4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include <sys/types.h>
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
37 #include "disas/disas.h"
39 #if defined(CONFIG_USER_ONLY)
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
48 #include <machine/profile.h>
57 #include "exec/address-spaces.h"
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
66 //#define DEBUG_TB_INVALIDATE
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
76 #define SMC_BITMAP_USE_THRESHOLD 10
78 typedef struct PageDesc
{
79 /* list of TBs intersecting this ram page */
80 TranslationBlock
*first_tb
;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count
;
84 unsigned long *code_bitmap
;
85 #if defined(CONFIG_USER_ONLY)
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
102 /* Size of the L2 (and L3, etc) page tables. */
104 #define V_L2_SIZE (1 << V_L2_BITS)
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
113 #define V_L1_BITS V_L1_BITS_REM
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
120 uintptr_t qemu_real_host_page_size
;
121 uintptr_t qemu_real_host_page_mask
;
122 uintptr_t qemu_host_page_size
;
123 uintptr_t qemu_host_page_mask
;
125 /* This is a multi-level map on the virtual address space.
126 The bottom level has pointers to PageDesc. */
127 static void *l1_map
[V_L1_SIZE
];
129 /* code generation context */
132 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
133 tb_page_addr_t phys_page2
);
134 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
);
136 void cpu_gen_init(void)
138 tcg_context_init(&tcg_ctx
);
141 /* return non zero if the very first instruction is invalid so that
142 the virtual CPU can trigger an exception.
144 '*gen_code_size_ptr' contains the size of the generated code (host
147 int cpu_gen_code(CPUArchState
*env
, TranslationBlock
*tb
, int *gen_code_size_ptr
)
149 TCGContext
*s
= &tcg_ctx
;
150 tcg_insn_unit
*gen_code_buf
;
152 #ifdef CONFIG_PROFILER
156 #ifdef CONFIG_PROFILER
157 s
->tb_count1
++; /* includes aborted translations because of
159 ti
= profile_getclock();
163 gen_intermediate_code(env
, tb
);
165 trace_translate_block(tb
, tb
->pc
, tb
->tc_ptr
);
167 /* generate machine code */
168 gen_code_buf
= tb
->tc_ptr
;
169 tb
->tb_next_offset
[0] = 0xffff;
170 tb
->tb_next_offset
[1] = 0xffff;
171 s
->tb_next_offset
= tb
->tb_next_offset
;
172 #ifdef USE_DIRECT_JUMP
173 s
->tb_jmp_offset
= tb
->tb_jmp_offset
;
176 s
->tb_jmp_offset
= NULL
;
177 s
->tb_next
= tb
->tb_next
;
180 #ifdef CONFIG_PROFILER
182 s
->interm_time
+= profile_getclock() - ti
;
183 s
->code_time
-= profile_getclock();
185 gen_code_size
= tcg_gen_code(s
, gen_code_buf
);
186 *gen_code_size_ptr
= gen_code_size
;
187 #ifdef CONFIG_PROFILER
188 s
->code_time
+= profile_getclock();
189 s
->code_in_len
+= tb
->size
;
190 s
->code_out_len
+= gen_code_size
;
194 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM
)) {
195 qemu_log("OUT: [size=%d]\n", gen_code_size
);
196 log_disas(tb
->tc_ptr
, gen_code_size
);
204 /* The cpu state corresponding to 'searched_pc' is restored.
206 static int cpu_restore_state_from_tb(CPUState
*cpu
, TranslationBlock
*tb
,
207 uintptr_t searched_pc
)
209 CPUArchState
*env
= cpu
->env_ptr
;
210 TCGContext
*s
= &tcg_ctx
;
213 #ifdef CONFIG_PROFILER
217 #ifdef CONFIG_PROFILER
218 ti
= profile_getclock();
222 gen_intermediate_code_pc(env
, tb
);
224 if (tb
->cflags
& CF_USE_ICOUNT
) {
226 /* Reset the cycle counter to the start of the block. */
227 cpu
->icount_decr
.u16
.low
+= tb
->icount
;
228 /* Clear the IO flag. */
232 /* find opc index corresponding to search_pc */
233 tc_ptr
= (uintptr_t)tb
->tc_ptr
;
234 if (searched_pc
< tc_ptr
)
237 s
->tb_next_offset
= tb
->tb_next_offset
;
238 #ifdef USE_DIRECT_JUMP
239 s
->tb_jmp_offset
= tb
->tb_jmp_offset
;
242 s
->tb_jmp_offset
= NULL
;
243 s
->tb_next
= tb
->tb_next
;
245 j
= tcg_gen_code_search_pc(s
, (tcg_insn_unit
*)tc_ptr
,
246 searched_pc
- tc_ptr
);
249 /* now find start of instruction before */
250 while (s
->gen_opc_instr_start
[j
] == 0) {
253 cpu
->icount_decr
.u16
.low
-= s
->gen_opc_icount
[j
];
255 restore_state_to_opc(env
, tb
, j
);
257 #ifdef CONFIG_PROFILER
258 s
->restore_time
+= profile_getclock() - ti
;
264 bool cpu_restore_state(CPUState
*cpu
, uintptr_t retaddr
)
266 TranslationBlock
*tb
;
268 tb
= tb_find_pc(retaddr
);
270 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
271 if (tb
->cflags
& CF_NOCACHE
) {
272 /* one-shot translation, invalidate it immediately */
273 cpu
->current_tb
= NULL
;
274 tb_phys_invalidate(tb
, -1);
283 static __attribute__((unused
)) void map_exec(void *addr
, long size
)
286 VirtualProtect(addr
, size
,
287 PAGE_EXECUTE_READWRITE
, &old_protect
);
290 static __attribute__((unused
)) void map_exec(void *addr
, long size
)
292 unsigned long start
, end
, page_size
;
294 page_size
= getpagesize();
295 start
= (unsigned long)addr
;
296 start
&= ~(page_size
- 1);
298 end
= (unsigned long)addr
+ size
;
299 end
+= page_size
- 1;
300 end
&= ~(page_size
- 1);
302 mprotect((void *)start
, end
- start
,
303 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
307 void page_size_init(void)
309 /* NOTE: we can always suppose that qemu_host_page_size >=
311 qemu_real_host_page_size
= getpagesize();
312 qemu_real_host_page_mask
= ~(qemu_real_host_page_size
- 1);
313 if (qemu_host_page_size
== 0) {
314 qemu_host_page_size
= qemu_real_host_page_size
;
316 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
317 qemu_host_page_size
= TARGET_PAGE_SIZE
;
319 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
322 static void page_init(void)
325 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
327 #ifdef HAVE_KINFO_GETVMMAP
328 struct kinfo_vmentry
*freep
;
331 freep
= kinfo_getvmmap(getpid(), &cnt
);
334 for (i
= 0; i
< cnt
; i
++) {
335 unsigned long startaddr
, endaddr
;
337 startaddr
= freep
[i
].kve_start
;
338 endaddr
= freep
[i
].kve_end
;
339 if (h2g_valid(startaddr
)) {
340 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
342 if (h2g_valid(endaddr
)) {
343 endaddr
= h2g(endaddr
);
344 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
346 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
348 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
359 last_brk
= (unsigned long)sbrk(0);
361 f
= fopen("/compat/linux/proc/self/maps", "r");
366 unsigned long startaddr
, endaddr
;
369 n
= fscanf(f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
371 if (n
== 2 && h2g_valid(startaddr
)) {
372 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
374 if (h2g_valid(endaddr
)) {
375 endaddr
= h2g(endaddr
);
379 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
391 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
397 /* Level 1. Always allocated. */
398 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
401 for (i
= V_L1_SHIFT
/ V_L2_BITS
- 1; i
> 0; i
--) {
408 p
= g_new0(void *, V_L2_SIZE
);
412 lp
= p
+ ((index
>> (i
* V_L2_BITS
)) & (V_L2_SIZE
- 1));
420 pd
= g_new0(PageDesc
, V_L2_SIZE
);
424 return pd
+ (index
& (V_L2_SIZE
- 1));
427 static inline PageDesc
*page_find(tb_page_addr_t index
)
429 return page_find_alloc(index
, 0);
432 #if !defined(CONFIG_USER_ONLY)
433 #define mmap_lock() do { } while (0)
434 #define mmap_unlock() do { } while (0)
437 #if defined(CONFIG_USER_ONLY)
438 /* Currently it is not recommended to allocate big chunks of data in
439 user mode. It will change when a dedicated libc will be used. */
440 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
441 region in which the guest needs to run. Revisit this. */
442 #define USE_STATIC_CODE_GEN_BUFFER
445 /* ??? Should configure for this, not list operating systems here. */
446 #if (defined(__linux__) \
447 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
448 || defined(__DragonFly__) || defined(__OpenBSD__) \
449 || defined(__NetBSD__))
453 /* Minimum size of the code gen buffer. This number is randomly chosen,
454 but not so small that we can't have a fair number of TB's live. */
455 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
458 indicated, this is constrained by the range of direct branches on the
459 host cpu, as used by the TCG implementation of goto_tb. */
460 #if defined(__x86_64__)
461 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462 #elif defined(__sparc__)
463 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
464 #elif defined(__aarch64__)
465 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
466 #elif defined(__arm__)
467 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
468 #elif defined(__s390x__)
469 /* We have a +- 4GB range on the branches; leave some slop. */
470 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
471 #elif defined(__mips__)
472 /* We have a 256MB branch region, but leave room to make sure the
473 main executable is also within that region. */
474 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
476 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
479 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
481 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
482 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
483 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
485 static inline size_t size_code_gen_buffer(size_t tb_size
)
487 /* Size the buffer. */
489 #ifdef USE_STATIC_CODE_GEN_BUFFER
490 tb_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
492 /* ??? Needs adjustments. */
493 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
494 static buffer, we could size this on RESERVED_VA, on the text
495 segment size of the executable, or continue to use the default. */
496 tb_size
= (unsigned long)(ram_size
/ 4);
499 if (tb_size
< MIN_CODE_GEN_BUFFER_SIZE
) {
500 tb_size
= MIN_CODE_GEN_BUFFER_SIZE
;
502 if (tb_size
> MAX_CODE_GEN_BUFFER_SIZE
) {
503 tb_size
= MAX_CODE_GEN_BUFFER_SIZE
;
505 tcg_ctx
.code_gen_buffer_size
= tb_size
;
510 /* In order to use J and JAL within the code_gen_buffer, we require
511 that the buffer not cross a 256MB boundary. */
512 static inline bool cross_256mb(void *addr
, size_t size
)
514 return ((uintptr_t)addr
^ ((uintptr_t)addr
+ size
)) & 0xf0000000;
517 /* We weren't able to allocate a buffer without crossing that boundary,
518 so make do with the larger portion of the buffer that doesn't cross.
519 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
520 static inline void *split_cross_256mb(void *buf1
, size_t size1
)
522 void *buf2
= (void *)(((uintptr_t)buf1
+ size1
) & 0xf0000000);
523 size_t size2
= buf1
+ size1
- buf2
;
531 tcg_ctx
.code_gen_buffer_size
= size1
;
536 #ifdef USE_STATIC_CODE_GEN_BUFFER
537 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
538 __attribute__((aligned(CODE_GEN_ALIGN
)));
540 static inline void *alloc_code_gen_buffer(void)
542 void *buf
= static_code_gen_buffer
;
544 if (cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
)) {
545 buf
= split_cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
);
548 map_exec(buf
, tcg_ctx
.code_gen_buffer_size
);
551 #elif defined(USE_MMAP)
552 static inline void *alloc_code_gen_buffer(void)
554 int flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
558 /* Constrain the position of the buffer based on the host cpu.
559 Note that these addresses are chosen in concert with the
560 addresses assigned in the relevant linker script file. */
561 # if defined(__PIE__) || defined(__PIC__)
562 /* Don't bother setting a preferred location if we're building
563 a position-independent executable. We're more likely to get
564 an address near the main executable if we let the kernel
565 choose the address. */
566 # elif defined(__x86_64__) && defined(MAP_32BIT)
567 /* Force the memory down into low memory with the executable.
568 Leave the choice of exact location with the kernel. */
570 /* Cannot expect to map more than 800MB in low memory. */
571 if (tcg_ctx
.code_gen_buffer_size
> 800u * 1024 * 1024) {
572 tcg_ctx
.code_gen_buffer_size
= 800u * 1024 * 1024;
574 # elif defined(__sparc__)
575 start
= 0x40000000ul
;
576 # elif defined(__s390x__)
577 start
= 0x90000000ul
;
578 # elif defined(__mips__)
579 /* ??? We ought to more explicitly manage layout for softmmu too. */
580 # ifdef CONFIG_USER_ONLY
581 start
= 0x68000000ul
;
582 # elif _MIPS_SIM == _ABI64
583 start
= 0x128000000ul
;
585 start
= 0x08000000ul
;
589 buf
= mmap((void *)start
, tcg_ctx
.code_gen_buffer_size
,
590 PROT_WRITE
| PROT_READ
| PROT_EXEC
, flags
, -1, 0);
591 if (buf
== MAP_FAILED
) {
596 if (cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
)) {
597 /* Try again, with the original still mapped, to avoid re-acquiring
598 that 256mb crossing. This time don't specify an address. */
599 size_t size2
, size1
= tcg_ctx
.code_gen_buffer_size
;
600 void *buf2
= mmap(NULL
, size1
, PROT_WRITE
| PROT_READ
| PROT_EXEC
,
602 if (buf2
!= MAP_FAILED
) {
603 if (!cross_256mb(buf2
, size1
)) {
604 /* Success! Use the new buffer. */
608 /* Failure. Work with what we had. */
612 /* Split the original buffer. Free the smaller half. */
613 buf2
= split_cross_256mb(buf
, size1
);
614 size2
= tcg_ctx
.code_gen_buffer_size
;
615 munmap(buf
+ (buf
== buf2
? size2
: 0), size1
- size2
);
623 static inline void *alloc_code_gen_buffer(void)
625 void *buf
= g_try_malloc(tcg_ctx
.code_gen_buffer_size
);
632 if (cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
)) {
633 void *buf2
= g_malloc(tcg_ctx
.code_gen_buffer_size
);
634 if (buf2
!= NULL
&& !cross_256mb(buf2
, size1
)) {
635 /* Success! Use the new buffer. */
639 /* Failure. Work with what we had. Since this is malloc
640 and not mmap, we can't free the other half. */
642 buf
= split_cross_256mb(buf
, tcg_ctx
.code_gen_buffer_size
);
647 map_exec(buf
, tcg_ctx
.code_gen_buffer_size
);
650 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
652 static inline void code_gen_alloc(size_t tb_size
)
654 tcg_ctx
.code_gen_buffer_size
= size_code_gen_buffer(tb_size
);
655 tcg_ctx
.code_gen_buffer
= alloc_code_gen_buffer();
656 if (tcg_ctx
.code_gen_buffer
== NULL
) {
657 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
661 qemu_madvise(tcg_ctx
.code_gen_buffer
, tcg_ctx
.code_gen_buffer_size
,
664 /* Steal room for the prologue at the end of the buffer. This ensures
665 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
666 from TB's to the prologue are going to be in range. It also means
667 that we don't need to mark (additional) portions of the data segment
669 tcg_ctx
.code_gen_prologue
= tcg_ctx
.code_gen_buffer
+
670 tcg_ctx
.code_gen_buffer_size
- 1024;
671 tcg_ctx
.code_gen_buffer_size
-= 1024;
673 tcg_ctx
.code_gen_buffer_max_size
= tcg_ctx
.code_gen_buffer_size
-
674 (TCG_MAX_OP_SIZE
* OPC_BUF_SIZE
);
675 tcg_ctx
.code_gen_max_blocks
= tcg_ctx
.code_gen_buffer_size
/
676 CODE_GEN_AVG_BLOCK_SIZE
;
678 g_malloc(tcg_ctx
.code_gen_max_blocks
* sizeof(TranslationBlock
));
681 /* Must be called before using the QEMU cpus. 'tb_size' is the size
682 (in bytes) allocated to the translation buffer. Zero means default
684 void tcg_exec_init(unsigned long tb_size
)
687 code_gen_alloc(tb_size
);
688 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
689 tcg_register_jit(tcg_ctx
.code_gen_buffer
, tcg_ctx
.code_gen_buffer_size
);
691 #if defined(CONFIG_SOFTMMU)
692 /* There's no guest base to take into account, so go ahead and
693 initialize the prologue now. */
694 tcg_prologue_init(&tcg_ctx
);
698 bool tcg_enabled(void)
700 return tcg_ctx
.code_gen_buffer
!= NULL
;
703 /* Allocate a new translation block. Flush the translation buffer if
704 too many translation blocks or too much generated code. */
705 static TranslationBlock
*tb_alloc(target_ulong pc
)
707 TranslationBlock
*tb
;
709 if (tcg_ctx
.tb_ctx
.nb_tbs
>= tcg_ctx
.code_gen_max_blocks
||
710 (tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
) >=
711 tcg_ctx
.code_gen_buffer_max_size
) {
714 tb
= &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
++];
720 void tb_free(TranslationBlock
*tb
)
722 /* In practice this is mostly used for single use temporary TB
723 Ignore the hard cases and just back up if this TB happens to
724 be the last one generated. */
725 if (tcg_ctx
.tb_ctx
.nb_tbs
> 0 &&
726 tb
== &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
- 1]) {
727 tcg_ctx
.code_gen_ptr
= tb
->tc_ptr
;
728 tcg_ctx
.tb_ctx
.nb_tbs
--;
732 static inline void invalidate_page_bitmap(PageDesc
*p
)
734 if (p
->code_bitmap
) {
735 g_free(p
->code_bitmap
);
736 p
->code_bitmap
= NULL
;
738 p
->code_write_count
= 0;
741 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
742 static void page_flush_tb_1(int level
, void **lp
)
752 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
753 pd
[i
].first_tb
= NULL
;
754 invalidate_page_bitmap(pd
+ i
);
759 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
760 page_flush_tb_1(level
- 1, pp
+ i
);
765 static void page_flush_tb(void)
769 for (i
= 0; i
< V_L1_SIZE
; i
++) {
770 page_flush_tb_1(V_L1_SHIFT
/ V_L2_BITS
- 1, l1_map
+ i
);
774 /* flush all the translation blocks */
775 /* XXX: tb_flush is currently not thread safe */
776 void tb_flush(CPUState
*cpu
)
778 #if defined(DEBUG_FLUSH)
779 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
780 (unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
),
781 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.tb_ctx
.nb_tbs
> 0 ?
782 ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)) /
783 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
785 if ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)
786 > tcg_ctx
.code_gen_buffer_size
) {
787 cpu_abort(cpu
, "Internal error: code buffer overflow\n");
789 tcg_ctx
.tb_ctx
.nb_tbs
= 0;
792 memset(cpu
->tb_jmp_cache
, 0, sizeof(cpu
->tb_jmp_cache
));
795 memset(tcg_ctx
.tb_ctx
.tb_phys_hash
, 0, sizeof(tcg_ctx
.tb_ctx
.tb_phys_hash
));
798 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
799 /* XXX: flush processor icache at this point if cache flush is
801 tcg_ctx
.tb_ctx
.tb_flush_count
++;
804 #ifdef DEBUG_TB_CHECK
806 static void tb_invalidate_check(target_ulong address
)
808 TranslationBlock
*tb
;
811 address
&= TARGET_PAGE_MASK
;
812 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
813 for (tb
= tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
814 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
815 address
>= tb
->pc
+ tb
->size
)) {
816 printf("ERROR invalidate: address=" TARGET_FMT_lx
817 " PC=%08lx size=%04x\n",
818 address
, (long)tb
->pc
, tb
->size
);
824 /* verify that all the pages have correct rights for code */
825 static void tb_page_check(void)
827 TranslationBlock
*tb
;
828 int i
, flags1
, flags2
;
830 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
831 for (tb
= tcg_ctx
.tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
;
832 tb
= tb
->phys_hash_next
) {
833 flags1
= page_get_flags(tb
->pc
);
834 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
835 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
836 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
837 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
845 static inline void tb_hash_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
847 TranslationBlock
*tb1
;
852 *ptb
= tb1
->phys_hash_next
;
855 ptb
= &tb1
->phys_hash_next
;
859 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
861 TranslationBlock
*tb1
;
866 n1
= (uintptr_t)tb1
& 3;
867 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
869 *ptb
= tb1
->page_next
[n1
];
872 ptb
= &tb1
->page_next
[n1
];
876 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
878 TranslationBlock
*tb1
, **ptb
;
881 ptb
= &tb
->jmp_next
[n
];
884 /* find tb(n) in circular list */
887 n1
= (uintptr_t)tb1
& 3;
888 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
889 if (n1
== n
&& tb1
== tb
) {
893 ptb
= &tb1
->jmp_first
;
895 ptb
= &tb1
->jmp_next
[n1
];
898 /* now we can suppress tb(n) from the list */
899 *ptb
= tb
->jmp_next
[n
];
901 tb
->jmp_next
[n
] = NULL
;
905 /* reset the jump entry 'n' of a TB so that it is not chained to
907 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
909 tb_set_jmp_target(tb
, n
, (uintptr_t)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
912 /* invalidate one TB */
913 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
918 tb_page_addr_t phys_pc
;
919 TranslationBlock
*tb1
, *tb2
;
921 /* remove the TB from the hash list */
922 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
923 h
= tb_phys_hash_func(phys_pc
);
924 tb_hash_remove(&tcg_ctx
.tb_ctx
.tb_phys_hash
[h
], tb
);
926 /* remove the TB from the page list */
927 if (tb
->page_addr
[0] != page_addr
) {
928 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
929 tb_page_remove(&p
->first_tb
, tb
);
930 invalidate_page_bitmap(p
);
932 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
933 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
934 tb_page_remove(&p
->first_tb
, tb
);
935 invalidate_page_bitmap(p
);
938 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 1;
940 /* remove the TB from the hash list */
941 h
= tb_jmp_cache_hash_func(tb
->pc
);
943 if (cpu
->tb_jmp_cache
[h
] == tb
) {
944 cpu
->tb_jmp_cache
[h
] = NULL
;
948 /* suppress this TB from the two jump lists */
949 tb_jmp_remove(tb
, 0);
950 tb_jmp_remove(tb
, 1);
952 /* suppress any remaining jumps to this TB */
955 n1
= (uintptr_t)tb1
& 3;
959 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
960 tb2
= tb1
->jmp_next
[n1
];
961 tb_reset_jump(tb1
, n1
);
962 tb1
->jmp_next
[n1
] = NULL
;
965 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2); /* fail safe */
967 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
++;
970 static void build_page_bitmap(PageDesc
*p
)
972 int n
, tb_start
, tb_end
;
973 TranslationBlock
*tb
;
975 p
->code_bitmap
= bitmap_new(TARGET_PAGE_SIZE
);
979 n
= (uintptr_t)tb
& 3;
980 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
981 /* NOTE: this is subtle as a TB may span two physical pages */
983 /* NOTE: tb_end may be after the end of the page, but
984 it is not a problem */
985 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
986 tb_end
= tb_start
+ tb
->size
;
987 if (tb_end
> TARGET_PAGE_SIZE
) {
988 tb_end
= TARGET_PAGE_SIZE
;
992 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
994 bitmap_set(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
995 tb
= tb
->page_next
[n
];
999 TranslationBlock
*tb_gen_code(CPUState
*cpu
,
1000 target_ulong pc
, target_ulong cs_base
,
1001 int flags
, int cflags
)
1003 CPUArchState
*env
= cpu
->env_ptr
;
1004 TranslationBlock
*tb
;
1005 tb_page_addr_t phys_pc
, phys_page2
;
1006 target_ulong virt_page2
;
1009 phys_pc
= get_page_addr_code(env
, pc
);
1011 cflags
|= CF_USE_ICOUNT
;
1015 /* flush must be done */
1017 /* cannot fail at this point */
1019 /* Don't forget to invalidate previous TB info. */
1020 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 1;
1022 tb
->tc_ptr
= tcg_ctx
.code_gen_ptr
;
1023 tb
->cs_base
= cs_base
;
1025 tb
->cflags
= cflags
;
1026 cpu_gen_code(env
, tb
, &code_gen_size
);
1027 tcg_ctx
.code_gen_ptr
= (void *)(((uintptr_t)tcg_ctx
.code_gen_ptr
+
1028 code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
1030 /* check next page if needed */
1031 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1033 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1034 phys_page2
= get_page_addr_code(env
, virt_page2
);
1036 tb_link_page(tb
, phys_pc
, phys_page2
);
1041 * Invalidate all TBs which intersect with the target physical address range
1042 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1043 * 'is_cpu_write_access' should be true if called from a real cpu write
1044 * access: the virtual CPU will exit the current TB if code is modified inside
1047 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
)
1049 while (start
< end
) {
1050 tb_invalidate_phys_page_range(start
, end
, 0);
1051 start
&= TARGET_PAGE_MASK
;
1052 start
+= TARGET_PAGE_SIZE
;
1057 * Invalidate all TBs which intersect with the target physical address range
1058 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1059 * 'is_cpu_write_access' should be true if called from a real cpu write
1060 * access: the virtual CPU will exit the current TB if code is modified inside
1063 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1064 int is_cpu_write_access
)
1066 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1067 CPUState
*cpu
= current_cpu
;
1068 #if defined(TARGET_HAS_PRECISE_SMC)
1069 CPUArchState
*env
= NULL
;
1071 tb_page_addr_t tb_start
, tb_end
;
1074 #ifdef TARGET_HAS_PRECISE_SMC
1075 int current_tb_not_found
= is_cpu_write_access
;
1076 TranslationBlock
*current_tb
= NULL
;
1077 int current_tb_modified
= 0;
1078 target_ulong current_pc
= 0;
1079 target_ulong current_cs_base
= 0;
1080 int current_flags
= 0;
1081 #endif /* TARGET_HAS_PRECISE_SMC */
1083 p
= page_find(start
>> TARGET_PAGE_BITS
);
1087 #if defined(TARGET_HAS_PRECISE_SMC)
1093 /* we remove all the TBs in the range [start, end[ */
1094 /* XXX: see if in some cases it could be faster to invalidate all
1097 while (tb
!= NULL
) {
1098 n
= (uintptr_t)tb
& 3;
1099 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1100 tb_next
= tb
->page_next
[n
];
1101 /* NOTE: this is subtle as a TB may span two physical pages */
1103 /* NOTE: tb_end may be after the end of the page, but
1104 it is not a problem */
1105 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1106 tb_end
= tb_start
+ tb
->size
;
1108 tb_start
= tb
->page_addr
[1];
1109 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1111 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1112 #ifdef TARGET_HAS_PRECISE_SMC
1113 if (current_tb_not_found
) {
1114 current_tb_not_found
= 0;
1116 if (cpu
->mem_io_pc
) {
1117 /* now we have a real cpu fault */
1118 current_tb
= tb_find_pc(cpu
->mem_io_pc
);
1121 if (current_tb
== tb
&&
1122 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1123 /* If we are modifying the current TB, we must stop
1124 its execution. We could be more precise by checking
1125 that the modification is after the current PC, but it
1126 would require a specialized function to partially
1127 restore the CPU state */
1129 current_tb_modified
= 1;
1130 cpu_restore_state_from_tb(cpu
, current_tb
, cpu
->mem_io_pc
);
1131 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1134 #endif /* TARGET_HAS_PRECISE_SMC */
1135 /* we need to do that to handle the case where a signal
1136 occurs while doing tb_phys_invalidate() */
1139 saved_tb
= cpu
->current_tb
;
1140 cpu
->current_tb
= NULL
;
1142 tb_phys_invalidate(tb
, -1);
1144 cpu
->current_tb
= saved_tb
;
1145 if (cpu
->interrupt_request
&& cpu
->current_tb
) {
1146 cpu_interrupt(cpu
, cpu
->interrupt_request
);
1152 #if !defined(CONFIG_USER_ONLY)
1153 /* if no code remaining, no need to continue to use slow writes */
1155 invalidate_page_bitmap(p
);
1156 tlb_unprotect_code(start
);
1159 #ifdef TARGET_HAS_PRECISE_SMC
1160 if (current_tb_modified
) {
1161 /* we generate a block containing just the instruction
1162 modifying the memory. It will ensure that it cannot modify
1164 cpu
->current_tb
= NULL
;
1165 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1166 cpu_resume_from_signal(cpu
, NULL
);
1171 /* len must be <= 8 and start must be a multiple of len */
1172 void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1178 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1179 cpu_single_env
->mem_io_vaddr
, len
,
1180 cpu_single_env
->eip
,
1181 cpu_single_env
->eip
+
1182 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1185 p
= page_find(start
>> TARGET_PAGE_BITS
);
1189 if (!p
->code_bitmap
&&
1190 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
) {
1191 /* build code bitmap */
1192 build_page_bitmap(p
);
1194 if (p
->code_bitmap
) {
1198 nr
= start
& ~TARGET_PAGE_MASK
;
1199 b
= p
->code_bitmap
[BIT_WORD(nr
)] >> (nr
& (BITS_PER_LONG
- 1));
1200 if (b
& ((1 << len
) - 1)) {
1205 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1209 #if !defined(CONFIG_SOFTMMU)
1210 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1211 uintptr_t pc
, void *puc
,
1214 TranslationBlock
*tb
;
1217 #ifdef TARGET_HAS_PRECISE_SMC
1218 TranslationBlock
*current_tb
= NULL
;
1219 CPUState
*cpu
= current_cpu
;
1220 CPUArchState
*env
= NULL
;
1221 int current_tb_modified
= 0;
1222 target_ulong current_pc
= 0;
1223 target_ulong current_cs_base
= 0;
1224 int current_flags
= 0;
1227 addr
&= TARGET_PAGE_MASK
;
1228 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1233 #ifdef TARGET_HAS_PRECISE_SMC
1234 if (tb
&& pc
!= 0) {
1235 current_tb
= tb_find_pc(pc
);
1241 while (tb
!= NULL
) {
1242 n
= (uintptr_t)tb
& 3;
1243 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1244 #ifdef TARGET_HAS_PRECISE_SMC
1245 if (current_tb
== tb
&&
1246 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1247 /* If we are modifying the current TB, we must stop
1248 its execution. We could be more precise by checking
1249 that the modification is after the current PC, but it
1250 would require a specialized function to partially
1251 restore the CPU state */
1253 current_tb_modified
= 1;
1254 cpu_restore_state_from_tb(cpu
, current_tb
, pc
);
1255 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1258 #endif /* TARGET_HAS_PRECISE_SMC */
1259 tb_phys_invalidate(tb
, addr
);
1260 tb
= tb
->page_next
[n
];
1263 #ifdef TARGET_HAS_PRECISE_SMC
1264 if (current_tb_modified
) {
1265 /* we generate a block containing just the instruction
1266 modifying the memory. It will ensure that it cannot modify
1268 cpu
->current_tb
= NULL
;
1269 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1273 cpu_resume_from_signal(cpu
, puc
);
1279 /* add the tb in the target page and protect it if necessary */
1280 static inline void tb_alloc_page(TranslationBlock
*tb
,
1281 unsigned int n
, tb_page_addr_t page_addr
)
1284 #ifndef CONFIG_USER_ONLY
1285 bool page_already_protected
;
1288 tb
->page_addr
[n
] = page_addr
;
1289 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1290 tb
->page_next
[n
] = p
->first_tb
;
1291 #ifndef CONFIG_USER_ONLY
1292 page_already_protected
= p
->first_tb
!= NULL
;
1294 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1295 invalidate_page_bitmap(p
);
1297 #if defined(CONFIG_USER_ONLY)
1298 if (p
->flags
& PAGE_WRITE
) {
1303 /* force the host page as non writable (writes will have a
1304 page fault + mprotect overhead) */
1305 page_addr
&= qemu_host_page_mask
;
1307 for (addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1308 addr
+= TARGET_PAGE_SIZE
) {
1310 p2
= page_find(addr
>> TARGET_PAGE_BITS
);
1315 p2
->flags
&= ~PAGE_WRITE
;
1317 mprotect(g2h(page_addr
), qemu_host_page_size
,
1318 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1319 #ifdef DEBUG_TB_INVALIDATE
1320 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1325 /* if some code is already present, then the pages are already
1326 protected. So we handle the case where only the first TB is
1327 allocated in a physical page */
1328 if (!page_already_protected
) {
1329 tlb_protect_code(page_addr
);
1334 /* add a new TB and link it to the physical page tables. phys_page2 is
1335 (-1) to indicate that only one page contains the TB. */
1336 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
1337 tb_page_addr_t phys_page2
)
1340 TranslationBlock
**ptb
;
1342 /* Grab the mmap lock to stop another thread invalidating this TB
1343 before we are done. */
1345 /* add in the physical hash table */
1346 h
= tb_phys_hash_func(phys_pc
);
1347 ptb
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
1348 tb
->phys_hash_next
= *ptb
;
1351 /* add in the page list */
1352 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1353 if (phys_page2
!= -1) {
1354 tb_alloc_page(tb
, 1, phys_page2
);
1356 tb
->page_addr
[1] = -1;
1359 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2);
1360 tb
->jmp_next
[0] = NULL
;
1361 tb
->jmp_next
[1] = NULL
;
1363 /* init original jump addresses */
1364 if (tb
->tb_next_offset
[0] != 0xffff) {
1365 tb_reset_jump(tb
, 0);
1367 if (tb
->tb_next_offset
[1] != 0xffff) {
1368 tb_reset_jump(tb
, 1);
1371 #ifdef DEBUG_TB_CHECK
1377 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1378 tb[1].tc_ptr. Return NULL if not found */
1379 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1381 int m_min
, m_max
, m
;
1383 TranslationBlock
*tb
;
1385 if (tcg_ctx
.tb_ctx
.nb_tbs
<= 0) {
1388 if (tc_ptr
< (uintptr_t)tcg_ctx
.code_gen_buffer
||
1389 tc_ptr
>= (uintptr_t)tcg_ctx
.code_gen_ptr
) {
1392 /* binary search (cf Knuth) */
1394 m_max
= tcg_ctx
.tb_ctx
.nb_tbs
- 1;
1395 while (m_min
<= m_max
) {
1396 m
= (m_min
+ m_max
) >> 1;
1397 tb
= &tcg_ctx
.tb_ctx
.tbs
[m
];
1398 v
= (uintptr_t)tb
->tc_ptr
;
1401 } else if (tc_ptr
< v
) {
1407 return &tcg_ctx
.tb_ctx
.tbs
[m_max
];
1410 #if !defined(CONFIG_USER_ONLY)
1411 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
)
1413 ram_addr_t ram_addr
;
1418 mr
= address_space_translate(as
, addr
, &addr
, &l
, false);
1419 if (!(memory_region_is_ram(mr
)
1420 || memory_region_is_romd(mr
))) {
1424 ram_addr
= (memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
)
1426 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1429 #endif /* !defined(CONFIG_USER_ONLY) */
1431 void tb_check_watchpoint(CPUState
*cpu
)
1433 TranslationBlock
*tb
;
1435 tb
= tb_find_pc(cpu
->mem_io_pc
);
1437 /* We can use retranslation to find the PC. */
1438 cpu_restore_state_from_tb(cpu
, tb
, cpu
->mem_io_pc
);
1439 tb_phys_invalidate(tb
, -1);
1441 /* The exception probably happened in a helper. The CPU state should
1442 have been saved before calling it. Fetch the PC from there. */
1443 CPUArchState
*env
= cpu
->env_ptr
;
1444 target_ulong pc
, cs_base
;
1445 tb_page_addr_t addr
;
1448 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
1449 addr
= get_page_addr_code(env
, pc
);
1450 tb_invalidate_phys_range(addr
, addr
+ 1);
1454 #ifndef CONFIG_USER_ONLY
1455 /* mask must never be zero, except for A20 change call */
1456 static void tcg_handle_interrupt(CPUState
*cpu
, int mask
)
1460 old_mask
= cpu
->interrupt_request
;
1461 cpu
->interrupt_request
|= mask
;
1464 * If called from iothread context, wake the target cpu in
1467 if (!qemu_cpu_is_self(cpu
)) {
1473 cpu
->icount_decr
.u16
.high
= 0xffff;
1475 && (mask
& ~old_mask
) != 0) {
1476 cpu_abort(cpu
, "Raised interrupt while not in I/O function");
1479 cpu
->tcg_exit_req
= 1;
1483 CPUInterruptHandler cpu_interrupt_handler
= tcg_handle_interrupt
;
1485 /* in deterministic execution mode, instructions doing device I/Os
1486 must be at the end of the TB */
1487 void cpu_io_recompile(CPUState
*cpu
, uintptr_t retaddr
)
1489 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1490 CPUArchState
*env
= cpu
->env_ptr
;
1492 TranslationBlock
*tb
;
1494 target_ulong pc
, cs_base
;
1497 tb
= tb_find_pc(retaddr
);
1499 cpu_abort(cpu
, "cpu_io_recompile: could not find TB for pc=%p",
1502 n
= cpu
->icount_decr
.u16
.low
+ tb
->icount
;
1503 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
1504 /* Calculate how many instructions had been executed before the fault
1506 n
= n
- cpu
->icount_decr
.u16
.low
;
1507 /* Generate a new TB ending on the I/O insn. */
1509 /* On MIPS and SH, delay slot instructions can only be restarted if
1510 they were already the first instruction in the TB. If this is not
1511 the first instruction in a TB then re-execute the preceding
1513 #if defined(TARGET_MIPS)
1514 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
1515 env
->active_tc
.PC
-= (env
->hflags
& MIPS_HFLAG_B16
? 2 : 4);
1516 cpu
->icount_decr
.u16
.low
++;
1517 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
1519 #elif defined(TARGET_SH4)
1520 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
1523 cpu
->icount_decr
.u16
.low
++;
1524 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
1527 /* This should never happen. */
1528 if (n
> CF_COUNT_MASK
) {
1529 cpu_abort(cpu
, "TB too big during recompile");
1532 cflags
= n
| CF_LAST_IO
;
1534 cs_base
= tb
->cs_base
;
1536 tb_phys_invalidate(tb
, -1);
1537 if (tb
->cflags
& CF_NOCACHE
) {
1539 /* Invalidate original TB if this TB was generated in
1540 * cpu_exec_nocache() */
1541 tb_phys_invalidate(tb
->orig_tb
, -1);
1545 /* FIXME: In theory this could raise an exception. In practice
1546 we have already translated the block once so it's probably ok. */
1547 tb_gen_code(cpu
, pc
, cs_base
, flags
, cflags
);
1548 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1549 the first in the TB) then we end up generating a whole new TB and
1550 repeating the fault, which is horribly inefficient.
1551 Better would be to execute just this insn uncached, or generate a
1553 cpu_resume_from_signal(cpu
, NULL
);
1556 void tb_flush_jmp_cache(CPUState
*cpu
, target_ulong addr
)
1560 /* Discard jump cache entries for any tb which might potentially
1561 overlap the flushed page. */
1562 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1563 memset(&cpu
->tb_jmp_cache
[i
], 0,
1564 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1566 i
= tb_jmp_cache_hash_page(addr
);
1567 memset(&cpu
->tb_jmp_cache
[i
], 0,
1568 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1571 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
1573 int i
, target_code_size
, max_target_code_size
;
1574 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
1575 TranslationBlock
*tb
;
1577 target_code_size
= 0;
1578 max_target_code_size
= 0;
1580 direct_jmp_count
= 0;
1581 direct_jmp2_count
= 0;
1582 for (i
= 0; i
< tcg_ctx
.tb_ctx
.nb_tbs
; i
++) {
1583 tb
= &tcg_ctx
.tb_ctx
.tbs
[i
];
1584 target_code_size
+= tb
->size
;
1585 if (tb
->size
> max_target_code_size
) {
1586 max_target_code_size
= tb
->size
;
1588 if (tb
->page_addr
[1] != -1) {
1591 if (tb
->tb_next_offset
[0] != 0xffff) {
1593 if (tb
->tb_next_offset
[1] != 0xffff) {
1594 direct_jmp2_count
++;
1598 /* XXX: avoid using doubles ? */
1599 cpu_fprintf(f
, "Translation buffer state:\n");
1600 cpu_fprintf(f
, "gen code size %td/%zd\n",
1601 tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
,
1602 tcg_ctx
.code_gen_buffer_max_size
);
1603 cpu_fprintf(f
, "TB count %d/%d\n",
1604 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.code_gen_max_blocks
);
1605 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
1606 tcg_ctx
.tb_ctx
.nb_tbs
? target_code_size
/
1607 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1608 max_target_code_size
);
1609 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1610 tcg_ctx
.tb_ctx
.nb_tbs
? (tcg_ctx
.code_gen_ptr
-
1611 tcg_ctx
.code_gen_buffer
) /
1612 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1613 target_code_size
? (double) (tcg_ctx
.code_gen_ptr
-
1614 tcg_ctx
.code_gen_buffer
) /
1615 target_code_size
: 0);
1616 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n", cross_page
,
1617 tcg_ctx
.tb_ctx
.nb_tbs
? (cross_page
* 100) /
1618 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1619 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1621 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp_count
* 100) /
1622 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1624 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp2_count
* 100) /
1625 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1626 cpu_fprintf(f
, "\nStatistics:\n");
1627 cpu_fprintf(f
, "TB flush count %d\n", tcg_ctx
.tb_ctx
.tb_flush_count
);
1628 cpu_fprintf(f
, "TB invalidate count %d\n",
1629 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
);
1630 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
1631 tcg_dump_info(f
, cpu_fprintf
);
1634 void dump_opcount_info(FILE *f
, fprintf_function cpu_fprintf
)
1636 tcg_dump_op_count(f
, cpu_fprintf
);
1639 #else /* CONFIG_USER_ONLY */
1641 void cpu_interrupt(CPUState
*cpu
, int mask
)
1643 cpu
->interrupt_request
|= mask
;
1644 cpu
->tcg_exit_req
= 1;
1648 * Walks guest process memory "regions" one by one
1649 * and calls callback function 'fn' for each region.
1651 struct walk_memory_regions_data
{
1652 walk_memory_regions_fn fn
;
1658 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1659 target_ulong end
, int new_prot
)
1661 if (data
->start
!= -1u) {
1662 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1668 data
->start
= (new_prot
? end
: -1u);
1669 data
->prot
= new_prot
;
1674 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1675 target_ulong base
, int level
, void **lp
)
1681 return walk_memory_regions_end(data
, base
, 0);
1687 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1688 int prot
= pd
[i
].flags
;
1690 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1691 if (prot
!= data
->prot
) {
1692 rc
= walk_memory_regions_end(data
, pa
, prot
);
1701 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1702 pa
= base
| ((target_ulong
)i
<<
1703 (TARGET_PAGE_BITS
+ V_L2_BITS
* level
));
1704 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1714 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1716 struct walk_memory_regions_data data
;
1724 for (i
= 0; i
< V_L1_SIZE
; i
++) {
1725 int rc
= walk_memory_regions_1(&data
, (target_ulong
)i
<< (V_L1_SHIFT
+ TARGET_PAGE_BITS
),
1726 V_L1_SHIFT
/ V_L2_BITS
- 1, l1_map
+ i
);
1732 return walk_memory_regions_end(&data
, 0, 0);
1735 static int dump_region(void *priv
, target_ulong start
,
1736 target_ulong end
, unsigned long prot
)
1738 FILE *f
= (FILE *)priv
;
1740 (void) fprintf(f
, TARGET_FMT_lx
"-"TARGET_FMT_lx
1741 " "TARGET_FMT_lx
" %c%c%c\n",
1742 start
, end
, end
- start
,
1743 ((prot
& PAGE_READ
) ? 'r' : '-'),
1744 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
1745 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
1750 /* dump memory mappings */
1751 void page_dump(FILE *f
)
1753 const int length
= sizeof(target_ulong
) * 2;
1754 (void) fprintf(f
, "%-*s %-*s %-*s %s\n",
1755 length
, "start", length
, "end", length
, "size", "prot");
1756 walk_memory_regions(f
, dump_region
);
1759 int page_get_flags(target_ulong address
)
1763 p
= page_find(address
>> TARGET_PAGE_BITS
);
1770 /* Modify the flags of a page and invalidate the code if necessary.
1771 The flag PAGE_WRITE_ORG is positioned automatically depending
1772 on PAGE_WRITE. The mmap_lock should already be held. */
1773 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
1775 target_ulong addr
, len
;
1777 /* This function should never be called with addresses outside the
1778 guest address space. If this assert fires, it probably indicates
1779 a missing call to h2g_valid. */
1780 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1781 assert(end
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1783 assert(start
< end
);
1785 start
= start
& TARGET_PAGE_MASK
;
1786 end
= TARGET_PAGE_ALIGN(end
);
1788 if (flags
& PAGE_WRITE
) {
1789 flags
|= PAGE_WRITE_ORG
;
1792 for (addr
= start
, len
= end
- start
;
1794 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1795 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
1797 /* If the write protection bit is set, then we invalidate
1799 if (!(p
->flags
& PAGE_WRITE
) &&
1800 (flags
& PAGE_WRITE
) &&
1802 tb_invalidate_phys_page(addr
, 0, NULL
, false);
1808 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
1814 /* This function should never be called with addresses outside the
1815 guest address space. If this assert fires, it probably indicates
1816 a missing call to h2g_valid. */
1817 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1818 assert(start
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1824 if (start
+ len
- 1 < start
) {
1825 /* We've wrapped around. */
1829 /* must do before we loose bits in the next step */
1830 end
= TARGET_PAGE_ALIGN(start
+ len
);
1831 start
= start
& TARGET_PAGE_MASK
;
1833 for (addr
= start
, len
= end
- start
;
1835 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1836 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1840 if (!(p
->flags
& PAGE_VALID
)) {
1844 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
)) {
1847 if (flags
& PAGE_WRITE
) {
1848 if (!(p
->flags
& PAGE_WRITE_ORG
)) {
1851 /* unprotect the page if it was put read-only because it
1852 contains translated code */
1853 if (!(p
->flags
& PAGE_WRITE
)) {
1854 if (!page_unprotect(addr
, 0, NULL
)) {
1863 /* called from signal handler: invalidate the code and unprotect the
1864 page. Return TRUE if the fault was successfully handled. */
1865 int page_unprotect(target_ulong address
, uintptr_t pc
, void *puc
)
1869 target_ulong host_start
, host_end
, addr
;
1871 /* Technically this isn't safe inside a signal handler. However we
1872 know this only ever happens in a synchronous SEGV handler, so in
1873 practice it seems to be ok. */
1876 p
= page_find(address
>> TARGET_PAGE_BITS
);
1882 /* if the page was really writable, then we change its
1883 protection back to writable */
1884 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
1885 host_start
= address
& qemu_host_page_mask
;
1886 host_end
= host_start
+ qemu_host_page_size
;
1889 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
1890 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1891 p
->flags
|= PAGE_WRITE
;
1894 /* and since the content will be modified, we must invalidate
1895 the corresponding translated code. */
1896 tb_invalidate_phys_page(addr
, pc
, puc
, true);
1897 #ifdef DEBUG_TB_CHECK
1898 tb_invalidate_check(addr
);
1901 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
1910 #endif /* CONFIG_USER_ONLY */