3 ** File: fmopl.c -- software implementation of FM sound generator
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
33 #include "qemu/osdep.h"
35 //#include "driver.h" /* use M.A.M.E. */
37 #include "qemu/osdep.h"
39 #define PI 3.14159265358979323846
42 /* -------------------- for debug --------------------- */
43 /* #define OPL_OUTPUT_LOG */
45 static FILE *opl_dbg_fp
= NULL
;
46 static FM_OPL
*opl_dbg_opl
[16];
47 static int opl_dbg_maxchip
,opl_dbg_chip
;
50 /* -------------------- preliminary define section --------------------- */
51 /* attack/decay rate time rate */
52 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
53 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
55 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
57 #define FREQ_BITS 24 /* frequency turn */
59 /* counter bits = 20 , octerve 7 */
60 #define FREQ_RATE (1<<(FREQ_BITS-20))
61 #define TL_BITS (FREQ_BITS+2)
63 /* final output shift , limit minimum and maximum */
64 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
65 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
66 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
68 /* -------------------- quality selection --------------------- */
71 /* used static memory = SIN_ENT * 4 (byte) */
74 /* output level entries (envelope,sinwave) */
75 /* envelope counter lower bits */
77 /* envelope output entries */
79 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
80 /* used static memory = EG_ENT*4 (byte) */
82 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
84 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
86 #define EG_AST 0 /* ATTACK START */
88 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
90 /* LFO table entries */
92 #define VIB_SHIFT (32-9)
94 #define AMS_SHIFT (32-9)
98 /* -------------------- local defines , macros --------------------- */
100 /* register number to channel number , slot offset */
105 #define ENV_MOD_RR 0x00
106 #define ENV_MOD_DR 0x01
107 #define ENV_MOD_AR 0x02
109 /* -------------------- tables --------------------- */
110 static const int slot_array
[32]=
112 0, 2, 4, 1, 3, 5,-1,-1,
113 6, 8,10, 7, 9,11,-1,-1,
114 12,14,16,13,15,17,-1,-1,
115 -1,-1,-1,-1,-1,-1,-1,-1
118 /* key scale level */
119 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
120 #define DV (EG_STEP/2)
121 static const uint32_t KSL_TABLE
[8*16]=
124 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
125 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
126 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
127 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
129 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
130 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
131 0.000/DV
, 0.750/DV
, 1.125/DV
, 1.500/DV
,
132 1.875/DV
, 2.250/DV
, 2.625/DV
, 3.000/DV
,
134 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
135 0.000/DV
, 1.125/DV
, 1.875/DV
, 2.625/DV
,
136 3.000/DV
, 3.750/DV
, 4.125/DV
, 4.500/DV
,
137 4.875/DV
, 5.250/DV
, 5.625/DV
, 6.000/DV
,
139 0.000/DV
, 0.000/DV
, 0.000/DV
, 1.875/DV
,
140 3.000/DV
, 4.125/DV
, 4.875/DV
, 5.625/DV
,
141 6.000/DV
, 6.750/DV
, 7.125/DV
, 7.500/DV
,
142 7.875/DV
, 8.250/DV
, 8.625/DV
, 9.000/DV
,
144 0.000/DV
, 0.000/DV
, 3.000/DV
, 4.875/DV
,
145 6.000/DV
, 7.125/DV
, 7.875/DV
, 8.625/DV
,
146 9.000/DV
, 9.750/DV
,10.125/DV
,10.500/DV
,
147 10.875/DV
,11.250/DV
,11.625/DV
,12.000/DV
,
149 0.000/DV
, 3.000/DV
, 6.000/DV
, 7.875/DV
,
150 9.000/DV
,10.125/DV
,10.875/DV
,11.625/DV
,
151 12.000/DV
,12.750/DV
,13.125/DV
,13.500/DV
,
152 13.875/DV
,14.250/DV
,14.625/DV
,15.000/DV
,
154 0.000/DV
, 6.000/DV
, 9.000/DV
,10.875/DV
,
155 12.000/DV
,13.125/DV
,13.875/DV
,14.625/DV
,
156 15.000/DV
,15.750/DV
,16.125/DV
,16.500/DV
,
157 16.875/DV
,17.250/DV
,17.625/DV
,18.000/DV
,
159 0.000/DV
, 9.000/DV
,12.000/DV
,13.875/DV
,
160 15.000/DV
,16.125/DV
,16.875/DV
,17.625/DV
,
161 18.000/DV
,18.750/DV
,19.125/DV
,19.500/DV
,
162 19.875/DV
,20.250/DV
,20.625/DV
,21.000/DV
166 /* sustain lebel table (3db per step) */
167 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
168 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
169 static const int32_t SL_TABLE
[16]={
170 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
171 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
175 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
176 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
177 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
178 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
179 static int32_t *TL_TABLE
;
181 /* pointers to TL_TABLE with sinwave output offset */
182 static int32_t **SIN_TABLE
;
185 static int32_t *AMS_TABLE
;
186 static int32_t *VIB_TABLE
;
188 /* envelope output curve table */
189 /* attack + decay + OFF */
190 static int32_t ENV_CURVE
[2*EG_ENT
+1];
194 static const uint32_t MUL_TABLE
[16]= {
195 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
196 0.50*ML
, 1.00*ML
, 2.00*ML
, 3.00*ML
, 4.00*ML
, 5.00*ML
, 6.00*ML
, 7.00*ML
,
197 8.00*ML
, 9.00*ML
,10.00*ML
,10.00*ML
,12.00*ML
,12.00*ML
,15.00*ML
,15.00*ML
201 /* dummy attack / decay rate ( when rate == 0 ) */
202 static int32_t RATE_0
[16]=
203 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
205 /* -------------------- static state --------------------- */
207 /* lock level of common table */
208 static int num_lock
= 0;
211 static void *cur_chip
= NULL
; /* current chip point */
212 /* currenct chip state */
213 /* static OPLSAMPLE *bufL,*bufR; */
216 static OPL_SLOT
*SLOT7_1
, *SLOT7_2
, *SLOT8_1
, *SLOT8_2
;
218 static int32_t outd
[1];
221 static int32_t *ams_table
;
222 static int32_t *vib_table
;
223 static int32_t amsIncr
;
224 static int32_t vibIncr
;
225 static int32_t feedback2
; /* connect for SLOT 2 */
227 /* log output level */
228 #define LOG_ERR 3 /* ERROR */
229 #define LOG_WAR 2 /* WARNING */
230 #define LOG_INF 1 /* INFORMATION */
232 //#define LOG_LEVEL LOG_INF
233 #define LOG_LEVEL LOG_ERR
235 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
238 /* --------------------- subroutines --------------------- */
240 static inline int Limit( int val
, int max
, int min
) {
243 else if ( val
< min
)
249 /* status set and IRQ handling */
250 static inline void OPL_STATUS_SET(FM_OPL
*OPL
,int flag
)
252 /* set status flag */
254 if(!(OPL
->status
& 0x80))
256 if(OPL
->status
& OPL
->statusmask
)
263 /* status reset and IRQ handling */
264 static inline void OPL_STATUS_RESET(FM_OPL
*OPL
,int flag
)
266 /* reset status flag */
268 if((OPL
->status
& 0x80))
270 if (!(OPL
->status
& OPL
->statusmask
) )
278 static inline void OPL_STATUSMASK_SET(FM_OPL
*OPL
,int flag
)
280 OPL
->statusmask
= flag
;
281 /* IRQ handling check */
282 OPL_STATUS_SET(OPL
,0);
283 OPL_STATUS_RESET(OPL
,0);
286 /* ----- key on ----- */
287 static inline void OPL_KEYON(OPL_SLOT
*SLOT
)
289 /* sin wave restart */
292 SLOT
->evm
= ENV_MOD_AR
;
293 SLOT
->evs
= SLOT
->evsa
;
297 /* ----- key off ----- */
298 static inline void OPL_KEYOFF(OPL_SLOT
*SLOT
)
300 if( SLOT
->evm
> ENV_MOD_RR
)
302 /* set envelope counter from envleope output */
303 SLOT
->evm
= ENV_MOD_RR
;
304 if( !(SLOT
->evc
&EG_DST
) )
305 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
308 SLOT
->evs
= SLOT
->evsr
;
312 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
313 /* return : envelope output */
314 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT
*SLOT
)
316 /* calcrate envelope generator */
317 if( (SLOT
->evc
+=SLOT
->evs
) >= SLOT
->eve
)
320 case ENV_MOD_AR
: /* ATTACK -> DECAY1 */
322 SLOT
->evm
= ENV_MOD_DR
;
324 SLOT
->eve
= SLOT
->SL
;
325 SLOT
->evs
= SLOT
->evsd
;
327 case ENV_MOD_DR
: /* DECAY -> SL or RR */
328 SLOT
->evc
= SLOT
->SL
;
336 SLOT
->evm
= ENV_MOD_RR
;
337 SLOT
->evs
= SLOT
->evsr
;
340 case ENV_MOD_RR
: /* RR -> OFF */
342 SLOT
->eve
= EG_OFF
+1;
347 /* calcrate envelope */
348 return SLOT
->TLL
+ENV_CURVE
[SLOT
->evc
>>ENV_BITS
]+(SLOT
->ams
? ams
: 0);
351 /* set algorithm connection */
352 static void set_algorithm( OPL_CH
*CH
)
354 int32_t *carrier
= &outd
[0];
355 CH
->connect1
= CH
->CON
? carrier
: &feedback2
;
356 CH
->connect2
= carrier
;
359 /* ---------- frequency counter for operater update ---------- */
360 static inline void CALC_FCSLOT(OPL_CH
*CH
,OPL_SLOT
*SLOT
)
364 /* frequency step counter */
365 SLOT
->Incr
= CH
->fc
* SLOT
->mul
;
366 ksr
= CH
->kcode
>> SLOT
->KSR
;
368 if( SLOT
->ksr
!= ksr
)
371 /* attack , decay rate recalcration */
372 SLOT
->evsa
= SLOT
->AR
[ksr
];
373 SLOT
->evsd
= SLOT
->DR
[ksr
];
374 SLOT
->evsr
= SLOT
->RR
[ksr
];
376 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
379 /* set multi,am,vib,EG-TYP,KSR,mul */
380 static inline void set_mul(FM_OPL
*OPL
,int slot
,int v
)
382 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
383 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
385 SLOT
->mul
= MUL_TABLE
[v
&0x0f];
386 SLOT
->KSR
= (v
&0x10) ? 0 : 2;
387 SLOT
->eg_typ
= (v
&0x20)>>5;
388 SLOT
->vib
= (v
&0x40);
389 SLOT
->ams
= (v
&0x80);
390 CALC_FCSLOT(CH
,SLOT
);
394 static inline void set_ksl_tl(FM_OPL
*OPL
,int slot
,int v
)
396 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
397 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
398 int ksl
= v
>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
400 SLOT
->ksl
= ksl
? 3-ksl
: 31;
401 SLOT
->TL
= (v
&0x3f)*(0.75/EG_STEP
); /* 0.75db step */
403 if( !(OPL
->mode
&0x80) )
404 { /* not CSM latch total level */
405 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
409 /* set attack rate & decay rate */
410 static inline void set_ar_dr(FM_OPL
*OPL
,int slot
,int v
)
412 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
413 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
417 SLOT
->AR
= ar
? &OPL
->AR_TABLE
[ar
<<2] : RATE_0
;
418 SLOT
->evsa
= SLOT
->AR
[SLOT
->ksr
];
419 if( SLOT
->evm
== ENV_MOD_AR
) SLOT
->evs
= SLOT
->evsa
;
421 SLOT
->DR
= dr
? &OPL
->DR_TABLE
[dr
<<2] : RATE_0
;
422 SLOT
->evsd
= SLOT
->DR
[SLOT
->ksr
];
423 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->evs
= SLOT
->evsd
;
426 /* set sustain level & release rate */
427 static inline void set_sl_rr(FM_OPL
*OPL
,int slot
,int v
)
429 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
430 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
434 SLOT
->SL
= SL_TABLE
[sl
];
435 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->eve
= SLOT
->SL
;
436 SLOT
->RR
= &OPL
->DR_TABLE
[rr
<<2];
437 SLOT
->evsr
= SLOT
->RR
[SLOT
->ksr
];
438 if( SLOT
->evm
== ENV_MOD_RR
) SLOT
->evs
= SLOT
->evsr
;
441 /* operator output calcrator */
442 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
443 /* ---------- calcrate one of channel ---------- */
444 static inline void OPL_CALC_CH( OPL_CH
*CH
)
451 SLOT
= &CH
->SLOT
[SLOT1
];
452 env_out
=OPL_CALC_SLOT(SLOT
);
453 if( env_out
< EG_ENT
-1 )
456 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
457 else SLOT
->Cnt
+= SLOT
->Incr
;
461 int feedback1
= (CH
->op1_out
[0]+CH
->op1_out
[1])>>CH
->FB
;
462 CH
->op1_out
[1] = CH
->op1_out
[0];
463 *CH
->connect1
+= CH
->op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
467 *CH
->connect1
+= OP_OUT(SLOT
,env_out
,0);
471 CH
->op1_out
[1] = CH
->op1_out
[0];
475 SLOT
= &CH
->SLOT
[SLOT2
];
476 env_out
=OPL_CALC_SLOT(SLOT
);
477 if( env_out
< EG_ENT
-1 )
480 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
481 else SLOT
->Cnt
+= SLOT
->Incr
;
483 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
);
487 /* ---------- calcrate rhythm block ---------- */
488 #define WHITE_NOISE_db 6.0
489 static inline void OPL_CALC_RH( OPL_CH
*CH
)
491 uint32_t env_tam
,env_sd
,env_top
,env_hh
;
492 int whitenoise
= (rand()&1)*(WHITE_NOISE_db
/EG_STEP
);
498 /* BD : same as FM serial mode and output level is large */
501 SLOT
= &CH
[6].SLOT
[SLOT1
];
502 env_out
=OPL_CALC_SLOT(SLOT
);
503 if( env_out
< EG_ENT
-1 )
506 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
507 else SLOT
->Cnt
+= SLOT
->Incr
;
511 int feedback1
= (CH
[6].op1_out
[0]+CH
[6].op1_out
[1])>>CH
[6].FB
;
512 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
513 feedback2
= CH
[6].op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
517 feedback2
= OP_OUT(SLOT
,env_out
,0);
522 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
523 CH
[6].op1_out
[0] = 0;
526 SLOT
= &CH
[6].SLOT
[SLOT2
];
527 env_out
=OPL_CALC_SLOT(SLOT
);
528 if( env_out
< EG_ENT
-1 )
531 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
532 else SLOT
->Cnt
+= SLOT
->Incr
;
534 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
)*2;
537 // SD (17) = mul14[fnum7] + white noise
538 // TAM (15) = mul15[fnum8]
539 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
540 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
541 env_sd
=OPL_CALC_SLOT(SLOT7_2
) + whitenoise
;
542 env_tam
=OPL_CALC_SLOT(SLOT8_1
);
543 env_top
=OPL_CALC_SLOT(SLOT8_2
);
544 env_hh
=OPL_CALC_SLOT(SLOT7_1
) + whitenoise
;
547 if(SLOT7_1
->vib
) SLOT7_1
->Cnt
+= (2*SLOT7_1
->Incr
*vib
/VIB_RATE
);
548 else SLOT7_1
->Cnt
+= 2*SLOT7_1
->Incr
;
549 if(SLOT7_2
->vib
) SLOT7_2
->Cnt
+= ((CH
[7].fc
*8)*vib
/VIB_RATE
);
550 else SLOT7_2
->Cnt
+= (CH
[7].fc
*8);
551 if(SLOT8_1
->vib
) SLOT8_1
->Cnt
+= (SLOT8_1
->Incr
*vib
/VIB_RATE
);
552 else SLOT8_1
->Cnt
+= SLOT8_1
->Incr
;
553 if(SLOT8_2
->vib
) SLOT8_2
->Cnt
+= ((CH
[8].fc
*48)*vib
/VIB_RATE
);
554 else SLOT8_2
->Cnt
+= (CH
[8].fc
*48);
556 tone8
= OP_OUT(SLOT8_2
,whitenoise
,0 );
559 if( env_sd
< EG_ENT
-1 )
560 outd
[0] += OP_OUT(SLOT7_1
,env_sd
, 0)*8;
562 if( env_tam
< EG_ENT
-1 )
563 outd
[0] += OP_OUT(SLOT8_1
,env_tam
, 0)*2;
565 if( env_top
< EG_ENT
-1 )
566 outd
[0] += OP_OUT(SLOT7_2
,env_top
,tone8
)*2;
568 if( env_hh
< EG_ENT
-1 )
569 outd
[0] += OP_OUT(SLOT7_2
,env_hh
,tone8
)*2;
572 /* ----------- initialize time tabls ----------- */
573 static void init_timetables( FM_OPL
*OPL
, int ARRATE
, int DRRATE
)
578 /* make attack rate & decay rate tables */
579 for (i
= 0;i
< 4;i
++) OPL
->AR_TABLE
[i
] = OPL
->DR_TABLE
[i
] = 0;
580 for (i
= 4;i
<= 60;i
++){
581 rate
= OPL
->freqbase
; /* frequency rate */
582 if( i
< 60 ) rate
*= 1.0+(i
&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
583 rate
*= 1<<((i
>>2)-1); /* b2-5 : shift bit */
584 rate
*= (double)(EG_ENT
<<ENV_BITS
);
585 OPL
->AR_TABLE
[i
] = rate
/ ARRATE
;
586 OPL
->DR_TABLE
[i
] = rate
/ DRRATE
;
588 for (i
= 60; i
< ARRAY_SIZE(OPL
->AR_TABLE
); i
++)
590 OPL
->AR_TABLE
[i
] = EG_AED
-1;
591 OPL
->DR_TABLE
[i
] = OPL
->DR_TABLE
[60];
594 for (i
= 0;i
< 64 ;i
++){ /* make for overflow area */
595 LOG(LOG_WAR
, ("rate %2d , ar %f ms , dr %f ms\n", i
,
596 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->AR_TABLE
[i
]) * (1000.0 / OPL
->rate
),
597 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->DR_TABLE
[i
]) * (1000.0 / OPL
->rate
) ));
602 /* ---------- generic table initialize ---------- */
603 static int OPLOpenTable( void )
610 /* allocate dynamic tables */
611 if( (TL_TABLE
= malloc(TL_MAX
*2*sizeof(int32_t))) == NULL
)
613 if( (SIN_TABLE
= malloc(SIN_ENT
*4 *sizeof(int32_t *))) == NULL
)
618 if( (AMS_TABLE
= malloc(AMS_ENT
*2 *sizeof(int32_t))) == NULL
)
624 if( (VIB_TABLE
= malloc(VIB_ENT
*2 *sizeof(int32_t))) == NULL
)
631 /* make total level table */
632 for (t
= 0;t
< EG_ENT
-1 ;t
++){
633 rate
= ((1<<TL_BITS
)-1)/pow(10,EG_STEP
*t
/20); /* dB -> voltage */
634 TL_TABLE
[ t
] = (int)rate
;
635 TL_TABLE
[TL_MAX
+t
] = -TL_TABLE
[t
];
636 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
638 /* fill volume off area */
639 for ( t
= EG_ENT
-1; t
< TL_MAX
;t
++){
640 TL_TABLE
[t
] = TL_TABLE
[TL_MAX
+t
] = 0;
643 /* make sinwave table (total level offet) */
644 /* degree 0 = degree 180 = off */
645 SIN_TABLE
[0] = SIN_TABLE
[SIN_ENT
/2] = &TL_TABLE
[EG_ENT
-1];
646 for (s
= 1;s
<= SIN_ENT
/4;s
++){
647 pom
= sin(2*PI
*s
/SIN_ENT
); /* sin */
648 pom
= 20*log10(1/pom
); /* decibel */
649 j
= pom
/ EG_STEP
; /* TL_TABLE steps */
651 /* degree 0 - 90 , degree 180 - 90 : plus section */
652 SIN_TABLE
[ s
] = SIN_TABLE
[SIN_ENT
/2-s
] = &TL_TABLE
[j
];
653 /* degree 180 - 270 , degree 360 - 270 : minus section */
654 SIN_TABLE
[SIN_ENT
/2+s
] = SIN_TABLE
[SIN_ENT
-s
] = &TL_TABLE
[TL_MAX
+j
];
655 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
657 for (s
= 0;s
< SIN_ENT
;s
++)
659 SIN_TABLE
[SIN_ENT
*1+s
] = s
<(SIN_ENT
/2) ? SIN_TABLE
[s
] : &TL_TABLE
[EG_ENT
];
660 SIN_TABLE
[SIN_ENT
*2+s
] = SIN_TABLE
[s
% (SIN_ENT
/2)];
661 SIN_TABLE
[SIN_ENT
*3+s
] = (s
/(SIN_ENT
/4))&1 ? &TL_TABLE
[EG_ENT
] : SIN_TABLE
[SIN_ENT
*2+s
];
664 /* envelope counter -> envelope output table */
665 for (i
=0; i
<EG_ENT
; i
++)
668 pom
= pow( ((double)(EG_ENT
-1-i
)/EG_ENT
) , 8 ) * EG_ENT
;
669 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
670 ENV_CURVE
[i
] = (int)pom
;
671 /* DECAY ,RELEASE curve */
672 ENV_CURVE
[(EG_DST
>>ENV_BITS
)+i
]= i
;
675 ENV_CURVE
[EG_OFF
>>ENV_BITS
]= EG_ENT
-1;
676 /* make LFO ams table */
677 for (i
=0; i
<AMS_ENT
; i
++)
679 pom
= (1.0+sin(2*PI
*i
/AMS_ENT
))/2; /* sin */
680 AMS_TABLE
[i
] = (1.0/EG_STEP
)*pom
; /* 1dB */
681 AMS_TABLE
[AMS_ENT
+i
] = (4.8/EG_STEP
)*pom
; /* 4.8dB */
683 /* make LFO vibrate table */
684 for (i
=0; i
<VIB_ENT
; i
++)
686 /* 100cent = 1seminote = 6% ?? */
687 pom
= (double)VIB_RATE
*0.06*sin(2*PI
*i
/VIB_ENT
); /* +-100sect step */
688 VIB_TABLE
[i
] = VIB_RATE
+ (pom
*0.07); /* +- 7cent */
689 VIB_TABLE
[VIB_ENT
+i
] = VIB_RATE
+ (pom
*0.14); /* +-14cent */
690 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
696 static void OPLCloseTable( void )
704 /* CSM Key Control */
705 static inline void CSMKeyControll(OPL_CH
*CH
)
707 OPL_SLOT
*slot1
= &CH
->SLOT
[SLOT1
];
708 OPL_SLOT
*slot2
= &CH
->SLOT
[SLOT2
];
712 /* total level latch */
713 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
714 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
716 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
721 /* ---------- opl initialize ---------- */
722 static void OPL_initialize(FM_OPL
*OPL
)
727 OPL
->freqbase
= (OPL
->rate
) ? ((double)OPL
->clock
/ OPL
->rate
) / 72 : 0;
728 /* Timer base time */
729 OPL
->TimerBase
= 1.0/((double)OPL
->clock
/ 72.0 );
730 /* make time tables */
731 init_timetables( OPL
, OPL_ARRATE
, OPL_DRRATE
);
732 /* make fnumber -> increment counter table */
733 for( fn
=0 ; fn
< 1024 ; fn
++ )
735 OPL
->FN_TABLE
[fn
] = OPL
->freqbase
* fn
* FREQ_RATE
* (1<<7) / 2;
738 OPL
->amsIncr
= OPL
->rate
? (double)AMS_ENT
*(1<<AMS_SHIFT
) / OPL
->rate
* 3.7 * ((double)OPL
->clock
/3600000) : 0;
739 OPL
->vibIncr
= OPL
->rate
? (double)VIB_ENT
*(1<<VIB_SHIFT
) / OPL
->rate
* 6.4 * ((double)OPL
->clock
/3600000) : 0;
742 /* ---------- write a OPL registers ---------- */
743 static void OPLWriteReg(FM_OPL
*OPL
, int r
, int v
)
751 case 0x00: /* 00-1f:control */
755 /* wave selector enable */
756 OPL
->wavesel
= v
&0x20;
759 /* preset compatible mode */
761 for(c
=0;c
<OPL
->max_ch
;c
++)
763 OPL
->P_CH
[c
].SLOT
[SLOT1
].wavetable
= &SIN_TABLE
[0];
764 OPL
->P_CH
[c
].SLOT
[SLOT2
].wavetable
= &SIN_TABLE
[0];
768 case 0x02: /* Timer 1 */
769 OPL
->T
[0] = (256-v
)*4;
771 case 0x03: /* Timer 2 */
772 OPL
->T
[1] = (256-v
)*16;
774 case 0x04: /* IRQ clear / mask and Timer enable */
776 { /* IRQ flag clear */
777 OPL_STATUS_RESET(OPL
,0x7f);
780 { /* set IRQ mask ,timer enable*/
782 uint8_t st2
= (v
>>1)&1;
783 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
784 OPL_STATUS_RESET(OPL
,v
&0x78);
785 OPL_STATUSMASK_SET(OPL
,((~v
)&0x78)|0x01);
787 if(OPL
->st
[1] != st2
)
789 double interval
= st2
? (double)OPL
->T
[1]*OPL
->TimerBase
: 0.0;
791 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+1,interval
);
794 if(OPL
->st
[0] != st1
)
796 double interval
= st1
? (double)OPL
->T
[0]*OPL
->TimerBase
: 0.0;
798 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+0,interval
);
804 case 0x20: /* am,vib,ksr,eg type,mul */
805 slot
= slot_array
[r
&0x1f];
806 if(slot
== -1) return;
810 slot
= slot_array
[r
&0x1f];
811 if(slot
== -1) return;
812 set_ksl_tl(OPL
,slot
,v
);
815 slot
= slot_array
[r
&0x1f];
816 if(slot
== -1) return;
817 set_ar_dr(OPL
,slot
,v
);
820 slot
= slot_array
[r
&0x1f];
821 if(slot
== -1) return;
822 set_sl_rr(OPL
,slot
,v
);
828 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
830 uint8_t rkey
= OPL
->rhythm
^v
;
831 OPL
->ams_table
= &AMS_TABLE
[v
&0x80 ? AMS_ENT
: 0];
832 OPL
->vib_table
= &VIB_TABLE
[v
&0x40 ? VIB_ENT
: 0];
833 OPL
->rhythm
= v
&0x3f;
837 usrintf_showmessage("OPL Rhythm mode select");
844 OPL
->P_CH
[6].op1_out
[0] = OPL
->P_CH
[6].op1_out
[1] = 0;
845 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
846 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
850 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
851 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
857 if(v
&0x08) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
858 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
859 }/* TAM key on/off */
862 if(v
&0x04) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
863 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
865 /* TOP-CY key on/off */
868 if(v
&0x02) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
869 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
874 if(v
&0x01) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
875 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
881 /* keyon,block,fnum */
882 if( (r
&0x0f) > 8) return;
883 CH
= &OPL
->P_CH
[r
&0x0f];
886 block_fnum
= (CH
->block_fnum
&0x1f00) | v
;
890 int keyon
= (v
>>5)&1;
891 block_fnum
= ((v
&0x1f)<<8) | (CH
->block_fnum
&0xff);
892 if(CH
->keyon
!= keyon
)
894 if( (CH
->keyon
=keyon
) )
896 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
897 OPL_KEYON(&CH
->SLOT
[SLOT1
]);
898 OPL_KEYON(&CH
->SLOT
[SLOT2
]);
902 OPL_KEYOFF(&CH
->SLOT
[SLOT1
]);
903 OPL_KEYOFF(&CH
->SLOT
[SLOT2
]);
908 if(CH
->block_fnum
!= block_fnum
)
910 int blockRv
= 7-(block_fnum
>>10);
911 int fnum
= block_fnum
&0x3ff;
912 CH
->block_fnum
= block_fnum
;
914 CH
->ksl_base
= KSL_TABLE
[block_fnum
>>6];
915 CH
->fc
= OPL
->FN_TABLE
[fnum
]>>blockRv
;
916 CH
->kcode
= CH
->block_fnum
>>9;
917 if( (OPL
->mode
&0x40) && CH
->block_fnum
&0x100) CH
->kcode
|=1;
918 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT1
]);
919 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT2
]);
924 if( (r
&0x0f) > 8) return;
925 CH
= &OPL
->P_CH
[r
&0x0f];
927 int feedback
= (v
>>1)&7;
928 CH
->FB
= feedback
? (8+1) - feedback
: 0;
933 case 0xe0: /* wave type */
934 slot
= slot_array
[r
&0x1f];
935 if(slot
== -1) return;
936 CH
= &OPL
->P_CH
[slot
/2];
939 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
940 CH
->SLOT
[slot
&1].wavetable
= &SIN_TABLE
[(v
&0x03)*SIN_ENT
];
946 /* lock/unlock for common table */
947 static int OPL_LockTable(void)
950 if(num_lock
>1) return 0;
953 /* allocate total level table (128kb space) */
954 if( !OPLOpenTable() )
962 static void OPL_UnLockTable(void)
964 if(num_lock
) num_lock
--;
971 /*******************************************************************************/
972 /* YM3812 local section */
973 /*******************************************************************************/
975 /* ---------- update one of chip ----------- */
976 void YM3812UpdateOne(FM_OPL
*OPL
, int16_t *buffer
, int length
)
980 int16_t *buf
= buffer
;
981 uint32_t amsCnt
= OPL
->amsCnt
;
982 uint32_t vibCnt
= OPL
->vibCnt
;
983 uint8_t rhythm
= OPL
->rhythm
&0x20;
986 if( (void *)OPL
!= cur_chip
){
987 cur_chip
= (void *)OPL
;
988 /* channel pointers */
992 SLOT7_1
= &S_CH
[7].SLOT
[SLOT1
];
993 SLOT7_2
= &S_CH
[7].SLOT
[SLOT2
];
994 SLOT8_1
= &S_CH
[8].SLOT
[SLOT1
];
995 SLOT8_2
= &S_CH
[8].SLOT
[SLOT2
];
997 amsIncr
= OPL
->amsIncr
;
998 vibIncr
= OPL
->vibIncr
;
999 ams_table
= OPL
->ams_table
;
1000 vib_table
= OPL
->vib_table
;
1002 R_CH
= rhythm
? &S_CH
[6] : E_CH
;
1003 for( i
=0; i
< length
; i
++ )
1005 /* channel A channel B channel C */
1007 ams
= ams_table
[(amsCnt
+=amsIncr
)>>AMS_SHIFT
];
1008 vib
= vib_table
[(vibCnt
+=vibIncr
)>>VIB_SHIFT
];
1011 for(CH
=S_CH
; CH
< R_CH
; CH
++)
1017 data
= Limit( outd
[0] , OPL_MAXOUT
, OPL_MINOUT
);
1018 /* store to sound buffer */
1019 buf
[i
] = data
>> OPL_OUTSB
;
1022 OPL
->amsCnt
= amsCnt
;
1023 OPL
->vibCnt
= vibCnt
;
1024 #ifdef OPL_OUTPUT_LOG
1027 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1028 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1029 fprintf(opl_dbg_fp
,"%c%c%c",0x20+opl_dbg_chip
,length
&0xff,length
/256);
1034 /* ---------- reset one of chip ---------- */
1035 static void OPLResetChip(FM_OPL
*OPL
)
1041 OPL
->mode
= 0; /* normal mode */
1042 OPL_STATUS_RESET(OPL
,0x7f);
1043 /* reset with register write */
1044 OPLWriteReg(OPL
,0x01,0); /* wabesel disable */
1045 OPLWriteReg(OPL
,0x02,0); /* Timer1 */
1046 OPLWriteReg(OPL
,0x03,0); /* Timer2 */
1047 OPLWriteReg(OPL
,0x04,0); /* IRQ mask clear */
1048 for(i
= 0xff ; i
>= 0x20 ; i
-- ) OPLWriteReg(OPL
,i
,0);
1049 /* reset operator parameter */
1050 for( c
= 0 ; c
< OPL
->max_ch
; c
++ )
1052 OPL_CH
*CH
= &OPL
->P_CH
[c
];
1053 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1054 for(s
= 0 ; s
< 2 ; s
++ )
1057 CH
->SLOT
[s
].wavetable
= &SIN_TABLE
[0];
1058 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1059 CH
->SLOT
[s
].evc
= EG_OFF
;
1060 CH
->SLOT
[s
].eve
= EG_OFF
+1;
1061 CH
->SLOT
[s
].evs
= 0;
1066 /* ---------- Create one of vietual YM3812 ---------- */
1067 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1068 FM_OPL
*OPLCreate(int clock
, int rate
)
1073 int max_ch
= 9; /* normaly 9 channels */
1075 if( OPL_LockTable() ==-1) return NULL
;
1076 /* allocate OPL state space */
1077 state_size
= sizeof(FM_OPL
);
1078 state_size
+= sizeof(OPL_CH
)*max_ch
;
1079 /* allocate memory block */
1080 ptr
= malloc(state_size
);
1081 if(ptr
==NULL
) return NULL
;
1083 memset(ptr
,0,state_size
);
1084 OPL
= (FM_OPL
*)ptr
; ptr
+=sizeof(FM_OPL
);
1085 OPL
->P_CH
= (OPL_CH
*)ptr
; ptr
+=sizeof(OPL_CH
)*max_ch
;
1086 /* set channel state pointer */
1089 OPL
->max_ch
= max_ch
;
1090 /* init grobal tables */
1091 OPL_initialize(OPL
);
1094 #ifdef OPL_OUTPUT_LOG
1097 opl_dbg_fp
= fopen("opllog.opl","wb");
1098 opl_dbg_maxchip
= 0;
1102 opl_dbg_opl
[opl_dbg_maxchip
] = OPL
;
1103 fprintf(opl_dbg_fp
,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip
,
1107 (clock
/0x10000)&0xff,
1108 (clock
/0x1000000)&0xff);
1115 /* ---------- Destroy one of vietual YM3812 ---------- */
1116 void OPLDestroy(FM_OPL
*OPL
)
1118 #ifdef OPL_OUTPUT_LOG
1129 /* ---------- Option handlers ---------- */
1131 void OPLSetTimerHandler(FM_OPL
*OPL
,OPL_TIMERHANDLER TimerHandler
,int channelOffset
)
1133 OPL
->TimerHandler
= TimerHandler
;
1134 OPL
->TimerParam
= channelOffset
;
1137 /* ---------- YM3812 I/O interface ---------- */
1138 int OPLWrite(FM_OPL
*OPL
,int a
,int v
)
1141 { /* address port */
1142 OPL
->address
= v
& 0xff;
1146 #ifdef OPL_OUTPUT_LOG
1149 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1150 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1151 fprintf(opl_dbg_fp
,"%c%c%c",0x10+opl_dbg_chip
,OPL
->address
,v
);
1154 OPLWriteReg(OPL
,OPL
->address
,v
);
1156 return OPL
->status
>>7;
1159 unsigned char OPLRead(FM_OPL
*OPL
,int a
)
1163 return OPL
->status
& (OPL
->statusmask
|0x80);
1166 switch(OPL
->address
)
1168 case 0x05: /* KeyBoard IN */
1171 case 0x0f: /* ADPCM-DATA */
1174 case 0x19: /* I/O DATA */
1176 case 0x1a: /* PCM-DATA */
1182 int OPLTimerOver(FM_OPL
*OPL
,int c
)
1186 OPL_STATUS_SET(OPL
,0x20);
1190 OPL_STATUS_SET(OPL
,0x40);
1191 /* CSM mode key,TL control */
1192 if( OPL
->mode
& 0x80 )
1193 { /* CSM mode total level latch and auto key on */
1196 CSMKeyControll( &OPL
->P_CH
[ch
] );
1200 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+c
,(double)OPL
->T
[c
]*OPL
->TimerBase
);
1201 return OPL
->status
>>7;