s/cpu_get_real_ticks/cpu_get_host_ticks/
[qemu/ar7.git] / hw / dma / omap_dma.c
blobdb687309907fd6061d06cbd5cca52e2e67de8fe3
1 /*
2 * TI OMAP DMA gigacell.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #include "qemu/timer.h"
22 #include "hw/arm/omap.h"
23 #include "hw/irq.h"
24 #include "hw/arm/soc_dma.h"
26 struct omap_dma_channel_s {
27 /* transfer data */
28 int burst[2];
29 int pack[2];
30 int endian[2];
31 int endian_lock[2];
32 int translate[2];
33 enum omap_dma_port port[2];
34 hwaddr addr[2];
35 omap_dma_addressing_t mode[2];
36 uint32_t elements;
37 uint16_t frames;
38 int32_t frame_index[2];
39 int16_t element_index[2];
40 int data_type;
42 /* transfer type */
43 int transparent_copy;
44 int constant_fill;
45 uint32_t color;
46 int prefetch;
48 /* auto init and linked channel data */
49 int end_prog;
50 int repeat;
51 int auto_init;
52 int link_enabled;
53 int link_next_ch;
55 /* interruption data */
56 int interrupts;
57 int status;
58 int cstatus;
60 /* state data */
61 int active;
62 int enable;
63 int sync;
64 int src_sync;
65 int pending_request;
66 int waiting_end_prog;
67 uint16_t cpc;
68 int set_update;
70 /* sync type */
71 int fs;
72 int bs;
74 /* compatibility */
75 int omap_3_1_compatible_disable;
77 qemu_irq irq;
78 struct omap_dma_channel_s *sibling;
80 struct omap_dma_reg_set_s {
81 hwaddr src, dest;
82 int frame;
83 int element;
84 int pck_element;
85 int frame_delta[2];
86 int elem_delta[2];
87 int frames;
88 int elements;
89 int pck_elements;
90 } active_set;
92 struct soc_dma_ch_s *dma;
94 /* unused parameters */
95 int write_mode;
96 int priority;
97 int interleave_disabled;
98 int type;
99 int suspend;
100 int buf_disable;
103 struct omap_dma_s {
104 struct soc_dma_s *dma;
105 MemoryRegion iomem;
107 struct omap_mpu_state_s *mpu;
108 omap_clk clk;
109 qemu_irq irq[4];
110 void (*intr_update)(struct omap_dma_s *s);
111 enum omap_dma_model model;
112 int omap_3_1_mapping_disabled;
114 uint32_t gcr;
115 uint32_t ocp;
116 uint32_t caps[5];
117 uint32_t irqen[4];
118 uint32_t irqstat[4];
120 int chans;
121 struct omap_dma_channel_s ch[32];
122 struct omap_dma_lcd_channel_s lcd_ch;
125 /* Interrupts */
126 #define TIMEOUT_INTR (1 << 0)
127 #define EVENT_DROP_INTR (1 << 1)
128 #define HALF_FRAME_INTR (1 << 2)
129 #define END_FRAME_INTR (1 << 3)
130 #define LAST_FRAME_INTR (1 << 4)
131 #define END_BLOCK_INTR (1 << 5)
132 #define SYNC (1 << 6)
133 #define END_PKT_INTR (1 << 7)
134 #define TRANS_ERR_INTR (1 << 8)
135 #define MISALIGN_INTR (1 << 11)
137 static inline void omap_dma_interrupts_update(struct omap_dma_s *s)
139 s->intr_update(s);
142 static void omap_dma_channel_load(struct omap_dma_channel_s *ch)
144 struct omap_dma_reg_set_s *a = &ch->active_set;
145 int i, normal;
146 int omap_3_1 = !ch->omap_3_1_compatible_disable;
149 * TODO: verify address ranges and alignment
150 * TODO: port endianness
153 a->src = ch->addr[0];
154 a->dest = ch->addr[1];
155 a->frames = ch->frames;
156 a->elements = ch->elements;
157 a->pck_elements = ch->frame_index[!ch->src_sync];
158 a->frame = 0;
159 a->element = 0;
160 a->pck_element = 0;
162 if (unlikely(!ch->elements || !ch->frames)) {
163 printf("%s: bad DMA request\n", __FUNCTION__);
164 return;
167 for (i = 0; i < 2; i ++)
168 switch (ch->mode[i]) {
169 case constant:
170 a->elem_delta[i] = 0;
171 a->frame_delta[i] = 0;
172 break;
173 case post_incremented:
174 a->elem_delta[i] = ch->data_type;
175 a->frame_delta[i] = 0;
176 break;
177 case single_index:
178 a->elem_delta[i] = ch->data_type +
179 ch->element_index[omap_3_1 ? 0 : i] - 1;
180 a->frame_delta[i] = 0;
181 break;
182 case double_index:
183 a->elem_delta[i] = ch->data_type +
184 ch->element_index[omap_3_1 ? 0 : i] - 1;
185 a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] -
186 ch->element_index[omap_3_1 ? 0 : i];
187 break;
188 default:
189 break;
192 normal = !ch->transparent_copy && !ch->constant_fill &&
193 /* FIFO is big-endian so either (ch->endian[n] == 1) OR
194 * (ch->endian_lock[n] == 1) mean no endianism conversion. */
195 (ch->endian[0] | ch->endian_lock[0]) ==
196 (ch->endian[1] | ch->endian_lock[1]);
197 for (i = 0; i < 2; i ++) {
198 /* TODO: for a->frame_delta[i] > 0 still use the fast path, just
199 * limit min_elems in omap_dma_transfer_setup to the nearest frame
200 * end. */
201 if (!a->elem_delta[i] && normal &&
202 (a->frames == 1 || !a->frame_delta[i]))
203 ch->dma->type[i] = soc_dma_access_const;
204 else if (a->elem_delta[i] == ch->data_type && normal &&
205 (a->frames == 1 || !a->frame_delta[i]))
206 ch->dma->type[i] = soc_dma_access_linear;
207 else
208 ch->dma->type[i] = soc_dma_access_other;
210 ch->dma->vaddr[i] = ch->addr[i];
212 soc_dma_ch_update(ch->dma);
215 static void omap_dma_activate_channel(struct omap_dma_s *s,
216 struct omap_dma_channel_s *ch)
218 if (!ch->active) {
219 if (ch->set_update) {
220 /* It's not clear when the active set is supposed to be
221 * loaded from registers. We're already loading it when the
222 * channel is enabled, and for some guests this is not enough
223 * but that may be also because of a race condition (no
224 * delays in qemu) in the guest code, which we're just
225 * working around here. */
226 omap_dma_channel_load(ch);
227 ch->set_update = 0;
230 ch->active = 1;
231 soc_dma_set_request(ch->dma, 1);
232 if (ch->sync)
233 ch->status |= SYNC;
237 static void omap_dma_deactivate_channel(struct omap_dma_s *s,
238 struct omap_dma_channel_s *ch)
240 /* Update cpc */
241 ch->cpc = ch->active_set.dest & 0xffff;
243 if (ch->pending_request && !ch->waiting_end_prog && ch->enable) {
244 /* Don't deactivate the channel */
245 ch->pending_request = 0;
246 return;
249 /* Don't deactive the channel if it is synchronized and the DMA request is
250 active */
251 if (ch->sync && ch->enable && (s->dma->drqbmp & (1ULL << ch->sync)))
252 return;
254 if (ch->active) {
255 ch->active = 0;
256 ch->status &= ~SYNC;
257 soc_dma_set_request(ch->dma, 0);
261 static void omap_dma_enable_channel(struct omap_dma_s *s,
262 struct omap_dma_channel_s *ch)
264 if (!ch->enable) {
265 ch->enable = 1;
266 ch->waiting_end_prog = 0;
267 omap_dma_channel_load(ch);
268 /* TODO: theoretically if ch->sync && ch->prefetch &&
269 * !s->dma->drqbmp[ch->sync], we should also activate and fetch
270 * from source and then stall until signalled. */
271 if ((!ch->sync) || (s->dma->drqbmp & (1ULL << ch->sync))) {
272 omap_dma_activate_channel(s, ch);
277 static void omap_dma_disable_channel(struct omap_dma_s *s,
278 struct omap_dma_channel_s *ch)
280 if (ch->enable) {
281 ch->enable = 0;
282 /* Discard any pending request */
283 ch->pending_request = 0;
284 omap_dma_deactivate_channel(s, ch);
288 static void omap_dma_channel_end_prog(struct omap_dma_s *s,
289 struct omap_dma_channel_s *ch)
291 if (ch->waiting_end_prog) {
292 ch->waiting_end_prog = 0;
293 if (!ch->sync || ch->pending_request) {
294 ch->pending_request = 0;
295 omap_dma_activate_channel(s, ch);
300 static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s)
302 struct omap_dma_channel_s *ch = s->ch;
304 /* First three interrupts are shared between two channels each. */
305 if (ch[0].status | ch[6].status)
306 qemu_irq_raise(ch[0].irq);
307 if (ch[1].status | ch[7].status)
308 qemu_irq_raise(ch[1].irq);
309 if (ch[2].status | ch[8].status)
310 qemu_irq_raise(ch[2].irq);
311 if (ch[3].status)
312 qemu_irq_raise(ch[3].irq);
313 if (ch[4].status)
314 qemu_irq_raise(ch[4].irq);
315 if (ch[5].status)
316 qemu_irq_raise(ch[5].irq);
319 static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s)
321 struct omap_dma_channel_s *ch = s->ch;
322 int i;
324 for (i = s->chans; i; ch ++, i --)
325 if (ch->status)
326 qemu_irq_raise(ch->irq);
329 static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s)
331 s->omap_3_1_mapping_disabled = 0;
332 s->chans = 9;
333 s->intr_update = omap_dma_interrupts_3_1_update;
336 static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s)
338 s->omap_3_1_mapping_disabled = 1;
339 s->chans = 16;
340 s->intr_update = omap_dma_interrupts_3_2_update;
343 static void omap_dma_process_request(struct omap_dma_s *s, int request)
345 int channel;
346 int drop_event = 0;
347 struct omap_dma_channel_s *ch = s->ch;
349 for (channel = 0; channel < s->chans; channel ++, ch ++) {
350 if (ch->enable && ch->sync == request) {
351 if (!ch->active)
352 omap_dma_activate_channel(s, ch);
353 else if (!ch->pending_request)
354 ch->pending_request = 1;
355 else {
356 /* Request collision */
357 /* Second request received while processing other request */
358 ch->status |= EVENT_DROP_INTR;
359 drop_event = 1;
364 if (drop_event)
365 omap_dma_interrupts_update(s);
368 static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma)
370 uint8_t value[4];
371 struct omap_dma_channel_s *ch = dma->opaque;
372 struct omap_dma_reg_set_s *a = &ch->active_set;
373 int bytes = dma->bytes;
374 #ifdef MULTI_REQ
375 uint16_t status = ch->status;
376 #endif
378 do {
379 /* Transfer a single element */
380 /* FIXME: check the endianness */
381 if (!ch->constant_fill)
382 cpu_physical_memory_read(a->src, value, ch->data_type);
383 else
384 *(uint32_t *) value = ch->color;
386 if (!ch->transparent_copy || *(uint32_t *) value != ch->color)
387 cpu_physical_memory_write(a->dest, value, ch->data_type);
389 a->src += a->elem_delta[0];
390 a->dest += a->elem_delta[1];
391 a->element ++;
393 #ifndef MULTI_REQ
394 if (a->element == a->elements) {
395 /* End of Frame */
396 a->element = 0;
397 a->src += a->frame_delta[0];
398 a->dest += a->frame_delta[1];
399 a->frame ++;
401 /* If the channel is async, update cpc */
402 if (!ch->sync)
403 ch->cpc = a->dest & 0xffff;
405 } while ((bytes -= ch->data_type));
406 #else
407 /* If the channel is element synchronized, deactivate it */
408 if (ch->sync && !ch->fs && !ch->bs)
409 omap_dma_deactivate_channel(s, ch);
411 /* If it is the last frame, set the LAST_FRAME interrupt */
412 if (a->element == 1 && a->frame == a->frames - 1)
413 if (ch->interrupts & LAST_FRAME_INTR)
414 ch->status |= LAST_FRAME_INTR;
416 /* If the half of the frame was reached, set the HALF_FRAME
417 interrupt */
418 if (a->element == (a->elements >> 1))
419 if (ch->interrupts & HALF_FRAME_INTR)
420 ch->status |= HALF_FRAME_INTR;
422 if (ch->fs && ch->bs) {
423 a->pck_element ++;
424 /* Check if a full packet has beed transferred. */
425 if (a->pck_element == a->pck_elements) {
426 a->pck_element = 0;
428 /* Set the END_PKT interrupt */
429 if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync)
430 ch->status |= END_PKT_INTR;
432 /* If the channel is packet-synchronized, deactivate it */
433 if (ch->sync)
434 omap_dma_deactivate_channel(s, ch);
438 if (a->element == a->elements) {
439 /* End of Frame */
440 a->element = 0;
441 a->src += a->frame_delta[0];
442 a->dest += a->frame_delta[1];
443 a->frame ++;
445 /* If the channel is frame synchronized, deactivate it */
446 if (ch->sync && ch->fs && !ch->bs)
447 omap_dma_deactivate_channel(s, ch);
449 /* If the channel is async, update cpc */
450 if (!ch->sync)
451 ch->cpc = a->dest & 0xffff;
453 /* Set the END_FRAME interrupt */
454 if (ch->interrupts & END_FRAME_INTR)
455 ch->status |= END_FRAME_INTR;
457 if (a->frame == a->frames) {
458 /* End of Block */
459 /* Disable the channel */
461 if (ch->omap_3_1_compatible_disable) {
462 omap_dma_disable_channel(s, ch);
463 if (ch->link_enabled)
464 omap_dma_enable_channel(s,
465 &s->ch[ch->link_next_ch]);
466 } else {
467 if (!ch->auto_init)
468 omap_dma_disable_channel(s, ch);
469 else if (ch->repeat || ch->end_prog)
470 omap_dma_channel_load(ch);
471 else {
472 ch->waiting_end_prog = 1;
473 omap_dma_deactivate_channel(s, ch);
477 if (ch->interrupts & END_BLOCK_INTR)
478 ch->status |= END_BLOCK_INTR;
481 } while (status == ch->status && ch->active);
483 omap_dma_interrupts_update(s);
484 #endif
487 enum {
488 omap_dma_intr_element_sync,
489 omap_dma_intr_last_frame,
490 omap_dma_intr_half_frame,
491 omap_dma_intr_frame,
492 omap_dma_intr_frame_sync,
493 omap_dma_intr_packet,
494 omap_dma_intr_packet_sync,
495 omap_dma_intr_block,
496 __omap_dma_intr_last,
499 static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma)
501 struct omap_dma_port_if_s *src_p, *dest_p;
502 struct omap_dma_reg_set_s *a;
503 struct omap_dma_channel_s *ch = dma->opaque;
504 struct omap_dma_s *s = dma->dma->opaque;
505 int frames, min_elems, elements[__omap_dma_intr_last];
507 a = &ch->active_set;
509 src_p = &s->mpu->port[ch->port[0]];
510 dest_p = &s->mpu->port[ch->port[1]];
511 if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
512 (!dest_p->addr_valid(s->mpu, a->dest))) {
513 #if 0
514 /* Bus time-out */
515 if (ch->interrupts & TIMEOUT_INTR)
516 ch->status |= TIMEOUT_INTR;
517 omap_dma_deactivate_channel(s, ch);
518 continue;
519 #endif
520 printf("%s: Bus time-out in DMA%i operation\n",
521 __FUNCTION__, dma->num);
524 min_elems = INT_MAX;
526 /* Check all the conditions that terminate the transfer starting
527 * with those that can occur the soonest. */
528 #define INTR_CHECK(cond, id, nelements) \
529 if (cond) { \
530 elements[id] = nelements; \
531 if (elements[id] < min_elems) \
532 min_elems = elements[id]; \
533 } else \
534 elements[id] = INT_MAX;
536 /* Elements */
537 INTR_CHECK(
538 ch->sync && !ch->fs && !ch->bs,
539 omap_dma_intr_element_sync,
542 /* Frames */
543 /* TODO: for transfers where entire frames can be read and written
544 * using memcpy() but a->frame_delta is non-zero, try to still do
545 * transfers using soc_dma but limit min_elems to a->elements - ...
546 * See also the TODO in omap_dma_channel_load. */
547 INTR_CHECK(
548 (ch->interrupts & LAST_FRAME_INTR) &&
549 ((a->frame < a->frames - 1) || !a->element),
550 omap_dma_intr_last_frame,
551 (a->frames - a->frame - 2) * a->elements +
552 (a->elements - a->element + 1))
553 INTR_CHECK(
554 ch->interrupts & HALF_FRAME_INTR,
555 omap_dma_intr_half_frame,
556 (a->elements >> 1) +
557 (a->element >= (a->elements >> 1) ? a->elements : 0) -
558 a->element)
559 INTR_CHECK(
560 ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR),
561 omap_dma_intr_frame,
562 a->elements - a->element)
563 INTR_CHECK(
564 ch->sync && ch->fs && !ch->bs,
565 omap_dma_intr_frame_sync,
566 a->elements - a->element)
568 /* Packets */
569 INTR_CHECK(
570 ch->fs && ch->bs &&
571 (ch->interrupts & END_PKT_INTR) && !ch->src_sync,
572 omap_dma_intr_packet,
573 a->pck_elements - a->pck_element)
574 INTR_CHECK(
575 ch->fs && ch->bs && ch->sync,
576 omap_dma_intr_packet_sync,
577 a->pck_elements - a->pck_element)
579 /* Blocks */
580 INTR_CHECK(
582 omap_dma_intr_block,
583 (a->frames - a->frame - 1) * a->elements +
584 (a->elements - a->element))
586 dma->bytes = min_elems * ch->data_type;
588 /* Set appropriate interrupts and/or deactivate channels */
590 #ifdef MULTI_REQ
591 /* TODO: should all of this only be done if dma->update, and otherwise
592 * inside omap_dma_transfer_generic below - check what's faster. */
593 if (dma->update) {
594 #endif
596 /* If the channel is element synchronized, deactivate it */
597 if (min_elems == elements[omap_dma_intr_element_sync])
598 omap_dma_deactivate_channel(s, ch);
600 /* If it is the last frame, set the LAST_FRAME interrupt */
601 if (min_elems == elements[omap_dma_intr_last_frame])
602 ch->status |= LAST_FRAME_INTR;
604 /* If exactly half of the frame was reached, set the HALF_FRAME
605 interrupt */
606 if (min_elems == elements[omap_dma_intr_half_frame])
607 ch->status |= HALF_FRAME_INTR;
609 /* If a full packet has been transferred, set the END_PKT interrupt */
610 if (min_elems == elements[omap_dma_intr_packet])
611 ch->status |= END_PKT_INTR;
613 /* If the channel is packet-synchronized, deactivate it */
614 if (min_elems == elements[omap_dma_intr_packet_sync])
615 omap_dma_deactivate_channel(s, ch);
617 /* If the channel is frame synchronized, deactivate it */
618 if (min_elems == elements[omap_dma_intr_frame_sync])
619 omap_dma_deactivate_channel(s, ch);
621 /* Set the END_FRAME interrupt */
622 if (min_elems == elements[omap_dma_intr_frame])
623 ch->status |= END_FRAME_INTR;
625 if (min_elems == elements[omap_dma_intr_block]) {
626 /* End of Block */
627 /* Disable the channel */
629 if (ch->omap_3_1_compatible_disable) {
630 omap_dma_disable_channel(s, ch);
631 if (ch->link_enabled)
632 omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]);
633 } else {
634 if (!ch->auto_init)
635 omap_dma_disable_channel(s, ch);
636 else if (ch->repeat || ch->end_prog)
637 omap_dma_channel_load(ch);
638 else {
639 ch->waiting_end_prog = 1;
640 omap_dma_deactivate_channel(s, ch);
644 if (ch->interrupts & END_BLOCK_INTR)
645 ch->status |= END_BLOCK_INTR;
648 /* Update packet number */
649 if (ch->fs && ch->bs) {
650 a->pck_element += min_elems;
651 a->pck_element %= a->pck_elements;
654 /* TODO: check if we really need to update anything here or perhaps we
655 * can skip part of this. */
656 #ifndef MULTI_REQ
657 if (dma->update) {
658 #endif
659 a->element += min_elems;
661 frames = a->element / a->elements;
662 a->element = a->element % a->elements;
663 a->frame += frames;
664 a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0];
665 a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1];
667 /* If the channel is async, update cpc */
668 if (!ch->sync && frames)
669 ch->cpc = a->dest & 0xffff;
671 /* TODO: if the destination port is IMIF or EMIFF, set the dirty
672 * bits on it. */
673 #ifndef MULTI_REQ
675 #else
677 #endif
679 omap_dma_interrupts_update(s);
682 void omap_dma_reset(struct soc_dma_s *dma)
684 int i;
685 struct omap_dma_s *s = dma->opaque;
687 soc_dma_reset(s->dma);
688 if (s->model < omap_dma_4)
689 s->gcr = 0x0004;
690 else
691 s->gcr = 0x00010010;
692 s->ocp = 0x00000000;
693 memset(&s->irqstat, 0, sizeof(s->irqstat));
694 memset(&s->irqen, 0, sizeof(s->irqen));
695 s->lcd_ch.src = emiff;
696 s->lcd_ch.condition = 0;
697 s->lcd_ch.interrupts = 0;
698 s->lcd_ch.dual = 0;
699 if (s->model < omap_dma_4)
700 omap_dma_enable_3_1_mapping(s);
701 for (i = 0; i < s->chans; i ++) {
702 s->ch[i].suspend = 0;
703 s->ch[i].prefetch = 0;
704 s->ch[i].buf_disable = 0;
705 s->ch[i].src_sync = 0;
706 memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst));
707 memset(&s->ch[i].port, 0, sizeof(s->ch[i].port));
708 memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode));
709 memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index));
710 memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index));
711 memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian));
712 memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock));
713 memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate));
714 s->ch[i].write_mode = 0;
715 s->ch[i].data_type = 0;
716 s->ch[i].transparent_copy = 0;
717 s->ch[i].constant_fill = 0;
718 s->ch[i].color = 0x00000000;
719 s->ch[i].end_prog = 0;
720 s->ch[i].repeat = 0;
721 s->ch[i].auto_init = 0;
722 s->ch[i].link_enabled = 0;
723 if (s->model < omap_dma_4)
724 s->ch[i].interrupts = 0x0003;
725 else
726 s->ch[i].interrupts = 0x0000;
727 s->ch[i].status = 0;
728 s->ch[i].cstatus = 0;
729 s->ch[i].active = 0;
730 s->ch[i].enable = 0;
731 s->ch[i].sync = 0;
732 s->ch[i].pending_request = 0;
733 s->ch[i].waiting_end_prog = 0;
734 s->ch[i].cpc = 0x0000;
735 s->ch[i].fs = 0;
736 s->ch[i].bs = 0;
737 s->ch[i].omap_3_1_compatible_disable = 0;
738 memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set));
739 s->ch[i].priority = 0;
740 s->ch[i].interleave_disabled = 0;
741 s->ch[i].type = 0;
745 static int omap_dma_ch_reg_read(struct omap_dma_s *s,
746 struct omap_dma_channel_s *ch, int reg, uint16_t *value)
748 switch (reg) {
749 case 0x00: /* SYS_DMA_CSDP_CH0 */
750 *value = (ch->burst[1] << 14) |
751 (ch->pack[1] << 13) |
752 (ch->port[1] << 9) |
753 (ch->burst[0] << 7) |
754 (ch->pack[0] << 6) |
755 (ch->port[0] << 2) |
756 (ch->data_type >> 1);
757 break;
759 case 0x02: /* SYS_DMA_CCR_CH0 */
760 if (s->model <= omap_dma_3_1)
761 *value = 0 << 10; /* FIFO_FLUSH reads as 0 */
762 else
763 *value = ch->omap_3_1_compatible_disable << 10;
764 *value |= (ch->mode[1] << 14) |
765 (ch->mode[0] << 12) |
766 (ch->end_prog << 11) |
767 (ch->repeat << 9) |
768 (ch->auto_init << 8) |
769 (ch->enable << 7) |
770 (ch->priority << 6) |
771 (ch->fs << 5) | ch->sync;
772 break;
774 case 0x04: /* SYS_DMA_CICR_CH0 */
775 *value = ch->interrupts;
776 break;
778 case 0x06: /* SYS_DMA_CSR_CH0 */
779 *value = ch->status;
780 ch->status &= SYNC;
781 if (!ch->omap_3_1_compatible_disable && ch->sibling) {
782 *value |= (ch->sibling->status & 0x3f) << 6;
783 ch->sibling->status &= SYNC;
785 qemu_irq_lower(ch->irq);
786 break;
788 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
789 *value = ch->addr[0] & 0x0000ffff;
790 break;
792 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
793 *value = ch->addr[0] >> 16;
794 break;
796 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
797 *value = ch->addr[1] & 0x0000ffff;
798 break;
800 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
801 *value = ch->addr[1] >> 16;
802 break;
804 case 0x10: /* SYS_DMA_CEN_CH0 */
805 *value = ch->elements;
806 break;
808 case 0x12: /* SYS_DMA_CFN_CH0 */
809 *value = ch->frames;
810 break;
812 case 0x14: /* SYS_DMA_CFI_CH0 */
813 *value = ch->frame_index[0];
814 break;
816 case 0x16: /* SYS_DMA_CEI_CH0 */
817 *value = ch->element_index[0];
818 break;
820 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
821 if (ch->omap_3_1_compatible_disable)
822 *value = ch->active_set.src & 0xffff; /* CSAC */
823 else
824 *value = ch->cpc;
825 break;
827 case 0x1a: /* DMA_CDAC */
828 *value = ch->active_set.dest & 0xffff; /* CDAC */
829 break;
831 case 0x1c: /* DMA_CDEI */
832 *value = ch->element_index[1];
833 break;
835 case 0x1e: /* DMA_CDFI */
836 *value = ch->frame_index[1];
837 break;
839 case 0x20: /* DMA_COLOR_L */
840 *value = ch->color & 0xffff;
841 break;
843 case 0x22: /* DMA_COLOR_U */
844 *value = ch->color >> 16;
845 break;
847 case 0x24: /* DMA_CCR2 */
848 *value = (ch->bs << 2) |
849 (ch->transparent_copy << 1) |
850 ch->constant_fill;
851 break;
853 case 0x28: /* DMA_CLNK_CTRL */
854 *value = (ch->link_enabled << 15) |
855 (ch->link_next_ch & 0xf);
856 break;
858 case 0x2a: /* DMA_LCH_CTRL */
859 *value = (ch->interleave_disabled << 15) |
860 ch->type;
861 break;
863 default:
864 return 1;
866 return 0;
869 static int omap_dma_ch_reg_write(struct omap_dma_s *s,
870 struct omap_dma_channel_s *ch, int reg, uint16_t value)
872 switch (reg) {
873 case 0x00: /* SYS_DMA_CSDP_CH0 */
874 ch->burst[1] = (value & 0xc000) >> 14;
875 ch->pack[1] = (value & 0x2000) >> 13;
876 ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
877 ch->burst[0] = (value & 0x0180) >> 7;
878 ch->pack[0] = (value & 0x0040) >> 6;
879 ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
880 ch->data_type = 1 << (value & 3);
881 if (ch->port[0] >= __omap_dma_port_last)
882 printf("%s: invalid DMA port %i\n", __FUNCTION__,
883 ch->port[0]);
884 if (ch->port[1] >= __omap_dma_port_last)
885 printf("%s: invalid DMA port %i\n", __FUNCTION__,
886 ch->port[1]);
887 if ((value & 3) == 3)
888 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
889 break;
891 case 0x02: /* SYS_DMA_CCR_CH0 */
892 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
893 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
894 ch->end_prog = (value & 0x0800) >> 11;
895 if (s->model >= omap_dma_3_2)
896 ch->omap_3_1_compatible_disable = (value >> 10) & 0x1;
897 ch->repeat = (value & 0x0200) >> 9;
898 ch->auto_init = (value & 0x0100) >> 8;
899 ch->priority = (value & 0x0040) >> 6;
900 ch->fs = (value & 0x0020) >> 5;
901 ch->sync = value & 0x001f;
903 if (value & 0x0080)
904 omap_dma_enable_channel(s, ch);
905 else
906 omap_dma_disable_channel(s, ch);
908 if (ch->end_prog)
909 omap_dma_channel_end_prog(s, ch);
911 break;
913 case 0x04: /* SYS_DMA_CICR_CH0 */
914 ch->interrupts = value & 0x3f;
915 break;
917 case 0x06: /* SYS_DMA_CSR_CH0 */
918 OMAP_RO_REG((hwaddr) reg);
919 break;
921 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
922 ch->addr[0] &= 0xffff0000;
923 ch->addr[0] |= value;
924 break;
926 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
927 ch->addr[0] &= 0x0000ffff;
928 ch->addr[0] |= (uint32_t) value << 16;
929 break;
931 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
932 ch->addr[1] &= 0xffff0000;
933 ch->addr[1] |= value;
934 break;
936 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
937 ch->addr[1] &= 0x0000ffff;
938 ch->addr[1] |= (uint32_t) value << 16;
939 break;
941 case 0x10: /* SYS_DMA_CEN_CH0 */
942 ch->elements = value;
943 break;
945 case 0x12: /* SYS_DMA_CFN_CH0 */
946 ch->frames = value;
947 break;
949 case 0x14: /* SYS_DMA_CFI_CH0 */
950 ch->frame_index[0] = (int16_t) value;
951 break;
953 case 0x16: /* SYS_DMA_CEI_CH0 */
954 ch->element_index[0] = (int16_t) value;
955 break;
957 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
958 OMAP_RO_REG((hwaddr) reg);
959 break;
961 case 0x1c: /* DMA_CDEI */
962 ch->element_index[1] = (int16_t) value;
963 break;
965 case 0x1e: /* DMA_CDFI */
966 ch->frame_index[1] = (int16_t) value;
967 break;
969 case 0x20: /* DMA_COLOR_L */
970 ch->color &= 0xffff0000;
971 ch->color |= value;
972 break;
974 case 0x22: /* DMA_COLOR_U */
975 ch->color &= 0xffff;
976 ch->color |= (uint32_t)value << 16;
977 break;
979 case 0x24: /* DMA_CCR2 */
980 ch->bs = (value >> 2) & 0x1;
981 ch->transparent_copy = (value >> 1) & 0x1;
982 ch->constant_fill = value & 0x1;
983 break;
985 case 0x28: /* DMA_CLNK_CTRL */
986 ch->link_enabled = (value >> 15) & 0x1;
987 if (value & (1 << 14)) { /* Stop_Lnk */
988 ch->link_enabled = 0;
989 omap_dma_disable_channel(s, ch);
991 ch->link_next_ch = value & 0x1f;
992 break;
994 case 0x2a: /* DMA_LCH_CTRL */
995 ch->interleave_disabled = (value >> 15) & 0x1;
996 ch->type = value & 0xf;
997 break;
999 default:
1000 return 1;
1002 return 0;
1005 static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1006 uint16_t value)
1008 switch (offset) {
1009 case 0xbc0: /* DMA_LCD_CSDP */
1010 s->brust_f2 = (value >> 14) & 0x3;
1011 s->pack_f2 = (value >> 13) & 0x1;
1012 s->data_type_f2 = (1 << ((value >> 11) & 0x3));
1013 s->brust_f1 = (value >> 7) & 0x3;
1014 s->pack_f1 = (value >> 6) & 0x1;
1015 s->data_type_f1 = (1 << ((value >> 0) & 0x3));
1016 break;
1018 case 0xbc2: /* DMA_LCD_CCR */
1019 s->mode_f2 = (value >> 14) & 0x3;
1020 s->mode_f1 = (value >> 12) & 0x3;
1021 s->end_prog = (value >> 11) & 0x1;
1022 s->omap_3_1_compatible_disable = (value >> 10) & 0x1;
1023 s->repeat = (value >> 9) & 0x1;
1024 s->auto_init = (value >> 8) & 0x1;
1025 s->running = (value >> 7) & 0x1;
1026 s->priority = (value >> 6) & 0x1;
1027 s->bs = (value >> 4) & 0x1;
1028 break;
1030 case 0xbc4: /* DMA_LCD_CTRL */
1031 s->dst = (value >> 8) & 0x1;
1032 s->src = ((value >> 6) & 0x3) << 1;
1033 s->condition = 0;
1034 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1035 s->interrupts = (value >> 1) & 1;
1036 s->dual = value & 1;
1037 break;
1039 case 0xbc8: /* TOP_B1_L */
1040 s->src_f1_top &= 0xffff0000;
1041 s->src_f1_top |= 0x0000ffff & value;
1042 break;
1044 case 0xbca: /* TOP_B1_U */
1045 s->src_f1_top &= 0x0000ffff;
1046 s->src_f1_top |= (uint32_t)value << 16;
1047 break;
1049 case 0xbcc: /* BOT_B1_L */
1050 s->src_f1_bottom &= 0xffff0000;
1051 s->src_f1_bottom |= 0x0000ffff & value;
1052 break;
1054 case 0xbce: /* BOT_B1_U */
1055 s->src_f1_bottom &= 0x0000ffff;
1056 s->src_f1_bottom |= (uint32_t) value << 16;
1057 break;
1059 case 0xbd0: /* TOP_B2_L */
1060 s->src_f2_top &= 0xffff0000;
1061 s->src_f2_top |= 0x0000ffff & value;
1062 break;
1064 case 0xbd2: /* TOP_B2_U */
1065 s->src_f2_top &= 0x0000ffff;
1066 s->src_f2_top |= (uint32_t) value << 16;
1067 break;
1069 case 0xbd4: /* BOT_B2_L */
1070 s->src_f2_bottom &= 0xffff0000;
1071 s->src_f2_bottom |= 0x0000ffff & value;
1072 break;
1074 case 0xbd6: /* BOT_B2_U */
1075 s->src_f2_bottom &= 0x0000ffff;
1076 s->src_f2_bottom |= (uint32_t) value << 16;
1077 break;
1079 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1080 s->element_index_f1 = value;
1081 break;
1083 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1084 s->frame_index_f1 &= 0xffff0000;
1085 s->frame_index_f1 |= 0x0000ffff & value;
1086 break;
1088 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1089 s->frame_index_f1 &= 0x0000ffff;
1090 s->frame_index_f1 |= (uint32_t) value << 16;
1091 break;
1093 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1094 s->element_index_f2 = value;
1095 break;
1097 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1098 s->frame_index_f2 &= 0xffff0000;
1099 s->frame_index_f2 |= 0x0000ffff & value;
1100 break;
1102 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1103 s->frame_index_f2 &= 0x0000ffff;
1104 s->frame_index_f2 |= (uint32_t) value << 16;
1105 break;
1107 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1108 s->elements_f1 = value;
1109 break;
1111 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1112 s->frames_f1 = value;
1113 break;
1115 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1116 s->elements_f2 = value;
1117 break;
1119 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1120 s->frames_f2 = value;
1121 break;
1123 case 0xbea: /* DMA_LCD_LCH_CTRL */
1124 s->lch_type = value & 0xf;
1125 break;
1127 default:
1128 return 1;
1130 return 0;
1133 static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1134 uint16_t *ret)
1136 switch (offset) {
1137 case 0xbc0: /* DMA_LCD_CSDP */
1138 *ret = (s->brust_f2 << 14) |
1139 (s->pack_f2 << 13) |
1140 ((s->data_type_f2 >> 1) << 11) |
1141 (s->brust_f1 << 7) |
1142 (s->pack_f1 << 6) |
1143 ((s->data_type_f1 >> 1) << 0);
1144 break;
1146 case 0xbc2: /* DMA_LCD_CCR */
1147 *ret = (s->mode_f2 << 14) |
1148 (s->mode_f1 << 12) |
1149 (s->end_prog << 11) |
1150 (s->omap_3_1_compatible_disable << 10) |
1151 (s->repeat << 9) |
1152 (s->auto_init << 8) |
1153 (s->running << 7) |
1154 (s->priority << 6) |
1155 (s->bs << 4);
1156 break;
1158 case 0xbc4: /* DMA_LCD_CTRL */
1159 qemu_irq_lower(s->irq);
1160 *ret = (s->dst << 8) |
1161 ((s->src & 0x6) << 5) |
1162 (s->condition << 3) |
1163 (s->interrupts << 1) |
1164 s->dual;
1165 break;
1167 case 0xbc8: /* TOP_B1_L */
1168 *ret = s->src_f1_top & 0xffff;
1169 break;
1171 case 0xbca: /* TOP_B1_U */
1172 *ret = s->src_f1_top >> 16;
1173 break;
1175 case 0xbcc: /* BOT_B1_L */
1176 *ret = s->src_f1_bottom & 0xffff;
1177 break;
1179 case 0xbce: /* BOT_B1_U */
1180 *ret = s->src_f1_bottom >> 16;
1181 break;
1183 case 0xbd0: /* TOP_B2_L */
1184 *ret = s->src_f2_top & 0xffff;
1185 break;
1187 case 0xbd2: /* TOP_B2_U */
1188 *ret = s->src_f2_top >> 16;
1189 break;
1191 case 0xbd4: /* BOT_B2_L */
1192 *ret = s->src_f2_bottom & 0xffff;
1193 break;
1195 case 0xbd6: /* BOT_B2_U */
1196 *ret = s->src_f2_bottom >> 16;
1197 break;
1199 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1200 *ret = s->element_index_f1;
1201 break;
1203 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1204 *ret = s->frame_index_f1 & 0xffff;
1205 break;
1207 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1208 *ret = s->frame_index_f1 >> 16;
1209 break;
1211 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1212 *ret = s->element_index_f2;
1213 break;
1215 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1216 *ret = s->frame_index_f2 & 0xffff;
1217 break;
1219 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1220 *ret = s->frame_index_f2 >> 16;
1221 break;
1223 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1224 *ret = s->elements_f1;
1225 break;
1227 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1228 *ret = s->frames_f1;
1229 break;
1231 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1232 *ret = s->elements_f2;
1233 break;
1235 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1236 *ret = s->frames_f2;
1237 break;
1239 case 0xbea: /* DMA_LCD_LCH_CTRL */
1240 *ret = s->lch_type;
1241 break;
1243 default:
1244 return 1;
1246 return 0;
1249 static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1250 uint16_t value)
1252 switch (offset) {
1253 case 0x300: /* SYS_DMA_LCD_CTRL */
1254 s->src = (value & 0x40) ? imif : emiff;
1255 s->condition = 0;
1256 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1257 s->interrupts = (value >> 1) & 1;
1258 s->dual = value & 1;
1259 break;
1261 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1262 s->src_f1_top &= 0xffff0000;
1263 s->src_f1_top |= 0x0000ffff & value;
1264 break;
1266 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1267 s->src_f1_top &= 0x0000ffff;
1268 s->src_f1_top |= (uint32_t)value << 16;
1269 break;
1271 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1272 s->src_f1_bottom &= 0xffff0000;
1273 s->src_f1_bottom |= 0x0000ffff & value;
1274 break;
1276 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1277 s->src_f1_bottom &= 0x0000ffff;
1278 s->src_f1_bottom |= (uint32_t)value << 16;
1279 break;
1281 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1282 s->src_f2_top &= 0xffff0000;
1283 s->src_f2_top |= 0x0000ffff & value;
1284 break;
1286 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1287 s->src_f2_top &= 0x0000ffff;
1288 s->src_f2_top |= (uint32_t)value << 16;
1289 break;
1291 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1292 s->src_f2_bottom &= 0xffff0000;
1293 s->src_f2_bottom |= 0x0000ffff & value;
1294 break;
1296 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1297 s->src_f2_bottom &= 0x0000ffff;
1298 s->src_f2_bottom |= (uint32_t)value << 16;
1299 break;
1301 default:
1302 return 1;
1304 return 0;
1307 static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1308 uint16_t *ret)
1310 int i;
1312 switch (offset) {
1313 case 0x300: /* SYS_DMA_LCD_CTRL */
1314 i = s->condition;
1315 s->condition = 0;
1316 qemu_irq_lower(s->irq);
1317 *ret = ((s->src == imif) << 6) | (i << 3) |
1318 (s->interrupts << 1) | s->dual;
1319 break;
1321 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1322 *ret = s->src_f1_top & 0xffff;
1323 break;
1325 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1326 *ret = s->src_f1_top >> 16;
1327 break;
1329 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1330 *ret = s->src_f1_bottom & 0xffff;
1331 break;
1333 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1334 *ret = s->src_f1_bottom >> 16;
1335 break;
1337 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1338 *ret = s->src_f2_top & 0xffff;
1339 break;
1341 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1342 *ret = s->src_f2_top >> 16;
1343 break;
1345 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1346 *ret = s->src_f2_bottom & 0xffff;
1347 break;
1349 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1350 *ret = s->src_f2_bottom >> 16;
1351 break;
1353 default:
1354 return 1;
1356 return 0;
1359 static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value)
1361 switch (offset) {
1362 case 0x400: /* SYS_DMA_GCR */
1363 s->gcr = value;
1364 break;
1366 case 0x404: /* DMA_GSCR */
1367 if (value & 0x8)
1368 omap_dma_disable_3_1_mapping(s);
1369 else
1370 omap_dma_enable_3_1_mapping(s);
1371 break;
1373 case 0x408: /* DMA_GRST */
1374 if (value & 0x1)
1375 omap_dma_reset(s->dma);
1376 break;
1378 default:
1379 return 1;
1381 return 0;
1384 static int omap_dma_sys_read(struct omap_dma_s *s, int offset,
1385 uint16_t *ret)
1387 switch (offset) {
1388 case 0x400: /* SYS_DMA_GCR */
1389 *ret = s->gcr;
1390 break;
1392 case 0x404: /* DMA_GSCR */
1393 *ret = s->omap_3_1_mapping_disabled << 3;
1394 break;
1396 case 0x408: /* DMA_GRST */
1397 *ret = 0;
1398 break;
1400 case 0x442: /* DMA_HW_ID */
1401 case 0x444: /* DMA_PCh2_ID */
1402 case 0x446: /* DMA_PCh0_ID */
1403 case 0x448: /* DMA_PCh1_ID */
1404 case 0x44a: /* DMA_PChG_ID */
1405 case 0x44c: /* DMA_PChD_ID */
1406 *ret = 1;
1407 break;
1409 case 0x44e: /* DMA_CAPS_0_U */
1410 *ret = (s->caps[0] >> 16) & 0xffff;
1411 break;
1412 case 0x450: /* DMA_CAPS_0_L */
1413 *ret = (s->caps[0] >> 0) & 0xffff;
1414 break;
1416 case 0x452: /* DMA_CAPS_1_U */
1417 *ret = (s->caps[1] >> 16) & 0xffff;
1418 break;
1419 case 0x454: /* DMA_CAPS_1_L */
1420 *ret = (s->caps[1] >> 0) & 0xffff;
1421 break;
1423 case 0x456: /* DMA_CAPS_2 */
1424 *ret = s->caps[2];
1425 break;
1427 case 0x458: /* DMA_CAPS_3 */
1428 *ret = s->caps[3];
1429 break;
1431 case 0x45a: /* DMA_CAPS_4 */
1432 *ret = s->caps[4];
1433 break;
1435 case 0x460: /* DMA_PCh2_SR */
1436 case 0x480: /* DMA_PCh0_SR */
1437 case 0x482: /* DMA_PCh1_SR */
1438 case 0x4c0: /* DMA_PChD_SR_0 */
1439 printf("%s: Physical Channel Status Registers not implemented.\n",
1440 __FUNCTION__);
1441 *ret = 0xff;
1442 break;
1444 default:
1445 return 1;
1447 return 0;
1450 static uint64_t omap_dma_read(void *opaque, hwaddr addr,
1451 unsigned size)
1453 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1454 int reg, ch;
1455 uint16_t ret;
1457 if (size != 2) {
1458 return omap_badwidth_read16(opaque, addr);
1461 switch (addr) {
1462 case 0x300 ... 0x3fe:
1463 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1464 if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret))
1465 break;
1466 return ret;
1468 /* Fall through. */
1469 case 0x000 ... 0x2fe:
1470 reg = addr & 0x3f;
1471 ch = (addr >> 6) & 0x0f;
1472 if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret))
1473 break;
1474 return ret;
1476 case 0x404 ... 0x4fe:
1477 if (s->model <= omap_dma_3_1)
1478 break;
1479 /* Fall through. */
1480 case 0x400:
1481 if (omap_dma_sys_read(s, addr, &ret))
1482 break;
1483 return ret;
1485 case 0xb00 ... 0xbfe:
1486 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1487 if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret))
1488 break;
1489 return ret;
1491 break;
1494 OMAP_BAD_REG(addr);
1495 return 0;
1498 static void omap_dma_write(void *opaque, hwaddr addr,
1499 uint64_t value, unsigned size)
1501 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1502 int reg, ch;
1504 if (size != 2) {
1505 omap_badwidth_write16(opaque, addr, value);
1506 return;
1509 switch (addr) {
1510 case 0x300 ... 0x3fe:
1511 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1512 if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value))
1513 break;
1514 return;
1516 /* Fall through. */
1517 case 0x000 ... 0x2fe:
1518 reg = addr & 0x3f;
1519 ch = (addr >> 6) & 0x0f;
1520 if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value))
1521 break;
1522 return;
1524 case 0x404 ... 0x4fe:
1525 if (s->model <= omap_dma_3_1)
1526 break;
1527 case 0x400:
1528 /* Fall through. */
1529 if (omap_dma_sys_write(s, addr, value))
1530 break;
1531 return;
1533 case 0xb00 ... 0xbfe:
1534 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1535 if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value))
1536 break;
1537 return;
1539 break;
1542 OMAP_BAD_REG(addr);
1545 static const MemoryRegionOps omap_dma_ops = {
1546 .read = omap_dma_read,
1547 .write = omap_dma_write,
1548 .endianness = DEVICE_NATIVE_ENDIAN,
1551 static void omap_dma_request(void *opaque, int drq, int req)
1553 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1554 /* The request pins are level triggered in QEMU. */
1555 if (req) {
1556 if (~s->dma->drqbmp & (1ULL << drq)) {
1557 s->dma->drqbmp |= 1ULL << drq;
1558 omap_dma_process_request(s, drq);
1560 } else
1561 s->dma->drqbmp &= ~(1ULL << drq);
1564 /* XXX: this won't be needed once soc_dma knows about clocks. */
1565 static void omap_dma_clk_update(void *opaque, int line, int on)
1567 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1568 int i;
1570 s->dma->freq = omap_clk_getrate(s->clk);
1572 for (i = 0; i < s->chans; i ++)
1573 if (s->ch[i].active)
1574 soc_dma_set_request(s->ch[i].dma, on);
1577 static void omap_dma_setcaps(struct omap_dma_s *s)
1579 switch (s->model) {
1580 default:
1581 case omap_dma_3_1:
1582 break;
1583 case omap_dma_3_2:
1584 case omap_dma_4:
1585 /* XXX Only available for sDMA */
1586 s->caps[0] =
1587 (1 << 19) | /* Constant Fill Capability */
1588 (1 << 18); /* Transparent BLT Capability */
1589 s->caps[1] =
1590 (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */
1591 s->caps[2] =
1592 (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */
1593 (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */
1594 (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */
1595 (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */
1596 (1 << 4) | /* DST_CONST_ADRS_CPBLTY */
1597 (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */
1598 (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */
1599 (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */
1600 (1 << 0); /* SRC_CONST_ADRS_CPBLTY */
1601 s->caps[3] =
1602 (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */
1603 (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */
1604 (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */
1605 (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */
1606 (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */
1607 (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */
1608 (1 << 1) | /* FRAME_SYNCHR_CPBLTY */
1609 (1 << 0); /* ELMNT_SYNCHR_CPBLTY */
1610 s->caps[4] =
1611 (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */
1612 (1 << 6) | /* SYNC_STATUS_CPBLTY */
1613 (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */
1614 (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */
1615 (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */
1616 (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */
1617 (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */
1618 (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */
1619 break;
1623 struct soc_dma_s *omap_dma_init(hwaddr base, qemu_irq *irqs,
1624 MemoryRegion *sysmem,
1625 qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
1626 enum omap_dma_model model)
1628 int num_irqs, memsize, i;
1629 struct omap_dma_s *s = g_new0(struct omap_dma_s, 1);
1631 if (model <= omap_dma_3_1) {
1632 num_irqs = 6;
1633 memsize = 0x800;
1634 } else {
1635 num_irqs = 16;
1636 memsize = 0xc00;
1638 s->model = model;
1639 s->mpu = mpu;
1640 s->clk = clk;
1641 s->lcd_ch.irq = lcd_irq;
1642 s->lcd_ch.mpu = mpu;
1644 s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16);
1645 s->dma->freq = omap_clk_getrate(clk);
1646 s->dma->transfer_fn = omap_dma_transfer_generic;
1647 s->dma->setup_fn = omap_dma_transfer_setup;
1648 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1649 s->dma->opaque = s;
1651 while (num_irqs --)
1652 s->ch[num_irqs].irq = irqs[num_irqs];
1653 for (i = 0; i < 3; i ++) {
1654 s->ch[i].sibling = &s->ch[i + 6];
1655 s->ch[i + 6].sibling = &s->ch[i];
1657 for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) {
1658 s->ch[i].dma = &s->dma->ch[i];
1659 s->dma->ch[i].opaque = &s->ch[i];
1662 omap_dma_setcaps(s);
1663 omap_clk_adduser(s->clk, qemu_allocate_irq(omap_dma_clk_update, s, 0));
1664 omap_dma_reset(s->dma);
1665 omap_dma_clk_update(s, 0, 1);
1667 memory_region_init_io(&s->iomem, NULL, &omap_dma_ops, s, "omap.dma", memsize);
1668 memory_region_add_subregion(sysmem, base, &s->iomem);
1670 mpu->drq = s->dma->drq;
1672 return s->dma;
1675 static void omap_dma_interrupts_4_update(struct omap_dma_s *s)
1677 struct omap_dma_channel_s *ch = s->ch;
1678 uint32_t bmp, bit;
1680 for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1)
1681 if (ch->status) {
1682 bmp |= bit;
1683 ch->cstatus |= ch->status;
1684 ch->status = 0;
1686 if ((s->irqstat[0] |= s->irqen[0] & bmp))
1687 qemu_irq_raise(s->irq[0]);
1688 if ((s->irqstat[1] |= s->irqen[1] & bmp))
1689 qemu_irq_raise(s->irq[1]);
1690 if ((s->irqstat[2] |= s->irqen[2] & bmp))
1691 qemu_irq_raise(s->irq[2]);
1692 if ((s->irqstat[3] |= s->irqen[3] & bmp))
1693 qemu_irq_raise(s->irq[3]);
1696 static uint64_t omap_dma4_read(void *opaque, hwaddr addr,
1697 unsigned size)
1699 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1700 int irqn = 0, chnum;
1701 struct omap_dma_channel_s *ch;
1703 if (size == 1) {
1704 return omap_badwidth_read16(opaque, addr);
1707 switch (addr) {
1708 case 0x00: /* DMA4_REVISION */
1709 return 0x40;
1711 case 0x14: /* DMA4_IRQSTATUS_L3 */
1712 irqn ++;
1713 /* fall through */
1714 case 0x10: /* DMA4_IRQSTATUS_L2 */
1715 irqn ++;
1716 /* fall through */
1717 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1718 irqn ++;
1719 /* fall through */
1720 case 0x08: /* DMA4_IRQSTATUS_L0 */
1721 return s->irqstat[irqn];
1723 case 0x24: /* DMA4_IRQENABLE_L3 */
1724 irqn ++;
1725 /* fall through */
1726 case 0x20: /* DMA4_IRQENABLE_L2 */
1727 irqn ++;
1728 /* fall through */
1729 case 0x1c: /* DMA4_IRQENABLE_L1 */
1730 irqn ++;
1731 /* fall through */
1732 case 0x18: /* DMA4_IRQENABLE_L0 */
1733 return s->irqen[irqn];
1735 case 0x28: /* DMA4_SYSSTATUS */
1736 return 1; /* RESETDONE */
1738 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1739 return s->ocp;
1741 case 0x64: /* DMA4_CAPS_0 */
1742 return s->caps[0];
1743 case 0x6c: /* DMA4_CAPS_2 */
1744 return s->caps[2];
1745 case 0x70: /* DMA4_CAPS_3 */
1746 return s->caps[3];
1747 case 0x74: /* DMA4_CAPS_4 */
1748 return s->caps[4];
1750 case 0x78: /* DMA4_GCR */
1751 return s->gcr;
1753 case 0x80 ... 0xfff:
1754 addr -= 0x80;
1755 chnum = addr / 0x60;
1756 ch = s->ch + chnum;
1757 addr -= chnum * 0x60;
1758 break;
1760 default:
1761 OMAP_BAD_REG(addr);
1762 return 0;
1765 /* Per-channel registers */
1766 switch (addr) {
1767 case 0x00: /* DMA4_CCR */
1768 return (ch->buf_disable << 25) |
1769 (ch->src_sync << 24) |
1770 (ch->prefetch << 23) |
1771 ((ch->sync & 0x60) << 14) |
1772 (ch->bs << 18) |
1773 (ch->transparent_copy << 17) |
1774 (ch->constant_fill << 16) |
1775 (ch->mode[1] << 14) |
1776 (ch->mode[0] << 12) |
1777 (0 << 10) | (0 << 9) |
1778 (ch->suspend << 8) |
1779 (ch->enable << 7) |
1780 (ch->priority << 6) |
1781 (ch->fs << 5) | (ch->sync & 0x1f);
1783 case 0x04: /* DMA4_CLNK_CTRL */
1784 return (ch->link_enabled << 15) | ch->link_next_ch;
1786 case 0x08: /* DMA4_CICR */
1787 return ch->interrupts;
1789 case 0x0c: /* DMA4_CSR */
1790 return ch->cstatus;
1792 case 0x10: /* DMA4_CSDP */
1793 return (ch->endian[0] << 21) |
1794 (ch->endian_lock[0] << 20) |
1795 (ch->endian[1] << 19) |
1796 (ch->endian_lock[1] << 18) |
1797 (ch->write_mode << 16) |
1798 (ch->burst[1] << 14) |
1799 (ch->pack[1] << 13) |
1800 (ch->translate[1] << 9) |
1801 (ch->burst[0] << 7) |
1802 (ch->pack[0] << 6) |
1803 (ch->translate[0] << 2) |
1804 (ch->data_type >> 1);
1806 case 0x14: /* DMA4_CEN */
1807 return ch->elements;
1809 case 0x18: /* DMA4_CFN */
1810 return ch->frames;
1812 case 0x1c: /* DMA4_CSSA */
1813 return ch->addr[0];
1815 case 0x20: /* DMA4_CDSA */
1816 return ch->addr[1];
1818 case 0x24: /* DMA4_CSEI */
1819 return ch->element_index[0];
1821 case 0x28: /* DMA4_CSFI */
1822 return ch->frame_index[0];
1824 case 0x2c: /* DMA4_CDEI */
1825 return ch->element_index[1];
1827 case 0x30: /* DMA4_CDFI */
1828 return ch->frame_index[1];
1830 case 0x34: /* DMA4_CSAC */
1831 return ch->active_set.src & 0xffff;
1833 case 0x38: /* DMA4_CDAC */
1834 return ch->active_set.dest & 0xffff;
1836 case 0x3c: /* DMA4_CCEN */
1837 return ch->active_set.element;
1839 case 0x40: /* DMA4_CCFN */
1840 return ch->active_set.frame;
1842 case 0x44: /* DMA4_COLOR */
1843 /* XXX only in sDMA */
1844 return ch->color;
1846 default:
1847 OMAP_BAD_REG(addr);
1848 return 0;
1852 static void omap_dma4_write(void *opaque, hwaddr addr,
1853 uint64_t value, unsigned size)
1855 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1856 int chnum, irqn = 0;
1857 struct omap_dma_channel_s *ch;
1859 if (size == 1) {
1860 omap_badwidth_write16(opaque, addr, value);
1861 return;
1864 switch (addr) {
1865 case 0x14: /* DMA4_IRQSTATUS_L3 */
1866 irqn ++;
1867 /* fall through */
1868 case 0x10: /* DMA4_IRQSTATUS_L2 */
1869 irqn ++;
1870 /* fall through */
1871 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1872 irqn ++;
1873 /* fall through */
1874 case 0x08: /* DMA4_IRQSTATUS_L0 */
1875 s->irqstat[irqn] &= ~value;
1876 if (!s->irqstat[irqn])
1877 qemu_irq_lower(s->irq[irqn]);
1878 return;
1880 case 0x24: /* DMA4_IRQENABLE_L3 */
1881 irqn ++;
1882 /* fall through */
1883 case 0x20: /* DMA4_IRQENABLE_L2 */
1884 irqn ++;
1885 /* fall through */
1886 case 0x1c: /* DMA4_IRQENABLE_L1 */
1887 irqn ++;
1888 /* fall through */
1889 case 0x18: /* DMA4_IRQENABLE_L0 */
1890 s->irqen[irqn] = value;
1891 return;
1893 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1894 if (value & 2) /* SOFTRESET */
1895 omap_dma_reset(s->dma);
1896 s->ocp = value & 0x3321;
1897 if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */
1898 fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__);
1899 return;
1901 case 0x78: /* DMA4_GCR */
1902 s->gcr = value & 0x00ff00ff;
1903 if ((value & 0xff) == 0x00) /* MAX_CHANNEL_FIFO_DEPTH */
1904 fprintf(stderr, "%s: wrong FIFO depth in GCR\n", __FUNCTION__);
1905 return;
1907 case 0x80 ... 0xfff:
1908 addr -= 0x80;
1909 chnum = addr / 0x60;
1910 ch = s->ch + chnum;
1911 addr -= chnum * 0x60;
1912 break;
1914 case 0x00: /* DMA4_REVISION */
1915 case 0x28: /* DMA4_SYSSTATUS */
1916 case 0x64: /* DMA4_CAPS_0 */
1917 case 0x6c: /* DMA4_CAPS_2 */
1918 case 0x70: /* DMA4_CAPS_3 */
1919 case 0x74: /* DMA4_CAPS_4 */
1920 OMAP_RO_REG(addr);
1921 return;
1923 default:
1924 OMAP_BAD_REG(addr);
1925 return;
1928 /* Per-channel registers */
1929 switch (addr) {
1930 case 0x00: /* DMA4_CCR */
1931 ch->buf_disable = (value >> 25) & 1;
1932 ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */
1933 if (ch->buf_disable && !ch->src_sync)
1934 fprintf(stderr, "%s: Buffering disable is not allowed in "
1935 "destination synchronised mode\n", __FUNCTION__);
1936 ch->prefetch = (value >> 23) & 1;
1937 ch->bs = (value >> 18) & 1;
1938 ch->transparent_copy = (value >> 17) & 1;
1939 ch->constant_fill = (value >> 16) & 1;
1940 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
1941 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
1942 ch->suspend = (value & 0x0100) >> 8;
1943 ch->priority = (value & 0x0040) >> 6;
1944 ch->fs = (value & 0x0020) >> 5;
1945 if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1])
1946 fprintf(stderr, "%s: For a packet transfer at least one port "
1947 "must be constant-addressed\n", __FUNCTION__);
1948 ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060);
1949 /* XXX must be 0x01 for CamDMA */
1951 if (value & 0x0080)
1952 omap_dma_enable_channel(s, ch);
1953 else
1954 omap_dma_disable_channel(s, ch);
1956 break;
1958 case 0x04: /* DMA4_CLNK_CTRL */
1959 ch->link_enabled = (value >> 15) & 0x1;
1960 ch->link_next_ch = value & 0x1f;
1961 break;
1963 case 0x08: /* DMA4_CICR */
1964 ch->interrupts = value & 0x09be;
1965 break;
1967 case 0x0c: /* DMA4_CSR */
1968 ch->cstatus &= ~value;
1969 break;
1971 case 0x10: /* DMA4_CSDP */
1972 ch->endian[0] =(value >> 21) & 1;
1973 ch->endian_lock[0] =(value >> 20) & 1;
1974 ch->endian[1] =(value >> 19) & 1;
1975 ch->endian_lock[1] =(value >> 18) & 1;
1976 if (ch->endian[0] != ch->endian[1])
1977 fprintf(stderr, "%s: DMA endiannes conversion enable attempt\n",
1978 __FUNCTION__);
1979 ch->write_mode = (value >> 16) & 3;
1980 ch->burst[1] = (value & 0xc000) >> 14;
1981 ch->pack[1] = (value & 0x2000) >> 13;
1982 ch->translate[1] = (value & 0x1e00) >> 9;
1983 ch->burst[0] = (value & 0x0180) >> 7;
1984 ch->pack[0] = (value & 0x0040) >> 6;
1985 ch->translate[0] = (value & 0x003c) >> 2;
1986 if (ch->translate[0] | ch->translate[1])
1987 fprintf(stderr, "%s: bad MReqAddressTranslate sideband signal\n",
1988 __FUNCTION__);
1989 ch->data_type = 1 << (value & 3);
1990 if ((value & 3) == 3)
1991 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
1992 break;
1994 case 0x14: /* DMA4_CEN */
1995 ch->set_update = 1;
1996 ch->elements = value & 0xffffff;
1997 break;
1999 case 0x18: /* DMA4_CFN */
2000 ch->frames = value & 0xffff;
2001 ch->set_update = 1;
2002 break;
2004 case 0x1c: /* DMA4_CSSA */
2005 ch->addr[0] = (hwaddr) (uint32_t) value;
2006 ch->set_update = 1;
2007 break;
2009 case 0x20: /* DMA4_CDSA */
2010 ch->addr[1] = (hwaddr) (uint32_t) value;
2011 ch->set_update = 1;
2012 break;
2014 case 0x24: /* DMA4_CSEI */
2015 ch->element_index[0] = (int16_t) value;
2016 ch->set_update = 1;
2017 break;
2019 case 0x28: /* DMA4_CSFI */
2020 ch->frame_index[0] = (int32_t) value;
2021 ch->set_update = 1;
2022 break;
2024 case 0x2c: /* DMA4_CDEI */
2025 ch->element_index[1] = (int16_t) value;
2026 ch->set_update = 1;
2027 break;
2029 case 0x30: /* DMA4_CDFI */
2030 ch->frame_index[1] = (int32_t) value;
2031 ch->set_update = 1;
2032 break;
2034 case 0x44: /* DMA4_COLOR */
2035 /* XXX only in sDMA */
2036 ch->color = value;
2037 break;
2039 case 0x34: /* DMA4_CSAC */
2040 case 0x38: /* DMA4_CDAC */
2041 case 0x3c: /* DMA4_CCEN */
2042 case 0x40: /* DMA4_CCFN */
2043 OMAP_RO_REG(addr);
2044 break;
2046 default:
2047 OMAP_BAD_REG(addr);
2051 static const MemoryRegionOps omap_dma4_ops = {
2052 .read = omap_dma4_read,
2053 .write = omap_dma4_write,
2054 .endianness = DEVICE_NATIVE_ENDIAN,
2057 struct soc_dma_s *omap_dma4_init(hwaddr base, qemu_irq *irqs,
2058 MemoryRegion *sysmem,
2059 struct omap_mpu_state_s *mpu, int fifo,
2060 int chans, omap_clk iclk, omap_clk fclk)
2062 int i;
2063 struct omap_dma_s *s = g_new0(struct omap_dma_s, 1);
2065 s->model = omap_dma_4;
2066 s->chans = chans;
2067 s->mpu = mpu;
2068 s->clk = fclk;
2070 s->dma = soc_dma_init(s->chans);
2071 s->dma->freq = omap_clk_getrate(fclk);
2072 s->dma->transfer_fn = omap_dma_transfer_generic;
2073 s->dma->setup_fn = omap_dma_transfer_setup;
2074 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64);
2075 s->dma->opaque = s;
2076 for (i = 0; i < s->chans; i ++) {
2077 s->ch[i].dma = &s->dma->ch[i];
2078 s->dma->ch[i].opaque = &s->ch[i];
2081 memcpy(&s->irq, irqs, sizeof(s->irq));
2082 s->intr_update = omap_dma_interrupts_4_update;
2084 omap_dma_setcaps(s);
2085 omap_clk_adduser(s->clk, qemu_allocate_irq(omap_dma_clk_update, s, 0));
2086 omap_dma_reset(s->dma);
2087 omap_dma_clk_update(s, 0, !!s->dma->freq);
2089 memory_region_init_io(&s->iomem, NULL, &omap_dma4_ops, s, "omap.dma4", 0x1000);
2090 memory_region_add_subregion(sysmem, base, &s->iomem);
2092 mpu->drq = s->dma->drq;
2094 return s->dma;
2097 struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma)
2099 struct omap_dma_s *s = dma->opaque;
2101 return &s->lcd_ch;