blockjob: do not allow coroutine double entry or entry-after-completion
[qemu/ar7.git] / hw / block / pflash_cfi01.c
blob1113ab1ccf7599da1be33cf5565bd1d8b5de0091
1 /*
2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
24 * - flash read
25 * - flash write
26 * - flash ID read
27 * - sector erase
28 * - CFI queries
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
39 #include "qemu/osdep.h"
40 #include "hw/hw.h"
41 #include "hw/block/flash.h"
42 #include "sysemu/block-backend.h"
43 #include "qapi/error.h"
44 #include "qemu/timer.h"
45 #include "qemu/bitops.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/host-utils.h"
48 #include "qemu/log.h"
49 #include "hw/sysbus.h"
50 #include "sysemu/sysemu.h"
52 #define PFLASH_BUG(fmt, ...) \
53 do { \
54 fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \
55 exit(1); \
56 } while(0)
58 /* #define PFLASH_DEBUG */
59 #ifdef PFLASH_DEBUG
60 #define DPRINTF(fmt, ...) \
61 do { \
62 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
63 } while (0)
64 #else
65 #define DPRINTF(fmt, ...) do { } while (0)
66 #endif
68 #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01)
70 #define PFLASH_BE 0
71 #define PFLASH_SECURE 1
73 struct pflash_t {
74 /*< private >*/
75 SysBusDevice parent_obj;
76 /*< public >*/
78 BlockBackend *blk;
79 uint32_t nb_blocs;
80 uint64_t sector_len;
81 uint8_t bank_width;
82 uint8_t device_width; /* If 0, device width not specified. */
83 uint8_t max_device_width; /* max device width in bytes */
84 uint32_t features;
85 uint8_t wcycle; /* if 0, the flash is read normally */
86 int ro;
87 uint8_t cmd;
88 uint8_t status;
89 uint16_t ident0;
90 uint16_t ident1;
91 uint16_t ident2;
92 uint16_t ident3;
93 uint8_t cfi_len;
94 uint8_t cfi_table[0x52];
95 uint64_t counter;
96 unsigned int writeblock_size;
97 QEMUTimer *timer;
98 MemoryRegion mem;
99 char *name;
100 void *storage;
101 VMChangeStateEntry *vmstate;
102 bool old_multiple_chip_handling;
105 static int pflash_post_load(void *opaque, int version_id);
107 static const VMStateDescription vmstate_pflash = {
108 .name = "pflash_cfi01",
109 .version_id = 1,
110 .minimum_version_id = 1,
111 .post_load = pflash_post_load,
112 .fields = (VMStateField[]) {
113 VMSTATE_UINT8(wcycle, pflash_t),
114 VMSTATE_UINT8(cmd, pflash_t),
115 VMSTATE_UINT8(status, pflash_t),
116 VMSTATE_UINT64(counter, pflash_t),
117 VMSTATE_END_OF_LIST()
121 static void pflash_timer (void *opaque)
123 pflash_t *pfl = opaque;
125 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
126 /* Reset flash */
127 pfl->status ^= 0x80;
128 memory_region_rom_device_set_romd(&pfl->mem, true);
129 pfl->wcycle = 0;
130 pfl->cmd = 0;
133 /* Perform a CFI query based on the bank width of the flash.
134 * If this code is called we know we have a device_width set for
135 * this flash.
137 static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset)
139 int i;
140 uint32_t resp = 0;
141 hwaddr boff;
143 /* Adjust incoming offset to match expected device-width
144 * addressing. CFI query addresses are always specified in terms of
145 * the maximum supported width of the device. This means that x8
146 * devices and x8/x16 devices in x8 mode behave differently. For
147 * devices that are not used at their max width, we will be
148 * provided with addresses that use higher address bits than
149 * expected (based on the max width), so we will shift them lower
150 * so that they will match the addresses used when
151 * device_width==max_device_width.
153 boff = offset >> (ctz32(pfl->bank_width) +
154 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
156 if (boff > pfl->cfi_len) {
157 return 0;
159 /* Now we will construct the CFI response generated by a single
160 * device, then replicate that for all devices that make up the
161 * bus. For wide parts used in x8 mode, CFI query responses
162 * are different than native byte-wide parts.
164 resp = pfl->cfi_table[boff];
165 if (pfl->device_width != pfl->max_device_width) {
166 /* The only case currently supported is x8 mode for a
167 * wider part.
169 if (pfl->device_width != 1 || pfl->bank_width > 4) {
170 DPRINTF("%s: Unsupported device configuration: "
171 "device_width=%d, max_device_width=%d\n",
172 __func__, pfl->device_width,
173 pfl->max_device_width);
174 return 0;
176 /* CFI query data is repeated, rather than zero padded for
177 * wide devices used in x8 mode.
179 for (i = 1; i < pfl->max_device_width; i++) {
180 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
183 /* Replicate responses for each device in bank. */
184 if (pfl->device_width < pfl->bank_width) {
185 for (i = pfl->device_width;
186 i < pfl->bank_width; i += pfl->device_width) {
187 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
191 return resp;
196 /* Perform a device id query based on the bank width of the flash. */
197 static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset)
199 int i;
200 uint32_t resp;
201 hwaddr boff;
203 /* Adjust incoming offset to match expected device-width
204 * addressing. Device ID read addresses are always specified in
205 * terms of the maximum supported width of the device. This means
206 * that x8 devices and x8/x16 devices in x8 mode behave
207 * differently. For devices that are not used at their max width,
208 * we will be provided with addresses that use higher address bits
209 * than expected (based on the max width), so we will shift them
210 * lower so that they will match the addresses used when
211 * device_width==max_device_width.
213 boff = offset >> (ctz32(pfl->bank_width) +
214 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
216 /* Mask off upper bits which may be used in to query block
217 * or sector lock status at other addresses.
218 * Offsets 2/3 are block lock status, is not emulated.
220 switch (boff & 0xFF) {
221 case 0:
222 resp = pfl->ident0;
223 DPRINTF("%s: Manufacturer Code %04x\n", __func__, resp);
224 break;
225 case 1:
226 resp = pfl->ident1;
227 DPRINTF("%s: Device ID Code %04x\n", __func__, resp);
228 break;
229 default:
230 DPRINTF("%s: Read Device Information offset=%x\n", __func__,
231 (unsigned)offset);
232 return 0;
233 break;
235 /* Replicate responses for each device in bank. */
236 if (pfl->device_width < pfl->bank_width) {
237 for (i = pfl->device_width;
238 i < pfl->bank_width; i += pfl->device_width) {
239 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
243 return resp;
246 static uint32_t pflash_data_read(pflash_t *pfl, hwaddr offset,
247 int width, int be)
249 uint8_t *p;
250 uint32_t ret;
252 p = pfl->storage;
253 switch (width) {
254 case 1:
255 ret = p[offset];
256 DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n",
257 __func__, offset, ret);
258 break;
259 case 2:
260 if (be) {
261 ret = p[offset] << 8;
262 ret |= p[offset + 1];
263 } else {
264 ret = p[offset];
265 ret |= p[offset + 1] << 8;
267 DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n",
268 __func__, offset, ret);
269 break;
270 case 4:
271 if (be) {
272 ret = p[offset] << 24;
273 ret |= p[offset + 1] << 16;
274 ret |= p[offset + 2] << 8;
275 ret |= p[offset + 3];
276 } else {
277 ret = p[offset];
278 ret |= p[offset + 1] << 8;
279 ret |= p[offset + 2] << 16;
280 ret |= p[offset + 3] << 24;
282 DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n",
283 __func__, offset, ret);
284 break;
285 default:
286 DPRINTF("BUG in %s\n", __func__);
287 abort();
289 return ret;
292 static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
293 int width, int be)
295 hwaddr boff;
296 uint32_t ret;
298 ret = -1;
300 #if 0
301 DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n",
302 __func__, offset, pfl->cmd, width);
303 #endif
304 switch (pfl->cmd) {
305 default:
306 /* This should never happen : reset state & treat it as a read */
307 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
308 pfl->wcycle = 0;
309 pfl->cmd = 0;
310 /* fall through to read code */
311 case 0x00:
312 /* Flash area read */
313 ret = pflash_data_read(pfl, offset, width, be);
314 break;
315 case 0x10: /* Single byte program */
316 case 0x20: /* Block erase */
317 case 0x28: /* Block erase */
318 case 0x40: /* single byte program */
319 case 0x50: /* Clear status register */
320 case 0x60: /* Block /un)lock */
321 case 0x70: /* Status Register */
322 case 0xe8: /* Write block */
323 /* Status register read. Return status from each device in
324 * bank.
326 ret = pfl->status;
327 if (pfl->device_width && width > pfl->device_width) {
328 int shift = pfl->device_width * 8;
329 while (shift + pfl->device_width * 8 <= width * 8) {
330 ret |= pfl->status << shift;
331 shift += pfl->device_width * 8;
333 } else if (!pfl->device_width && width > 2) {
334 /* Handle 32 bit flash cases where device width is not
335 * set. (Existing behavior before device width added.)
337 ret |= pfl->status << 16;
339 DPRINTF("%s: status %x\n", __func__, ret);
340 break;
341 case 0x90:
342 if (!pfl->device_width) {
343 /* Preserve old behavior if device width not specified */
344 boff = offset & 0xFF;
345 if (pfl->bank_width == 2) {
346 boff = boff >> 1;
347 } else if (pfl->bank_width == 4) {
348 boff = boff >> 2;
351 switch (boff) {
352 case 0:
353 ret = pfl->ident0 << 8 | pfl->ident1;
354 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
355 break;
356 case 1:
357 ret = pfl->ident2 << 8 | pfl->ident3;
358 DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
359 break;
360 default:
361 DPRINTF("%s: Read Device Information boff=%x\n", __func__,
362 (unsigned)boff);
363 ret = 0;
364 break;
366 } else {
367 /* If we have a read larger than the bank_width, combine multiple
368 * manufacturer/device ID queries into a single response.
370 int i;
371 for (i = 0; i < width; i += pfl->bank_width) {
372 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
373 pflash_devid_query(pfl,
374 offset + i * pfl->bank_width));
377 break;
378 case 0x98: /* Query mode */
379 if (!pfl->device_width) {
380 /* Preserve old behavior if device width not specified */
381 boff = offset & 0xFF;
382 if (pfl->bank_width == 2) {
383 boff = boff >> 1;
384 } else if (pfl->bank_width == 4) {
385 boff = boff >> 2;
388 if (boff > pfl->cfi_len) {
389 ret = 0;
390 } else {
391 ret = pfl->cfi_table[boff];
393 } else {
394 /* If we have a read larger than the bank_width, combine multiple
395 * CFI queries into a single response.
397 int i;
398 for (i = 0; i < width; i += pfl->bank_width) {
399 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
400 pflash_cfi_query(pfl,
401 offset + i * pfl->bank_width));
405 break;
407 return ret;
410 /* update flash content on disk */
411 static void pflash_update(pflash_t *pfl, int offset,
412 int size)
414 int offset_end;
415 if (pfl->blk) {
416 offset_end = offset + size;
417 /* widen to sector boundaries */
418 offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
419 offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
420 blk_pwrite(pfl->blk, offset, pfl->storage + offset,
421 offset_end - offset, 0);
425 static inline void pflash_data_write(pflash_t *pfl, hwaddr offset,
426 uint32_t value, int width, int be)
428 uint8_t *p = pfl->storage;
430 DPRINTF("%s: block write offset " TARGET_FMT_plx
431 " value %x counter %016" PRIx64 "\n",
432 __func__, offset, value, pfl->counter);
433 switch (width) {
434 case 1:
435 p[offset] = value;
436 break;
437 case 2:
438 if (be) {
439 p[offset] = value >> 8;
440 p[offset + 1] = value;
441 } else {
442 p[offset] = value;
443 p[offset + 1] = value >> 8;
445 break;
446 case 4:
447 if (be) {
448 p[offset] = value >> 24;
449 p[offset + 1] = value >> 16;
450 p[offset + 2] = value >> 8;
451 p[offset + 3] = value;
452 } else {
453 p[offset] = value;
454 p[offset + 1] = value >> 8;
455 p[offset + 2] = value >> 16;
456 p[offset + 3] = value >> 24;
458 break;
463 static void pflash_write(pflash_t *pfl, hwaddr offset,
464 uint32_t value, int width, int be)
466 uint8_t *p;
467 uint8_t cmd;
469 cmd = value;
471 DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n",
472 __func__, offset, value, width, pfl->wcycle);
474 if (!pfl->wcycle) {
475 /* Set the device in I/O access mode */
476 memory_region_rom_device_set_romd(&pfl->mem, false);
479 switch (pfl->wcycle) {
480 case 0:
481 /* read mode */
482 switch (cmd) {
483 case 0x00: /* ??? */
484 goto reset_flash;
485 case 0x10: /* Single Byte Program */
486 case 0x40: /* Single Byte Program */
487 DPRINTF("%s: Single Byte Program\n", __func__);
488 break;
489 case 0x20: /* Block erase */
490 p = pfl->storage;
491 offset &= ~(pfl->sector_len - 1);
493 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
494 __func__, offset, (unsigned)pfl->sector_len);
496 if (!pfl->ro) {
497 memset(p + offset, 0xff, pfl->sector_len);
498 pflash_update(pfl, offset, pfl->sector_len);
499 } else {
500 pfl->status |= 0x20; /* Block erase error */
502 pfl->status |= 0x80; /* Ready! */
503 break;
504 case 0x50: /* Clear status bits */
505 DPRINTF("%s: Clear status bits\n", __func__);
506 pfl->status = 0x0;
507 goto reset_flash;
508 case 0x60: /* Block (un)lock */
509 DPRINTF("%s: Block unlock\n", __func__);
510 break;
511 case 0x70: /* Status Register */
512 DPRINTF("%s: Read status register\n", __func__);
513 pfl->cmd = cmd;
514 return;
515 case 0x90: /* Read Device ID */
516 DPRINTF("%s: Read Device information\n", __func__);
517 pfl->cmd = cmd;
518 return;
519 case 0x98: /* CFI query */
520 DPRINTF("%s: CFI query\n", __func__);
521 break;
522 case 0xe8: /* Write to buffer */
523 DPRINTF("%s: Write to buffer\n", __func__);
524 pfl->status |= 0x80; /* Ready! */
525 break;
526 case 0xf0: /* Probe for AMD flash */
527 DPRINTF("%s: Probe for AMD flash\n", __func__);
528 goto reset_flash;
529 case 0xff: /* Read array mode */
530 DPRINTF("%s: Read array mode\n", __func__);
531 goto reset_flash;
532 default:
533 goto error_flash;
535 pfl->wcycle++;
536 pfl->cmd = cmd;
537 break;
538 case 1:
539 switch (pfl->cmd) {
540 case 0x10: /* Single Byte Program */
541 case 0x40: /* Single Byte Program */
542 DPRINTF("%s: Single Byte Program\n", __func__);
543 if (!pfl->ro) {
544 pflash_data_write(pfl, offset, value, width, be);
545 pflash_update(pfl, offset, width);
546 } else {
547 pfl->status |= 0x10; /* Programming error */
549 pfl->status |= 0x80; /* Ready! */
550 pfl->wcycle = 0;
551 break;
552 case 0x20: /* Block erase */
553 case 0x28:
554 if (cmd == 0xd0) { /* confirm */
555 pfl->wcycle = 0;
556 pfl->status |= 0x80;
557 } else if (cmd == 0xff) { /* read array mode */
558 goto reset_flash;
559 } else
560 goto error_flash;
562 break;
563 case 0xe8:
564 /* Mask writeblock size based on device width, or bank width if
565 * device width not specified.
567 if (pfl->device_width) {
568 value = extract32(value, 0, pfl->device_width * 8);
569 } else {
570 value = extract32(value, 0, pfl->bank_width * 8);
572 DPRINTF("%s: block write of %x bytes\n", __func__, value);
573 pfl->counter = value;
574 pfl->wcycle++;
575 break;
576 case 0x60:
577 if (cmd == 0xd0) {
578 pfl->wcycle = 0;
579 pfl->status |= 0x80;
580 } else if (cmd == 0x01) {
581 pfl->wcycle = 0;
582 pfl->status |= 0x80;
583 } else if (cmd == 0xff) {
584 goto reset_flash;
585 } else {
586 DPRINTF("%s: Unknown (un)locking command\n", __func__);
587 goto reset_flash;
589 break;
590 case 0x98:
591 if (cmd == 0xff) {
592 goto reset_flash;
593 } else {
594 DPRINTF("%s: leaving query mode\n", __func__);
596 break;
597 default:
598 goto error_flash;
600 break;
601 case 2:
602 switch (pfl->cmd) {
603 case 0xe8: /* Block write */
604 if (!pfl->ro) {
605 pflash_data_write(pfl, offset, value, width, be);
606 } else {
607 pfl->status |= 0x10; /* Programming error */
610 pfl->status |= 0x80;
612 if (!pfl->counter) {
613 hwaddr mask = pfl->writeblock_size - 1;
614 mask = ~mask;
616 DPRINTF("%s: block write finished\n", __func__);
617 pfl->wcycle++;
618 if (!pfl->ro) {
619 /* Flush the entire write buffer onto backing storage. */
620 pflash_update(pfl, offset & mask, pfl->writeblock_size);
621 } else {
622 pfl->status |= 0x10; /* Programming error */
626 pfl->counter--;
627 break;
628 default:
629 goto error_flash;
631 break;
632 case 3: /* Confirm mode */
633 switch (pfl->cmd) {
634 case 0xe8: /* Block write */
635 if (cmd == 0xd0) {
636 pfl->wcycle = 0;
637 pfl->status |= 0x80;
638 } else {
639 DPRINTF("%s: unknown command for \"write block\"\n", __func__);
640 PFLASH_BUG("Write block confirm");
641 goto reset_flash;
643 break;
644 default:
645 goto error_flash;
647 break;
648 default:
649 /* Should never happen */
650 DPRINTF("%s: invalid write state\n", __func__);
651 goto reset_flash;
653 return;
655 error_flash:
656 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
657 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
658 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
660 reset_flash:
661 memory_region_rom_device_set_romd(&pfl->mem, true);
663 pfl->wcycle = 0;
664 pfl->cmd = 0;
668 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
669 unsigned len, MemTxAttrs attrs)
671 pflash_t *pfl = opaque;
672 bool be = !!(pfl->features & (1 << PFLASH_BE));
674 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
675 *value = pflash_data_read(opaque, addr, len, be);
676 } else {
677 *value = pflash_read(opaque, addr, len, be);
679 return MEMTX_OK;
682 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
683 unsigned len, MemTxAttrs attrs)
685 pflash_t *pfl = opaque;
686 bool be = !!(pfl->features & (1 << PFLASH_BE));
688 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
689 return MEMTX_ERROR;
690 } else {
691 pflash_write(opaque, addr, value, len, be);
692 return MEMTX_OK;
696 static const MemoryRegionOps pflash_cfi01_ops = {
697 .read_with_attrs = pflash_mem_read_with_attrs,
698 .write_with_attrs = pflash_mem_write_with_attrs,
699 .endianness = DEVICE_NATIVE_ENDIAN,
702 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
704 pflash_t *pfl = CFI_PFLASH01(dev);
705 uint64_t total_len;
706 int ret;
707 uint64_t blocks_per_device, sector_len_per_device, device_len;
708 int num_devices;
709 Error *local_err = NULL;
711 if (pfl->sector_len == 0) {
712 error_setg(errp, "attribute \"sector-length\" not specified or zero.");
713 return;
715 if (pfl->nb_blocs == 0) {
716 error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
717 return;
719 if (pfl->name == NULL) {
720 error_setg(errp, "attribute \"name\" not specified.");
721 return;
724 total_len = pfl->sector_len * pfl->nb_blocs;
726 /* These are only used to expose the parameters of each device
727 * in the cfi_table[].
729 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
730 if (pfl->old_multiple_chip_handling) {
731 blocks_per_device = pfl->nb_blocs / num_devices;
732 sector_len_per_device = pfl->sector_len;
733 } else {
734 blocks_per_device = pfl->nb_blocs;
735 sector_len_per_device = pfl->sector_len / num_devices;
737 device_len = sector_len_per_device * blocks_per_device;
739 /* XXX: to be fixed */
740 #if 0
741 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
742 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
743 return NULL;
744 #endif
746 memory_region_init_rom_device(
747 &pfl->mem, OBJECT(dev),
748 &pflash_cfi01_ops,
749 pfl,
750 pfl->name, total_len, &local_err);
751 if (local_err) {
752 error_propagate(errp, local_err);
753 return;
756 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
757 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
759 if (pfl->blk) {
760 uint64_t perm;
761 pfl->ro = blk_is_read_only(pfl->blk);
762 perm = BLK_PERM_CONSISTENT_READ | (pfl->ro ? 0 : BLK_PERM_WRITE);
763 ret = blk_set_perm(pfl->blk, perm, BLK_PERM_ALL, errp);
764 if (ret < 0) {
765 return;
767 } else {
768 pfl->ro = 0;
771 if (pfl->blk) {
772 /* read the initial flash content */
773 ret = blk_pread(pfl->blk, 0, pfl->storage, total_len);
775 if (ret < 0) {
776 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
777 error_setg(errp, "failed to read the initial flash content");
778 return;
782 /* Default to devices being used at their maximum device width. This was
783 * assumed before the device_width support was added.
785 if (!pfl->max_device_width) {
786 pfl->max_device_width = pfl->device_width;
789 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
790 pfl->wcycle = 0;
791 pfl->cmd = 0;
792 pfl->status = 0;
793 /* Hardcoded CFI table */
794 pfl->cfi_len = 0x52;
795 /* Standard "QRY" string */
796 pfl->cfi_table[0x10] = 'Q';
797 pfl->cfi_table[0x11] = 'R';
798 pfl->cfi_table[0x12] = 'Y';
799 /* Command set (Intel) */
800 pfl->cfi_table[0x13] = 0x01;
801 pfl->cfi_table[0x14] = 0x00;
802 /* Primary extended table address (none) */
803 pfl->cfi_table[0x15] = 0x31;
804 pfl->cfi_table[0x16] = 0x00;
805 /* Alternate command set (none) */
806 pfl->cfi_table[0x17] = 0x00;
807 pfl->cfi_table[0x18] = 0x00;
808 /* Alternate extended table (none) */
809 pfl->cfi_table[0x19] = 0x00;
810 pfl->cfi_table[0x1A] = 0x00;
811 /* Vcc min */
812 pfl->cfi_table[0x1B] = 0x45;
813 /* Vcc max */
814 pfl->cfi_table[0x1C] = 0x55;
815 /* Vpp min (no Vpp pin) */
816 pfl->cfi_table[0x1D] = 0x00;
817 /* Vpp max (no Vpp pin) */
818 pfl->cfi_table[0x1E] = 0x00;
819 /* Reserved */
820 pfl->cfi_table[0x1F] = 0x07;
821 /* Timeout for min size buffer write */
822 pfl->cfi_table[0x20] = 0x07;
823 /* Typical timeout for block erase */
824 pfl->cfi_table[0x21] = 0x0a;
825 /* Typical timeout for full chip erase (4096 ms) */
826 pfl->cfi_table[0x22] = 0x00;
827 /* Reserved */
828 pfl->cfi_table[0x23] = 0x04;
829 /* Max timeout for buffer write */
830 pfl->cfi_table[0x24] = 0x04;
831 /* Max timeout for block erase */
832 pfl->cfi_table[0x25] = 0x04;
833 /* Max timeout for chip erase */
834 pfl->cfi_table[0x26] = 0x00;
835 /* Device size */
836 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
837 /* Flash device interface (8 & 16 bits) */
838 pfl->cfi_table[0x28] = 0x02;
839 pfl->cfi_table[0x29] = 0x00;
840 /* Max number of bytes in multi-bytes write */
841 if (pfl->bank_width == 1) {
842 pfl->cfi_table[0x2A] = 0x08;
843 } else {
844 pfl->cfi_table[0x2A] = 0x0B;
846 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
847 if (!pfl->old_multiple_chip_handling && num_devices > 1) {
848 pfl->writeblock_size *= num_devices;
851 pfl->cfi_table[0x2B] = 0x00;
852 /* Number of erase block regions (uniform) */
853 pfl->cfi_table[0x2C] = 0x01;
854 /* Erase block region 1 */
855 pfl->cfi_table[0x2D] = blocks_per_device - 1;
856 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
857 pfl->cfi_table[0x2F] = sector_len_per_device >> 8;
858 pfl->cfi_table[0x30] = sector_len_per_device >> 16;
860 /* Extended */
861 pfl->cfi_table[0x31] = 'P';
862 pfl->cfi_table[0x32] = 'R';
863 pfl->cfi_table[0x33] = 'I';
865 pfl->cfi_table[0x34] = '1';
866 pfl->cfi_table[0x35] = '0';
868 pfl->cfi_table[0x36] = 0x00;
869 pfl->cfi_table[0x37] = 0x00;
870 pfl->cfi_table[0x38] = 0x00;
871 pfl->cfi_table[0x39] = 0x00;
873 pfl->cfi_table[0x3a] = 0x00;
875 pfl->cfi_table[0x3b] = 0x00;
876 pfl->cfi_table[0x3c] = 0x00;
878 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
881 static Property pflash_cfi01_properties[] = {
882 DEFINE_PROP_DRIVE("drive", struct pflash_t, blk),
883 /* num-blocks is the number of blocks actually visible to the guest,
884 * ie the total size of the device divided by the sector length.
885 * If we're emulating flash devices wired in parallel the actual
886 * number of blocks per indvidual device will differ.
888 DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
889 DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0),
890 /* width here is the overall width of this QEMU device in bytes.
891 * The QEMU device may be emulating a number of flash devices
892 * wired up in parallel; the width of each individual flash
893 * device should be specified via device-width. If the individual
894 * devices have a maximum width which is greater than the width
895 * they are being used for, this maximum width should be set via
896 * max-device-width (which otherwise defaults to device-width).
897 * So for instance a 32-bit wide QEMU flash device made from four
898 * 16-bit flash devices used in 8-bit wide mode would be configured
899 * with width = 4, device-width = 1, max-device-width = 2.
901 * If device-width is not specified we default to backwards
902 * compatible behaviour which is a bad emulation of two
903 * 16 bit devices making up a 32 bit wide QEMU device. This
904 * is deprecated for new uses of this device.
906 DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0),
907 DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0),
908 DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0),
909 DEFINE_PROP_BIT("big-endian", struct pflash_t, features, PFLASH_BE, 0),
910 DEFINE_PROP_BIT("secure", struct pflash_t, features, PFLASH_SECURE, 0),
911 DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
912 DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
913 DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
914 DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
915 DEFINE_PROP_STRING("name", struct pflash_t, name),
916 DEFINE_PROP_BOOL("old-multiple-chip-handling", struct pflash_t,
917 old_multiple_chip_handling, false),
918 DEFINE_PROP_END_OF_LIST(),
921 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
923 DeviceClass *dc = DEVICE_CLASS(klass);
925 dc->realize = pflash_cfi01_realize;
926 dc->props = pflash_cfi01_properties;
927 dc->vmsd = &vmstate_pflash;
928 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
932 static const TypeInfo pflash_cfi01_info = {
933 .name = TYPE_CFI_PFLASH01,
934 .parent = TYPE_SYS_BUS_DEVICE,
935 .instance_size = sizeof(struct pflash_t),
936 .class_init = pflash_cfi01_class_init,
939 static void pflash_cfi01_register_types(void)
941 type_register_static(&pflash_cfi01_info);
944 type_init(pflash_cfi01_register_types)
946 pflash_t *pflash_cfi01_register(hwaddr base,
947 DeviceState *qdev, const char *name,
948 hwaddr size,
949 BlockBackend *blk,
950 uint32_t sector_len, int nb_blocs,
951 int bank_width, uint16_t id0, uint16_t id1,
952 uint16_t id2, uint16_t id3, int be)
954 DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01);
956 if (blk) {
957 qdev_prop_set_drive(dev, "drive", blk, &error_abort);
959 qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
960 qdev_prop_set_uint64(dev, "sector-length", sector_len);
961 qdev_prop_set_uint8(dev, "width", bank_width);
962 qdev_prop_set_bit(dev, "big-endian", !!be);
963 qdev_prop_set_uint16(dev, "id0", id0);
964 qdev_prop_set_uint16(dev, "id1", id1);
965 qdev_prop_set_uint16(dev, "id2", id2);
966 qdev_prop_set_uint16(dev, "id3", id3);
967 qdev_prop_set_string(dev, "name", name);
968 qdev_init_nofail(dev);
970 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
971 return CFI_PFLASH01(dev);
974 MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl)
976 return &fl->mem;
979 static void postload_update_cb(void *opaque, int running, RunState state)
981 pflash_t *pfl = opaque;
983 /* This is called after bdrv_invalidate_cache_all. */
984 qemu_del_vm_change_state_handler(pfl->vmstate);
985 pfl->vmstate = NULL;
987 DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
988 pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
991 static int pflash_post_load(void *opaque, int version_id)
993 pflash_t *pfl = opaque;
995 if (!pfl->ro) {
996 pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
997 pfl);
999 return 0;