hw/arm/stellaris: Convert SSYS to QOM device
[qemu/ar7.git] / hw / arm / stellaris.c
blob0194ede2fe0d88ad59a8dd5fc7415da84a1b5b09
1 /*
2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/irq.h"
26 #include "hw/watchdog/cmsdk-apb-watchdog.h"
27 #include "migration/vmstate.h"
28 #include "hw/misc/unimp.h"
29 #include "cpu.h"
30 #include "qom/object.h"
32 #define GPIO_A 0
33 #define GPIO_B 1
34 #define GPIO_C 2
35 #define GPIO_D 3
36 #define GPIO_E 4
37 #define GPIO_F 5
38 #define GPIO_G 6
40 #define BP_OLED_I2C 0x01
41 #define BP_OLED_SSI 0x02
42 #define BP_GAMEPAD 0x04
44 #define NUM_IRQ_LINES 64
46 typedef const struct {
47 const char *name;
48 uint32_t did0;
49 uint32_t did1;
50 uint32_t dc0;
51 uint32_t dc1;
52 uint32_t dc2;
53 uint32_t dc3;
54 uint32_t dc4;
55 uint32_t peripherals;
56 } stellaris_board_info;
58 /* General purpose timer module. */
60 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
61 OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM)
63 struct gptm_state {
64 SysBusDevice parent_obj;
66 MemoryRegion iomem;
67 uint32_t config;
68 uint32_t mode[2];
69 uint32_t control;
70 uint32_t state;
71 uint32_t mask;
72 uint32_t load[2];
73 uint32_t match[2];
74 uint32_t prescale[2];
75 uint32_t match_prescale[2];
76 uint32_t rtc;
77 int64_t tick[2];
78 struct gptm_state *opaque[2];
79 QEMUTimer *timer[2];
80 /* The timers have an alternate output used to trigger the ADC. */
81 qemu_irq trigger;
82 qemu_irq irq;
85 static void gptm_update_irq(gptm_state *s)
87 int level;
88 level = (s->state & s->mask) != 0;
89 qemu_set_irq(s->irq, level);
92 static void gptm_stop(gptm_state *s, int n)
94 timer_del(s->timer[n]);
97 static void gptm_reload(gptm_state *s, int n, int reset)
99 int64_t tick;
100 if (reset)
101 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
102 else
103 tick = s->tick[n];
105 if (s->config == 0) {
106 /* 32-bit CountDown. */
107 uint32_t count;
108 count = s->load[0] | (s->load[1] << 16);
109 tick += (int64_t)count * system_clock_scale;
110 } else if (s->config == 1) {
111 /* 32-bit RTC. 1Hz tick. */
112 tick += NANOSECONDS_PER_SECOND;
113 } else if (s->mode[n] == 0xa) {
114 /* PWM mode. Not implemented. */
115 } else {
116 qemu_log_mask(LOG_UNIMP,
117 "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
118 s->mode[n]);
119 return;
121 s->tick[n] = tick;
122 timer_mod(s->timer[n], tick);
125 static void gptm_tick(void *opaque)
127 gptm_state **p = (gptm_state **)opaque;
128 gptm_state *s;
129 int n;
131 s = *p;
132 n = p - s->opaque;
133 if (s->config == 0) {
134 s->state |= 1;
135 if ((s->control & 0x20)) {
136 /* Output trigger. */
137 qemu_irq_pulse(s->trigger);
139 if (s->mode[0] & 1) {
140 /* One-shot. */
141 s->control &= ~1;
142 } else {
143 /* Periodic. */
144 gptm_reload(s, 0, 0);
146 } else if (s->config == 1) {
147 /* RTC. */
148 uint32_t match;
149 s->rtc++;
150 match = s->match[0] | (s->match[1] << 16);
151 if (s->rtc > match)
152 s->rtc = 0;
153 if (s->rtc == 0) {
154 s->state |= 8;
156 gptm_reload(s, 0, 0);
157 } else if (s->mode[n] == 0xa) {
158 /* PWM mode. Not implemented. */
159 } else {
160 qemu_log_mask(LOG_UNIMP,
161 "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
162 s->mode[n]);
164 gptm_update_irq(s);
167 static uint64_t gptm_read(void *opaque, hwaddr offset,
168 unsigned size)
170 gptm_state *s = (gptm_state *)opaque;
172 switch (offset) {
173 case 0x00: /* CFG */
174 return s->config;
175 case 0x04: /* TAMR */
176 return s->mode[0];
177 case 0x08: /* TBMR */
178 return s->mode[1];
179 case 0x0c: /* CTL */
180 return s->control;
181 case 0x18: /* IMR */
182 return s->mask;
183 case 0x1c: /* RIS */
184 return s->state;
185 case 0x20: /* MIS */
186 return s->state & s->mask;
187 case 0x24: /* CR */
188 return 0;
189 case 0x28: /* TAILR */
190 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
191 case 0x2c: /* TBILR */
192 return s->load[1];
193 case 0x30: /* TAMARCHR */
194 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
195 case 0x34: /* TBMATCHR */
196 return s->match[1];
197 case 0x38: /* TAPR */
198 return s->prescale[0];
199 case 0x3c: /* TBPR */
200 return s->prescale[1];
201 case 0x40: /* TAPMR */
202 return s->match_prescale[0];
203 case 0x44: /* TBPMR */
204 return s->match_prescale[1];
205 case 0x48: /* TAR */
206 if (s->config == 1) {
207 return s->rtc;
209 qemu_log_mask(LOG_UNIMP,
210 "GPTM: read of TAR but timer read not supported\n");
211 return 0;
212 case 0x4c: /* TBR */
213 qemu_log_mask(LOG_UNIMP,
214 "GPTM: read of TBR but timer read not supported\n");
215 return 0;
216 default:
217 qemu_log_mask(LOG_GUEST_ERROR,
218 "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
219 offset);
220 return 0;
224 static void gptm_write(void *opaque, hwaddr offset,
225 uint64_t value, unsigned size)
227 gptm_state *s = (gptm_state *)opaque;
228 uint32_t oldval;
230 /* The timers should be disabled before changing the configuration.
231 We take advantage of this and defer everything until the timer
232 is enabled. */
233 switch (offset) {
234 case 0x00: /* CFG */
235 s->config = value;
236 break;
237 case 0x04: /* TAMR */
238 s->mode[0] = value;
239 break;
240 case 0x08: /* TBMR */
241 s->mode[1] = value;
242 break;
243 case 0x0c: /* CTL */
244 oldval = s->control;
245 s->control = value;
246 /* TODO: Implement pause. */
247 if ((oldval ^ value) & 1) {
248 if (value & 1) {
249 gptm_reload(s, 0, 1);
250 } else {
251 gptm_stop(s, 0);
254 if (((oldval ^ value) & 0x100) && s->config >= 4) {
255 if (value & 0x100) {
256 gptm_reload(s, 1, 1);
257 } else {
258 gptm_stop(s, 1);
261 break;
262 case 0x18: /* IMR */
263 s->mask = value & 0x77;
264 gptm_update_irq(s);
265 break;
266 case 0x24: /* CR */
267 s->state &= ~value;
268 break;
269 case 0x28: /* TAILR */
270 s->load[0] = value & 0xffff;
271 if (s->config < 4) {
272 s->load[1] = value >> 16;
274 break;
275 case 0x2c: /* TBILR */
276 s->load[1] = value & 0xffff;
277 break;
278 case 0x30: /* TAMARCHR */
279 s->match[0] = value & 0xffff;
280 if (s->config < 4) {
281 s->match[1] = value >> 16;
283 break;
284 case 0x34: /* TBMATCHR */
285 s->match[1] = value >> 16;
286 break;
287 case 0x38: /* TAPR */
288 s->prescale[0] = value;
289 break;
290 case 0x3c: /* TBPR */
291 s->prescale[1] = value;
292 break;
293 case 0x40: /* TAPMR */
294 s->match_prescale[0] = value;
295 break;
296 case 0x44: /* TBPMR */
297 s->match_prescale[0] = value;
298 break;
299 default:
300 qemu_log_mask(LOG_GUEST_ERROR,
301 "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
302 offset);
304 gptm_update_irq(s);
307 static const MemoryRegionOps gptm_ops = {
308 .read = gptm_read,
309 .write = gptm_write,
310 .endianness = DEVICE_NATIVE_ENDIAN,
313 static const VMStateDescription vmstate_stellaris_gptm = {
314 .name = "stellaris_gptm",
315 .version_id = 1,
316 .minimum_version_id = 1,
317 .fields = (VMStateField[]) {
318 VMSTATE_UINT32(config, gptm_state),
319 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
320 VMSTATE_UINT32(control, gptm_state),
321 VMSTATE_UINT32(state, gptm_state),
322 VMSTATE_UINT32(mask, gptm_state),
323 VMSTATE_UNUSED(8),
324 VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
325 VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
326 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
327 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
328 VMSTATE_UINT32(rtc, gptm_state),
329 VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
330 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
331 VMSTATE_END_OF_LIST()
335 static void stellaris_gptm_init(Object *obj)
337 DeviceState *dev = DEVICE(obj);
338 gptm_state *s = STELLARIS_GPTM(obj);
339 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
341 sysbus_init_irq(sbd, &s->irq);
342 qdev_init_gpio_out(dev, &s->trigger, 1);
344 memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
345 "gptm", 0x1000);
346 sysbus_init_mmio(sbd, &s->iomem);
348 s->opaque[0] = s->opaque[1] = s;
351 static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
353 gptm_state *s = STELLARIS_GPTM(dev);
354 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
355 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
358 /* System controller. */
360 #define TYPE_STELLARIS_SYS "stellaris-sys"
361 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
363 struct ssys_state {
364 SysBusDevice parent_obj;
366 MemoryRegion iomem;
367 uint32_t pborctl;
368 uint32_t ldopctl;
369 uint32_t int_status;
370 uint32_t int_mask;
371 uint32_t resc;
372 uint32_t rcc;
373 uint32_t rcc2;
374 uint32_t rcgc[3];
375 uint32_t scgc[3];
376 uint32_t dcgc[3];
377 uint32_t clkvclr;
378 uint32_t ldoarst;
379 qemu_irq irq;
380 /* Properties (all read-only registers) */
381 uint32_t user0;
382 uint32_t user1;
383 uint32_t did0;
384 uint32_t did1;
385 uint32_t dc0;
386 uint32_t dc1;
387 uint32_t dc2;
388 uint32_t dc3;
389 uint32_t dc4;
392 static void ssys_update(ssys_state *s)
394 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
397 static uint32_t pllcfg_sandstorm[16] = {
398 0x31c0, /* 1 Mhz */
399 0x1ae0, /* 1.8432 Mhz */
400 0x18c0, /* 2 Mhz */
401 0xd573, /* 2.4576 Mhz */
402 0x37a6, /* 3.57954 Mhz */
403 0x1ae2, /* 3.6864 Mhz */
404 0x0c40, /* 4 Mhz */
405 0x98bc, /* 4.906 Mhz */
406 0x935b, /* 4.9152 Mhz */
407 0x09c0, /* 5 Mhz */
408 0x4dee, /* 5.12 Mhz */
409 0x0c41, /* 6 Mhz */
410 0x75db, /* 6.144 Mhz */
411 0x1ae6, /* 7.3728 Mhz */
412 0x0600, /* 8 Mhz */
413 0x585b /* 8.192 Mhz */
416 static uint32_t pllcfg_fury[16] = {
417 0x3200, /* 1 Mhz */
418 0x1b20, /* 1.8432 Mhz */
419 0x1900, /* 2 Mhz */
420 0xf42b, /* 2.4576 Mhz */
421 0x37e3, /* 3.57954 Mhz */
422 0x1b21, /* 3.6864 Mhz */
423 0x0c80, /* 4 Mhz */
424 0x98ee, /* 4.906 Mhz */
425 0xd5b4, /* 4.9152 Mhz */
426 0x0a00, /* 5 Mhz */
427 0x4e27, /* 5.12 Mhz */
428 0x1902, /* 6 Mhz */
429 0xec1c, /* 6.144 Mhz */
430 0x1b23, /* 7.3728 Mhz */
431 0x0640, /* 8 Mhz */
432 0xb11c /* 8.192 Mhz */
435 #define DID0_VER_MASK 0x70000000
436 #define DID0_VER_0 0x00000000
437 #define DID0_VER_1 0x10000000
439 #define DID0_CLASS_MASK 0x00FF0000
440 #define DID0_CLASS_SANDSTORM 0x00000000
441 #define DID0_CLASS_FURY 0x00010000
443 static int ssys_board_class(const ssys_state *s)
445 uint32_t did0 = s->did0;
446 switch (did0 & DID0_VER_MASK) {
447 case DID0_VER_0:
448 return DID0_CLASS_SANDSTORM;
449 case DID0_VER_1:
450 switch (did0 & DID0_CLASS_MASK) {
451 case DID0_CLASS_SANDSTORM:
452 case DID0_CLASS_FURY:
453 return did0 & DID0_CLASS_MASK;
455 /* for unknown classes, fall through */
456 default:
457 /* This can only happen if the hardwired constant did0 value
458 * in this board's stellaris_board_info struct is wrong.
460 g_assert_not_reached();
464 static uint64_t ssys_read(void *opaque, hwaddr offset,
465 unsigned size)
467 ssys_state *s = (ssys_state *)opaque;
469 switch (offset) {
470 case 0x000: /* DID0 */
471 return s->did0;
472 case 0x004: /* DID1 */
473 return s->did1;
474 case 0x008: /* DC0 */
475 return s->dc0;
476 case 0x010: /* DC1 */
477 return s->dc1;
478 case 0x014: /* DC2 */
479 return s->dc2;
480 case 0x018: /* DC3 */
481 return s->dc3;
482 case 0x01c: /* DC4 */
483 return s->dc4;
484 case 0x030: /* PBORCTL */
485 return s->pborctl;
486 case 0x034: /* LDOPCTL */
487 return s->ldopctl;
488 case 0x040: /* SRCR0 */
489 return 0;
490 case 0x044: /* SRCR1 */
491 return 0;
492 case 0x048: /* SRCR2 */
493 return 0;
494 case 0x050: /* RIS */
495 return s->int_status;
496 case 0x054: /* IMC */
497 return s->int_mask;
498 case 0x058: /* MISC */
499 return s->int_status & s->int_mask;
500 case 0x05c: /* RESC */
501 return s->resc;
502 case 0x060: /* RCC */
503 return s->rcc;
504 case 0x064: /* PLLCFG */
506 int xtal;
507 xtal = (s->rcc >> 6) & 0xf;
508 switch (ssys_board_class(s)) {
509 case DID0_CLASS_FURY:
510 return pllcfg_fury[xtal];
511 case DID0_CLASS_SANDSTORM:
512 return pllcfg_sandstorm[xtal];
513 default:
514 g_assert_not_reached();
517 case 0x070: /* RCC2 */
518 return s->rcc2;
519 case 0x100: /* RCGC0 */
520 return s->rcgc[0];
521 case 0x104: /* RCGC1 */
522 return s->rcgc[1];
523 case 0x108: /* RCGC2 */
524 return s->rcgc[2];
525 case 0x110: /* SCGC0 */
526 return s->scgc[0];
527 case 0x114: /* SCGC1 */
528 return s->scgc[1];
529 case 0x118: /* SCGC2 */
530 return s->scgc[2];
531 case 0x120: /* DCGC0 */
532 return s->dcgc[0];
533 case 0x124: /* DCGC1 */
534 return s->dcgc[1];
535 case 0x128: /* DCGC2 */
536 return s->dcgc[2];
537 case 0x150: /* CLKVCLR */
538 return s->clkvclr;
539 case 0x160: /* LDOARST */
540 return s->ldoarst;
541 case 0x1e0: /* USER0 */
542 return s->user0;
543 case 0x1e4: /* USER1 */
544 return s->user1;
545 default:
546 qemu_log_mask(LOG_GUEST_ERROR,
547 "SSYS: read at bad offset 0x%x\n", (int)offset);
548 return 0;
552 static bool ssys_use_rcc2(ssys_state *s)
554 return (s->rcc2 >> 31) & 0x1;
558 * Caculate the sys. clock period in ms.
560 static void ssys_calculate_system_clock(ssys_state *s)
562 if (ssys_use_rcc2(s)) {
563 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
564 } else {
565 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
569 static void ssys_write(void *opaque, hwaddr offset,
570 uint64_t value, unsigned size)
572 ssys_state *s = (ssys_state *)opaque;
574 switch (offset) {
575 case 0x030: /* PBORCTL */
576 s->pborctl = value & 0xffff;
577 break;
578 case 0x034: /* LDOPCTL */
579 s->ldopctl = value & 0x1f;
580 break;
581 case 0x040: /* SRCR0 */
582 case 0x044: /* SRCR1 */
583 case 0x048: /* SRCR2 */
584 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
585 break;
586 case 0x054: /* IMC */
587 s->int_mask = value & 0x7f;
588 break;
589 case 0x058: /* MISC */
590 s->int_status &= ~value;
591 break;
592 case 0x05c: /* RESC */
593 s->resc = value & 0x3f;
594 break;
595 case 0x060: /* RCC */
596 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
597 /* PLL enable. */
598 s->int_status |= (1 << 6);
600 s->rcc = value;
601 ssys_calculate_system_clock(s);
602 break;
603 case 0x070: /* RCC2 */
604 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
605 break;
608 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
609 /* PLL enable. */
610 s->int_status |= (1 << 6);
612 s->rcc2 = value;
613 ssys_calculate_system_clock(s);
614 break;
615 case 0x100: /* RCGC0 */
616 s->rcgc[0] = value;
617 break;
618 case 0x104: /* RCGC1 */
619 s->rcgc[1] = value;
620 break;
621 case 0x108: /* RCGC2 */
622 s->rcgc[2] = value;
623 break;
624 case 0x110: /* SCGC0 */
625 s->scgc[0] = value;
626 break;
627 case 0x114: /* SCGC1 */
628 s->scgc[1] = value;
629 break;
630 case 0x118: /* SCGC2 */
631 s->scgc[2] = value;
632 break;
633 case 0x120: /* DCGC0 */
634 s->dcgc[0] = value;
635 break;
636 case 0x124: /* DCGC1 */
637 s->dcgc[1] = value;
638 break;
639 case 0x128: /* DCGC2 */
640 s->dcgc[2] = value;
641 break;
642 case 0x150: /* CLKVCLR */
643 s->clkvclr = value;
644 break;
645 case 0x160: /* LDOARST */
646 s->ldoarst = value;
647 break;
648 default:
649 qemu_log_mask(LOG_GUEST_ERROR,
650 "SSYS: write at bad offset 0x%x\n", (int)offset);
652 ssys_update(s);
655 static const MemoryRegionOps ssys_ops = {
656 .read = ssys_read,
657 .write = ssys_write,
658 .endianness = DEVICE_NATIVE_ENDIAN,
661 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
663 ssys_state *s = STELLARIS_SYS(obj);
665 s->pborctl = 0x7ffd;
666 s->rcc = 0x078e3ac0;
668 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
669 s->rcc2 = 0;
670 } else {
671 s->rcc2 = 0x07802810;
673 s->rcgc[0] = 1;
674 s->scgc[0] = 1;
675 s->dcgc[0] = 1;
678 static void stellaris_sys_reset_hold(Object *obj)
680 ssys_state *s = STELLARIS_SYS(obj);
682 ssys_calculate_system_clock(s);
685 static void stellaris_sys_reset_exit(Object *obj)
689 static int stellaris_sys_post_load(void *opaque, int version_id)
691 ssys_state *s = opaque;
693 ssys_calculate_system_clock(s);
695 return 0;
698 static const VMStateDescription vmstate_stellaris_sys = {
699 .name = "stellaris_sys",
700 .version_id = 2,
701 .minimum_version_id = 1,
702 .post_load = stellaris_sys_post_load,
703 .fields = (VMStateField[]) {
704 VMSTATE_UINT32(pborctl, ssys_state),
705 VMSTATE_UINT32(ldopctl, ssys_state),
706 VMSTATE_UINT32(int_mask, ssys_state),
707 VMSTATE_UINT32(int_status, ssys_state),
708 VMSTATE_UINT32(resc, ssys_state),
709 VMSTATE_UINT32(rcc, ssys_state),
710 VMSTATE_UINT32_V(rcc2, ssys_state, 2),
711 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
712 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
713 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
714 VMSTATE_UINT32(clkvclr, ssys_state),
715 VMSTATE_UINT32(ldoarst, ssys_state),
716 VMSTATE_END_OF_LIST()
720 static Property stellaris_sys_properties[] = {
721 DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
722 DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
723 DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
724 DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
725 DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
726 DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
727 DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
728 DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
729 DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
730 DEFINE_PROP_END_OF_LIST()
733 static void stellaris_sys_instance_init(Object *obj)
735 ssys_state *s = STELLARIS_SYS(obj);
736 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
738 memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
739 sysbus_init_mmio(sbd, &s->iomem);
740 sysbus_init_irq(sbd, &s->irq);
743 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
744 stellaris_board_info * board,
745 uint8_t *macaddr)
747 DeviceState *dev = qdev_new(TYPE_STELLARIS_SYS);
748 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
750 /* Most devices come preprogrammed with a MAC address in the user data. */
751 qdev_prop_set_uint32(dev, "user0",
752 macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
753 qdev_prop_set_uint32(dev, "user1",
754 macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
755 qdev_prop_set_uint32(dev, "did0", board->did0);
756 qdev_prop_set_uint32(dev, "did1", board->did1);
757 qdev_prop_set_uint32(dev, "dc0", board->dc0);
758 qdev_prop_set_uint32(dev, "dc1", board->dc1);
759 qdev_prop_set_uint32(dev, "dc2", board->dc2);
760 qdev_prop_set_uint32(dev, "dc3", board->dc3);
761 qdev_prop_set_uint32(dev, "dc4", board->dc4);
763 sysbus_realize_and_unref(sbd, &error_fatal);
764 sysbus_mmio_map(sbd, 0, base);
765 sysbus_connect_irq(sbd, 0, irq);
768 * Normally we should not be resetting devices like this during
769 * board creation. For the moment we need to do so, because
770 * system_clock_scale will only get set when the STELLARIS_SYS
771 * device is reset, and we need its initial value to pass to
772 * the watchdog device. This hack can be removed once the
773 * watchdog has been converted to use a Clock input instead.
775 device_cold_reset(dev);
777 return 0;
780 /* I2C controller. */
782 #define TYPE_STELLARIS_I2C "stellaris-i2c"
783 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
785 struct stellaris_i2c_state {
786 SysBusDevice parent_obj;
788 I2CBus *bus;
789 qemu_irq irq;
790 MemoryRegion iomem;
791 uint32_t msa;
792 uint32_t mcs;
793 uint32_t mdr;
794 uint32_t mtpr;
795 uint32_t mimr;
796 uint32_t mris;
797 uint32_t mcr;
800 #define STELLARIS_I2C_MCS_BUSY 0x01
801 #define STELLARIS_I2C_MCS_ERROR 0x02
802 #define STELLARIS_I2C_MCS_ADRACK 0x04
803 #define STELLARIS_I2C_MCS_DATACK 0x08
804 #define STELLARIS_I2C_MCS_ARBLST 0x10
805 #define STELLARIS_I2C_MCS_IDLE 0x20
806 #define STELLARIS_I2C_MCS_BUSBSY 0x40
808 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
809 unsigned size)
811 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
813 switch (offset) {
814 case 0x00: /* MSA */
815 return s->msa;
816 case 0x04: /* MCS */
817 /* We don't emulate timing, so the controller is never busy. */
818 return s->mcs | STELLARIS_I2C_MCS_IDLE;
819 case 0x08: /* MDR */
820 return s->mdr;
821 case 0x0c: /* MTPR */
822 return s->mtpr;
823 case 0x10: /* MIMR */
824 return s->mimr;
825 case 0x14: /* MRIS */
826 return s->mris;
827 case 0x18: /* MMIS */
828 return s->mris & s->mimr;
829 case 0x20: /* MCR */
830 return s->mcr;
831 default:
832 qemu_log_mask(LOG_GUEST_ERROR,
833 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
834 return 0;
838 static void stellaris_i2c_update(stellaris_i2c_state *s)
840 int level;
842 level = (s->mris & s->mimr) != 0;
843 qemu_set_irq(s->irq, level);
846 static void stellaris_i2c_write(void *opaque, hwaddr offset,
847 uint64_t value, unsigned size)
849 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
851 switch (offset) {
852 case 0x00: /* MSA */
853 s->msa = value & 0xff;
854 break;
855 case 0x04: /* MCS */
856 if ((s->mcr & 0x10) == 0) {
857 /* Disabled. Do nothing. */
858 break;
860 /* Grab the bus if this is starting a transfer. */
861 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
862 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
863 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
864 } else {
865 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
866 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
869 /* If we don't have the bus then indicate an error. */
870 if (!i2c_bus_busy(s->bus)
871 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
872 s->mcs |= STELLARIS_I2C_MCS_ERROR;
873 break;
875 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
876 if (value & 1) {
877 /* Transfer a byte. */
878 /* TODO: Handle errors. */
879 if (s->msa & 1) {
880 /* Recv */
881 s->mdr = i2c_recv(s->bus);
882 } else {
883 /* Send */
884 i2c_send(s->bus, s->mdr);
886 /* Raise an interrupt. */
887 s->mris |= 1;
889 if (value & 4) {
890 /* Finish transfer. */
891 i2c_end_transfer(s->bus);
892 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
894 break;
895 case 0x08: /* MDR */
896 s->mdr = value & 0xff;
897 break;
898 case 0x0c: /* MTPR */
899 s->mtpr = value & 0xff;
900 break;
901 case 0x10: /* MIMR */
902 s->mimr = 1;
903 break;
904 case 0x1c: /* MICR */
905 s->mris &= ~value;
906 break;
907 case 0x20: /* MCR */
908 if (value & 1) {
909 qemu_log_mask(LOG_UNIMP,
910 "stellaris_i2c: Loopback not implemented\n");
912 if (value & 0x20) {
913 qemu_log_mask(LOG_UNIMP,
914 "stellaris_i2c: Slave mode not implemented\n");
916 s->mcr = value & 0x31;
917 break;
918 default:
919 qemu_log_mask(LOG_GUEST_ERROR,
920 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
922 stellaris_i2c_update(s);
925 static void stellaris_i2c_reset(stellaris_i2c_state *s)
927 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
928 i2c_end_transfer(s->bus);
930 s->msa = 0;
931 s->mcs = 0;
932 s->mdr = 0;
933 s->mtpr = 1;
934 s->mimr = 0;
935 s->mris = 0;
936 s->mcr = 0;
937 stellaris_i2c_update(s);
940 static const MemoryRegionOps stellaris_i2c_ops = {
941 .read = stellaris_i2c_read,
942 .write = stellaris_i2c_write,
943 .endianness = DEVICE_NATIVE_ENDIAN,
946 static const VMStateDescription vmstate_stellaris_i2c = {
947 .name = "stellaris_i2c",
948 .version_id = 1,
949 .minimum_version_id = 1,
950 .fields = (VMStateField[]) {
951 VMSTATE_UINT32(msa, stellaris_i2c_state),
952 VMSTATE_UINT32(mcs, stellaris_i2c_state),
953 VMSTATE_UINT32(mdr, stellaris_i2c_state),
954 VMSTATE_UINT32(mtpr, stellaris_i2c_state),
955 VMSTATE_UINT32(mimr, stellaris_i2c_state),
956 VMSTATE_UINT32(mris, stellaris_i2c_state),
957 VMSTATE_UINT32(mcr, stellaris_i2c_state),
958 VMSTATE_END_OF_LIST()
962 static void stellaris_i2c_init(Object *obj)
964 DeviceState *dev = DEVICE(obj);
965 stellaris_i2c_state *s = STELLARIS_I2C(obj);
966 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
967 I2CBus *bus;
969 sysbus_init_irq(sbd, &s->irq);
970 bus = i2c_init_bus(dev, "i2c");
971 s->bus = bus;
973 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
974 "i2c", 0x1000);
975 sysbus_init_mmio(sbd, &s->iomem);
976 /* ??? For now we only implement the master interface. */
977 stellaris_i2c_reset(s);
980 /* Analogue to Digital Converter. This is only partially implemented,
981 enough for applications that use a combined ADC and timer tick. */
983 #define STELLARIS_ADC_EM_CONTROLLER 0
984 #define STELLARIS_ADC_EM_COMP 1
985 #define STELLARIS_ADC_EM_EXTERNAL 4
986 #define STELLARIS_ADC_EM_TIMER 5
987 #define STELLARIS_ADC_EM_PWM0 6
988 #define STELLARIS_ADC_EM_PWM1 7
989 #define STELLARIS_ADC_EM_PWM2 8
991 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
992 #define STELLARIS_ADC_FIFO_FULL 0x1000
994 #define TYPE_STELLARIS_ADC "stellaris-adc"
995 typedef struct StellarisADCState stellaris_adc_state;
996 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
997 TYPE_STELLARIS_ADC)
999 struct StellarisADCState {
1000 SysBusDevice parent_obj;
1002 MemoryRegion iomem;
1003 uint32_t actss;
1004 uint32_t ris;
1005 uint32_t im;
1006 uint32_t emux;
1007 uint32_t ostat;
1008 uint32_t ustat;
1009 uint32_t sspri;
1010 uint32_t sac;
1011 struct {
1012 uint32_t state;
1013 uint32_t data[16];
1014 } fifo[4];
1015 uint32_t ssmux[4];
1016 uint32_t ssctl[4];
1017 uint32_t noise;
1018 qemu_irq irq[4];
1021 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
1023 int tail;
1025 tail = s->fifo[n].state & 0xf;
1026 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
1027 s->ustat |= 1 << n;
1028 } else {
1029 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
1030 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
1031 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
1032 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
1034 return s->fifo[n].data[tail];
1037 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
1038 uint32_t value)
1040 int head;
1042 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
1043 FIFO fir each sequencer. */
1044 head = (s->fifo[n].state >> 4) & 0xf;
1045 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
1046 s->ostat |= 1 << n;
1047 return;
1049 s->fifo[n].data[head] = value;
1050 head = (head + 1) & 0xf;
1051 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
1052 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
1053 if ((s->fifo[n].state & 0xf) == head)
1054 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
1057 static void stellaris_adc_update(stellaris_adc_state *s)
1059 int level;
1060 int n;
1062 for (n = 0; n < 4; n++) {
1063 level = (s->ris & s->im & (1 << n)) != 0;
1064 qemu_set_irq(s->irq[n], level);
1068 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1070 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1071 int n;
1073 for (n = 0; n < 4; n++) {
1074 if ((s->actss & (1 << n)) == 0) {
1075 continue;
1078 if (((s->emux >> (n * 4)) & 0xff) != 5) {
1079 continue;
1082 /* Some applications use the ADC as a random number source, so introduce
1083 some variation into the signal. */
1084 s->noise = s->noise * 314159 + 1;
1085 /* ??? actual inputs not implemented. Return an arbitrary value. */
1086 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1087 s->ris |= (1 << n);
1088 stellaris_adc_update(s);
1092 static void stellaris_adc_reset(stellaris_adc_state *s)
1094 int n;
1096 for (n = 0; n < 4; n++) {
1097 s->ssmux[n] = 0;
1098 s->ssctl[n] = 0;
1099 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1103 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1104 unsigned size)
1106 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1108 /* TODO: Implement this. */
1109 if (offset >= 0x40 && offset < 0xc0) {
1110 int n;
1111 n = (offset - 0x40) >> 5;
1112 switch (offset & 0x1f) {
1113 case 0x00: /* SSMUX */
1114 return s->ssmux[n];
1115 case 0x04: /* SSCTL */
1116 return s->ssctl[n];
1117 case 0x08: /* SSFIFO */
1118 return stellaris_adc_fifo_read(s, n);
1119 case 0x0c: /* SSFSTAT */
1120 return s->fifo[n].state;
1121 default:
1122 break;
1125 switch (offset) {
1126 case 0x00: /* ACTSS */
1127 return s->actss;
1128 case 0x04: /* RIS */
1129 return s->ris;
1130 case 0x08: /* IM */
1131 return s->im;
1132 case 0x0c: /* ISC */
1133 return s->ris & s->im;
1134 case 0x10: /* OSTAT */
1135 return s->ostat;
1136 case 0x14: /* EMUX */
1137 return s->emux;
1138 case 0x18: /* USTAT */
1139 return s->ustat;
1140 case 0x20: /* SSPRI */
1141 return s->sspri;
1142 case 0x30: /* SAC */
1143 return s->sac;
1144 default:
1145 qemu_log_mask(LOG_GUEST_ERROR,
1146 "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1147 return 0;
1151 static void stellaris_adc_write(void *opaque, hwaddr offset,
1152 uint64_t value, unsigned size)
1154 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1156 /* TODO: Implement this. */
1157 if (offset >= 0x40 && offset < 0xc0) {
1158 int n;
1159 n = (offset - 0x40) >> 5;
1160 switch (offset & 0x1f) {
1161 case 0x00: /* SSMUX */
1162 s->ssmux[n] = value & 0x33333333;
1163 return;
1164 case 0x04: /* SSCTL */
1165 if (value != 6) {
1166 qemu_log_mask(LOG_UNIMP,
1167 "ADC: Unimplemented sequence %" PRIx64 "\n",
1168 value);
1170 s->ssctl[n] = value;
1171 return;
1172 default:
1173 break;
1176 switch (offset) {
1177 case 0x00: /* ACTSS */
1178 s->actss = value & 0xf;
1179 break;
1180 case 0x08: /* IM */
1181 s->im = value;
1182 break;
1183 case 0x0c: /* ISC */
1184 s->ris &= ~value;
1185 break;
1186 case 0x10: /* OSTAT */
1187 s->ostat &= ~value;
1188 break;
1189 case 0x14: /* EMUX */
1190 s->emux = value;
1191 break;
1192 case 0x18: /* USTAT */
1193 s->ustat &= ~value;
1194 break;
1195 case 0x20: /* SSPRI */
1196 s->sspri = value;
1197 break;
1198 case 0x28: /* PSSI */
1199 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1200 break;
1201 case 0x30: /* SAC */
1202 s->sac = value;
1203 break;
1204 default:
1205 qemu_log_mask(LOG_GUEST_ERROR,
1206 "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1208 stellaris_adc_update(s);
1211 static const MemoryRegionOps stellaris_adc_ops = {
1212 .read = stellaris_adc_read,
1213 .write = stellaris_adc_write,
1214 .endianness = DEVICE_NATIVE_ENDIAN,
1217 static const VMStateDescription vmstate_stellaris_adc = {
1218 .name = "stellaris_adc",
1219 .version_id = 1,
1220 .minimum_version_id = 1,
1221 .fields = (VMStateField[]) {
1222 VMSTATE_UINT32(actss, stellaris_adc_state),
1223 VMSTATE_UINT32(ris, stellaris_adc_state),
1224 VMSTATE_UINT32(im, stellaris_adc_state),
1225 VMSTATE_UINT32(emux, stellaris_adc_state),
1226 VMSTATE_UINT32(ostat, stellaris_adc_state),
1227 VMSTATE_UINT32(ustat, stellaris_adc_state),
1228 VMSTATE_UINT32(sspri, stellaris_adc_state),
1229 VMSTATE_UINT32(sac, stellaris_adc_state),
1230 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1231 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1232 VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1233 VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1234 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1235 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1236 VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1237 VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1238 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1239 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1240 VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1241 VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1242 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1243 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1244 VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1245 VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1246 VMSTATE_UINT32(noise, stellaris_adc_state),
1247 VMSTATE_END_OF_LIST()
1251 static void stellaris_adc_init(Object *obj)
1253 DeviceState *dev = DEVICE(obj);
1254 stellaris_adc_state *s = STELLARIS_ADC(obj);
1255 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1256 int n;
1258 for (n = 0; n < 4; n++) {
1259 sysbus_init_irq(sbd, &s->irq[n]);
1262 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1263 "adc", 0x1000);
1264 sysbus_init_mmio(sbd, &s->iomem);
1265 stellaris_adc_reset(s);
1266 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1269 /* Board init. */
1270 static stellaris_board_info stellaris_boards[] = {
1271 { "LM3S811EVB",
1273 0x0032000e,
1274 0x001f001f, /* dc0 */
1275 0x001132bf,
1276 0x01071013,
1277 0x3f0f01ff,
1278 0x0000001f,
1279 BP_OLED_I2C
1281 { "LM3S6965EVB",
1282 0x10010002,
1283 0x1073402e,
1284 0x00ff007f, /* dc0 */
1285 0x001133ff,
1286 0x030f5317,
1287 0x0f0f87ff,
1288 0x5000007f,
1289 BP_OLED_SSI | BP_GAMEPAD
1293 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1295 static const int uart_irq[] = {5, 6, 33, 34};
1296 static const int timer_irq[] = {19, 21, 23, 35};
1297 static const uint32_t gpio_addr[7] =
1298 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1299 0x40024000, 0x40025000, 0x40026000};
1300 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1302 /* Memory map of SoC devices, from
1303 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1304 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1306 * 40000000 wdtimer
1307 * 40002000 i2c (unimplemented)
1308 * 40004000 GPIO
1309 * 40005000 GPIO
1310 * 40006000 GPIO
1311 * 40007000 GPIO
1312 * 40008000 SSI
1313 * 4000c000 UART
1314 * 4000d000 UART
1315 * 4000e000 UART
1316 * 40020000 i2c
1317 * 40021000 i2c (unimplemented)
1318 * 40024000 GPIO
1319 * 40025000 GPIO
1320 * 40026000 GPIO
1321 * 40028000 PWM (unimplemented)
1322 * 4002c000 QEI (unimplemented)
1323 * 4002d000 QEI (unimplemented)
1324 * 40030000 gptimer
1325 * 40031000 gptimer
1326 * 40032000 gptimer
1327 * 40033000 gptimer
1328 * 40038000 ADC
1329 * 4003c000 analogue comparator (unimplemented)
1330 * 40048000 ethernet
1331 * 400fc000 hibernation module (unimplemented)
1332 * 400fd000 flash memory control (unimplemented)
1333 * 400fe000 system control
1336 DeviceState *gpio_dev[7], *nvic;
1337 qemu_irq gpio_in[7][8];
1338 qemu_irq gpio_out[7][8];
1339 qemu_irq adc;
1340 int sram_size;
1341 int flash_size;
1342 I2CBus *i2c;
1343 DeviceState *dev;
1344 int i;
1345 int j;
1347 MemoryRegion *sram = g_new(MemoryRegion, 1);
1348 MemoryRegion *flash = g_new(MemoryRegion, 1);
1349 MemoryRegion *system_memory = get_system_memory();
1351 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1352 sram_size = ((board->dc0 >> 18) + 1) * 1024;
1354 /* Flash programming is done via the SCU, so pretend it is ROM. */
1355 memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1356 &error_fatal);
1357 memory_region_add_subregion(system_memory, 0, flash);
1359 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1360 &error_fatal);
1361 memory_region_add_subregion(system_memory, 0x20000000, sram);
1363 nvic = qdev_new(TYPE_ARMV7M);
1364 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1365 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1366 qdev_prop_set_bit(nvic, "enable-bitband", true);
1367 object_property_set_link(OBJECT(nvic), "memory",
1368 OBJECT(get_system_memory()), &error_abort);
1369 /* This will exit with an error if the user passed us a bad cpu_type */
1370 sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1372 if (board->dc1 & (1 << 16)) {
1373 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1374 qdev_get_gpio_in(nvic, 14),
1375 qdev_get_gpio_in(nvic, 15),
1376 qdev_get_gpio_in(nvic, 16),
1377 qdev_get_gpio_in(nvic, 17),
1378 NULL);
1379 adc = qdev_get_gpio_in(dev, 0);
1380 } else {
1381 adc = NULL;
1383 for (i = 0; i < 4; i++) {
1384 if (board->dc2 & (0x10000 << i)) {
1385 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1386 0x40030000 + i * 0x1000,
1387 qdev_get_gpio_in(nvic, timer_irq[i]));
1388 /* TODO: This is incorrect, but we get away with it because
1389 the ADC output is only ever pulsed. */
1390 qdev_connect_gpio_out(dev, 0, adc);
1394 stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1395 board, nd_table[0].macaddr.a);
1398 if (board->dc1 & (1 << 3)) { /* watchdog present */
1399 dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1401 /* system_clock_scale is valid now */
1402 uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1403 qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1405 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1406 sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1408 0x40000000u);
1409 sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1411 qdev_get_gpio_in(nvic, 18));
1415 for (i = 0; i < 7; i++) {
1416 if (board->dc4 & (1 << i)) {
1417 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1418 qdev_get_gpio_in(nvic,
1419 gpio_irq[i]));
1420 for (j = 0; j < 8; j++) {
1421 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1422 gpio_out[i][j] = NULL;
1427 if (board->dc2 & (1 << 12)) {
1428 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1429 qdev_get_gpio_in(nvic, 8));
1430 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1431 if (board->peripherals & BP_OLED_I2C) {
1432 i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1436 for (i = 0; i < 4; i++) {
1437 if (board->dc2 & (1 << i)) {
1438 pl011_luminary_create(0x4000c000 + i * 0x1000,
1439 qdev_get_gpio_in(nvic, uart_irq[i]),
1440 serial_hd(i));
1443 if (board->dc2 & (1 << 4)) {
1444 dev = sysbus_create_simple("pl022", 0x40008000,
1445 qdev_get_gpio_in(nvic, 7));
1446 if (board->peripherals & BP_OLED_SSI) {
1447 void *bus;
1448 DeviceState *sddev;
1449 DeviceState *ssddev;
1451 /* Some boards have both an OLED controller and SD card connected to
1452 * the same SSI port, with the SD card chip select connected to a
1453 * GPIO pin. Technically the OLED chip select is connected to the
1454 * SSI Fss pin. We do not bother emulating that as both devices
1455 * should never be selected simultaneously, and our OLED controller
1456 * ignores stray 0xff commands that occur when deselecting the SD
1457 * card.
1459 bus = qdev_get_child_bus(dev, "ssi");
1461 sddev = ssi_create_peripheral(bus, "ssi-sd");
1462 ssddev = ssi_create_peripheral(bus, "ssd0323");
1463 gpio_out[GPIO_D][0] = qemu_irq_split(
1464 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1465 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1466 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1468 /* Make sure the select pin is high. */
1469 qemu_irq_raise(gpio_out[GPIO_D][0]);
1472 if (board->dc4 & (1 << 28)) {
1473 DeviceState *enet;
1475 qemu_check_nic_model(&nd_table[0], "stellaris");
1477 enet = qdev_new("stellaris_enet");
1478 qdev_set_nic_properties(enet, &nd_table[0]);
1479 sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1480 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1481 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1483 if (board->peripherals & BP_GAMEPAD) {
1484 qemu_irq gpad_irq[5];
1485 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1487 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1488 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1489 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1490 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1491 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1493 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1495 for (i = 0; i < 7; i++) {
1496 if (board->dc4 & (1 << i)) {
1497 for (j = 0; j < 8; j++) {
1498 if (gpio_out[i][j]) {
1499 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1505 /* Add dummy regions for the devices we don't implement yet,
1506 * so guest accesses don't cause unlogged crashes.
1508 create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1509 create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1510 create_unimplemented_device("PWM", 0x40028000, 0x1000);
1511 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1512 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1513 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1514 create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1515 create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1517 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1520 /* FIXME: Figure out how to generate these from stellaris_boards. */
1521 static void lm3s811evb_init(MachineState *machine)
1523 stellaris_init(machine, &stellaris_boards[0]);
1526 static void lm3s6965evb_init(MachineState *machine)
1528 stellaris_init(machine, &stellaris_boards[1]);
1531 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1533 MachineClass *mc = MACHINE_CLASS(oc);
1535 mc->desc = "Stellaris LM3S811EVB";
1536 mc->init = lm3s811evb_init;
1537 mc->ignore_memory_transaction_failures = true;
1538 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1541 static const TypeInfo lm3s811evb_type = {
1542 .name = MACHINE_TYPE_NAME("lm3s811evb"),
1543 .parent = TYPE_MACHINE,
1544 .class_init = lm3s811evb_class_init,
1547 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1549 MachineClass *mc = MACHINE_CLASS(oc);
1551 mc->desc = "Stellaris LM3S6965EVB";
1552 mc->init = lm3s6965evb_init;
1553 mc->ignore_memory_transaction_failures = true;
1554 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1557 static const TypeInfo lm3s6965evb_type = {
1558 .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1559 .parent = TYPE_MACHINE,
1560 .class_init = lm3s6965evb_class_init,
1563 static void stellaris_machine_init(void)
1565 type_register_static(&lm3s811evb_type);
1566 type_register_static(&lm3s6965evb_type);
1569 type_init(stellaris_machine_init)
1571 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1573 DeviceClass *dc = DEVICE_CLASS(klass);
1575 dc->vmsd = &vmstate_stellaris_i2c;
1578 static const TypeInfo stellaris_i2c_info = {
1579 .name = TYPE_STELLARIS_I2C,
1580 .parent = TYPE_SYS_BUS_DEVICE,
1581 .instance_size = sizeof(stellaris_i2c_state),
1582 .instance_init = stellaris_i2c_init,
1583 .class_init = stellaris_i2c_class_init,
1586 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1588 DeviceClass *dc = DEVICE_CLASS(klass);
1590 dc->vmsd = &vmstate_stellaris_gptm;
1591 dc->realize = stellaris_gptm_realize;
1594 static const TypeInfo stellaris_gptm_info = {
1595 .name = TYPE_STELLARIS_GPTM,
1596 .parent = TYPE_SYS_BUS_DEVICE,
1597 .instance_size = sizeof(gptm_state),
1598 .instance_init = stellaris_gptm_init,
1599 .class_init = stellaris_gptm_class_init,
1602 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1604 DeviceClass *dc = DEVICE_CLASS(klass);
1606 dc->vmsd = &vmstate_stellaris_adc;
1609 static const TypeInfo stellaris_adc_info = {
1610 .name = TYPE_STELLARIS_ADC,
1611 .parent = TYPE_SYS_BUS_DEVICE,
1612 .instance_size = sizeof(stellaris_adc_state),
1613 .instance_init = stellaris_adc_init,
1614 .class_init = stellaris_adc_class_init,
1617 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1619 DeviceClass *dc = DEVICE_CLASS(klass);
1620 ResettableClass *rc = RESETTABLE_CLASS(klass);
1622 dc->vmsd = &vmstate_stellaris_sys;
1623 rc->phases.enter = stellaris_sys_reset_enter;
1624 rc->phases.hold = stellaris_sys_reset_hold;
1625 rc->phases.exit = stellaris_sys_reset_exit;
1626 device_class_set_props(dc, stellaris_sys_properties);
1629 static const TypeInfo stellaris_sys_info = {
1630 .name = TYPE_STELLARIS_SYS,
1631 .parent = TYPE_SYS_BUS_DEVICE,
1632 .instance_size = sizeof(ssys_state),
1633 .instance_init = stellaris_sys_instance_init,
1634 .class_init = stellaris_sys_class_init,
1637 static void stellaris_register_types(void)
1639 type_register_static(&stellaris_i2c_info);
1640 type_register_static(&stellaris_gptm_info);
1641 type_register_static(&stellaris_adc_info);
1642 type_register_static(&stellaris_sys_info);
1645 type_init(stellaris_register_types)