vhost-user: add slave-req-fd support
[qemu/ar7.git] / hw / audio / fmopl.c
blob202f752c5d9b6ee764cdefd494e7c7448f3e7f6a
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
12 preliminary :
13 Problem :
14 note:
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
33 #include "qemu/osdep.h"
34 #include <math.h>
35 //#include "driver.h" /* use M.A.M.E. */
36 #include "fmopl.h"
37 #include "qemu/osdep.h"
38 #ifndef PI
39 #define PI 3.14159265358979323846
40 #endif
42 /* -------------------- for debug --------------------- */
43 /* #define OPL_OUTPUT_LOG */
44 #ifdef OPL_OUTPUT_LOG
45 static FILE *opl_dbg_fp = NULL;
46 static FM_OPL *opl_dbg_opl[16];
47 static int opl_dbg_maxchip,opl_dbg_chip;
48 #endif
50 /* -------------------- preliminary define section --------------------- */
51 /* attack/decay rate time rate */
52 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
53 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
55 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
57 #define FREQ_BITS 24 /* frequency turn */
59 /* counter bits = 20 , octerve 7 */
60 #define FREQ_RATE (1<<(FREQ_BITS-20))
61 #define TL_BITS (FREQ_BITS+2)
63 /* final output shift , limit minimum and maximum */
64 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
65 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
66 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
68 /* -------------------- quality selection --------------------- */
70 /* sinwave entries */
71 /* used static memory = SIN_ENT * 4 (byte) */
72 #define SIN_ENT 2048
74 /* output level entries (envelope,sinwave) */
75 /* envelope counter lower bits */
76 #define ENV_BITS 16
77 /* envelope output entries */
78 #define EG_ENT 4096
79 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
80 /* used static memory = EG_ENT*4 (byte) */
82 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
83 #define EG_DED EG_OFF
84 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
85 #define EG_AED EG_DST
86 #define EG_AST 0 /* ATTACK START */
88 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
90 /* LFO table entries */
91 #define VIB_ENT 512
92 #define VIB_SHIFT (32-9)
93 #define AMS_ENT 512
94 #define AMS_SHIFT (32-9)
96 #define VIB_RATE 256
98 /* -------------------- local defines , macros --------------------- */
100 /* register number to channel number , slot offset */
101 #define SLOT1 0
102 #define SLOT2 1
104 /* envelope phase */
105 #define ENV_MOD_RR 0x00
106 #define ENV_MOD_DR 0x01
107 #define ENV_MOD_AR 0x02
109 /* -------------------- tables --------------------- */
110 static const int slot_array[32]=
112 0, 2, 4, 1, 3, 5,-1,-1,
113 6, 8,10, 7, 9,11,-1,-1,
114 12,14,16,13,15,17,-1,-1,
115 -1,-1,-1,-1,-1,-1,-1,-1
118 /* key scale level */
119 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
120 #define DV (EG_STEP/2)
121 static const uint32_t KSL_TABLE[8*16]=
123 /* OCT 0 */
124 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
125 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
126 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
127 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
128 /* OCT 1 */
129 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
130 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
131 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
132 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
133 /* OCT 2 */
134 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
136 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
137 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
138 /* OCT 3 */
139 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
140 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
141 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
142 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
143 /* OCT 4 */
144 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
145 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
146 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
147 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
148 /* OCT 5 */
149 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
150 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
151 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
152 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
153 /* OCT 6 */
154 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
155 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
156 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
157 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
158 /* OCT 7 */
159 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
160 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
161 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
162 19.875/DV,20.250/DV,20.625/DV,21.000/DV
164 #undef DV
166 /* sustain lebel table (3db per step) */
167 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
168 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
169 static const int32_t SL_TABLE[16]={
170 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
171 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
173 #undef SC
175 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
176 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
177 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
178 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
179 static int32_t *TL_TABLE;
181 /* pointers to TL_TABLE with sinwave output offset */
182 static int32_t **SIN_TABLE;
184 /* LFO table */
185 static int32_t *AMS_TABLE;
186 static int32_t *VIB_TABLE;
188 /* envelope output curve table */
189 /* attack + decay + OFF */
190 static int32_t ENV_CURVE[2*EG_ENT+1];
192 /* multiple table */
193 #define ML 2
194 static const uint32_t MUL_TABLE[16]= {
195 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
196 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
197 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
199 #undef ML
201 /* dummy attack / decay rate ( when rate == 0 ) */
202 static int32_t RATE_0[16]=
203 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
205 /* -------------------- static state --------------------- */
207 /* lock level of common table */
208 static int num_lock = 0;
210 /* work table */
211 static void *cur_chip = NULL; /* current chip point */
212 /* currenct chip state */
213 /* static OPLSAMPLE *bufL,*bufR; */
214 static OPL_CH *S_CH;
215 static OPL_CH *E_CH;
216 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
218 static int32_t outd[1];
219 static int32_t ams;
220 static int32_t vib;
221 static int32_t *ams_table;
222 static int32_t *vib_table;
223 static int32_t amsIncr;
224 static int32_t vibIncr;
225 static int32_t feedback2; /* connect for SLOT 2 */
227 /* log output level */
228 #define LOG_ERR 3 /* ERROR */
229 #define LOG_WAR 2 /* WARNING */
230 #define LOG_INF 1 /* INFORMATION */
232 //#define LOG_LEVEL LOG_INF
233 #define LOG_LEVEL LOG_ERR
235 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
236 #define LOG(n,x)
238 /* --------------------- subroutines --------------------- */
240 static inline int Limit( int val, int max, int min ) {
241 if ( val > max )
242 val = max;
243 else if ( val < min )
244 val = min;
246 return val;
249 /* status set and IRQ handling */
250 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
252 /* set status flag */
253 OPL->status |= flag;
254 if(!(OPL->status & 0x80))
256 if(OPL->status & OPL->statusmask)
257 { /* IRQ on */
258 OPL->status |= 0x80;
263 /* status reset and IRQ handling */
264 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
266 /* reset status flag */
267 OPL->status &=~flag;
268 if((OPL->status & 0x80))
270 if (!(OPL->status & OPL->statusmask) )
272 OPL->status &= 0x7f;
277 /* IRQ mask set */
278 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
280 OPL->statusmask = flag;
281 /* IRQ handling check */
282 OPL_STATUS_SET(OPL,0);
283 OPL_STATUS_RESET(OPL,0);
286 /* ----- key on ----- */
287 static inline void OPL_KEYON(OPL_SLOT *SLOT)
289 /* sin wave restart */
290 SLOT->Cnt = 0;
291 /* set attack */
292 SLOT->evm = ENV_MOD_AR;
293 SLOT->evs = SLOT->evsa;
294 SLOT->evc = EG_AST;
295 SLOT->eve = EG_AED;
297 /* ----- key off ----- */
298 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
300 if( SLOT->evm > ENV_MOD_RR)
302 /* set envelope counter from envleope output */
303 SLOT->evm = ENV_MOD_RR;
304 if( !(SLOT->evc&EG_DST) )
305 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
306 SLOT->evc = EG_DST;
307 SLOT->eve = EG_DED;
308 SLOT->evs = SLOT->evsr;
312 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
313 /* return : envelope output */
314 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
316 /* calcrate envelope generator */
317 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
319 switch( SLOT->evm ){
320 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
321 /* next DR */
322 SLOT->evm = ENV_MOD_DR;
323 SLOT->evc = EG_DST;
324 SLOT->eve = SLOT->SL;
325 SLOT->evs = SLOT->evsd;
326 break;
327 case ENV_MOD_DR: /* DECAY -> SL or RR */
328 SLOT->evc = SLOT->SL;
329 SLOT->eve = EG_DED;
330 if(SLOT->eg_typ)
332 SLOT->evs = 0;
334 else
336 SLOT->evm = ENV_MOD_RR;
337 SLOT->evs = SLOT->evsr;
339 break;
340 case ENV_MOD_RR: /* RR -> OFF */
341 SLOT->evc = EG_OFF;
342 SLOT->eve = EG_OFF+1;
343 SLOT->evs = 0;
344 break;
347 /* calcrate envelope */
348 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
351 /* set algorithm connection */
352 static void set_algorithm( OPL_CH *CH)
354 int32_t *carrier = &outd[0];
355 CH->connect1 = CH->CON ? carrier : &feedback2;
356 CH->connect2 = carrier;
359 /* ---------- frequency counter for operater update ---------- */
360 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
362 int ksr;
364 /* frequency step counter */
365 SLOT->Incr = CH->fc * SLOT->mul;
366 ksr = CH->kcode >> SLOT->KSR;
368 if( SLOT->ksr != ksr )
370 SLOT->ksr = ksr;
371 /* attack , decay rate recalcration */
372 SLOT->evsa = SLOT->AR[ksr];
373 SLOT->evsd = SLOT->DR[ksr];
374 SLOT->evsr = SLOT->RR[ksr];
376 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
379 /* set multi,am,vib,EG-TYP,KSR,mul */
380 static inline void set_mul(FM_OPL *OPL,int slot,int v)
382 OPL_CH *CH = &OPL->P_CH[slot/2];
383 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
385 SLOT->mul = MUL_TABLE[v&0x0f];
386 SLOT->KSR = (v&0x10) ? 0 : 2;
387 SLOT->eg_typ = (v&0x20)>>5;
388 SLOT->vib = (v&0x40);
389 SLOT->ams = (v&0x80);
390 CALC_FCSLOT(CH,SLOT);
393 /* set ksl & tl */
394 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
396 OPL_CH *CH = &OPL->P_CH[slot/2];
397 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
398 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
400 SLOT->ksl = ksl ? 3-ksl : 31;
401 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
403 if( !(OPL->mode&0x80) )
404 { /* not CSM latch total level */
405 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
409 /* set attack rate & decay rate */
410 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
412 OPL_CH *CH = &OPL->P_CH[slot/2];
413 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
414 int ar = v>>4;
415 int dr = v&0x0f;
417 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
418 SLOT->evsa = SLOT->AR[SLOT->ksr];
419 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
421 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
422 SLOT->evsd = SLOT->DR[SLOT->ksr];
423 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
426 /* set sustain level & release rate */
427 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
429 OPL_CH *CH = &OPL->P_CH[slot/2];
430 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
431 int sl = v>>4;
432 int rr = v & 0x0f;
434 SLOT->SL = SL_TABLE[sl];
435 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
436 SLOT->RR = &OPL->DR_TABLE[rr<<2];
437 SLOT->evsr = SLOT->RR[SLOT->ksr];
438 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
441 /* operator output calcrator */
442 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
443 /* ---------- calcrate one of channel ---------- */
444 static inline void OPL_CALC_CH( OPL_CH *CH )
446 uint32_t env_out;
447 OPL_SLOT *SLOT;
449 feedback2 = 0;
450 /* SLOT 1 */
451 SLOT = &CH->SLOT[SLOT1];
452 env_out=OPL_CALC_SLOT(SLOT);
453 if( env_out < EG_ENT-1 )
455 /* PG */
456 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
457 else SLOT->Cnt += SLOT->Incr;
458 /* connectoion */
459 if(CH->FB)
461 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
462 CH->op1_out[1] = CH->op1_out[0];
463 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
465 else
467 *CH->connect1 += OP_OUT(SLOT,env_out,0);
469 }else
471 CH->op1_out[1] = CH->op1_out[0];
472 CH->op1_out[0] = 0;
474 /* SLOT 2 */
475 SLOT = &CH->SLOT[SLOT2];
476 env_out=OPL_CALC_SLOT(SLOT);
477 if( env_out < EG_ENT-1 )
479 /* PG */
480 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
481 else SLOT->Cnt += SLOT->Incr;
482 /* connectoion */
483 outd[0] += OP_OUT(SLOT,env_out, feedback2);
487 /* ---------- calcrate rhythm block ---------- */
488 #define WHITE_NOISE_db 6.0
489 static inline void OPL_CALC_RH( OPL_CH *CH )
491 uint32_t env_tam,env_sd,env_top,env_hh;
492 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
493 int32_t tone8;
495 OPL_SLOT *SLOT;
496 int env_out;
498 /* BD : same as FM serial mode and output level is large */
499 feedback2 = 0;
500 /* SLOT 1 */
501 SLOT = &CH[6].SLOT[SLOT1];
502 env_out=OPL_CALC_SLOT(SLOT);
503 if( env_out < EG_ENT-1 )
505 /* PG */
506 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
507 else SLOT->Cnt += SLOT->Incr;
508 /* connectoion */
509 if(CH[6].FB)
511 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
512 CH[6].op1_out[1] = CH[6].op1_out[0];
513 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
515 else
517 feedback2 = OP_OUT(SLOT,env_out,0);
519 }else
521 feedback2 = 0;
522 CH[6].op1_out[1] = CH[6].op1_out[0];
523 CH[6].op1_out[0] = 0;
525 /* SLOT 2 */
526 SLOT = &CH[6].SLOT[SLOT2];
527 env_out=OPL_CALC_SLOT(SLOT);
528 if( env_out < EG_ENT-1 )
530 /* PG */
531 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
532 else SLOT->Cnt += SLOT->Incr;
533 /* connectoion */
534 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
537 // SD (17) = mul14[fnum7] + white noise
538 // TAM (15) = mul15[fnum8]
539 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
540 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
541 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
542 env_tam=OPL_CALC_SLOT(SLOT8_1);
543 env_top=OPL_CALC_SLOT(SLOT8_2);
544 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
546 /* PG */
547 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
548 else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
549 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
550 else SLOT7_2->Cnt += (CH[7].fc*8);
551 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
552 else SLOT8_1->Cnt += SLOT8_1->Incr;
553 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
554 else SLOT8_2->Cnt += (CH[8].fc*48);
556 tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
558 /* SD */
559 if( env_sd < EG_ENT-1 )
560 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
561 /* TAM */
562 if( env_tam < EG_ENT-1 )
563 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
564 /* TOP-CY */
565 if( env_top < EG_ENT-1 )
566 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
567 /* HH */
568 if( env_hh < EG_ENT-1 )
569 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
572 /* ----------- initialize time tabls ----------- */
573 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
575 int i;
576 double rate;
578 /* make attack rate & decay rate tables */
579 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
580 for (i = 4;i <= 60;i++){
581 rate = OPL->freqbase; /* frequency rate */
582 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
583 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
584 rate *= (double)(EG_ENT<<ENV_BITS);
585 OPL->AR_TABLE[i] = rate / ARRATE;
586 OPL->DR_TABLE[i] = rate / DRRATE;
588 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
590 OPL->AR_TABLE[i] = EG_AED-1;
591 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
593 #if 0
594 for (i = 0;i < 64 ;i++){ /* make for overflow area */
595 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
596 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
597 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
599 #endif
602 /* ---------- generic table initialize ---------- */
603 static int OPLOpenTable( void )
605 int s,t;
606 double rate;
607 int i,j;
608 double pom;
610 /* allocate dynamic tables */
611 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
612 return 0;
613 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
615 free(TL_TABLE);
616 return 0;
618 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
620 free(TL_TABLE);
621 free(SIN_TABLE);
622 return 0;
624 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
626 free(TL_TABLE);
627 free(SIN_TABLE);
628 free(AMS_TABLE);
629 return 0;
631 /* make total level table */
632 for (t = 0;t < EG_ENT-1 ;t++){
633 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
634 TL_TABLE[ t] = (int)rate;
635 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
636 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
638 /* fill volume off area */
639 for ( t = EG_ENT-1; t < TL_MAX ;t++){
640 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
643 /* make sinwave table (total level offet) */
644 /* degree 0 = degree 180 = off */
645 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
646 for (s = 1;s <= SIN_ENT/4;s++){
647 pom = sin(2*PI*s/SIN_ENT); /* sin */
648 pom = 20*log10(1/pom); /* decibel */
649 j = pom / EG_STEP; /* TL_TABLE steps */
651 /* degree 0 - 90 , degree 180 - 90 : plus section */
652 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
653 /* degree 180 - 270 , degree 360 - 270 : minus section */
654 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
655 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
657 for (s = 0;s < SIN_ENT;s++)
659 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
660 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
661 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
664 /* envelope counter -> envelope output table */
665 for (i=0; i<EG_ENT; i++)
667 /* ATTACK curve */
668 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
669 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
670 ENV_CURVE[i] = (int)pom;
671 /* DECAY ,RELEASE curve */
672 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
674 /* off */
675 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
676 /* make LFO ams table */
677 for (i=0; i<AMS_ENT; i++)
679 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
680 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
681 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
683 /* make LFO vibrate table */
684 for (i=0; i<VIB_ENT; i++)
686 /* 100cent = 1seminote = 6% ?? */
687 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
688 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
689 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
690 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
692 return 1;
696 static void OPLCloseTable( void )
698 free(TL_TABLE);
699 free(SIN_TABLE);
700 free(AMS_TABLE);
701 free(VIB_TABLE);
704 /* CSM Key Control */
705 static inline void CSMKeyControll(OPL_CH *CH)
707 OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
708 OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
709 /* all key off */
710 OPL_KEYOFF(slot1);
711 OPL_KEYOFF(slot2);
712 /* total level latch */
713 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
714 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
715 /* key on */
716 CH->op1_out[0] = CH->op1_out[1] = 0;
717 OPL_KEYON(slot1);
718 OPL_KEYON(slot2);
721 /* ---------- opl initialize ---------- */
722 static void OPL_initialize(FM_OPL *OPL)
724 int fn;
726 /* frequency base */
727 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
728 /* Timer base time */
729 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
730 /* make time tables */
731 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
732 /* make fnumber -> increment counter table */
733 for( fn=0 ; fn < 1024 ; fn++ )
735 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
737 /* LFO freq.table */
738 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
739 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
742 /* ---------- write a OPL registers ---------- */
743 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
745 OPL_CH *CH;
746 int slot;
747 int block_fnum;
749 switch(r&0xe0)
751 case 0x00: /* 00-1f:control */
752 switch(r&0x1f)
754 case 0x01:
755 /* wave selector enable */
756 OPL->wavesel = v&0x20;
757 if(!OPL->wavesel)
759 /* preset compatible mode */
760 int c;
761 for(c=0;c<OPL->max_ch;c++)
763 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
764 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
767 return;
768 case 0x02: /* Timer 1 */
769 OPL->T[0] = (256-v)*4;
770 break;
771 case 0x03: /* Timer 2 */
772 OPL->T[1] = (256-v)*16;
773 return;
774 case 0x04: /* IRQ clear / mask and Timer enable */
775 if(v&0x80)
776 { /* IRQ flag clear */
777 OPL_STATUS_RESET(OPL,0x7f);
779 else
780 { /* set IRQ mask ,timer enable*/
781 uint8_t st1 = v&1;
782 uint8_t st2 = (v>>1)&1;
783 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
784 OPL_STATUS_RESET(OPL,v&0x78);
785 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
786 /* timer 2 */
787 if(OPL->st[1] != st2)
789 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
790 OPL->st[1] = st2;
791 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
793 /* timer 1 */
794 if(OPL->st[0] != st1)
796 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
797 OPL->st[0] = st1;
798 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
801 return;
803 break;
804 case 0x20: /* am,vib,ksr,eg type,mul */
805 slot = slot_array[r&0x1f];
806 if(slot == -1) return;
807 set_mul(OPL,slot,v);
808 return;
809 case 0x40:
810 slot = slot_array[r&0x1f];
811 if(slot == -1) return;
812 set_ksl_tl(OPL,slot,v);
813 return;
814 case 0x60:
815 slot = slot_array[r&0x1f];
816 if(slot == -1) return;
817 set_ar_dr(OPL,slot,v);
818 return;
819 case 0x80:
820 slot = slot_array[r&0x1f];
821 if(slot == -1) return;
822 set_sl_rr(OPL,slot,v);
823 return;
824 case 0xa0:
825 switch(r)
827 case 0xbd:
828 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
830 uint8_t rkey = OPL->rhythm^v;
831 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
832 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
833 OPL->rhythm = v&0x3f;
834 if(OPL->rhythm&0x20)
836 #if 0
837 usrintf_showmessage("OPL Rhythm mode select");
838 #endif
839 /* BD key on/off */
840 if(rkey&0x10)
842 if(v&0x10)
844 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
845 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
846 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
848 else
850 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
851 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
854 /* SD key on/off */
855 if(rkey&0x08)
857 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
858 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
859 }/* TAM key on/off */
860 if(rkey&0x04)
862 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
863 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
865 /* TOP-CY key on/off */
866 if(rkey&0x02)
868 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
869 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
871 /* HH key on/off */
872 if(rkey&0x01)
874 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
875 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
879 return;
881 /* keyon,block,fnum */
882 if( (r&0x0f) > 8) return;
883 CH = &OPL->P_CH[r&0x0f];
884 if(!(r&0x10))
885 { /* a0-a8 */
886 block_fnum = (CH->block_fnum&0x1f00) | v;
888 else
889 { /* b0-b8 */
890 int keyon = (v>>5)&1;
891 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
892 if(CH->keyon != keyon)
894 if( (CH->keyon=keyon) )
896 CH->op1_out[0] = CH->op1_out[1] = 0;
897 OPL_KEYON(&CH->SLOT[SLOT1]);
898 OPL_KEYON(&CH->SLOT[SLOT2]);
900 else
902 OPL_KEYOFF(&CH->SLOT[SLOT1]);
903 OPL_KEYOFF(&CH->SLOT[SLOT2]);
907 /* update */
908 if(CH->block_fnum != block_fnum)
910 int blockRv = 7-(block_fnum>>10);
911 int fnum = block_fnum&0x3ff;
912 CH->block_fnum = block_fnum;
914 CH->ksl_base = KSL_TABLE[block_fnum>>6];
915 CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
916 CH->kcode = CH->block_fnum>>9;
917 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
918 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
919 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
921 return;
922 case 0xc0:
923 /* FB,C */
924 if( (r&0x0f) > 8) return;
925 CH = &OPL->P_CH[r&0x0f];
927 int feedback = (v>>1)&7;
928 CH->FB = feedback ? (8+1) - feedback : 0;
929 CH->CON = v&1;
930 set_algorithm(CH);
932 return;
933 case 0xe0: /* wave type */
934 slot = slot_array[r&0x1f];
935 if(slot == -1) return;
936 CH = &OPL->P_CH[slot/2];
937 if(OPL->wavesel)
939 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
940 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
942 return;
946 /* lock/unlock for common table */
947 static int OPL_LockTable(void)
949 num_lock++;
950 if(num_lock>1) return 0;
951 /* first time */
952 cur_chip = NULL;
953 /* allocate total level table (128kb space) */
954 if( !OPLOpenTable() )
956 num_lock--;
957 return -1;
959 return 0;
962 static void OPL_UnLockTable(void)
964 if(num_lock) num_lock--;
965 if(num_lock) return;
966 /* last time */
967 cur_chip = NULL;
968 OPLCloseTable();
971 /*******************************************************************************/
972 /* YM3812 local section */
973 /*******************************************************************************/
975 /* ---------- update one of chip ----------- */
976 void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
978 int i;
979 int data;
980 int16_t *buf = buffer;
981 uint32_t amsCnt = OPL->amsCnt;
982 uint32_t vibCnt = OPL->vibCnt;
983 uint8_t rhythm = OPL->rhythm&0x20;
984 OPL_CH *CH,*R_CH;
986 if( (void *)OPL != cur_chip ){
987 cur_chip = (void *)OPL;
988 /* channel pointers */
989 S_CH = OPL->P_CH;
990 E_CH = &S_CH[9];
991 /* rhythm slot */
992 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
993 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
994 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
995 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
996 /* LFO state */
997 amsIncr = OPL->amsIncr;
998 vibIncr = OPL->vibIncr;
999 ams_table = OPL->ams_table;
1000 vib_table = OPL->vib_table;
1002 R_CH = rhythm ? &S_CH[6] : E_CH;
1003 for( i=0; i < length ; i++ )
1005 /* channel A channel B channel C */
1006 /* LFO */
1007 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1008 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1009 outd[0] = 0;
1010 /* FM part */
1011 for(CH=S_CH ; CH < R_CH ; CH++)
1012 OPL_CALC_CH(CH);
1013 /* Rythn part */
1014 if(rhythm)
1015 OPL_CALC_RH(S_CH);
1016 /* limit check */
1017 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1018 /* store to sound buffer */
1019 buf[i] = data >> OPL_OUTSB;
1022 OPL->amsCnt = amsCnt;
1023 OPL->vibCnt = vibCnt;
1024 #ifdef OPL_OUTPUT_LOG
1025 if(opl_dbg_fp)
1027 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1028 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1029 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1031 #endif
1034 /* ---------- reset one of chip ---------- */
1035 static void OPLResetChip(FM_OPL *OPL)
1037 int c,s;
1038 int i;
1040 /* reset chip */
1041 OPL->mode = 0; /* normal mode */
1042 OPL_STATUS_RESET(OPL,0x7f);
1043 /* reset with register write */
1044 OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1045 OPLWriteReg(OPL,0x02,0); /* Timer1 */
1046 OPLWriteReg(OPL,0x03,0); /* Timer2 */
1047 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1048 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1049 /* reset operator parameter */
1050 for( c = 0 ; c < OPL->max_ch ; c++ )
1052 OPL_CH *CH = &OPL->P_CH[c];
1053 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1054 for(s = 0 ; s < 2 ; s++ )
1056 /* wave table */
1057 CH->SLOT[s].wavetable = &SIN_TABLE[0];
1058 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1059 CH->SLOT[s].evc = EG_OFF;
1060 CH->SLOT[s].eve = EG_OFF+1;
1061 CH->SLOT[s].evs = 0;
1066 /* ---------- Create one of vietual YM3812 ---------- */
1067 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1068 FM_OPL *OPLCreate(int clock, int rate)
1070 char *ptr;
1071 FM_OPL *OPL;
1072 int state_size;
1073 int max_ch = 9; /* normaly 9 channels */
1075 if( OPL_LockTable() ==-1) return NULL;
1076 /* allocate OPL state space */
1077 state_size = sizeof(FM_OPL);
1078 state_size += sizeof(OPL_CH)*max_ch;
1079 /* allocate memory block */
1080 ptr = malloc(state_size);
1081 if(ptr==NULL) return NULL;
1082 /* clear */
1083 memset(ptr,0,state_size);
1084 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1085 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1086 /* set channel state pointer */
1087 OPL->clock = clock;
1088 OPL->rate = rate;
1089 OPL->max_ch = max_ch;
1090 /* init grobal tables */
1091 OPL_initialize(OPL);
1092 /* reset chip */
1093 OPLResetChip(OPL);
1094 #ifdef OPL_OUTPUT_LOG
1095 if(!opl_dbg_fp)
1097 opl_dbg_fp = fopen("opllog.opl","wb");
1098 opl_dbg_maxchip = 0;
1100 if(opl_dbg_fp)
1102 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1103 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1104 type,
1105 clock&0xff,
1106 (clock/0x100)&0xff,
1107 (clock/0x10000)&0xff,
1108 (clock/0x1000000)&0xff);
1109 opl_dbg_maxchip++;
1111 #endif
1112 return OPL;
1115 /* ---------- Destroy one of vietual YM3812 ---------- */
1116 void OPLDestroy(FM_OPL *OPL)
1118 #ifdef OPL_OUTPUT_LOG
1119 if(opl_dbg_fp)
1121 fclose(opl_dbg_fp);
1122 opl_dbg_fp = NULL;
1124 #endif
1125 OPL_UnLockTable();
1126 free(OPL);
1129 /* ---------- Option handlers ---------- */
1131 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1133 OPL->TimerHandler = TimerHandler;
1134 OPL->TimerParam = channelOffset;
1137 /* ---------- YM3812 I/O interface ---------- */
1138 int OPLWrite(FM_OPL *OPL,int a,int v)
1140 if( !(a&1) )
1141 { /* address port */
1142 OPL->address = v & 0xff;
1144 else
1145 { /* data port */
1146 #ifdef OPL_OUTPUT_LOG
1147 if(opl_dbg_fp)
1149 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1150 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1151 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1153 #endif
1154 OPLWriteReg(OPL,OPL->address,v);
1156 return OPL->status>>7;
1159 unsigned char OPLRead(FM_OPL *OPL,int a)
1161 if( !(a&1) )
1162 { /* status port */
1163 return OPL->status & (OPL->statusmask|0x80);
1165 /* data port */
1166 switch(OPL->address)
1168 case 0x05: /* KeyBoard IN */
1169 return 0;
1170 #if 0
1171 case 0x0f: /* ADPCM-DATA */
1172 return 0;
1173 #endif
1174 case 0x19: /* I/O DATA */
1175 return 0;
1176 case 0x1a: /* PCM-DATA */
1177 return 0;
1179 return 0;
1182 int OPLTimerOver(FM_OPL *OPL,int c)
1184 if( c )
1185 { /* Timer B */
1186 OPL_STATUS_SET(OPL,0x20);
1188 else
1189 { /* Timer A */
1190 OPL_STATUS_SET(OPL,0x40);
1191 /* CSM mode key,TL control */
1192 if( OPL->mode & 0x80 )
1193 { /* CSM mode total level latch and auto key on */
1194 int ch;
1195 for(ch=0;ch<9;ch++)
1196 CSMKeyControll( &OPL->P_CH[ch] );
1199 /* reload timer */
1200 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1201 return OPL->status>>7;