addr = 0x20000;
925 prot_addr = 0x100000;
928 /* highest address for loading the initrd */
929 if (protocol >= 0x20c &&
930 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
932 * Linux has supported initrd up to 4 GB for a very long time (2007,
933 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
934 * though it only sets initrd_max to 2 GB to "work around bootloader
935 * bugs". Luckily, QEMU firmware(which does something like bootloader)
936 * has supported this.
938 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
939 * be loaded into any address.
941 * In addition, initrd_max is uint32_t simply because QEMU doesn't
942 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
943 * field).
945 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
947 initrd_max = UINT32_MAX;
948 } else if (protocol >= 0x203) {
949 initrd_max = ldl_p(header + 0x22c);
950 } else {
951 initrd_max = 0x37ffffff;
954 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
955 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
958 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
959 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
960 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
961 sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
962 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
964 if (protocol >= 0x202) {
965 stl_p(header + 0x228, cmdline_addr);
966 } else {
967 stw_p(header + 0x20, 0xA33F);
968 stw_p(header + 0x22, cmdline_addr - real_addr);
971 /* handle vga= parameter */
972 vmode = strstr(kernel_cmdline, "vga=");
973 if (vmode) {
974 unsigned int video_mode;
975 const char *end;
976 int ret;
977 /* skip "vga=" */
978 vmode += 4;
979 if (!strncmp(vmode, "normal", 6)) {
980 video_mode = 0xffff;
981 } else if (!strncmp(vmode, "ext", 3)) {
982 video_mode = 0xfffe;
983 } else if (!strncmp(vmode, "ask", 3)) {
984 video_mode = 0xfffd;
985 } else {
986 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
987 if (ret != 0 || (*end && *end != ' ')) {
988 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
989 exit(1);
992 stw_p(header + 0x1fa, video_mode);
995 /* loader type */
997 * High nybble = B reserved for QEMU; low nybble is revision number.
998 * If this code is substantially changed, you may want to consider
999 * incrementing the revision.
1001 if (protocol >= 0x200) {
1002 header[0x210] = 0xB0;
1004 /* heap */
1005 if (protocol >= 0x201) {
1006 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1007 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
1010 /* load initrd */
1011 if (initrd_filename) {
1012 GMappedFile *mapped_file;
1013 gsize initrd_size;
1014 gchar *initrd_data;
1015 GError *gerr = NULL;
1017 if (protocol < 0x200) {
1018 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1019 exit(1);
1022 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1023 if (!mapped_file) {
1024 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1025 initrd_filename, gerr->message);
1026 exit(1);
1028 x86ms->initrd_mapped_file = mapped_file;
1030 initrd_data = g_mapped_file_get_contents(mapped_file);
1031 initrd_size = g_mapped_file_get_length(mapped_file);
1032 if (initrd_size >= initrd_max) {
1033 fprintf(stderr, "qemu: initrd is too large, cannot support."
1034 "(max: %"PRIu32", need %"PRId64")\n",
1035 initrd_max, (uint64_t)initrd_size);
1036 exit(1);
1039 initrd_addr = (initrd_max - initrd_size) & ~4095;
1041 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1042 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1043 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1044 sev_load_ctx.initrd_data = initrd_data;
1045 sev_load_ctx.initrd_size = initrd_size;
1047 stl_p(header + 0x218, initrd_addr);
1048 stl_p(header + 0x21c, initrd_size);
1051 /* load kernel and setup */
1052 setup_size = header[0x1f1];
1053 if (setup_size == 0) {
1054 setup_size = 4;
1056 setup_size = (setup_size + 1) * 512;
1057 if (setup_size > kernel_size) {
1058 fprintf(stderr, "qemu: invalid kernel header\n");
1059 exit(1);
1061 kernel_size -= setup_size;
1063 setup = g_malloc(setup_size);
1064 kernel = g_malloc(kernel_size);
1065 fseek(f, 0, SEEK_SET);
1066 if (fread(setup, 1, setup_size, f) != setup_size) {
1067 fprintf(stderr, "fread() failed\n");
1068 exit(1);
1070 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1071 fprintf(stderr, "fread() failed\n");
1072 exit(1);
1074 fclose(f);
1076 /* append dtb to kernel */
1077 if (dtb_filename) {
1078 if (protocol < 0x209) {
1079 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1080 exit(1);
1083 dtb_size = get_image_size(dtb_filename);
1084 if (dtb_size <= 0) {
1085 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1086 dtb_filename, strerror(errno));
1087 exit(1);
1090 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1091 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1092 kernel = g_realloc(kernel, kernel_size);
1094 stq_p(header + 0x250, prot_addr + setup_data_offset);
1096 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1097 setup_data->next = 0;
1098 setup_data->type = cpu_to_le32(SETUP_DTB);
1099 setup_data->len = cpu_to_le32(dtb_size);
1101 load_image_size(dtb_filename, setup_data->data, dtb_size);
1105 * If we're starting an encrypted VM, it will be OVMF based, which uses the
1106 * efi stub for booting and doesn't require any values to be placed in the
1107 * kernel header. We therefore don't update the header so the hash of the
1108 * kernel on the other side of the fw_cfg interface matches the hash of the
1109 * file the user passed in.
1111 if (!sev_enabled()) {
1112 memcpy(setup, header, MIN(sizeof(header), setup_size));
1115 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1116 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1117 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1118 sev_load_ctx.kernel_data = (char *)kernel;
1119 sev_load_ctx.kernel_size = kernel_size;
1121 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1122 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1123 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1124 sev_load_ctx.setup_data = (char *)setup;
1125 sev_load_ctx.setup_size = setup_size;
1127 if (sev_enabled()) {
1128 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1131 option_rom[nb_option_roms].bootindex = 0;
1132 option_rom[nb_option_roms].name = "linuxboot.bin";
1133 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1134 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1136 nb_option_roms++;
1139 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1140 MemoryRegion *rom_memory, bool isapc_ram_fw)
1142 const char *bios_name;
1143 char *filename;
1144 MemoryRegion *bios, *isa_bios;
1145 int bios_size, isa_bios_size;
1146 ssize_t ret;
1148 /* BIOS load */
1149 bios_name = ms->firmware ?: default_firmware;
1150 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1151 if (filename) {
1152 bios_size = get_image_size(filename);
1153 } else {
1154 bios_size = -1;
1156 if (bios_size <= 0 ||
1157 (bios_size % 65536) != 0) {
1158 goto bios_error;
1160 bios = g_malloc(sizeof(*bios));
1161 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1162 if (sev_enabled()) {
1164 * The concept of a "reset" simply doesn't exist for
1165 * confidential computing guests, we have to destroy and
1166 * re-launch them instead. So there is no need to register
1167 * the firmware as rom to properly re-initialize on reset.
1168 * Just go for a straight file load instead.
1170 void *ptr = memory_region_get_ram_ptr(bios);
1171 load_image_size(filename, ptr, bios_size);
1172 x86_firmware_configure(ptr, bios_size);
1173 } else {
1174 if (!isapc_ram_fw) {
1175 memory_region_set_readonly(bios, true);
1177 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1178 if (ret != 0) {
1179 goto bios_error;
1182 g_free(filename);
1184 /* map the last 128KB of the BIOS in ISA space */
1185 isa_bios_size = MIN(bios_size, 128 * KiB);
1186 isa_bios = g_malloc(sizeof(*isa_bios));
1187 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1188 bios_size - isa_bios_size, isa_bios_size);
1189 memory_region_add_subregion_overlap(rom_memory,
1190 0x100000 - isa_bios_size,
1191 isa_bios,
1193 if (!isapc_ram_fw) {
1194 memory_region_set_readonly(isa_bios, true);
1197 /* map all the bios at the top of memory */
1198 memory_region_add_subregion(rom_memory,
1199 (uint32_t)(-bios_size),
1200 bios);
1201 return;
1203 bios_error:
1204 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1205 exit(1);
1208 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1210 bool smm_available = false;
1212 if (x86ms->smm == ON_OFF_AUTO_OFF) {
1213 return false;
1216 if (tcg_enabled() || qtest_enabled()) {
1217 smm_available = true;
1218 } else if (kvm_enabled()) {
1219 smm_available = kvm_has_smm();
1222 if (smm_available) {
1223 return true;
1226 if (x86ms->smm == ON_OFF_AUTO_ON) {
1227 error_report("System Management Mode not supported by this hypervisor.");
1228 exit(1);
1230 return false;
1233 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1234 void *opaque, Error **errp)
1236 X86MachineState *x86ms = X86_MACHINE(obj);
1237 OnOffAuto smm = x86ms->smm;
1239 visit_type_OnOffAuto(v, name, &smm, errp);
1242 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1243 void *opaque, Error **errp)
1245 X86MachineState *x86ms = X86_MACHINE(obj);
1247 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1250 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1252 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1253 return false;
1255 return true;
1258 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1259 void *opaque, Error **errp)
1261 X86MachineState *x86ms = X86_MACHINE(obj);
1262 OnOffAuto acpi = x86ms->acpi;
1264 visit_type_OnOffAuto(v, name, &acpi, errp);
1267 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1268 void *opaque, Error **errp)
1270 X86MachineState *x86ms = X86_MACHINE(obj);
1272 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1275 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1276 void *opaque, Error **errp)
1278 X86MachineState *x86ms = X86_MACHINE(obj);
1279 OnOffAuto pit = x86ms->pit;
1281 visit_type_OnOffAuto(v, name, &pit, errp);
1284 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1285 void *opaque, Error **errp)
1287 X86MachineState *x86ms = X86_MACHINE(obj);;
1289 visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1292 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1293 void *opaque, Error **errp)
1295 X86MachineState *x86ms = X86_MACHINE(obj);
1296 OnOffAuto pic = x86ms->pic;
1298 visit_type_OnOffAuto(v, name, &pic, errp);
1301 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1302 void *opaque, Error **errp)
1304 X86MachineState *x86ms = X86_MACHINE(obj);
1306 visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1309 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1311 X86MachineState *x86ms = X86_MACHINE(obj);
1313 return g_strdup(x86ms->oem_id);
1316 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1318 X86MachineState *x86ms = X86_MACHINE(obj);
1319 size_t len = strlen(value);
1321 if (len > 6) {
1322 error_setg(errp,
1323 "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1324 "6 bytes in size");
1325 return;
1328 strncpy(x86ms->oem_id, value, 6);
1331 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1333 X86MachineState *x86ms = X86_MACHINE(obj);
1335 return g_strdup(x86ms->oem_table_id);
1338 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1339 Error **errp)
1341 X86MachineState *x86ms = X86_MACHINE(obj);
1342 size_t len = strlen(value);
1344 if (len > 8) {
1345 error_setg(errp,
1346 "User specified "X86_MACHINE_OEM_TABLE_ID
1347 " value is bigger than "
1348 "8 bytes in size");
1349 return;
1351 strncpy(x86ms->oem_table_id, value, 8);
1354 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1355 const char *name, void *opaque, Error **errp)
1357 X86MachineState *x86ms = X86_MACHINE(obj);
1358 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1360 visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1363 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1364 const char *name, void *opaque, Error **errp)
1366 X86MachineState *x86ms = X86_MACHINE(obj);
1368 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1371 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1372 void *opaque, Error **errp)
1374 X86MachineState *x86ms = X86_MACHINE(obj);
1375 SgxEPCList *list = x86ms->sgx_epc_list;
1377 visit_type_SgxEPCList(v, name, &list, errp);
1380 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1381 void *opaque, Error **errp)
1383 X86MachineState *x86ms = X86_MACHINE(obj);
1384 SgxEPCList *list;
1386 list = x86ms->sgx_epc_list;
1387 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1389 qapi_free_SgxEPCList(list);
1392 static void x86_machine_initfn(Object *obj)
1394 X86MachineState *x86ms = X86_MACHINE(obj);
1396 x86ms->smm = ON_OFF_AUTO_AUTO;
1397 x86ms->acpi = ON_OFF_AUTO_AUTO;
1398 x86ms->pit = ON_OFF_AUTO_AUTO;
1399 x86ms->pic = ON_OFF_AUTO_AUTO;
1400 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1401 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1402 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1403 x86ms->bus_lock_ratelimit = 0;
1404 x86ms->above_4g_mem_start = 4 * GiB;
1407 static void x86_machine_class_init(ObjectClass *oc, void *data)
1409 MachineClass *mc = MACHINE_CLASS(oc);
1410 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1411 NMIClass *nc = NMI_CLASS(oc);
1413 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1414 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1415 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1416 x86mc->save_tsc_khz = true;
1417 x86mc->fwcfg_dma_enabled = true;
1418 nc->nmi_monitor_handler = x86_nmi;
1420 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1421 x86_machine_get_smm, x86_machine_set_smm,
1422 NULL, NULL);
1423 object_class_property_set_description(oc, X86_MACHINE_SMM,
1424 "Enable SMM");
1426 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1427 x86_machine_get_acpi, x86_machine_set_acpi,
1428 NULL, NULL);
1429 object_class_property_set_description(oc, X86_MACHINE_ACPI,
1430 "Enable ACPI");
1432 object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1433 x86_machine_get_pit,
1434 x86_machine_set_pit,
1435 NULL, NULL);
1436 object_class_property_set_description(oc, X86_MACHINE_PIT,
1437 "Enable i8254 PIT");
1439 object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1440 x86_machine_get_pic,
1441 x86_machine_set_pic,
1442 NULL, NULL);
1443 object_class_property_set_description(oc, X86_MACHINE_PIC,
1444 "Enable i8259 PIC");
1446 object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1447 x86_machine_get_oem_id,
1448 x86_machine_set_oem_id);
1449 object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1450 "Override the default value of field OEMID "
1451 "in ACPI table header."
1452 "The string may be up to 6 bytes in size");
1455 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1456 x86_machine_get_oem_table_id,
1457 x86_machine_set_oem_table_id);
1458 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1459 "Override the default value of field OEM Table ID "
1460 "in ACPI table header."
1461 "The string may be up to 8 bytes in size");
1463 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1464 x86_machine_get_bus_lock_ratelimit,
1465 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1466 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1467 "Set the ratelimit for the bus locks acquired in VMs");
1469 object_class_property_add(oc, "sgx-epc", "SgxEPC",
1470 machine_get_sgx_epc, machine_set_sgx_epc,
1471 NULL, NULL);
1472 object_class_property_set_description(oc, "sgx-epc",
1473 "SGX EPC device");
1476 static const TypeInfo x86_machine_info = {
1477 .name = TYPE_X86_MACHINE,
1478 .parent = TYPE_MACHINE,
1479 .abstract = true,
1480 .instance_size = sizeof(X86MachineState),
1481 .instance_init = x86_machine_initfn,
1482 .class_size = sizeof(X86MachineClass),
1483 .class_init = x86_machine_class_init,
1484 .interfaces = (InterfaceInfo[]) {
1485 { TYPE_NMI },
1490 static void x86_machine_register_types(void)
1492 type_register_static(&x86_machine_info);
1495 type_init(x86_machine_register_types)