4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
40 #include "hw/boards.h"
42 /* This check must be after config-host.h is included */
44 #include <sys/eventfd.h>
47 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
48 * need to use the real host PAGE_SIZE, as that's what KVM will use.
50 #define PAGE_SIZE getpagesize()
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #define DPRINTF(fmt, ...) \
62 #define KVM_MSI_HASHTAB_SIZE 256
64 struct KVMParkedVcpu
{
65 unsigned long vcpu_id
;
67 QLIST_ENTRY(KVMParkedVcpu
) node
;
72 AccelState parent_obj
;
78 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
79 bool coalesced_flush_in_progress
;
80 int broken_set_mem_region
;
82 int robust_singlestep
;
84 #ifdef KVM_CAP_SET_GUEST_DEBUG
85 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
89 /* The man page (and posix) say ioctl numbers are signed int, but
90 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
91 * unsigned, and treating them as signed here can break things */
92 unsigned irq_set_ioctl
;
93 unsigned int sigmask_len
;
95 #ifdef KVM_CAP_IRQ_ROUTING
96 struct kvm_irq_routing
*irq_routes
;
97 int nr_allocated_irq_routes
;
98 unsigned long *used_gsi_bitmap
;
99 unsigned int gsi_count
;
100 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
102 KVMMemoryListener memory_listener
;
103 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
107 bool kvm_kernel_irqchip
;
108 bool kvm_split_irqchip
;
109 bool kvm_async_interrupts_allowed
;
110 bool kvm_halt_in_kernel_allowed
;
111 bool kvm_eventfds_allowed
;
112 bool kvm_irqfds_allowed
;
113 bool kvm_resamplefds_allowed
;
114 bool kvm_msi_via_irqfd_allowed
;
115 bool kvm_gsi_routing_allowed
;
116 bool kvm_gsi_direct_mapping
;
118 bool kvm_readonly_mem_allowed
;
119 bool kvm_vm_attributes_allowed
;
120 bool kvm_direct_msi_allowed
;
121 bool kvm_ioeventfd_any_length_allowed
;
122 bool kvm_msi_use_devid
;
124 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
125 KVM_CAP_INFO(USER_MEMORY
),
126 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
130 int kvm_get_max_memslots(void)
132 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
137 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
139 KVMState
*s
= kvm_state
;
142 for (i
= 0; i
< s
->nr_slots
; i
++) {
143 if (kml
->slots
[i
].memory_size
== 0) {
144 return &kml
->slots
[i
];
151 bool kvm_has_free_slot(MachineState
*ms
)
153 KVMState
*s
= KVM_STATE(ms
->accelerator
);
155 return kvm_get_free_slot(&s
->memory_listener
);
158 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
160 KVMSlot
*slot
= kvm_get_free_slot(kml
);
166 fprintf(stderr
, "%s: no free slot available\n", __func__
);
170 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
174 KVMState
*s
= kvm_state
;
177 for (i
= 0; i
< s
->nr_slots
; i
++) {
178 KVMSlot
*mem
= &kml
->slots
[i
];
180 if (start_addr
== mem
->start_addr
&&
181 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
190 * Find overlapping slot with lowest start address
192 static KVMSlot
*kvm_lookup_overlapping_slot(KVMMemoryListener
*kml
,
196 KVMState
*s
= kvm_state
;
197 KVMSlot
*found
= NULL
;
200 for (i
= 0; i
< s
->nr_slots
; i
++) {
201 KVMSlot
*mem
= &kml
->slots
[i
];
203 if (mem
->memory_size
== 0 ||
204 (found
&& found
->start_addr
< mem
->start_addr
)) {
208 if (end_addr
> mem
->start_addr
&&
209 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
217 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
220 KVMMemoryListener
*kml
= &s
->memory_listener
;
223 for (i
= 0; i
< s
->nr_slots
; i
++) {
224 KVMSlot
*mem
= &kml
->slots
[i
];
226 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
227 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
235 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
)
237 KVMState
*s
= kvm_state
;
238 struct kvm_userspace_memory_region mem
;
240 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
241 mem
.guest_phys_addr
= slot
->start_addr
;
242 mem
.userspace_addr
= (unsigned long)slot
->ram
;
243 mem
.flags
= slot
->flags
;
245 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
246 /* Set the slot size to 0 before setting the slot to the desired
247 * value. This is needed based on KVM commit 75d61fbc. */
249 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
251 mem
.memory_size
= slot
->memory_size
;
252 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
255 int kvm_destroy_vcpu(CPUState
*cpu
)
257 KVMState
*s
= kvm_state
;
259 struct KVMParkedVcpu
*vcpu
= NULL
;
262 DPRINTF("kvm_destroy_vcpu\n");
264 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
267 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
271 ret
= munmap(cpu
->kvm_run
, mmap_size
);
276 vcpu
= g_malloc0(sizeof(*vcpu
));
277 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
278 vcpu
->kvm_fd
= cpu
->kvm_fd
;
279 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
284 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
286 struct KVMParkedVcpu
*cpu
;
288 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
289 if (cpu
->vcpu_id
== vcpu_id
) {
292 QLIST_REMOVE(cpu
, node
);
293 kvm_fd
= cpu
->kvm_fd
;
299 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
302 int kvm_init_vcpu(CPUState
*cpu
)
304 KVMState
*s
= kvm_state
;
308 DPRINTF("kvm_init_vcpu\n");
310 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
312 DPRINTF("kvm_create_vcpu failed\n");
318 cpu
->kvm_vcpu_dirty
= true;
320 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
323 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
327 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
329 if (cpu
->kvm_run
== MAP_FAILED
) {
331 DPRINTF("mmap'ing vcpu state failed\n");
335 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
336 s
->coalesced_mmio_ring
=
337 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
340 ret
= kvm_arch_init_vcpu(cpu
);
346 * dirty pages logging control
349 static int kvm_mem_flags(MemoryRegion
*mr
)
351 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
354 if (memory_region_get_dirty_log_mask(mr
) != 0) {
355 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
357 if (readonly
&& kvm_readonly_mem_allowed
) {
358 flags
|= KVM_MEM_READONLY
;
363 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
368 old_flags
= mem
->flags
;
369 mem
->flags
= kvm_mem_flags(mr
);
371 /* If nothing changed effectively, no need to issue ioctl */
372 if (mem
->flags
== old_flags
) {
376 return kvm_set_user_memory_region(kml
, mem
);
379 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
380 MemoryRegionSection
*section
)
382 hwaddr phys_addr
= section
->offset_within_address_space
;
383 ram_addr_t size
= int128_get64(section
->size
);
384 KVMSlot
*mem
= kvm_lookup_matching_slot(kml
, phys_addr
, phys_addr
+ size
);
389 return kvm_slot_update_flags(kml
, mem
, section
->mr
);
393 static void kvm_log_start(MemoryListener
*listener
,
394 MemoryRegionSection
*section
,
397 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
404 r
= kvm_section_update_flags(kml
, section
);
410 static void kvm_log_stop(MemoryListener
*listener
,
411 MemoryRegionSection
*section
,
414 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
421 r
= kvm_section_update_flags(kml
, section
);
427 /* get kvm's dirty pages bitmap and update qemu's */
428 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
429 unsigned long *bitmap
)
431 ram_addr_t start
= section
->offset_within_region
+
432 memory_region_get_ram_addr(section
->mr
);
433 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
435 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
439 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
442 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
443 * This function updates qemu's dirty bitmap using
444 * memory_region_set_dirty(). This means all bits are set
447 * @start_add: start of logged region.
448 * @end_addr: end of logged region.
450 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
451 MemoryRegionSection
*section
)
453 KVMState
*s
= kvm_state
;
454 unsigned long size
, allocated_size
= 0;
455 struct kvm_dirty_log d
= {};
458 hwaddr start_addr
= section
->offset_within_address_space
;
459 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
461 d
.dirty_bitmap
= NULL
;
462 while (start_addr
< end_addr
) {
463 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, end_addr
);
468 /* XXX bad kernel interface alert
469 * For dirty bitmap, kernel allocates array of size aligned to
470 * bits-per-long. But for case when the kernel is 64bits and
471 * the userspace is 32bits, userspace can't align to the same
472 * bits-per-long, since sizeof(long) is different between kernel
473 * and user space. This way, userspace will provide buffer which
474 * may be 4 bytes less than the kernel will use, resulting in
475 * userspace memory corruption (which is not detectable by valgrind
476 * too, in most cases).
477 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
478 * a hope that sizeof(long) won't become >8 any time soon.
480 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
481 /*HOST_LONG_BITS*/ 64) / 8;
482 if (!d
.dirty_bitmap
) {
483 d
.dirty_bitmap
= g_malloc(size
);
484 } else if (size
> allocated_size
) {
485 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
487 allocated_size
= size
;
488 memset(d
.dirty_bitmap
, 0, allocated_size
);
490 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
491 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
492 DPRINTF("ioctl failed %d\n", errno
);
497 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
498 start_addr
= mem
->start_addr
+ mem
->memory_size
;
500 g_free(d
.dirty_bitmap
);
505 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
506 MemoryRegionSection
*secion
,
507 hwaddr start
, hwaddr size
)
509 KVMState
*s
= kvm_state
;
511 if (s
->coalesced_mmio
) {
512 struct kvm_coalesced_mmio_zone zone
;
518 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
522 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
523 MemoryRegionSection
*secion
,
524 hwaddr start
, hwaddr size
)
526 KVMState
*s
= kvm_state
;
528 if (s
->coalesced_mmio
) {
529 struct kvm_coalesced_mmio_zone zone
;
535 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
539 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
543 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
551 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
555 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
557 /* VM wide version not implemented, use global one instead */
558 ret
= kvm_check_extension(s
, extension
);
564 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
566 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
567 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
568 * endianness, but the memory core hands them in target endianness.
569 * For example, PPC is always treated as big-endian even if running
570 * on KVM and on PPC64LE. Correct here.
584 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
585 bool assign
, uint32_t size
, bool datamatch
)
588 struct kvm_ioeventfd iofd
= {
589 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
596 if (!kvm_enabled()) {
601 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
604 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
607 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
616 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
617 bool assign
, uint32_t size
, bool datamatch
)
619 struct kvm_ioeventfd kick
= {
620 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
622 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
627 if (!kvm_enabled()) {
631 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
634 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
636 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
644 static int kvm_check_many_ioeventfds(void)
646 /* Userspace can use ioeventfd for io notification. This requires a host
647 * that supports eventfd(2) and an I/O thread; since eventfd does not
648 * support SIGIO it cannot interrupt the vcpu.
650 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
651 * can avoid creating too many ioeventfds.
653 #if defined(CONFIG_EVENTFD)
656 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
657 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
658 if (ioeventfds
[i
] < 0) {
661 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
663 close(ioeventfds
[i
]);
668 /* Decide whether many devices are supported or not */
669 ret
= i
== ARRAY_SIZE(ioeventfds
);
672 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
673 close(ioeventfds
[i
]);
681 static const KVMCapabilityInfo
*
682 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
685 if (!kvm_check_extension(s
, list
->value
)) {
693 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
694 MemoryRegionSection
*section
, bool add
)
696 KVMState
*s
= kvm_state
;
699 MemoryRegion
*mr
= section
->mr
;
700 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
701 hwaddr start_addr
= section
->offset_within_address_space
;
702 ram_addr_t size
= int128_get64(section
->size
);
706 /* kvm works in page size chunks, but the function may be called
707 with sub-page size and unaligned start address. Pad the start
708 address to next and truncate size to previous page boundary. */
709 delta
= qemu_real_host_page_size
- (start_addr
& ~qemu_real_host_page_mask
);
710 delta
&= ~qemu_real_host_page_mask
;
716 size
&= qemu_real_host_page_mask
;
717 if (!size
|| (start_addr
& ~qemu_real_host_page_mask
)) {
721 if (!memory_region_is_ram(mr
)) {
722 if (writeable
|| !kvm_readonly_mem_allowed
) {
724 } else if (!mr
->romd_mode
) {
725 /* If the memory device is not in romd_mode, then we actually want
726 * to remove the kvm memory slot so all accesses will trap. */
731 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
734 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, start_addr
+ size
);
739 if (add
&& start_addr
>= mem
->start_addr
&&
740 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
741 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
742 /* The new slot fits into the existing one and comes with
743 * identical parameters - update flags and done. */
744 kvm_slot_update_flags(kml
, mem
, mr
);
750 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
751 kvm_physical_sync_dirty_bitmap(kml
, section
);
754 /* unregister the overlapping slot */
755 mem
->memory_size
= 0;
756 err
= kvm_set_user_memory_region(kml
, mem
);
758 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
759 __func__
, strerror(-err
));
763 /* Workaround for older KVM versions: we can't join slots, even not by
764 * unregistering the previous ones and then registering the larger
765 * slot. We have to maintain the existing fragmentation. Sigh.
767 * This workaround assumes that the new slot starts at the same
768 * address as the first existing one. If not or if some overlapping
769 * slot comes around later, we will fail (not seen in practice so far)
770 * - and actually require a recent KVM version. */
771 if (s
->broken_set_mem_region
&&
772 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
773 mem
= kvm_alloc_slot(kml
);
774 mem
->memory_size
= old
.memory_size
;
775 mem
->start_addr
= old
.start_addr
;
777 mem
->flags
= kvm_mem_flags(mr
);
779 err
= kvm_set_user_memory_region(kml
, mem
);
781 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
786 start_addr
+= old
.memory_size
;
787 ram
+= old
.memory_size
;
788 size
-= old
.memory_size
;
792 /* register prefix slot */
793 if (old
.start_addr
< start_addr
) {
794 mem
= kvm_alloc_slot(kml
);
795 mem
->memory_size
= start_addr
- old
.start_addr
;
796 mem
->start_addr
= old
.start_addr
;
798 mem
->flags
= kvm_mem_flags(mr
);
800 err
= kvm_set_user_memory_region(kml
, mem
);
802 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
803 __func__
, strerror(-err
));
805 fprintf(stderr
, "%s: This is probably because your kernel's " \
806 "PAGE_SIZE is too big. Please try to use 4k " \
807 "PAGE_SIZE!\n", __func__
);
813 /* register suffix slot */
814 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
815 ram_addr_t size_delta
;
817 mem
= kvm_alloc_slot(kml
);
818 mem
->start_addr
= start_addr
+ size
;
819 size_delta
= mem
->start_addr
- old
.start_addr
;
820 mem
->memory_size
= old
.memory_size
- size_delta
;
821 mem
->ram
= old
.ram
+ size_delta
;
822 mem
->flags
= kvm_mem_flags(mr
);
824 err
= kvm_set_user_memory_region(kml
, mem
);
826 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
827 __func__
, strerror(-err
));
833 /* in case the KVM bug workaround already "consumed" the new slot */
840 mem
= kvm_alloc_slot(kml
);
841 mem
->memory_size
= size
;
842 mem
->start_addr
= start_addr
;
844 mem
->flags
= kvm_mem_flags(mr
);
846 err
= kvm_set_user_memory_region(kml
, mem
);
848 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
854 static void kvm_region_add(MemoryListener
*listener
,
855 MemoryRegionSection
*section
)
857 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
859 memory_region_ref(section
->mr
);
860 kvm_set_phys_mem(kml
, section
, true);
863 static void kvm_region_del(MemoryListener
*listener
,
864 MemoryRegionSection
*section
)
866 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
868 kvm_set_phys_mem(kml
, section
, false);
869 memory_region_unref(section
->mr
);
872 static void kvm_log_sync(MemoryListener
*listener
,
873 MemoryRegionSection
*section
)
875 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
878 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
884 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
885 MemoryRegionSection
*section
,
886 bool match_data
, uint64_t data
,
889 int fd
= event_notifier_get_fd(e
);
892 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
893 data
, true, int128_get64(section
->size
),
896 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
897 __func__
, strerror(-r
));
902 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
903 MemoryRegionSection
*section
,
904 bool match_data
, uint64_t data
,
907 int fd
= event_notifier_get_fd(e
);
910 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
911 data
, false, int128_get64(section
->size
),
918 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
919 MemoryRegionSection
*section
,
920 bool match_data
, uint64_t data
,
923 int fd
= event_notifier_get_fd(e
);
926 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
927 data
, true, int128_get64(section
->size
),
930 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
931 __func__
, strerror(-r
));
936 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
937 MemoryRegionSection
*section
,
938 bool match_data
, uint64_t data
,
942 int fd
= event_notifier_get_fd(e
);
945 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
946 data
, false, int128_get64(section
->size
),
953 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
954 AddressSpace
*as
, int as_id
)
958 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
961 for (i
= 0; i
< s
->nr_slots
; i
++) {
962 kml
->slots
[i
].slot
= i
;
965 kml
->listener
.region_add
= kvm_region_add
;
966 kml
->listener
.region_del
= kvm_region_del
;
967 kml
->listener
.log_start
= kvm_log_start
;
968 kml
->listener
.log_stop
= kvm_log_stop
;
969 kml
->listener
.log_sync
= kvm_log_sync
;
970 kml
->listener
.priority
= 10;
972 memory_listener_register(&kml
->listener
, as
);
975 static MemoryListener kvm_io_listener
= {
976 .eventfd_add
= kvm_io_ioeventfd_add
,
977 .eventfd_del
= kvm_io_ioeventfd_del
,
981 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
983 cpu
->interrupt_request
|= mask
;
985 if (!qemu_cpu_is_self(cpu
)) {
990 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
992 struct kvm_irq_level event
;
995 assert(kvm_async_interrupts_enabled());
999 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
1001 perror("kvm_set_irq");
1005 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
1008 #ifdef KVM_CAP_IRQ_ROUTING
1009 typedef struct KVMMSIRoute
{
1010 struct kvm_irq_routing_entry kroute
;
1011 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
1014 static void set_gsi(KVMState
*s
, unsigned int gsi
)
1016 set_bit(gsi
, s
->used_gsi_bitmap
);
1019 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
1021 clear_bit(gsi
, s
->used_gsi_bitmap
);
1024 void kvm_init_irq_routing(KVMState
*s
)
1028 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1029 if (gsi_count
> 0) {
1030 /* Round up so we can search ints using ffs */
1031 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
1032 s
->gsi_count
= gsi_count
;
1035 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1036 s
->nr_allocated_irq_routes
= 0;
1038 if (!kvm_direct_msi_allowed
) {
1039 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1040 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1044 kvm_arch_init_irq_routing(s
);
1047 void kvm_irqchip_commit_routes(KVMState
*s
)
1051 if (kvm_gsi_direct_mapping()) {
1055 if (!kvm_gsi_routing_enabled()) {
1059 s
->irq_routes
->flags
= 0;
1060 trace_kvm_irqchip_commit_routes();
1061 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1065 static void kvm_add_routing_entry(KVMState
*s
,
1066 struct kvm_irq_routing_entry
*entry
)
1068 struct kvm_irq_routing_entry
*new;
1071 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1072 n
= s
->nr_allocated_irq_routes
* 2;
1076 size
= sizeof(struct kvm_irq_routing
);
1077 size
+= n
* sizeof(*new);
1078 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1079 s
->nr_allocated_irq_routes
= n
;
1081 n
= s
->irq_routes
->nr
++;
1082 new = &s
->irq_routes
->entries
[n
];
1086 set_gsi(s
, entry
->gsi
);
1089 static int kvm_update_routing_entry(KVMState
*s
,
1090 struct kvm_irq_routing_entry
*new_entry
)
1092 struct kvm_irq_routing_entry
*entry
;
1095 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1096 entry
= &s
->irq_routes
->entries
[n
];
1097 if (entry
->gsi
!= new_entry
->gsi
) {
1101 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1105 *entry
= *new_entry
;
1113 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1115 struct kvm_irq_routing_entry e
= {};
1117 assert(pin
< s
->gsi_count
);
1120 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1122 e
.u
.irqchip
.irqchip
= irqchip
;
1123 e
.u
.irqchip
.pin
= pin
;
1124 kvm_add_routing_entry(s
, &e
);
1127 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1129 struct kvm_irq_routing_entry
*e
;
1132 if (kvm_gsi_direct_mapping()) {
1136 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1137 e
= &s
->irq_routes
->entries
[i
];
1138 if (e
->gsi
== virq
) {
1139 s
->irq_routes
->nr
--;
1140 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1144 kvm_arch_release_virq_post(virq
);
1147 static unsigned int kvm_hash_msi(uint32_t data
)
1149 /* This is optimized for IA32 MSI layout. However, no other arch shall
1150 * repeat the mistake of not providing a direct MSI injection API. */
1154 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1156 KVMMSIRoute
*route
, *next
;
1159 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1160 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1161 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1162 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1168 static int kvm_irqchip_get_virq(KVMState
*s
)
1173 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1174 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1175 * number can succeed even though a new route entry cannot be added.
1176 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1178 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1179 kvm_flush_dynamic_msi_routes(s
);
1182 /* Return the lowest unused GSI in the bitmap */
1183 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1184 if (next_virq
>= s
->gsi_count
) {
1191 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1193 unsigned int hash
= kvm_hash_msi(msg
.data
);
1196 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1197 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1198 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1199 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1206 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1211 if (kvm_direct_msi_allowed
) {
1212 msi
.address_lo
= (uint32_t)msg
.address
;
1213 msi
.address_hi
= msg
.address
>> 32;
1214 msi
.data
= le32_to_cpu(msg
.data
);
1216 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1218 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1221 route
= kvm_lookup_msi_route(s
, msg
);
1225 virq
= kvm_irqchip_get_virq(s
);
1230 route
= g_malloc0(sizeof(KVMMSIRoute
));
1231 route
->kroute
.gsi
= virq
;
1232 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1233 route
->kroute
.flags
= 0;
1234 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1235 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1236 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1238 kvm_add_routing_entry(s
, &route
->kroute
);
1239 kvm_irqchip_commit_routes(s
);
1241 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1245 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1247 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1250 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1252 struct kvm_irq_routing_entry kroute
= {};
1254 MSIMessage msg
= {0, 0};
1257 msg
= pci_get_msi_message(dev
, vector
);
1260 if (kvm_gsi_direct_mapping()) {
1261 return kvm_arch_msi_data_to_gsi(msg
.data
);
1264 if (!kvm_gsi_routing_enabled()) {
1268 virq
= kvm_irqchip_get_virq(s
);
1274 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1276 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1277 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1278 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1279 if (kvm_msi_devid_required()) {
1280 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1281 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1283 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1284 kvm_irqchip_release_virq(s
, virq
);
1288 trace_kvm_irqchip_add_msi_route(virq
);
1290 kvm_add_routing_entry(s
, &kroute
);
1291 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
1292 kvm_irqchip_commit_routes(s
);
1297 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1300 struct kvm_irq_routing_entry kroute
= {};
1302 if (kvm_gsi_direct_mapping()) {
1306 if (!kvm_irqchip_in_kernel()) {
1311 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1313 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1314 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1315 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1316 if (kvm_msi_devid_required()) {
1317 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1318 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1320 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1324 trace_kvm_irqchip_update_msi_route(virq
);
1326 return kvm_update_routing_entry(s
, &kroute
);
1329 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1332 struct kvm_irqfd irqfd
= {
1335 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1339 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1340 irqfd
.resamplefd
= rfd
;
1343 if (!kvm_irqfds_enabled()) {
1347 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1350 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1352 struct kvm_irq_routing_entry kroute
= {};
1355 if (!kvm_gsi_routing_enabled()) {
1359 virq
= kvm_irqchip_get_virq(s
);
1365 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1367 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1368 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1369 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1370 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1371 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1373 kvm_add_routing_entry(s
, &kroute
);
1378 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1380 struct kvm_irq_routing_entry kroute
= {};
1383 if (!kvm_gsi_routing_enabled()) {
1386 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
1389 virq
= kvm_irqchip_get_virq(s
);
1395 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
1397 kroute
.u
.hv_sint
.vcpu
= vcpu
;
1398 kroute
.u
.hv_sint
.sint
= sint
;
1400 kvm_add_routing_entry(s
, &kroute
);
1401 kvm_irqchip_commit_routes(s
);
1406 #else /* !KVM_CAP_IRQ_ROUTING */
1408 void kvm_init_irq_routing(KVMState
*s
)
1412 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1416 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1421 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1426 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1431 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1436 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1441 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1445 #endif /* !KVM_CAP_IRQ_ROUTING */
1447 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1448 EventNotifier
*rn
, int virq
)
1450 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1451 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1454 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1457 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1461 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1462 EventNotifier
*rn
, qemu_irq irq
)
1465 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1470 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1473 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1477 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1482 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1485 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1487 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1490 static void kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1494 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1496 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1497 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1499 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1506 /* First probe and see if there's a arch-specific hook to create the
1507 * in-kernel irqchip for us */
1508 ret
= kvm_arch_irqchip_create(machine
, s
);
1510 if (machine_kernel_irqchip_split(machine
)) {
1511 perror("Split IRQ chip mode not supported.");
1514 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1518 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1522 kvm_kernel_irqchip
= true;
1523 /* If we have an in-kernel IRQ chip then we must have asynchronous
1524 * interrupt delivery (though the reverse is not necessarily true)
1526 kvm_async_interrupts_allowed
= true;
1527 kvm_halt_in_kernel_allowed
= true;
1529 kvm_init_irq_routing(s
);
1531 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1534 /* Find number of supported CPUs using the recommended
1535 * procedure from the kernel API documentation to cope with
1536 * older kernels that may be missing capabilities.
1538 static int kvm_recommended_vcpus(KVMState
*s
)
1540 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1541 return (ret
) ? ret
: 4;
1544 static int kvm_max_vcpus(KVMState
*s
)
1546 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1547 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1550 static int kvm_max_vcpu_id(KVMState
*s
)
1552 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
1553 return (ret
) ? ret
: kvm_max_vcpus(s
);
1556 bool kvm_vcpu_id_is_valid(int vcpu_id
)
1558 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
1559 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
1562 static int kvm_init(MachineState
*ms
)
1564 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1565 static const char upgrade_note
[] =
1566 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1567 "(see http://sourceforge.net/projects/kvm).\n";
1572 { "SMP", smp_cpus
},
1573 { "hotpluggable", max_cpus
},
1576 int soft_vcpus_limit
, hard_vcpus_limit
;
1578 const KVMCapabilityInfo
*missing_cap
;
1581 const char *kvm_type
;
1583 s
= KVM_STATE(ms
->accelerator
);
1586 * On systems where the kernel can support different base page
1587 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1588 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1589 * page size for the system though.
1591 assert(TARGET_PAGE_SIZE
<= getpagesize());
1595 #ifdef KVM_CAP_SET_GUEST_DEBUG
1596 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1598 QLIST_INIT(&s
->kvm_parked_vcpus
);
1600 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1602 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1607 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1608 if (ret
< KVM_API_VERSION
) {
1612 fprintf(stderr
, "kvm version too old\n");
1616 if (ret
> KVM_API_VERSION
) {
1618 fprintf(stderr
, "kvm version not supported\n");
1622 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1624 /* If unspecified, use the default value */
1629 /* check the vcpu limits */
1630 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1631 hard_vcpus_limit
= kvm_max_vcpus(s
);
1634 if (nc
->num
> soft_vcpus_limit
) {
1636 "Warning: Number of %s cpus requested (%d) exceeds "
1637 "the recommended cpus supported by KVM (%d)\n",
1638 nc
->name
, nc
->num
, soft_vcpus_limit
);
1640 if (nc
->num
> hard_vcpus_limit
) {
1641 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1642 "the maximum cpus supported by KVM (%d)\n",
1643 nc
->name
, nc
->num
, hard_vcpus_limit
);
1650 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1652 type
= mc
->kvm_type(kvm_type
);
1653 } else if (kvm_type
) {
1655 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1660 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1661 } while (ret
== -EINTR
);
1664 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1668 if (ret
== -EINVAL
) {
1670 "Host kernel setup problem detected. Please verify:\n");
1671 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1672 " user_mode parameters, whether\n");
1674 " user space is running in primary address space\n");
1676 "- for kernels supporting the vm.allocate_pgste sysctl, "
1677 "whether it is enabled\n");
1684 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1687 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1691 fprintf(stderr
, "kvm does not support %s\n%s",
1692 missing_cap
->name
, upgrade_note
);
1696 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1698 s
->broken_set_mem_region
= 1;
1699 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1701 s
->broken_set_mem_region
= 0;
1704 #ifdef KVM_CAP_VCPU_EVENTS
1705 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1708 s
->robust_singlestep
=
1709 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1711 #ifdef KVM_CAP_DEBUGREGS
1712 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1715 #ifdef KVM_CAP_IRQ_ROUTING
1716 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1719 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1721 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1722 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1723 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1726 #ifdef KVM_CAP_READONLY_MEM
1727 kvm_readonly_mem_allowed
=
1728 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1731 kvm_eventfds_allowed
=
1732 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1734 kvm_irqfds_allowed
=
1735 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1737 kvm_resamplefds_allowed
=
1738 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1740 kvm_vm_attributes_allowed
=
1741 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1743 kvm_ioeventfd_any_length_allowed
=
1744 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
1746 ret
= kvm_arch_init(ms
, s
);
1751 if (machine_kernel_irqchip_allowed(ms
)) {
1752 kvm_irqchip_create(ms
, s
);
1757 if (kvm_eventfds_allowed
) {
1758 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
1759 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
1761 s
->memory_listener
.listener
.coalesced_mmio_add
= kvm_coalesce_mmio_region
;
1762 s
->memory_listener
.listener
.coalesced_mmio_del
= kvm_uncoalesce_mmio_region
;
1764 kvm_memory_listener_register(s
, &s
->memory_listener
,
1765 &address_space_memory
, 0);
1766 memory_listener_register(&kvm_io_listener
,
1769 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1771 cpu_interrupt_handler
= kvm_handle_interrupt
;
1783 g_free(s
->memory_listener
.slots
);
1788 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1790 s
->sigmask_len
= sigmask_len
;
1793 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1794 int size
, uint32_t count
)
1797 uint8_t *ptr
= data
;
1799 for (i
= 0; i
< count
; i
++) {
1800 address_space_rw(&address_space_io
, port
, attrs
,
1802 direction
== KVM_EXIT_IO_OUT
);
1807 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1809 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1810 run
->internal
.suberror
);
1812 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1815 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1816 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1817 i
, (uint64_t)run
->internal
.data
[i
]);
1820 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1821 fprintf(stderr
, "emulation failure\n");
1822 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1823 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1824 return EXCP_INTERRUPT
;
1827 /* FIXME: Should trigger a qmp message to let management know
1828 * something went wrong.
1833 void kvm_flush_coalesced_mmio_buffer(void)
1835 KVMState
*s
= kvm_state
;
1837 if (s
->coalesced_flush_in_progress
) {
1841 s
->coalesced_flush_in_progress
= true;
1843 if (s
->coalesced_mmio_ring
) {
1844 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1845 while (ring
->first
!= ring
->last
) {
1846 struct kvm_coalesced_mmio
*ent
;
1848 ent
= &ring
->coalesced_mmio
[ring
->first
];
1850 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1852 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1856 s
->coalesced_flush_in_progress
= false;
1859 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, void *arg
)
1861 if (!cpu
->kvm_vcpu_dirty
) {
1862 kvm_arch_get_registers(cpu
);
1863 cpu
->kvm_vcpu_dirty
= true;
1867 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1869 if (!cpu
->kvm_vcpu_dirty
) {
1870 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, NULL
);
1874 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, void *arg
)
1876 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1877 cpu
->kvm_vcpu_dirty
= false;
1880 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1882 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, NULL
);
1885 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, void *arg
)
1887 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1888 cpu
->kvm_vcpu_dirty
= false;
1891 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1893 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, NULL
);
1896 int kvm_cpu_exec(CPUState
*cpu
)
1898 struct kvm_run
*run
= cpu
->kvm_run
;
1901 DPRINTF("kvm_cpu_exec()\n");
1903 if (kvm_arch_process_async_events(cpu
)) {
1904 cpu
->exit_request
= 0;
1908 qemu_mutex_unlock_iothread();
1913 if (cpu
->kvm_vcpu_dirty
) {
1914 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1915 cpu
->kvm_vcpu_dirty
= false;
1918 kvm_arch_pre_run(cpu
, run
);
1919 if (cpu
->exit_request
) {
1920 DPRINTF("interrupt exit requested\n");
1922 * KVM requires us to reenter the kernel after IO exits to complete
1923 * instruction emulation. This self-signal will ensure that we
1926 qemu_cpu_kick_self();
1929 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1931 attrs
= kvm_arch_post_run(cpu
, run
);
1934 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1935 DPRINTF("io window exit\n");
1936 ret
= EXCP_INTERRUPT
;
1939 fprintf(stderr
, "error: kvm run failed %s\n",
1940 strerror(-run_ret
));
1942 if (run_ret
== -EBUSY
) {
1944 "This is probably because your SMT is enabled.\n"
1945 "VCPU can only run on primary threads with all "
1946 "secondary threads offline.\n");
1953 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1954 switch (run
->exit_reason
) {
1956 DPRINTF("handle_io\n");
1957 /* Called outside BQL */
1958 kvm_handle_io(run
->io
.port
, attrs
,
1959 (uint8_t *)run
+ run
->io
.data_offset
,
1966 DPRINTF("handle_mmio\n");
1967 /* Called outside BQL */
1968 address_space_rw(&address_space_memory
,
1969 run
->mmio
.phys_addr
, attrs
,
1972 run
->mmio
.is_write
);
1975 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1976 DPRINTF("irq_window_open\n");
1977 ret
= EXCP_INTERRUPT
;
1979 case KVM_EXIT_SHUTDOWN
:
1980 DPRINTF("shutdown\n");
1981 qemu_system_reset_request();
1982 ret
= EXCP_INTERRUPT
;
1984 case KVM_EXIT_UNKNOWN
:
1985 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1986 (uint64_t)run
->hw
.hardware_exit_reason
);
1989 case KVM_EXIT_INTERNAL_ERROR
:
1990 ret
= kvm_handle_internal_error(cpu
, run
);
1992 case KVM_EXIT_SYSTEM_EVENT
:
1993 switch (run
->system_event
.type
) {
1994 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1995 qemu_system_shutdown_request();
1996 ret
= EXCP_INTERRUPT
;
1998 case KVM_SYSTEM_EVENT_RESET
:
1999 qemu_system_reset_request();
2000 ret
= EXCP_INTERRUPT
;
2002 case KVM_SYSTEM_EVENT_CRASH
:
2003 qemu_mutex_lock_iothread();
2004 qemu_system_guest_panicked();
2005 qemu_mutex_unlock_iothread();
2009 DPRINTF("kvm_arch_handle_exit\n");
2010 ret
= kvm_arch_handle_exit(cpu
, run
);
2015 DPRINTF("kvm_arch_handle_exit\n");
2016 ret
= kvm_arch_handle_exit(cpu
, run
);
2021 qemu_mutex_lock_iothread();
2024 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
2025 vm_stop(RUN_STATE_INTERNAL_ERROR
);
2028 cpu
->exit_request
= 0;
2032 int kvm_ioctl(KVMState
*s
, int type
, ...)
2039 arg
= va_arg(ap
, void *);
2042 trace_kvm_ioctl(type
, arg
);
2043 ret
= ioctl(s
->fd
, type
, arg
);
2050 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
2057 arg
= va_arg(ap
, void *);
2060 trace_kvm_vm_ioctl(type
, arg
);
2061 ret
= ioctl(s
->vmfd
, type
, arg
);
2068 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
2075 arg
= va_arg(ap
, void *);
2078 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
2079 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
2086 int kvm_device_ioctl(int fd
, int type
, ...)
2093 arg
= va_arg(ap
, void *);
2096 trace_kvm_device_ioctl(fd
, type
, arg
);
2097 ret
= ioctl(fd
, type
, arg
);
2104 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
2107 struct kvm_device_attr attribute
= {
2112 if (!kvm_vm_attributes_allowed
) {
2116 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2117 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2121 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2123 struct kvm_device_attr attribute
= {
2129 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2132 void kvm_device_access(int fd
, int group
, uint64_t attr
,
2133 void *val
, bool write
)
2135 struct kvm_device_attr kvmattr
;
2139 kvmattr
.group
= group
;
2140 kvmattr
.attr
= attr
;
2141 kvmattr
.addr
= (uintptr_t)val
;
2143 err
= kvm_device_ioctl(fd
,
2144 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2147 error_report("KVM_%s_DEVICE_ATTR failed: %s",
2148 write
? "SET" : "GET", strerror(-err
));
2149 error_printf("Group %d attr 0x%016" PRIx64
"\n", group
, attr
);
2154 /* Return 1 on success, 0 on failure */
2155 int kvm_has_sync_mmu(void)
2157 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2160 int kvm_has_vcpu_events(void)
2162 return kvm_state
->vcpu_events
;
2165 int kvm_has_robust_singlestep(void)
2167 return kvm_state
->robust_singlestep
;
2170 int kvm_has_debugregs(void)
2172 return kvm_state
->debugregs
;
2175 int kvm_has_many_ioeventfds(void)
2177 if (!kvm_enabled()) {
2180 return kvm_state
->many_ioeventfds
;
2183 int kvm_has_gsi_routing(void)
2185 #ifdef KVM_CAP_IRQ_ROUTING
2186 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2192 int kvm_has_intx_set_mask(void)
2194 return kvm_state
->intx_set_mask
;
2197 #ifdef KVM_CAP_SET_GUEST_DEBUG
2198 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2201 struct kvm_sw_breakpoint
*bp
;
2203 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2211 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2213 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2216 struct kvm_set_guest_debug_data
{
2217 struct kvm_guest_debug dbg
;
2222 static void kvm_invoke_set_guest_debug(CPUState
*unused_cpu
, void *data
)
2224 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2226 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2230 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2232 struct kvm_set_guest_debug_data data
;
2234 data
.dbg
.control
= reinject_trap
;
2236 if (cpu
->singlestep_enabled
) {
2237 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2239 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2241 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2245 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2246 target_ulong len
, int type
)
2248 struct kvm_sw_breakpoint
*bp
;
2251 if (type
== GDB_BREAKPOINT_SW
) {
2252 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2258 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2261 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2267 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2269 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2276 err
= kvm_update_guest_debug(cpu
, 0);
2284 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2285 target_ulong len
, int type
)
2287 struct kvm_sw_breakpoint
*bp
;
2290 if (type
== GDB_BREAKPOINT_SW
) {
2291 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2296 if (bp
->use_count
> 1) {
2301 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2306 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2309 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2316 err
= kvm_update_guest_debug(cpu
, 0);
2324 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2326 struct kvm_sw_breakpoint
*bp
, *next
;
2327 KVMState
*s
= cpu
->kvm_state
;
2330 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2331 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2332 /* Try harder to find a CPU that currently sees the breakpoint. */
2333 CPU_FOREACH(tmpcpu
) {
2334 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2339 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2342 kvm_arch_remove_all_hw_breakpoints();
2345 kvm_update_guest_debug(cpu
, 0);
2349 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2351 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2356 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2357 target_ulong len
, int type
)
2362 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2363 target_ulong len
, int type
)
2368 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2371 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2373 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2375 KVMState
*s
= kvm_state
;
2376 struct kvm_signal_mask
*sigmask
;
2380 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2383 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2385 sigmask
->len
= s
->sigmask_len
;
2386 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2387 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2392 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2394 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2397 int kvm_on_sigbus(int code
, void *addr
)
2399 return kvm_arch_on_sigbus(code
, addr
);
2402 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2405 struct kvm_create_device create_dev
;
2407 create_dev
.type
= type
;
2409 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2411 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2415 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2420 return test
? 0 : create_dev
.fd
;
2423 bool kvm_device_supported(int vmfd
, uint64_t type
)
2425 struct kvm_create_device create_dev
= {
2428 .flags
= KVM_CREATE_DEVICE_TEST
,
2431 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
2435 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
2438 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2440 struct kvm_one_reg reg
;
2444 reg
.addr
= (uintptr_t) source
;
2445 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2447 trace_kvm_failed_reg_set(id
, strerror(-r
));
2452 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2454 struct kvm_one_reg reg
;
2458 reg
.addr
= (uintptr_t) target
;
2459 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2461 trace_kvm_failed_reg_get(id
, strerror(-r
));
2466 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2468 AccelClass
*ac
= ACCEL_CLASS(oc
);
2470 ac
->init_machine
= kvm_init
;
2471 ac
->allowed
= &kvm_allowed
;
2474 static const TypeInfo kvm_accel_type
= {
2475 .name
= TYPE_KVM_ACCEL
,
2476 .parent
= TYPE_ACCEL
,
2477 .class_init
= kvm_accel_class_init
,
2478 .instance_size
= sizeof(KVMState
),
2481 static void kvm_type_init(void)
2483 type_register_static(&kvm_accel_type
);
2486 type_init(kvm_type_init
);