2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
39 //#define PPC_DEBUG_IRQ
40 //#define PPC_DEBUG_TB
43 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
45 # define LOG_IRQ(...) do { } while (0)
50 # define LOG_TB(...) qemu_log(__VA_ARGS__)
52 # define LOG_TB(...) do { } while (0)
55 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
56 static void cpu_ppc_tb_start (CPUPPCState
*env
);
58 void ppc_set_irq(PowerPCCPU
*cpu
, int n_IRQ
, int level
)
60 CPUState
*cs
= CPU(cpu
);
61 CPUPPCState
*env
= &cpu
->env
;
62 unsigned int old_pending
;
65 /* We may already have the BQL if coming from the reset path */
66 if (!qemu_mutex_iothread_locked()) {
68 qemu_mutex_lock_iothread();
71 old_pending
= env
->pending_interrupts
;
74 env
->pending_interrupts
|= 1 << n_IRQ
;
75 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
77 env
->pending_interrupts
&= ~(1 << n_IRQ
);
78 if (env
->pending_interrupts
== 0) {
79 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
83 if (old_pending
!= env
->pending_interrupts
) {
85 kvmppc_set_interrupt(cpu
, n_IRQ
, level
);
90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91 "req %08x\n", __func__
, env
, n_IRQ
, level
,
92 env
->pending_interrupts
, CPU(cpu
)->interrupt_request
);
95 qemu_mutex_unlock_iothread();
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
102 PowerPCCPU
*cpu
= opaque
;
103 CPUPPCState
*env
= &cpu
->env
;
106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
108 cur_level
= (env
->irq_input_state
>> pin
) & 1;
109 /* Don't generate spurious events */
110 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
111 CPUState
*cs
= CPU(cpu
);
114 case PPC6xx_INPUT_TBEN
:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: %s the time base\n",
117 __func__
, level
? "start" : "stop");
119 cpu_ppc_tb_start(env
);
121 cpu_ppc_tb_stop(env
);
123 case PPC6xx_INPUT_INT
:
124 /* Level sensitive - active high */
125 LOG_IRQ("%s: set the external IRQ state to %d\n",
127 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
129 case PPC6xx_INPUT_SMI
:
130 /* Level sensitive - active high */
131 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
133 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
135 case PPC6xx_INPUT_MCP
:
136 /* Negative edge sensitive */
137 /* XXX: TODO: actual reaction may depends on HID0 status
138 * 603/604/740/750: check HID0[EMCP]
140 if (cur_level
== 1 && level
== 0) {
141 LOG_IRQ("%s: raise machine check state\n",
143 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
146 case PPC6xx_INPUT_CKSTP_IN
:
147 /* Level sensitive - active low */
148 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149 /* XXX: Note that the only way to restart the CPU is to reset it */
151 LOG_IRQ("%s: stop the CPU\n", __func__
);
155 case PPC6xx_INPUT_HRESET
:
156 /* Level sensitive - active low */
158 LOG_IRQ("%s: reset the CPU\n", __func__
);
159 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
162 case PPC6xx_INPUT_SRESET
:
163 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
165 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
168 /* Unknown pin - do nothing */
169 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
173 env
->irq_input_state
|= 1 << pin
;
175 env
->irq_input_state
&= ~(1 << pin
);
179 void ppc6xx_irq_init(PowerPCCPU
*cpu
)
181 CPUPPCState
*env
= &cpu
->env
;
183 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, cpu
,
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
191 PowerPCCPU
*cpu
= opaque
;
192 CPUPPCState
*env
= &cpu
->env
;
195 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
197 cur_level
= (env
->irq_input_state
>> pin
) & 1;
198 /* Don't generate spurious events */
199 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
200 CPUState
*cs
= CPU(cpu
);
203 case PPC970_INPUT_INT
:
204 /* Level sensitive - active high */
205 LOG_IRQ("%s: set the external IRQ state to %d\n",
207 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
209 case PPC970_INPUT_THINT
:
210 /* Level sensitive - active high */
211 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
213 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
215 case PPC970_INPUT_MCP
:
216 /* Negative edge sensitive */
217 /* XXX: TODO: actual reaction may depends on HID0 status
218 * 603/604/740/750: check HID0[EMCP]
220 if (cur_level
== 1 && level
== 0) {
221 LOG_IRQ("%s: raise machine check state\n",
223 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
226 case PPC970_INPUT_CKSTP
:
227 /* Level sensitive - active low */
228 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
230 LOG_IRQ("%s: stop the CPU\n", __func__
);
233 LOG_IRQ("%s: restart the CPU\n", __func__
);
238 case PPC970_INPUT_HRESET
:
239 /* Level sensitive - active low */
241 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
244 case PPC970_INPUT_SRESET
:
245 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
247 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
249 case PPC970_INPUT_TBEN
:
250 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
255 /* Unknown pin - do nothing */
256 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
260 env
->irq_input_state
|= 1 << pin
;
262 env
->irq_input_state
&= ~(1 << pin
);
266 void ppc970_irq_init(PowerPCCPU
*cpu
)
268 CPUPPCState
*env
= &cpu
->env
;
270 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, cpu
,
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque
, int pin
, int level
)
277 PowerPCCPU
*cpu
= opaque
;
278 CPUPPCState
*env
= &cpu
->env
;
280 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
284 case POWER7_INPUT_INT
:
285 /* Level sensitive - active high */
286 LOG_IRQ("%s: set the external IRQ state to %d\n",
288 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
291 /* Unknown pin - do nothing */
292 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
296 env
->irq_input_state
|= 1 << pin
;
298 env
->irq_input_state
&= ~(1 << pin
);
302 void ppcPOWER7_irq_init(PowerPCCPU
*cpu
)
304 CPUPPCState
*env
= &cpu
->env
;
306 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, cpu
,
309 #endif /* defined(TARGET_PPC64) */
311 void ppc40x_core_reset(PowerPCCPU
*cpu
)
313 CPUPPCState
*env
= &cpu
->env
;
316 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC core\n");
317 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
318 dbsr
= env
->spr
[SPR_40x_DBSR
];
321 env
->spr
[SPR_40x_DBSR
] = dbsr
;
324 void ppc40x_chip_reset(PowerPCCPU
*cpu
)
326 CPUPPCState
*env
= &cpu
->env
;
329 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC chip\n");
330 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
331 /* XXX: TODO reset all internal peripherals */
332 dbsr
= env
->spr
[SPR_40x_DBSR
];
335 env
->spr
[SPR_40x_DBSR
] = dbsr
;
338 void ppc40x_system_reset(PowerPCCPU
*cpu
)
340 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC system\n");
341 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
344 void store_40x_dbcr0(CPUPPCState
*env
, uint32_t val
)
346 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
348 switch ((val
>> 28) & 0x3) {
354 ppc40x_core_reset(cpu
);
358 ppc40x_chip_reset(cpu
);
362 ppc40x_system_reset(cpu
);
367 /* PowerPC 40x internal IRQ controller */
368 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
370 PowerPCCPU
*cpu
= opaque
;
371 CPUPPCState
*env
= &cpu
->env
;
374 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
376 cur_level
= (env
->irq_input_state
>> pin
) & 1;
377 /* Don't generate spurious events */
378 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
379 CPUState
*cs
= CPU(cpu
);
382 case PPC40x_INPUT_RESET_SYS
:
384 LOG_IRQ("%s: reset the PowerPC system\n",
386 ppc40x_system_reset(cpu
);
389 case PPC40x_INPUT_RESET_CHIP
:
391 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
392 ppc40x_chip_reset(cpu
);
395 case PPC40x_INPUT_RESET_CORE
:
396 /* XXX: TODO: update DBSR[MRR] */
398 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
399 ppc40x_core_reset(cpu
);
402 case PPC40x_INPUT_CINT
:
403 /* Level sensitive - active high */
404 LOG_IRQ("%s: set the critical IRQ state to %d\n",
406 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
408 case PPC40x_INPUT_INT
:
409 /* Level sensitive - active high */
410 LOG_IRQ("%s: set the external IRQ state to %d\n",
412 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
414 case PPC40x_INPUT_HALT
:
415 /* Level sensitive - active low */
417 LOG_IRQ("%s: stop the CPU\n", __func__
);
420 LOG_IRQ("%s: restart the CPU\n", __func__
);
425 case PPC40x_INPUT_DEBUG
:
426 /* Level sensitive - active high */
427 LOG_IRQ("%s: set the debug pin state to %d\n",
429 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
432 /* Unknown pin - do nothing */
433 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
437 env
->irq_input_state
|= 1 << pin
;
439 env
->irq_input_state
&= ~(1 << pin
);
443 void ppc40x_irq_init(PowerPCCPU
*cpu
)
445 CPUPPCState
*env
= &cpu
->env
;
447 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
448 cpu
, PPC40x_INPUT_NB
);
451 /* PowerPC E500 internal IRQ controller */
452 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
454 PowerPCCPU
*cpu
= opaque
;
455 CPUPPCState
*env
= &cpu
->env
;
458 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
460 cur_level
= (env
->irq_input_state
>> pin
) & 1;
461 /* Don't generate spurious events */
462 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
464 case PPCE500_INPUT_MCK
:
466 LOG_IRQ("%s: reset the PowerPC system\n",
468 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
471 case PPCE500_INPUT_RESET_CORE
:
473 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
474 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
477 case PPCE500_INPUT_CINT
:
478 /* Level sensitive - active high */
479 LOG_IRQ("%s: set the critical IRQ state to %d\n",
481 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
483 case PPCE500_INPUT_INT
:
484 /* Level sensitive - active high */
485 LOG_IRQ("%s: set the core IRQ state to %d\n",
487 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
489 case PPCE500_INPUT_DEBUG
:
490 /* Level sensitive - active high */
491 LOG_IRQ("%s: set the debug pin state to %d\n",
493 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
496 /* Unknown pin - do nothing */
497 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
501 env
->irq_input_state
|= 1 << pin
;
503 env
->irq_input_state
&= ~(1 << pin
);
507 void ppce500_irq_init(PowerPCCPU
*cpu
)
509 CPUPPCState
*env
= &cpu
->env
;
511 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
512 cpu
, PPCE500_INPUT_NB
);
515 /* Enable or Disable the E500 EPR capability */
516 void ppce500_set_mpic_proxy(bool enabled
)
521 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
523 cpu
->env
.mpic_proxy
= enabled
;
525 kvmppc_set_mpic_proxy(cpu
, enabled
);
530 /*****************************************************************************/
531 /* PowerPC time base and decrementer emulation */
533 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
535 /* TB time in tb periods */
536 return muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
) + tb_offset
;
539 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
541 ppc_tb_t
*tb_env
= env
->tb_env
;
545 return env
->spr
[SPR_TBL
];
548 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
549 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
554 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
556 ppc_tb_t
*tb_env
= env
->tb_env
;
559 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
560 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
565 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
568 return env
->spr
[SPR_TBU
];
571 return _cpu_ppc_load_tbu(env
);
574 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
575 int64_t *tb_offsetp
, uint64_t value
)
577 *tb_offsetp
= value
-
578 muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
);
580 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
581 __func__
, value
, *tb_offsetp
);
584 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
586 ppc_tb_t
*tb_env
= env
->tb_env
;
589 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
590 tb
&= 0xFFFFFFFF00000000ULL
;
591 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
592 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
595 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
597 ppc_tb_t
*tb_env
= env
->tb_env
;
600 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
601 tb
&= 0x00000000FFFFFFFFULL
;
602 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
603 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
606 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
608 _cpu_ppc_store_tbu(env
, value
);
611 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
613 ppc_tb_t
*tb_env
= env
->tb_env
;
616 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
617 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
622 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
624 ppc_tb_t
*tb_env
= env
->tb_env
;
627 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
628 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
633 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
635 ppc_tb_t
*tb_env
= env
->tb_env
;
638 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
639 tb
&= 0xFFFFFFFF00000000ULL
;
640 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
641 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
644 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
646 ppc_tb_t
*tb_env
= env
->tb_env
;
649 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
650 tb
&= 0x00000000FFFFFFFFULL
;
651 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
652 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
655 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
657 ppc_tb_t
*tb_env
= env
->tb_env
;
658 uint64_t tb
, atb
, vmclk
;
660 /* If the time base is already frozen, do nothing */
661 if (tb_env
->tb_freq
!= 0) {
662 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
663 /* Get the time base */
664 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
665 /* Get the alternate time base */
666 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
667 /* Store the time base value (ie compute the current offset) */
668 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
669 /* Store the alternate time base value (compute the current offset) */
670 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
671 /* Set the time base frequency to zero */
673 /* Now, the time bases are frozen to tb_offset / atb_offset value */
677 static void cpu_ppc_tb_start (CPUPPCState
*env
)
679 ppc_tb_t
*tb_env
= env
->tb_env
;
680 uint64_t tb
, atb
, vmclk
;
682 /* If the time base is not frozen, do nothing */
683 if (tb_env
->tb_freq
== 0) {
684 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
685 /* Get the time base from tb_offset */
686 tb
= tb_env
->tb_offset
;
687 /* Get the alternate time base from atb_offset */
688 atb
= tb_env
->atb_offset
;
689 /* Restore the tb frequency from the decrementer frequency */
690 tb_env
->tb_freq
= tb_env
->decr_freq
;
691 /* Store the time base value */
692 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
693 /* Store the alternate time base value */
694 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
698 bool ppc_decr_clear_on_delivery(CPUPPCState
*env
)
700 ppc_tb_t
*tb_env
= env
->tb_env
;
701 int flags
= PPC_DECR_UNDERFLOW_TRIGGERED
| PPC_DECR_UNDERFLOW_LEVEL
;
702 return ((tb_env
->flags
& flags
) == PPC_DECR_UNDERFLOW_TRIGGERED
);
705 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
707 ppc_tb_t
*tb_env
= env
->tb_env
;
711 diff
= next
- qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
713 decr
= muldiv64(diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
714 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
717 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
719 LOG_TB("%s: %08" PRIx32
"\n", __func__
, decr
);
724 uint32_t cpu_ppc_load_decr (CPUPPCState
*env
)
726 ppc_tb_t
*tb_env
= env
->tb_env
;
729 return env
->spr
[SPR_DECR
];
732 return _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
735 uint32_t cpu_ppc_load_hdecr (CPUPPCState
*env
)
737 ppc_tb_t
*tb_env
= env
->tb_env
;
739 return _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
742 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
744 ppc_tb_t
*tb_env
= env
->tb_env
;
747 diff
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) - tb_env
->purr_start
;
749 return tb_env
->purr_load
+
750 muldiv64(diff
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
);
753 /* When decrementer expires,
754 * all we need to do is generate or queue a CPU exception
756 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
759 LOG_TB("raise decrementer exception\n");
760 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
763 static inline void cpu_ppc_decr_lower(PowerPCCPU
*cpu
)
765 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
768 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
770 CPUPPCState
*env
= &cpu
->env
;
773 LOG_TB("raise hv decrementer exception\n");
775 /* The architecture specifies that we don't deliver HDEC
776 * interrupts in a PM state. Not only they don't cause a
777 * wakeup but they also get effectively discarded.
779 if (!env
->in_pm_state
) {
780 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
784 static inline void cpu_ppc_hdecr_lower(PowerPCCPU
*cpu
)
786 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
789 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
791 void (*raise_excp
)(void *),
792 void (*lower_excp
)(PowerPCCPU
*),
793 uint32_t decr
, uint32_t value
)
795 CPUPPCState
*env
= &cpu
->env
;
796 ppc_tb_t
*tb_env
= env
->tb_env
;
799 LOG_TB("%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
803 /* KVM handles decrementer exceptions, we don't need our own timer */
808 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
811 * If we get a really small DEC value, we can assume that by the time we
812 * handled it we should inject an interrupt already.
814 * On MSB level based DEC implementations the MSB always means the interrupt
815 * is pending, so raise it on those.
817 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
818 * an edge interrupt, so raise it here too.
821 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
) && (value
& 0x80000000)) ||
822 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
) && (value
& 0x80000000)
823 && !(decr
& 0x80000000))) {
828 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
829 if (!(value
& 0x80000000) && (tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
)) {
833 /* Calculate the next timer event */
834 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
835 next
= now
+ muldiv64(value
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
839 timer_mod(timer
, next
);
842 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint32_t decr
,
845 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
847 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
848 tb_env
->decr_timer
->cb
, &cpu_ppc_decr_lower
, decr
,
852 void cpu_ppc_store_decr (CPUPPCState
*env
, uint32_t value
)
854 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
856 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
);
859 static void cpu_ppc_decr_cb(void *opaque
)
861 PowerPCCPU
*cpu
= opaque
;
863 cpu_ppc_decr_excp(cpu
);
866 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, uint32_t hdecr
,
869 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
871 if (tb_env
->hdecr_timer
!= NULL
) {
872 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
873 tb_env
->hdecr_timer
->cb
, &cpu_ppc_hdecr_lower
,
878 void cpu_ppc_store_hdecr (CPUPPCState
*env
, uint32_t value
)
880 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
882 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
);
885 static void cpu_ppc_hdecr_cb(void *opaque
)
887 PowerPCCPU
*cpu
= opaque
;
889 cpu_ppc_hdecr_excp(cpu
);
892 static void cpu_ppc_store_purr(PowerPCCPU
*cpu
, uint64_t value
)
894 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
896 tb_env
->purr_load
= value
;
897 tb_env
->purr_start
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
900 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
902 CPUPPCState
*env
= opaque
;
903 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
904 ppc_tb_t
*tb_env
= env
->tb_env
;
906 tb_env
->tb_freq
= freq
;
907 tb_env
->decr_freq
= freq
;
908 /* There is a bug in Linux 2.4 kernels:
909 * if a decrementer exception is pending when it enables msr_ee at startup,
910 * it's not ready to handle it...
912 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF);
913 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF);
914 cpu_ppc_store_purr(cpu
, 0x0000000000000000ULL
);
917 static void timebase_save(PPCTimebase
*tb
)
919 uint64_t ticks
= cpu_get_host_ticks();
920 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
922 if (!first_ppc_cpu
->env
.tb_env
) {
923 error_report("No timebase object");
927 /* not used anymore, we keep it for compatibility */
928 tb
->time_of_the_day_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
930 * tb_offset is only expected to be changed by QEMU so
931 * there is no need to update it from KVM here
933 tb
->guest_timebase
= ticks
+ first_ppc_cpu
->env
.tb_env
->tb_offset
;
936 static void timebase_load(PPCTimebase
*tb
)
939 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
940 int64_t tb_off_adj
, tb_off
;
943 if (!first_ppc_cpu
->env
.tb_env
) {
944 error_report("No timebase object");
948 freq
= first_ppc_cpu
->env
.tb_env
->tb_freq
;
950 tb_off_adj
= tb
->guest_timebase
- cpu_get_host_ticks();
952 tb_off
= first_ppc_cpu
->env
.tb_env
->tb_offset
;
953 trace_ppc_tb_adjust(tb_off
, tb_off_adj
, tb_off_adj
- tb_off
,
954 (tb_off_adj
- tb_off
) / freq
);
956 /* Set new offset to all CPUs */
958 PowerPCCPU
*pcpu
= POWERPC_CPU(cpu
);
959 pcpu
->env
.tb_env
->tb_offset
= tb_off_adj
;
960 #if defined(CONFIG_KVM)
961 kvm_set_one_reg(cpu
, KVM_REG_PPC_TB_OFFSET
,
962 &pcpu
->env
.tb_env
->tb_offset
);
967 void cpu_ppc_clock_vm_state_change(void *opaque
, int running
,
970 PPCTimebase
*tb
= opaque
;
980 * When migrating, read the clock just before migration,
981 * so that the guest clock counts during the events
988 * This reduces clock difference on migration from 5s
989 * to 0.1s (when max_downtime == 5s), because sending the
990 * final pages of memory (which happens between vm_stop()
991 * and pre_save()) takes max_downtime.
993 static int timebase_pre_save(void *opaque
)
995 PPCTimebase
*tb
= opaque
;
1002 const VMStateDescription vmstate_ppc_timebase
= {
1005 .minimum_version_id
= 1,
1006 .minimum_version_id_old
= 1,
1007 .pre_save
= timebase_pre_save
,
1008 .fields
= (VMStateField
[]) {
1009 VMSTATE_UINT64(guest_timebase
, PPCTimebase
),
1010 VMSTATE_INT64(time_of_the_day_ns
, PPCTimebase
),
1011 VMSTATE_END_OF_LIST()
1015 /* Set up (once) timebase frequency (in Hz) */
1016 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
1018 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
1021 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1022 env
->tb_env
= tb_env
;
1023 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1024 if (env
->insns_flags
& PPC_SEGMENT_64B
) {
1025 /* All Book3S 64bit CPUs implement level based DEC logic */
1026 tb_env
->flags
|= PPC_DECR_UNDERFLOW_LEVEL
;
1028 /* Create new timer */
1029 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_decr_cb
, cpu
);
1030 if (env
->has_hv_mode
) {
1031 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_hdecr_cb
,
1034 tb_env
->hdecr_timer
= NULL
;
1036 cpu_ppc_set_tb_clk(env
, freq
);
1038 return &cpu_ppc_set_tb_clk
;
1041 /* Specific helpers for POWER & PowerPC 601 RTC */
1042 void cpu_ppc601_store_rtcu (CPUPPCState
*env
, uint32_t value
)
1044 _cpu_ppc_store_tbu(env
, value
);
1047 uint32_t cpu_ppc601_load_rtcu (CPUPPCState
*env
)
1049 return _cpu_ppc_load_tbu(env
);
1052 void cpu_ppc601_store_rtcl (CPUPPCState
*env
, uint32_t value
)
1054 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
1057 uint32_t cpu_ppc601_load_rtcl (CPUPPCState
*env
)
1059 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1062 /*****************************************************************************/
1063 /* PowerPC 40x timers */
1065 /* PIT, FIT & WDT */
1066 typedef struct ppc40x_timer_t ppc40x_timer_t
;
1067 struct ppc40x_timer_t
{
1068 uint64_t pit_reload
; /* PIT auto-reload value */
1069 uint64_t fit_next
; /* Tick for next FIT interrupt */
1070 QEMUTimer
*fit_timer
;
1071 uint64_t wdt_next
; /* Tick for next WDT interrupt */
1072 QEMUTimer
*wdt_timer
;
1074 /* 405 have the PIT, 440 have a DECR. */
1075 unsigned int decr_excp
;
1078 /* Fixed interval timer */
1079 static void cpu_4xx_fit_cb (void *opaque
)
1084 ppc40x_timer_t
*ppc40x_timer
;
1088 cpu
= ppc_env_get_cpu(env
);
1089 tb_env
= env
->tb_env
;
1090 ppc40x_timer
= tb_env
->opaque
;
1091 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1092 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
1106 /* Cannot occur, but makes gcc happy */
1109 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->tb_freq
);
1112 timer_mod(ppc40x_timer
->fit_timer
, next
);
1113 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
1114 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
1115 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
1117 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1118 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
1119 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1122 /* Programmable interval timer */
1123 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
1125 ppc40x_timer_t
*ppc40x_timer
;
1128 ppc40x_timer
= tb_env
->opaque
;
1129 if (ppc40x_timer
->pit_reload
<= 1 ||
1130 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
1131 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
1133 LOG_TB("%s: stop PIT\n", __func__
);
1134 timer_del(tb_env
->decr_timer
);
1136 LOG_TB("%s: start PIT %016" PRIx64
"\n",
1137 __func__
, ppc40x_timer
->pit_reload
);
1138 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1139 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
1140 NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1142 next
+= tb_env
->decr_next
- now
;
1145 timer_mod(tb_env
->decr_timer
, next
);
1146 tb_env
->decr_next
= next
;
1150 static void cpu_4xx_pit_cb (void *opaque
)
1155 ppc40x_timer_t
*ppc40x_timer
;
1158 cpu
= ppc_env_get_cpu(env
);
1159 tb_env
= env
->tb_env
;
1160 ppc40x_timer
= tb_env
->opaque
;
1161 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
1162 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
1163 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
1165 start_stop_pit(env
, tb_env
, 1);
1166 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
1167 "%016" PRIx64
"\n", __func__
,
1168 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
1169 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
1170 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
1171 ppc40x_timer
->pit_reload
);
1174 /* Watchdog timer */
1175 static void cpu_4xx_wdt_cb (void *opaque
)
1180 ppc40x_timer_t
*ppc40x_timer
;
1184 cpu
= ppc_env_get_cpu(env
);
1185 tb_env
= env
->tb_env
;
1186 ppc40x_timer
= tb_env
->opaque
;
1187 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1188 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
1202 /* Cannot occur, but makes gcc happy */
1205 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1208 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1209 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1210 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1213 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1214 ppc40x_timer
->wdt_next
= next
;
1215 env
->spr
[SPR_40x_TSR
] |= 1U << 31;
1218 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1219 ppc40x_timer
->wdt_next
= next
;
1220 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1221 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1222 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1226 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1227 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1228 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1232 case 0x1: /* Core reset */
1233 ppc40x_core_reset(cpu
);
1235 case 0x2: /* Chip reset */
1236 ppc40x_chip_reset(cpu
);
1238 case 0x3: /* System reset */
1239 ppc40x_system_reset(cpu
);
1245 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1248 ppc40x_timer_t
*ppc40x_timer
;
1250 tb_env
= env
->tb_env
;
1251 ppc40x_timer
= tb_env
->opaque
;
1252 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
1253 ppc40x_timer
->pit_reload
= val
;
1254 start_stop_pit(env
, tb_env
, 0);
1257 target_ulong
load_40x_pit (CPUPPCState
*env
)
1259 return cpu_ppc_load_decr(env
);
1262 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1264 CPUPPCState
*env
= opaque
;
1265 ppc_tb_t
*tb_env
= env
->tb_env
;
1267 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
1269 tb_env
->tb_freq
= freq
;
1270 tb_env
->decr_freq
= freq
;
1271 /* XXX: we should also update all timers */
1274 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1275 unsigned int decr_excp
)
1278 ppc40x_timer_t
*ppc40x_timer
;
1280 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1281 env
->tb_env
= tb_env
;
1282 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1283 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1284 tb_env
->tb_freq
= freq
;
1285 tb_env
->decr_freq
= freq
;
1286 tb_env
->opaque
= ppc40x_timer
;
1287 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1288 if (ppc40x_timer
!= NULL
) {
1289 /* We use decr timer for PIT */
1290 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, env
);
1291 ppc40x_timer
->fit_timer
=
1292 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, env
);
1293 ppc40x_timer
->wdt_timer
=
1294 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, env
);
1295 ppc40x_timer
->decr_excp
= decr_excp
;
1298 return &ppc_40x_set_tb_clk
;
1301 /*****************************************************************************/
1302 /* Embedded PowerPC Device Control Registers */
1303 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1305 dcr_read_cb dcr_read
;
1306 dcr_write_cb dcr_write
;
1310 /* XXX: on 460, DCR addresses are 32 bits wide,
1311 * using DCRIPR to get the 22 upper bits of the DCR address
1313 #define DCRN_NB 1024
1315 ppc_dcrn_t dcrn
[DCRN_NB
];
1316 int (*read_error
)(int dcrn
);
1317 int (*write_error
)(int dcrn
);
1320 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1324 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1326 dcr
= &dcr_env
->dcrn
[dcrn
];
1327 if (dcr
->dcr_read
== NULL
)
1329 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1334 if (dcr_env
->read_error
!= NULL
)
1335 return (*dcr_env
->read_error
)(dcrn
);
1340 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1344 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1346 dcr
= &dcr_env
->dcrn
[dcrn
];
1347 if (dcr
->dcr_write
== NULL
)
1349 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1354 if (dcr_env
->write_error
!= NULL
)
1355 return (*dcr_env
->write_error
)(dcrn
);
1360 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1361 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1366 dcr_env
= env
->dcr_env
;
1367 if (dcr_env
== NULL
)
1369 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1371 dcr
= &dcr_env
->dcrn
[dcrn
];
1372 if (dcr
->opaque
!= NULL
||
1373 dcr
->dcr_read
!= NULL
||
1374 dcr
->dcr_write
!= NULL
)
1376 dcr
->opaque
= opaque
;
1377 dcr
->dcr_read
= dcr_read
;
1378 dcr
->dcr_write
= dcr_write
;
1383 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1384 int (*write_error
)(int dcrn
))
1388 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1389 dcr_env
->read_error
= read_error
;
1390 dcr_env
->write_error
= write_error
;
1391 env
->dcr_env
= dcr_env
;
1396 /*****************************************************************************/
1398 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1410 printf("Set loglevel to %04" PRIx32
"\n", val
);
1411 qemu_set_log(val
| 0x100);