e1000: Fixing the packet address filtering procedure
[qemu/ar7.git] / hw / core / ptimer.c
blobedf077cfd0a8ebdf42d5acdafd3d7153b8bda19f
1 /*
2 * General purpose implementation of a simple periodic countdown timer.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GNU LGPL.
7 */
8 #include "hw/hw.h"
9 #include "qemu/timer.h"
10 #include "hw/ptimer.h"
11 #include "qemu/host-utils.h"
12 #include "sysemu/replay.h"
14 struct ptimer_state
16 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
17 uint64_t limit;
18 uint64_t delta;
19 uint32_t period_frac;
20 int64_t period;
21 int64_t last_event;
22 int64_t next_event;
23 QEMUBH *bh;
24 QEMUTimer *timer;
27 /* Use a bottom-half routine to avoid reentrancy issues. */
28 static void ptimer_trigger(ptimer_state *s)
30 if (s->bh) {
31 replay_bh_schedule_event(s->bh);
35 static void ptimer_reload(ptimer_state *s)
37 if (s->delta == 0) {
38 ptimer_trigger(s);
39 s->delta = s->limit;
41 if (s->delta == 0 || s->period == 0) {
42 fprintf(stderr, "Timer with period zero, disabling\n");
43 s->enabled = 0;
44 return;
47 s->last_event = s->next_event;
48 s->next_event = s->last_event + s->delta * s->period;
49 if (s->period_frac) {
50 s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
52 timer_mod(s->timer, s->next_event);
55 static void ptimer_tick(void *opaque)
57 ptimer_state *s = (ptimer_state *)opaque;
58 ptimer_trigger(s);
59 s->delta = 0;
60 if (s->enabled == 2) {
61 s->enabled = 0;
62 } else {
63 ptimer_reload(s);
67 uint64_t ptimer_get_count(ptimer_state *s)
69 int64_t now;
70 uint64_t counter;
72 if (s->enabled) {
73 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
74 /* Figure out the current counter value. */
75 if (now - s->next_event > 0
76 || s->period == 0) {
77 /* Prevent timer underflowing if it should already have
78 triggered. */
79 counter = 0;
80 } else {
81 uint64_t rem;
82 uint64_t div;
83 int clz1, clz2;
84 int shift;
86 /* We need to divide time by period, where time is stored in
87 rem (64-bit integer) and period is stored in period/period_frac
88 (64.32 fixed point).
90 Doing full precision division is hard, so scale values and
91 do a 64-bit division. The result should be rounded down,
92 so that the rounding error never causes the timer to go
93 backwards.
96 rem = s->next_event - now;
97 div = s->period;
99 clz1 = clz64(rem);
100 clz2 = clz64(div);
101 shift = clz1 < clz2 ? clz1 : clz2;
103 rem <<= shift;
104 div <<= shift;
105 if (shift >= 32) {
106 div |= ((uint64_t)s->period_frac << (shift - 32));
107 } else {
108 if (shift != 0)
109 div |= (s->period_frac >> (32 - shift));
110 /* Look at remaining bits of period_frac and round div up if
111 necessary. */
112 if ((uint32_t)(s->period_frac << shift))
113 div += 1;
115 counter = rem / div;
117 } else {
118 counter = s->delta;
120 return counter;
123 void ptimer_set_count(ptimer_state *s, uint64_t count)
125 s->delta = count;
126 if (s->enabled) {
127 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
128 ptimer_reload(s);
132 void ptimer_run(ptimer_state *s, int oneshot)
134 if (s->enabled) {
135 return;
137 if (s->period == 0) {
138 fprintf(stderr, "Timer with period zero, disabling\n");
139 return;
141 s->enabled = oneshot ? 2 : 1;
142 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
143 ptimer_reload(s);
146 /* Pause a timer. Note that this may cause it to "lose" time, even if it
147 is immediately restarted. */
148 void ptimer_stop(ptimer_state *s)
150 if (!s->enabled)
151 return;
153 s->delta = ptimer_get_count(s);
154 timer_del(s->timer);
155 s->enabled = 0;
158 /* Set counter increment interval in nanoseconds. */
159 void ptimer_set_period(ptimer_state *s, int64_t period)
161 s->period = period;
162 s->period_frac = 0;
163 if (s->enabled) {
164 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
165 ptimer_reload(s);
169 /* Set counter frequency in Hz. */
170 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
172 s->period = 1000000000ll / freq;
173 s->period_frac = (1000000000ll << 32) / freq;
174 if (s->enabled) {
175 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
176 ptimer_reload(s);
180 /* Set the initial countdown value. If reload is nonzero then also set
181 count = limit. */
182 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
185 * Artificially limit timeout rate to something
186 * achievable under QEMU. Otherwise, QEMU spends all
187 * its time generating timer interrupts, and there
188 * is no forward progress.
189 * About ten microseconds is the fastest that really works
190 * on the current generation of host machines.
193 if (!use_icount && limit * s->period < 10000 && s->period) {
194 limit = 10000 / s->period;
197 s->limit = limit;
198 if (reload)
199 s->delta = limit;
200 if (s->enabled && reload) {
201 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
202 ptimer_reload(s);
206 const VMStateDescription vmstate_ptimer = {
207 .name = "ptimer",
208 .version_id = 1,
209 .minimum_version_id = 1,
210 .fields = (VMStateField[]) {
211 VMSTATE_UINT8(enabled, ptimer_state),
212 VMSTATE_UINT64(limit, ptimer_state),
213 VMSTATE_UINT64(delta, ptimer_state),
214 VMSTATE_UINT32(period_frac, ptimer_state),
215 VMSTATE_INT64(period, ptimer_state),
216 VMSTATE_INT64(last_event, ptimer_state),
217 VMSTATE_INT64(next_event, ptimer_state),
218 VMSTATE_TIMER_PTR(timer, ptimer_state),
219 VMSTATE_END_OF_LIST()
223 ptimer_state *ptimer_init(QEMUBH *bh)
225 ptimer_state *s;
227 s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
228 s->bh = bh;
229 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
230 return s;