2 * General purpose implementation of a simple periodic countdown timer.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GNU LGPL.
9 #include "qemu/timer.h"
10 #include "hw/ptimer.h"
11 #include "qemu/host-utils.h"
12 #include "sysemu/replay.h"
16 uint8_t enabled
; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
27 /* Use a bottom-half routine to avoid reentrancy issues. */
28 static void ptimer_trigger(ptimer_state
*s
)
31 replay_bh_schedule_event(s
->bh
);
35 static void ptimer_reload(ptimer_state
*s
)
41 if (s
->delta
== 0 || s
->period
== 0) {
42 fprintf(stderr
, "Timer with period zero, disabling\n");
47 s
->last_event
= s
->next_event
;
48 s
->next_event
= s
->last_event
+ s
->delta
* s
->period
;
50 s
->next_event
+= ((int64_t)s
->period_frac
* s
->delta
) >> 32;
52 timer_mod(s
->timer
, s
->next_event
);
55 static void ptimer_tick(void *opaque
)
57 ptimer_state
*s
= (ptimer_state
*)opaque
;
60 if (s
->enabled
== 2) {
67 uint64_t ptimer_get_count(ptimer_state
*s
)
73 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
74 /* Figure out the current counter value. */
75 if (now
- s
->next_event
> 0
77 /* Prevent timer underflowing if it should already have
86 /* We need to divide time by period, where time is stored in
87 rem (64-bit integer) and period is stored in period/period_frac
90 Doing full precision division is hard, so scale values and
91 do a 64-bit division. The result should be rounded down,
92 so that the rounding error never causes the timer to go
96 rem
= s
->next_event
- now
;
101 shift
= clz1
< clz2
? clz1
: clz2
;
106 div
|= ((uint64_t)s
->period_frac
<< (shift
- 32));
109 div
|= (s
->period_frac
>> (32 - shift
));
110 /* Look at remaining bits of period_frac and round div up if
112 if ((uint32_t)(s
->period_frac
<< shift
))
123 void ptimer_set_count(ptimer_state
*s
, uint64_t count
)
127 s
->next_event
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
132 void ptimer_run(ptimer_state
*s
, int oneshot
)
137 if (s
->period
== 0) {
138 fprintf(stderr
, "Timer with period zero, disabling\n");
141 s
->enabled
= oneshot
? 2 : 1;
142 s
->next_event
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
146 /* Pause a timer. Note that this may cause it to "lose" time, even if it
147 is immediately restarted. */
148 void ptimer_stop(ptimer_state
*s
)
153 s
->delta
= ptimer_get_count(s
);
158 /* Set counter increment interval in nanoseconds. */
159 void ptimer_set_period(ptimer_state
*s
, int64_t period
)
164 s
->next_event
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
169 /* Set counter frequency in Hz. */
170 void ptimer_set_freq(ptimer_state
*s
, uint32_t freq
)
172 s
->period
= 1000000000ll / freq
;
173 s
->period_frac
= (1000000000ll << 32) / freq
;
175 s
->next_event
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
180 /* Set the initial countdown value. If reload is nonzero then also set
182 void ptimer_set_limit(ptimer_state
*s
, uint64_t limit
, int reload
)
185 * Artificially limit timeout rate to something
186 * achievable under QEMU. Otherwise, QEMU spends all
187 * its time generating timer interrupts, and there
188 * is no forward progress.
189 * About ten microseconds is the fastest that really works
190 * on the current generation of host machines.
193 if (!use_icount
&& limit
* s
->period
< 10000 && s
->period
) {
194 limit
= 10000 / s
->period
;
200 if (s
->enabled
&& reload
) {
201 s
->next_event
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
206 const VMStateDescription vmstate_ptimer
= {
209 .minimum_version_id
= 1,
210 .fields
= (VMStateField
[]) {
211 VMSTATE_UINT8(enabled
, ptimer_state
),
212 VMSTATE_UINT64(limit
, ptimer_state
),
213 VMSTATE_UINT64(delta
, ptimer_state
),
214 VMSTATE_UINT32(period_frac
, ptimer_state
),
215 VMSTATE_INT64(period
, ptimer_state
),
216 VMSTATE_INT64(last_event
, ptimer_state
),
217 VMSTATE_INT64(next_event
, ptimer_state
),
218 VMSTATE_TIMER_PTR(timer
, ptimer_state
),
219 VMSTATE_END_OF_LIST()
223 ptimer_state
*ptimer_init(QEMUBH
*bh
)
227 s
= (ptimer_state
*)g_malloc0(sizeof(ptimer_state
));
229 s
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, ptimer_tick
, s
);