Merge remote-tracking branch 'remotes/jsnow-gitlab/tags/python-pull-request' into...
[qemu/ar7.git] / migration / rdma.c
blob1cdb4561f323a82d4d59c1cc87a6f883e2ab89c1
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 #include "qom/object.h"
39 #include <poll.h>
42 * Print and error on both the Monitor and the Log file.
44 #define ERROR(errp, fmt, ...) \
45 do { \
46 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
47 if (errp && (*(errp) == NULL)) { \
48 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
49 } \
50 } while (0)
52 #define RDMA_RESOLVE_TIMEOUT_MS 10000
54 /* Do not merge data if larger than this. */
55 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
56 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
58 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
61 * This is only for non-live state being migrated.
62 * Instead of RDMA_WRITE messages, we use RDMA_SEND
63 * messages for that state, which requires a different
64 * delivery design than main memory.
66 #define RDMA_SEND_INCREMENT 32768
69 * Maximum size infiniband SEND message
71 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
72 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
74 #define RDMA_CONTROL_VERSION_CURRENT 1
76 * Capabilities for negotiation.
78 #define RDMA_CAPABILITY_PIN_ALL 0x01
81 * Add the other flags above to this list of known capabilities
82 * as they are introduced.
84 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
86 #define CHECK_ERROR_STATE() \
87 do { \
88 if (rdma->error_state) { \
89 if (!rdma->error_reported) { \
90 error_report("RDMA is in an error state waiting migration" \
91 " to abort!"); \
92 rdma->error_reported = 1; \
93 } \
94 return rdma->error_state; \
95 } \
96 } while (0)
99 * A work request ID is 64-bits and we split up these bits
100 * into 3 parts:
102 * bits 0-15 : type of control message, 2^16
103 * bits 16-29: ram block index, 2^14
104 * bits 30-63: ram block chunk number, 2^34
106 * The last two bit ranges are only used for RDMA writes,
107 * in order to track their completion and potentially
108 * also track unregistration status of the message.
110 #define RDMA_WRID_TYPE_SHIFT 0UL
111 #define RDMA_WRID_BLOCK_SHIFT 16UL
112 #define RDMA_WRID_CHUNK_SHIFT 30UL
114 #define RDMA_WRID_TYPE_MASK \
115 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
117 #define RDMA_WRID_BLOCK_MASK \
118 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
120 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
123 * RDMA migration protocol:
124 * 1. RDMA Writes (data messages, i.e. RAM)
125 * 2. IB Send/Recv (control channel messages)
127 enum {
128 RDMA_WRID_NONE = 0,
129 RDMA_WRID_RDMA_WRITE = 1,
130 RDMA_WRID_SEND_CONTROL = 2000,
131 RDMA_WRID_RECV_CONTROL = 4000,
134 static const char *wrid_desc[] = {
135 [RDMA_WRID_NONE] = "NONE",
136 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
137 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
138 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
142 * Work request IDs for IB SEND messages only (not RDMA writes).
143 * This is used by the migration protocol to transmit
144 * control messages (such as device state and registration commands)
146 * We could use more WRs, but we have enough for now.
148 enum {
149 RDMA_WRID_READY = 0,
150 RDMA_WRID_DATA,
151 RDMA_WRID_CONTROL,
152 RDMA_WRID_MAX,
156 * SEND/RECV IB Control Messages.
158 enum {
159 RDMA_CONTROL_NONE = 0,
160 RDMA_CONTROL_ERROR,
161 RDMA_CONTROL_READY, /* ready to receive */
162 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
163 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
164 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
165 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
166 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
167 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
168 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
169 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
170 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
175 * Memory and MR structures used to represent an IB Send/Recv work request.
176 * This is *not* used for RDMA writes, only IB Send/Recv.
178 typedef struct {
179 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
180 struct ibv_mr *control_mr; /* registration metadata */
181 size_t control_len; /* length of the message */
182 uint8_t *control_curr; /* start of unconsumed bytes */
183 } RDMAWorkRequestData;
186 * Negotiate RDMA capabilities during connection-setup time.
188 typedef struct {
189 uint32_t version;
190 uint32_t flags;
191 } RDMACapabilities;
193 static void caps_to_network(RDMACapabilities *cap)
195 cap->version = htonl(cap->version);
196 cap->flags = htonl(cap->flags);
199 static void network_to_caps(RDMACapabilities *cap)
201 cap->version = ntohl(cap->version);
202 cap->flags = ntohl(cap->flags);
206 * Representation of a RAMBlock from an RDMA perspective.
207 * This is not transmitted, only local.
208 * This and subsequent structures cannot be linked lists
209 * because we're using a single IB message to transmit
210 * the information. It's small anyway, so a list is overkill.
212 typedef struct RDMALocalBlock {
213 char *block_name;
214 uint8_t *local_host_addr; /* local virtual address */
215 uint64_t remote_host_addr; /* remote virtual address */
216 uint64_t offset;
217 uint64_t length;
218 struct ibv_mr **pmr; /* MRs for chunk-level registration */
219 struct ibv_mr *mr; /* MR for non-chunk-level registration */
220 uint32_t *remote_keys; /* rkeys for chunk-level registration */
221 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
222 int index; /* which block are we */
223 unsigned int src_index; /* (Only used on dest) */
224 bool is_ram_block;
225 int nb_chunks;
226 unsigned long *transit_bitmap;
227 unsigned long *unregister_bitmap;
228 } RDMALocalBlock;
231 * Also represents a RAMblock, but only on the dest.
232 * This gets transmitted by the dest during connection-time
233 * to the source VM and then is used to populate the
234 * corresponding RDMALocalBlock with
235 * the information needed to perform the actual RDMA.
237 typedef struct QEMU_PACKED RDMADestBlock {
238 uint64_t remote_host_addr;
239 uint64_t offset;
240 uint64_t length;
241 uint32_t remote_rkey;
242 uint32_t padding;
243 } RDMADestBlock;
245 static const char *control_desc(unsigned int rdma_control)
247 static const char *strs[] = {
248 [RDMA_CONTROL_NONE] = "NONE",
249 [RDMA_CONTROL_ERROR] = "ERROR",
250 [RDMA_CONTROL_READY] = "READY",
251 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
252 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
253 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
254 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
255 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
256 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
257 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
258 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
259 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
262 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
263 return "??BAD CONTROL VALUE??";
266 return strs[rdma_control];
269 static uint64_t htonll(uint64_t v)
271 union { uint32_t lv[2]; uint64_t llv; } u;
272 u.lv[0] = htonl(v >> 32);
273 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
274 return u.llv;
277 static uint64_t ntohll(uint64_t v)
279 union { uint32_t lv[2]; uint64_t llv; } u;
280 u.llv = v;
281 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
284 static void dest_block_to_network(RDMADestBlock *db)
286 db->remote_host_addr = htonll(db->remote_host_addr);
287 db->offset = htonll(db->offset);
288 db->length = htonll(db->length);
289 db->remote_rkey = htonl(db->remote_rkey);
292 static void network_to_dest_block(RDMADestBlock *db)
294 db->remote_host_addr = ntohll(db->remote_host_addr);
295 db->offset = ntohll(db->offset);
296 db->length = ntohll(db->length);
297 db->remote_rkey = ntohl(db->remote_rkey);
301 * Virtual address of the above structures used for transmitting
302 * the RAMBlock descriptions at connection-time.
303 * This structure is *not* transmitted.
305 typedef struct RDMALocalBlocks {
306 int nb_blocks;
307 bool init; /* main memory init complete */
308 RDMALocalBlock *block;
309 } RDMALocalBlocks;
312 * Main data structure for RDMA state.
313 * While there is only one copy of this structure being allocated right now,
314 * this is the place where one would start if you wanted to consider
315 * having more than one RDMA connection open at the same time.
317 typedef struct RDMAContext {
318 char *host;
319 int port;
320 char *host_port;
322 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
325 * This is used by *_exchange_send() to figure out whether or not
326 * the initial "READY" message has already been received or not.
327 * This is because other functions may potentially poll() and detect
328 * the READY message before send() does, in which case we need to
329 * know if it completed.
331 int control_ready_expected;
333 /* number of outstanding writes */
334 int nb_sent;
336 /* store info about current buffer so that we can
337 merge it with future sends */
338 uint64_t current_addr;
339 uint64_t current_length;
340 /* index of ram block the current buffer belongs to */
341 int current_index;
342 /* index of the chunk in the current ram block */
343 int current_chunk;
345 bool pin_all;
348 * infiniband-specific variables for opening the device
349 * and maintaining connection state and so forth.
351 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
352 * cm_id->verbs, cm_id->channel, and cm_id->qp.
354 struct rdma_cm_id *cm_id; /* connection manager ID */
355 struct rdma_cm_id *listen_id;
356 bool connected;
358 struct ibv_context *verbs;
359 struct rdma_event_channel *channel;
360 struct ibv_qp *qp; /* queue pair */
361 struct ibv_comp_channel *comp_channel; /* completion channel */
362 struct ibv_pd *pd; /* protection domain */
363 struct ibv_cq *cq; /* completion queue */
366 * If a previous write failed (perhaps because of a failed
367 * memory registration, then do not attempt any future work
368 * and remember the error state.
370 int error_state;
371 int error_reported;
372 int received_error;
375 * Description of ram blocks used throughout the code.
377 RDMALocalBlocks local_ram_blocks;
378 RDMADestBlock *dest_blocks;
380 /* Index of the next RAMBlock received during block registration */
381 unsigned int next_src_index;
384 * Migration on *destination* started.
385 * Then use coroutine yield function.
386 * Source runs in a thread, so we don't care.
388 int migration_started_on_destination;
390 int total_registrations;
391 int total_writes;
393 int unregister_current, unregister_next;
394 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
396 GHashTable *blockmap;
398 /* the RDMAContext for return path */
399 struct RDMAContext *return_path;
400 bool is_return_path;
401 } RDMAContext;
403 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
404 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
408 struct QIOChannelRDMA {
409 QIOChannel parent;
410 RDMAContext *rdmain;
411 RDMAContext *rdmaout;
412 QEMUFile *file;
413 bool blocking; /* XXX we don't actually honour this yet */
417 * Main structure for IB Send/Recv control messages.
418 * This gets prepended at the beginning of every Send/Recv.
420 typedef struct QEMU_PACKED {
421 uint32_t len; /* Total length of data portion */
422 uint32_t type; /* which control command to perform */
423 uint32_t repeat; /* number of commands in data portion of same type */
424 uint32_t padding;
425 } RDMAControlHeader;
427 static void control_to_network(RDMAControlHeader *control)
429 control->type = htonl(control->type);
430 control->len = htonl(control->len);
431 control->repeat = htonl(control->repeat);
434 static void network_to_control(RDMAControlHeader *control)
436 control->type = ntohl(control->type);
437 control->len = ntohl(control->len);
438 control->repeat = ntohl(control->repeat);
442 * Register a single Chunk.
443 * Information sent by the source VM to inform the dest
444 * to register an single chunk of memory before we can perform
445 * the actual RDMA operation.
447 typedef struct QEMU_PACKED {
448 union QEMU_PACKED {
449 uint64_t current_addr; /* offset into the ram_addr_t space */
450 uint64_t chunk; /* chunk to lookup if unregistering */
451 } key;
452 uint32_t current_index; /* which ramblock the chunk belongs to */
453 uint32_t padding;
454 uint64_t chunks; /* how many sequential chunks to register */
455 } RDMARegister;
457 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
459 RDMALocalBlock *local_block;
460 local_block = &rdma->local_ram_blocks.block[reg->current_index];
462 if (local_block->is_ram_block) {
464 * current_addr as passed in is an address in the local ram_addr_t
465 * space, we need to translate this for the destination
467 reg->key.current_addr -= local_block->offset;
468 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
470 reg->key.current_addr = htonll(reg->key.current_addr);
471 reg->current_index = htonl(reg->current_index);
472 reg->chunks = htonll(reg->chunks);
475 static void network_to_register(RDMARegister *reg)
477 reg->key.current_addr = ntohll(reg->key.current_addr);
478 reg->current_index = ntohl(reg->current_index);
479 reg->chunks = ntohll(reg->chunks);
482 typedef struct QEMU_PACKED {
483 uint32_t value; /* if zero, we will madvise() */
484 uint32_t block_idx; /* which ram block index */
485 uint64_t offset; /* Address in remote ram_addr_t space */
486 uint64_t length; /* length of the chunk */
487 } RDMACompress;
489 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
491 comp->value = htonl(comp->value);
493 * comp->offset as passed in is an address in the local ram_addr_t
494 * space, we need to translate this for the destination
496 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
497 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
498 comp->block_idx = htonl(comp->block_idx);
499 comp->offset = htonll(comp->offset);
500 comp->length = htonll(comp->length);
503 static void network_to_compress(RDMACompress *comp)
505 comp->value = ntohl(comp->value);
506 comp->block_idx = ntohl(comp->block_idx);
507 comp->offset = ntohll(comp->offset);
508 comp->length = ntohll(comp->length);
512 * The result of the dest's memory registration produces an "rkey"
513 * which the source VM must reference in order to perform
514 * the RDMA operation.
516 typedef struct QEMU_PACKED {
517 uint32_t rkey;
518 uint32_t padding;
519 uint64_t host_addr;
520 } RDMARegisterResult;
522 static void result_to_network(RDMARegisterResult *result)
524 result->rkey = htonl(result->rkey);
525 result->host_addr = htonll(result->host_addr);
528 static void network_to_result(RDMARegisterResult *result)
530 result->rkey = ntohl(result->rkey);
531 result->host_addr = ntohll(result->host_addr);
534 const char *print_wrid(int wrid);
535 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
536 uint8_t *data, RDMAControlHeader *resp,
537 int *resp_idx,
538 int (*callback)(RDMAContext *rdma));
540 static inline uint64_t ram_chunk_index(const uint8_t *start,
541 const uint8_t *host)
543 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
546 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
547 uint64_t i)
549 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
550 (i << RDMA_REG_CHUNK_SHIFT));
553 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
554 uint64_t i)
556 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
557 (1UL << RDMA_REG_CHUNK_SHIFT);
559 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
560 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
563 return result;
566 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
567 void *host_addr,
568 ram_addr_t block_offset, uint64_t length)
570 RDMALocalBlocks *local = &rdma->local_ram_blocks;
571 RDMALocalBlock *block;
572 RDMALocalBlock *old = local->block;
574 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
576 if (local->nb_blocks) {
577 int x;
579 if (rdma->blockmap) {
580 for (x = 0; x < local->nb_blocks; x++) {
581 g_hash_table_remove(rdma->blockmap,
582 (void *)(uintptr_t)old[x].offset);
583 g_hash_table_insert(rdma->blockmap,
584 (void *)(uintptr_t)old[x].offset,
585 &local->block[x]);
588 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
589 g_free(old);
592 block = &local->block[local->nb_blocks];
594 block->block_name = g_strdup(block_name);
595 block->local_host_addr = host_addr;
596 block->offset = block_offset;
597 block->length = length;
598 block->index = local->nb_blocks;
599 block->src_index = ~0U; /* Filled in by the receipt of the block list */
600 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
601 block->transit_bitmap = bitmap_new(block->nb_chunks);
602 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
603 block->unregister_bitmap = bitmap_new(block->nb_chunks);
604 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
605 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
607 block->is_ram_block = local->init ? false : true;
609 if (rdma->blockmap) {
610 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
613 trace_rdma_add_block(block_name, local->nb_blocks,
614 (uintptr_t) block->local_host_addr,
615 block->offset, block->length,
616 (uintptr_t) (block->local_host_addr + block->length),
617 BITS_TO_LONGS(block->nb_chunks) *
618 sizeof(unsigned long) * 8,
619 block->nb_chunks);
621 local->nb_blocks++;
623 return 0;
627 * Memory regions need to be registered with the device and queue pairs setup
628 * in advanced before the migration starts. This tells us where the RAM blocks
629 * are so that we can register them individually.
631 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
633 const char *block_name = qemu_ram_get_idstr(rb);
634 void *host_addr = qemu_ram_get_host_addr(rb);
635 ram_addr_t block_offset = qemu_ram_get_offset(rb);
636 ram_addr_t length = qemu_ram_get_used_length(rb);
637 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
641 * Identify the RAMBlocks and their quantity. They will be references to
642 * identify chunk boundaries inside each RAMBlock and also be referenced
643 * during dynamic page registration.
645 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
647 RDMALocalBlocks *local = &rdma->local_ram_blocks;
648 int ret;
650 assert(rdma->blockmap == NULL);
651 memset(local, 0, sizeof *local);
652 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
653 if (ret) {
654 return ret;
656 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
657 rdma->dest_blocks = g_new0(RDMADestBlock,
658 rdma->local_ram_blocks.nb_blocks);
659 local->init = true;
660 return 0;
664 * Note: If used outside of cleanup, the caller must ensure that the destination
665 * block structures are also updated
667 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
669 RDMALocalBlocks *local = &rdma->local_ram_blocks;
670 RDMALocalBlock *old = local->block;
671 int x;
673 if (rdma->blockmap) {
674 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
676 if (block->pmr) {
677 int j;
679 for (j = 0; j < block->nb_chunks; j++) {
680 if (!block->pmr[j]) {
681 continue;
683 ibv_dereg_mr(block->pmr[j]);
684 rdma->total_registrations--;
686 g_free(block->pmr);
687 block->pmr = NULL;
690 if (block->mr) {
691 ibv_dereg_mr(block->mr);
692 rdma->total_registrations--;
693 block->mr = NULL;
696 g_free(block->transit_bitmap);
697 block->transit_bitmap = NULL;
699 g_free(block->unregister_bitmap);
700 block->unregister_bitmap = NULL;
702 g_free(block->remote_keys);
703 block->remote_keys = NULL;
705 g_free(block->block_name);
706 block->block_name = NULL;
708 if (rdma->blockmap) {
709 for (x = 0; x < local->nb_blocks; x++) {
710 g_hash_table_remove(rdma->blockmap,
711 (void *)(uintptr_t)old[x].offset);
715 if (local->nb_blocks > 1) {
717 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
719 if (block->index) {
720 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
723 if (block->index < (local->nb_blocks - 1)) {
724 memcpy(local->block + block->index, old + (block->index + 1),
725 sizeof(RDMALocalBlock) *
726 (local->nb_blocks - (block->index + 1)));
727 for (x = block->index; x < local->nb_blocks - 1; x++) {
728 local->block[x].index--;
731 } else {
732 assert(block == local->block);
733 local->block = NULL;
736 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
737 block->offset, block->length,
738 (uintptr_t)(block->local_host_addr + block->length),
739 BITS_TO_LONGS(block->nb_chunks) *
740 sizeof(unsigned long) * 8, block->nb_chunks);
742 g_free(old);
744 local->nb_blocks--;
746 if (local->nb_blocks && rdma->blockmap) {
747 for (x = 0; x < local->nb_blocks; x++) {
748 g_hash_table_insert(rdma->blockmap,
749 (void *)(uintptr_t)local->block[x].offset,
750 &local->block[x]);
754 return 0;
758 * Put in the log file which RDMA device was opened and the details
759 * associated with that device.
761 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
763 struct ibv_port_attr port;
765 if (ibv_query_port(verbs, 1, &port)) {
766 error_report("Failed to query port information");
767 return;
770 printf("%s RDMA Device opened: kernel name %s "
771 "uverbs device name %s, "
772 "infiniband_verbs class device path %s, "
773 "infiniband class device path %s, "
774 "transport: (%d) %s\n",
775 who,
776 verbs->device->name,
777 verbs->device->dev_name,
778 verbs->device->dev_path,
779 verbs->device->ibdev_path,
780 port.link_layer,
781 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
782 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
783 ? "Ethernet" : "Unknown"));
787 * Put in the log file the RDMA gid addressing information,
788 * useful for folks who have trouble understanding the
789 * RDMA device hierarchy in the kernel.
791 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
793 char sgid[33];
794 char dgid[33];
795 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
796 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
797 trace_qemu_rdma_dump_gid(who, sgid, dgid);
801 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
802 * We will try the next addrinfo struct, and fail if there are
803 * no other valid addresses to bind against.
805 * If user is listening on '[::]', then we will not have a opened a device
806 * yet and have no way of verifying if the device is RoCE or not.
808 * In this case, the source VM will throw an error for ALL types of
809 * connections (both IPv4 and IPv6) if the destination machine does not have
810 * a regular infiniband network available for use.
812 * The only way to guarantee that an error is thrown for broken kernels is
813 * for the management software to choose a *specific* interface at bind time
814 * and validate what time of hardware it is.
816 * Unfortunately, this puts the user in a fix:
818 * If the source VM connects with an IPv4 address without knowing that the
819 * destination has bound to '[::]' the migration will unconditionally fail
820 * unless the management software is explicitly listening on the IPv4
821 * address while using a RoCE-based device.
823 * If the source VM connects with an IPv6 address, then we're OK because we can
824 * throw an error on the source (and similarly on the destination).
826 * But in mixed environments, this will be broken for a while until it is fixed
827 * inside linux.
829 * We do provide a *tiny* bit of help in this function: We can list all of the
830 * devices in the system and check to see if all the devices are RoCE or
831 * Infiniband.
833 * If we detect that we have a *pure* RoCE environment, then we can safely
834 * thrown an error even if the management software has specified '[::]' as the
835 * bind address.
837 * However, if there is are multiple hetergeneous devices, then we cannot make
838 * this assumption and the user just has to be sure they know what they are
839 * doing.
841 * Patches are being reviewed on linux-rdma.
843 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
845 /* This bug only exists in linux, to our knowledge. */
846 #ifdef CONFIG_LINUX
847 struct ibv_port_attr port_attr;
850 * Verbs are only NULL if management has bound to '[::]'.
852 * Let's iterate through all the devices and see if there any pure IB
853 * devices (non-ethernet).
855 * If not, then we can safely proceed with the migration.
856 * Otherwise, there are no guarantees until the bug is fixed in linux.
858 if (!verbs) {
859 int num_devices, x;
860 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
861 bool roce_found = false;
862 bool ib_found = false;
864 for (x = 0; x < num_devices; x++) {
865 verbs = ibv_open_device(dev_list[x]);
866 if (!verbs) {
867 if (errno == EPERM) {
868 continue;
869 } else {
870 return -EINVAL;
874 if (ibv_query_port(verbs, 1, &port_attr)) {
875 ibv_close_device(verbs);
876 ERROR(errp, "Could not query initial IB port");
877 return -EINVAL;
880 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
881 ib_found = true;
882 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
883 roce_found = true;
886 ibv_close_device(verbs);
890 if (roce_found) {
891 if (ib_found) {
892 fprintf(stderr, "WARN: migrations may fail:"
893 " IPv6 over RoCE / iWARP in linux"
894 " is broken. But since you appear to have a"
895 " mixed RoCE / IB environment, be sure to only"
896 " migrate over the IB fabric until the kernel "
897 " fixes the bug.\n");
898 } else {
899 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
900 " and your management software has specified '[::]'"
901 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
902 return -ENONET;
906 return 0;
910 * If we have a verbs context, that means that some other than '[::]' was
911 * used by the management software for binding. In which case we can
912 * actually warn the user about a potentially broken kernel.
915 /* IB ports start with 1, not 0 */
916 if (ibv_query_port(verbs, 1, &port_attr)) {
917 ERROR(errp, "Could not query initial IB port");
918 return -EINVAL;
921 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
922 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
923 "(but patches on linux-rdma in progress)");
924 return -ENONET;
927 #endif
929 return 0;
933 * Figure out which RDMA device corresponds to the requested IP hostname
934 * Also create the initial connection manager identifiers for opening
935 * the connection.
937 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
939 int ret;
940 struct rdma_addrinfo *res;
941 char port_str[16];
942 struct rdma_cm_event *cm_event;
943 char ip[40] = "unknown";
944 struct rdma_addrinfo *e;
946 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
947 ERROR(errp, "RDMA hostname has not been set");
948 return -EINVAL;
951 /* create CM channel */
952 rdma->channel = rdma_create_event_channel();
953 if (!rdma->channel) {
954 ERROR(errp, "could not create CM channel");
955 return -EINVAL;
958 /* create CM id */
959 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
960 if (ret) {
961 ERROR(errp, "could not create channel id");
962 goto err_resolve_create_id;
965 snprintf(port_str, 16, "%d", rdma->port);
966 port_str[15] = '\0';
968 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
969 if (ret < 0) {
970 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
971 goto err_resolve_get_addr;
974 for (e = res; e != NULL; e = e->ai_next) {
975 inet_ntop(e->ai_family,
976 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
977 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
979 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
980 RDMA_RESOLVE_TIMEOUT_MS);
981 if (!ret) {
982 if (e->ai_family == AF_INET6) {
983 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
984 if (ret) {
985 continue;
988 goto route;
992 rdma_freeaddrinfo(res);
993 ERROR(errp, "could not resolve address %s", rdma->host);
994 goto err_resolve_get_addr;
996 route:
997 rdma_freeaddrinfo(res);
998 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1000 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1001 if (ret) {
1002 ERROR(errp, "could not perform event_addr_resolved");
1003 goto err_resolve_get_addr;
1006 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1007 ERROR(errp, "result not equal to event_addr_resolved %s",
1008 rdma_event_str(cm_event->event));
1009 perror("rdma_resolve_addr");
1010 rdma_ack_cm_event(cm_event);
1011 ret = -EINVAL;
1012 goto err_resolve_get_addr;
1014 rdma_ack_cm_event(cm_event);
1016 /* resolve route */
1017 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1018 if (ret) {
1019 ERROR(errp, "could not resolve rdma route");
1020 goto err_resolve_get_addr;
1023 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1024 if (ret) {
1025 ERROR(errp, "could not perform event_route_resolved");
1026 goto err_resolve_get_addr;
1028 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1029 ERROR(errp, "result not equal to event_route_resolved: %s",
1030 rdma_event_str(cm_event->event));
1031 rdma_ack_cm_event(cm_event);
1032 ret = -EINVAL;
1033 goto err_resolve_get_addr;
1035 rdma_ack_cm_event(cm_event);
1036 rdma->verbs = rdma->cm_id->verbs;
1037 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1038 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1039 return 0;
1041 err_resolve_get_addr:
1042 rdma_destroy_id(rdma->cm_id);
1043 rdma->cm_id = NULL;
1044 err_resolve_create_id:
1045 rdma_destroy_event_channel(rdma->channel);
1046 rdma->channel = NULL;
1047 return ret;
1051 * Create protection domain and completion queues
1053 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1055 /* allocate pd */
1056 rdma->pd = ibv_alloc_pd(rdma->verbs);
1057 if (!rdma->pd) {
1058 error_report("failed to allocate protection domain");
1059 return -1;
1062 /* create completion channel */
1063 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1064 if (!rdma->comp_channel) {
1065 error_report("failed to allocate completion channel");
1066 goto err_alloc_pd_cq;
1070 * Completion queue can be filled by both read and write work requests,
1071 * so must reflect the sum of both possible queue sizes.
1073 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074 NULL, rdma->comp_channel, 0);
1075 if (!rdma->cq) {
1076 error_report("failed to allocate completion queue");
1077 goto err_alloc_pd_cq;
1080 return 0;
1082 err_alloc_pd_cq:
1083 if (rdma->pd) {
1084 ibv_dealloc_pd(rdma->pd);
1086 if (rdma->comp_channel) {
1087 ibv_destroy_comp_channel(rdma->comp_channel);
1089 rdma->pd = NULL;
1090 rdma->comp_channel = NULL;
1091 return -1;
1096 * Create queue pairs.
1098 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1100 struct ibv_qp_init_attr attr = { 0 };
1101 int ret;
1103 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1104 attr.cap.max_recv_wr = 3;
1105 attr.cap.max_send_sge = 1;
1106 attr.cap.max_recv_sge = 1;
1107 attr.send_cq = rdma->cq;
1108 attr.recv_cq = rdma->cq;
1109 attr.qp_type = IBV_QPT_RC;
1111 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1112 if (ret) {
1113 return -1;
1116 rdma->qp = rdma->cm_id->qp;
1117 return 0;
1120 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1122 int i;
1123 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1125 for (i = 0; i < local->nb_blocks; i++) {
1126 local->block[i].mr =
1127 ibv_reg_mr(rdma->pd,
1128 local->block[i].local_host_addr,
1129 local->block[i].length,
1130 IBV_ACCESS_LOCAL_WRITE |
1131 IBV_ACCESS_REMOTE_WRITE
1133 if (!local->block[i].mr) {
1134 perror("Failed to register local dest ram block!\n");
1135 break;
1137 rdma->total_registrations++;
1140 if (i >= local->nb_blocks) {
1141 return 0;
1144 for (i--; i >= 0; i--) {
1145 ibv_dereg_mr(local->block[i].mr);
1146 rdma->total_registrations--;
1149 return -1;
1154 * Find the ram block that corresponds to the page requested to be
1155 * transmitted by QEMU.
1157 * Once the block is found, also identify which 'chunk' within that
1158 * block that the page belongs to.
1160 * This search cannot fail or the migration will fail.
1162 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1163 uintptr_t block_offset,
1164 uint64_t offset,
1165 uint64_t length,
1166 uint64_t *block_index,
1167 uint64_t *chunk_index)
1169 uint64_t current_addr = block_offset + offset;
1170 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1171 (void *) block_offset);
1172 assert(block);
1173 assert(current_addr >= block->offset);
1174 assert((current_addr + length) <= (block->offset + block->length));
1176 *block_index = block->index;
1177 *chunk_index = ram_chunk_index(block->local_host_addr,
1178 block->local_host_addr + (current_addr - block->offset));
1180 return 0;
1184 * Register a chunk with IB. If the chunk was already registered
1185 * previously, then skip.
1187 * Also return the keys associated with the registration needed
1188 * to perform the actual RDMA operation.
1190 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1191 RDMALocalBlock *block, uintptr_t host_addr,
1192 uint32_t *lkey, uint32_t *rkey, int chunk,
1193 uint8_t *chunk_start, uint8_t *chunk_end)
1195 if (block->mr) {
1196 if (lkey) {
1197 *lkey = block->mr->lkey;
1199 if (rkey) {
1200 *rkey = block->mr->rkey;
1202 return 0;
1205 /* allocate memory to store chunk MRs */
1206 if (!block->pmr) {
1207 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1211 * If 'rkey', then we're the destination, so grant access to the source.
1213 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1215 if (!block->pmr[chunk]) {
1216 uint64_t len = chunk_end - chunk_start;
1218 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1220 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1221 chunk_start, len,
1222 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1223 IBV_ACCESS_REMOTE_WRITE) : 0));
1225 if (!block->pmr[chunk]) {
1226 perror("Failed to register chunk!");
1227 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1228 " start %" PRIuPTR " end %" PRIuPTR
1229 " host %" PRIuPTR
1230 " local %" PRIuPTR " registrations: %d\n",
1231 block->index, chunk, (uintptr_t)chunk_start,
1232 (uintptr_t)chunk_end, host_addr,
1233 (uintptr_t)block->local_host_addr,
1234 rdma->total_registrations);
1235 return -1;
1237 rdma->total_registrations++;
1240 if (lkey) {
1241 *lkey = block->pmr[chunk]->lkey;
1243 if (rkey) {
1244 *rkey = block->pmr[chunk]->rkey;
1246 return 0;
1250 * Register (at connection time) the memory used for control
1251 * channel messages.
1253 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1255 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1256 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1257 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1258 if (rdma->wr_data[idx].control_mr) {
1259 rdma->total_registrations++;
1260 return 0;
1262 error_report("qemu_rdma_reg_control failed");
1263 return -1;
1266 const char *print_wrid(int wrid)
1268 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1269 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1271 return wrid_desc[wrid];
1275 * RDMA requires memory registration (mlock/pinning), but this is not good for
1276 * overcommitment.
1278 * In preparation for the future where LRU information or workload-specific
1279 * writable writable working set memory access behavior is available to QEMU
1280 * it would be nice to have in place the ability to UN-register/UN-pin
1281 * particular memory regions from the RDMA hardware when it is determine that
1282 * those regions of memory will likely not be accessed again in the near future.
1284 * While we do not yet have such information right now, the following
1285 * compile-time option allows us to perform a non-optimized version of this
1286 * behavior.
1288 * By uncommenting this option, you will cause *all* RDMA transfers to be
1289 * unregistered immediately after the transfer completes on both sides of the
1290 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1292 * This will have a terrible impact on migration performance, so until future
1293 * workload information or LRU information is available, do not attempt to use
1294 * this feature except for basic testing.
1296 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1299 * Perform a non-optimized memory unregistration after every transfer
1300 * for demonstration purposes, only if pin-all is not requested.
1302 * Potential optimizations:
1303 * 1. Start a new thread to run this function continuously
1304 - for bit clearing
1305 - and for receipt of unregister messages
1306 * 2. Use an LRU.
1307 * 3. Use workload hints.
1309 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1311 while (rdma->unregistrations[rdma->unregister_current]) {
1312 int ret;
1313 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1314 uint64_t chunk =
1315 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1316 uint64_t index =
1317 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1318 RDMALocalBlock *block =
1319 &(rdma->local_ram_blocks.block[index]);
1320 RDMARegister reg = { .current_index = index };
1321 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1323 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1324 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1325 .repeat = 1,
1328 trace_qemu_rdma_unregister_waiting_proc(chunk,
1329 rdma->unregister_current);
1331 rdma->unregistrations[rdma->unregister_current] = 0;
1332 rdma->unregister_current++;
1334 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1335 rdma->unregister_current = 0;
1340 * Unregistration is speculative (because migration is single-threaded
1341 * and we cannot break the protocol's inifinband message ordering).
1342 * Thus, if the memory is currently being used for transmission,
1343 * then abort the attempt to unregister and try again
1344 * later the next time a completion is received for this memory.
1346 clear_bit(chunk, block->unregister_bitmap);
1348 if (test_bit(chunk, block->transit_bitmap)) {
1349 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1350 continue;
1353 trace_qemu_rdma_unregister_waiting_send(chunk);
1355 ret = ibv_dereg_mr(block->pmr[chunk]);
1356 block->pmr[chunk] = NULL;
1357 block->remote_keys[chunk] = 0;
1359 if (ret != 0) {
1360 perror("unregistration chunk failed");
1361 return -ret;
1363 rdma->total_registrations--;
1365 reg.key.chunk = chunk;
1366 register_to_network(rdma, &reg);
1367 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1368 &resp, NULL, NULL);
1369 if (ret < 0) {
1370 return ret;
1373 trace_qemu_rdma_unregister_waiting_complete(chunk);
1376 return 0;
1379 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1380 uint64_t chunk)
1382 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1384 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1385 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1387 return result;
1391 * Set bit for unregistration in the next iteration.
1392 * We cannot transmit right here, but will unpin later.
1394 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1395 uint64_t chunk, uint64_t wr_id)
1397 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1398 error_report("rdma migration: queue is full");
1399 } else {
1400 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1402 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1403 trace_qemu_rdma_signal_unregister_append(chunk,
1404 rdma->unregister_next);
1406 rdma->unregistrations[rdma->unregister_next++] =
1407 qemu_rdma_make_wrid(wr_id, index, chunk);
1409 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1410 rdma->unregister_next = 0;
1412 } else {
1413 trace_qemu_rdma_signal_unregister_already(chunk);
1419 * Consult the connection manager to see a work request
1420 * (of any kind) has completed.
1421 * Return the work request ID that completed.
1423 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1424 uint32_t *byte_len)
1426 int ret;
1427 struct ibv_wc wc;
1428 uint64_t wr_id;
1430 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1432 if (!ret) {
1433 *wr_id_out = RDMA_WRID_NONE;
1434 return 0;
1437 if (ret < 0) {
1438 error_report("ibv_poll_cq return %d", ret);
1439 return ret;
1442 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1444 if (wc.status != IBV_WC_SUCCESS) {
1445 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1446 wc.status, ibv_wc_status_str(wc.status));
1447 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1449 return -1;
1452 if (rdma->control_ready_expected &&
1453 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1454 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1455 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1456 rdma->control_ready_expected = 0;
1459 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1460 uint64_t chunk =
1461 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1462 uint64_t index =
1463 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1464 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1466 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1467 index, chunk, block->local_host_addr,
1468 (void *)(uintptr_t)block->remote_host_addr);
1470 clear_bit(chunk, block->transit_bitmap);
1472 if (rdma->nb_sent > 0) {
1473 rdma->nb_sent--;
1476 if (!rdma->pin_all) {
1478 * FYI: If one wanted to signal a specific chunk to be unregistered
1479 * using LRU or workload-specific information, this is the function
1480 * you would call to do so. That chunk would then get asynchronously
1481 * unregistered later.
1483 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1484 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1485 #endif
1487 } else {
1488 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1491 *wr_id_out = wc.wr_id;
1492 if (byte_len) {
1493 *byte_len = wc.byte_len;
1496 return 0;
1499 /* Wait for activity on the completion channel.
1500 * Returns 0 on success, none-0 on error.
1502 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1504 struct rdma_cm_event *cm_event;
1505 int ret = -1;
1508 * Coroutine doesn't start until migration_fd_process_incoming()
1509 * so don't yield unless we know we're running inside of a coroutine.
1511 if (rdma->migration_started_on_destination &&
1512 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1513 yield_until_fd_readable(rdma->comp_channel->fd);
1514 } else {
1515 /* This is the source side, we're in a separate thread
1516 * or destination prior to migration_fd_process_incoming()
1517 * after postcopy, the destination also in a separate thread.
1518 * we can't yield; so we have to poll the fd.
1519 * But we need to be able to handle 'cancel' or an error
1520 * without hanging forever.
1522 while (!rdma->error_state && !rdma->received_error) {
1523 GPollFD pfds[2];
1524 pfds[0].fd = rdma->comp_channel->fd;
1525 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1526 pfds[0].revents = 0;
1528 pfds[1].fd = rdma->channel->fd;
1529 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1530 pfds[1].revents = 0;
1532 /* 0.1s timeout, should be fine for a 'cancel' */
1533 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1534 case 2:
1535 case 1: /* fd active */
1536 if (pfds[0].revents) {
1537 return 0;
1540 if (pfds[1].revents) {
1541 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1542 if (!ret) {
1543 rdma_ack_cm_event(cm_event);
1546 error_report("receive cm event while wait comp channel,"
1547 "cm event is %d", cm_event->event);
1548 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1549 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1550 return -EPIPE;
1553 break;
1555 case 0: /* Timeout, go around again */
1556 break;
1558 default: /* Error of some type -
1559 * I don't trust errno from qemu_poll_ns
1561 error_report("%s: poll failed", __func__);
1562 return -EPIPE;
1565 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1566 /* Bail out and let the cancellation happen */
1567 return -EPIPE;
1572 if (rdma->received_error) {
1573 return -EPIPE;
1575 return rdma->error_state;
1579 * Block until the next work request has completed.
1581 * First poll to see if a work request has already completed,
1582 * otherwise block.
1584 * If we encounter completed work requests for IDs other than
1585 * the one we're interested in, then that's generally an error.
1587 * The only exception is actual RDMA Write completions. These
1588 * completions only need to be recorded, but do not actually
1589 * need further processing.
1591 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1592 uint32_t *byte_len)
1594 int num_cq_events = 0, ret = 0;
1595 struct ibv_cq *cq;
1596 void *cq_ctx;
1597 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1599 if (ibv_req_notify_cq(rdma->cq, 0)) {
1600 return -1;
1602 /* poll cq first */
1603 while (wr_id != wrid_requested) {
1604 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1605 if (ret < 0) {
1606 return ret;
1609 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1611 if (wr_id == RDMA_WRID_NONE) {
1612 break;
1614 if (wr_id != wrid_requested) {
1615 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1616 wrid_requested, print_wrid(wr_id), wr_id);
1620 if (wr_id == wrid_requested) {
1621 return 0;
1624 while (1) {
1625 ret = qemu_rdma_wait_comp_channel(rdma);
1626 if (ret) {
1627 goto err_block_for_wrid;
1630 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1631 if (ret) {
1632 perror("ibv_get_cq_event");
1633 goto err_block_for_wrid;
1636 num_cq_events++;
1638 ret = -ibv_req_notify_cq(cq, 0);
1639 if (ret) {
1640 goto err_block_for_wrid;
1643 while (wr_id != wrid_requested) {
1644 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1645 if (ret < 0) {
1646 goto err_block_for_wrid;
1649 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1651 if (wr_id == RDMA_WRID_NONE) {
1652 break;
1654 if (wr_id != wrid_requested) {
1655 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1656 wrid_requested, print_wrid(wr_id), wr_id);
1660 if (wr_id == wrid_requested) {
1661 goto success_block_for_wrid;
1665 success_block_for_wrid:
1666 if (num_cq_events) {
1667 ibv_ack_cq_events(cq, num_cq_events);
1669 return 0;
1671 err_block_for_wrid:
1672 if (num_cq_events) {
1673 ibv_ack_cq_events(cq, num_cq_events);
1676 rdma->error_state = ret;
1677 return ret;
1681 * Post a SEND message work request for the control channel
1682 * containing some data and block until the post completes.
1684 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1685 RDMAControlHeader *head)
1687 int ret = 0;
1688 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1689 struct ibv_send_wr *bad_wr;
1690 struct ibv_sge sge = {
1691 .addr = (uintptr_t)(wr->control),
1692 .length = head->len + sizeof(RDMAControlHeader),
1693 .lkey = wr->control_mr->lkey,
1695 struct ibv_send_wr send_wr = {
1696 .wr_id = RDMA_WRID_SEND_CONTROL,
1697 .opcode = IBV_WR_SEND,
1698 .send_flags = IBV_SEND_SIGNALED,
1699 .sg_list = &sge,
1700 .num_sge = 1,
1703 trace_qemu_rdma_post_send_control(control_desc(head->type));
1706 * We don't actually need to do a memcpy() in here if we used
1707 * the "sge" properly, but since we're only sending control messages
1708 * (not RAM in a performance-critical path), then its OK for now.
1710 * The copy makes the RDMAControlHeader simpler to manipulate
1711 * for the time being.
1713 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1714 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1715 control_to_network((void *) wr->control);
1717 if (buf) {
1718 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1722 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1724 if (ret > 0) {
1725 error_report("Failed to use post IB SEND for control");
1726 return -ret;
1729 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1730 if (ret < 0) {
1731 error_report("rdma migration: send polling control error");
1734 return ret;
1738 * Post a RECV work request in anticipation of some future receipt
1739 * of data on the control channel.
1741 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1743 struct ibv_recv_wr *bad_wr;
1744 struct ibv_sge sge = {
1745 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1746 .length = RDMA_CONTROL_MAX_BUFFER,
1747 .lkey = rdma->wr_data[idx].control_mr->lkey,
1750 struct ibv_recv_wr recv_wr = {
1751 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1752 .sg_list = &sge,
1753 .num_sge = 1,
1757 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1758 return -1;
1761 return 0;
1765 * Block and wait for a RECV control channel message to arrive.
1767 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1768 RDMAControlHeader *head, int expecting, int idx)
1770 uint32_t byte_len;
1771 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1772 &byte_len);
1774 if (ret < 0) {
1775 error_report("rdma migration: recv polling control error!");
1776 return ret;
1779 network_to_control((void *) rdma->wr_data[idx].control);
1780 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1782 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1784 if (expecting == RDMA_CONTROL_NONE) {
1785 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1786 head->type);
1787 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1788 error_report("Was expecting a %s (%d) control message"
1789 ", but got: %s (%d), length: %d",
1790 control_desc(expecting), expecting,
1791 control_desc(head->type), head->type, head->len);
1792 if (head->type == RDMA_CONTROL_ERROR) {
1793 rdma->received_error = true;
1795 return -EIO;
1797 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1798 error_report("too long length: %d", head->len);
1799 return -EINVAL;
1801 if (sizeof(*head) + head->len != byte_len) {
1802 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1803 return -EINVAL;
1806 return 0;
1810 * When a RECV work request has completed, the work request's
1811 * buffer is pointed at the header.
1813 * This will advance the pointer to the data portion
1814 * of the control message of the work request's buffer that
1815 * was populated after the work request finished.
1817 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1818 RDMAControlHeader *head)
1820 rdma->wr_data[idx].control_len = head->len;
1821 rdma->wr_data[idx].control_curr =
1822 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1826 * This is an 'atomic' high-level operation to deliver a single, unified
1827 * control-channel message.
1829 * Additionally, if the user is expecting some kind of reply to this message,
1830 * they can request a 'resp' response message be filled in by posting an
1831 * additional work request on behalf of the user and waiting for an additional
1832 * completion.
1834 * The extra (optional) response is used during registration to us from having
1835 * to perform an *additional* exchange of message just to provide a response by
1836 * instead piggy-backing on the acknowledgement.
1838 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1839 uint8_t *data, RDMAControlHeader *resp,
1840 int *resp_idx,
1841 int (*callback)(RDMAContext *rdma))
1843 int ret = 0;
1846 * Wait until the dest is ready before attempting to deliver the message
1847 * by waiting for a READY message.
1849 if (rdma->control_ready_expected) {
1850 RDMAControlHeader resp;
1851 ret = qemu_rdma_exchange_get_response(rdma,
1852 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1853 if (ret < 0) {
1854 return ret;
1859 * If the user is expecting a response, post a WR in anticipation of it.
1861 if (resp) {
1862 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1863 if (ret) {
1864 error_report("rdma migration: error posting"
1865 " extra control recv for anticipated result!");
1866 return ret;
1871 * Post a WR to replace the one we just consumed for the READY message.
1873 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1874 if (ret) {
1875 error_report("rdma migration: error posting first control recv!");
1876 return ret;
1880 * Deliver the control message that was requested.
1882 ret = qemu_rdma_post_send_control(rdma, data, head);
1884 if (ret < 0) {
1885 error_report("Failed to send control buffer!");
1886 return ret;
1890 * If we're expecting a response, block and wait for it.
1892 if (resp) {
1893 if (callback) {
1894 trace_qemu_rdma_exchange_send_issue_callback();
1895 ret = callback(rdma);
1896 if (ret < 0) {
1897 return ret;
1901 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1902 ret = qemu_rdma_exchange_get_response(rdma, resp,
1903 resp->type, RDMA_WRID_DATA);
1905 if (ret < 0) {
1906 return ret;
1909 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1910 if (resp_idx) {
1911 *resp_idx = RDMA_WRID_DATA;
1913 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1916 rdma->control_ready_expected = 1;
1918 return 0;
1922 * This is an 'atomic' high-level operation to receive a single, unified
1923 * control-channel message.
1925 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1926 int expecting)
1928 RDMAControlHeader ready = {
1929 .len = 0,
1930 .type = RDMA_CONTROL_READY,
1931 .repeat = 1,
1933 int ret;
1936 * Inform the source that we're ready to receive a message.
1938 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1940 if (ret < 0) {
1941 error_report("Failed to send control buffer!");
1942 return ret;
1946 * Block and wait for the message.
1948 ret = qemu_rdma_exchange_get_response(rdma, head,
1949 expecting, RDMA_WRID_READY);
1951 if (ret < 0) {
1952 return ret;
1955 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1958 * Post a new RECV work request to replace the one we just consumed.
1960 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1961 if (ret) {
1962 error_report("rdma migration: error posting second control recv!");
1963 return ret;
1966 return 0;
1970 * Write an actual chunk of memory using RDMA.
1972 * If we're using dynamic registration on the dest-side, we have to
1973 * send a registration command first.
1975 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1976 int current_index, uint64_t current_addr,
1977 uint64_t length)
1979 struct ibv_sge sge;
1980 struct ibv_send_wr send_wr = { 0 };
1981 struct ibv_send_wr *bad_wr;
1982 int reg_result_idx, ret, count = 0;
1983 uint64_t chunk, chunks;
1984 uint8_t *chunk_start, *chunk_end;
1985 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1986 RDMARegister reg;
1987 RDMARegisterResult *reg_result;
1988 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1989 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1990 .type = RDMA_CONTROL_REGISTER_REQUEST,
1991 .repeat = 1,
1994 retry:
1995 sge.addr = (uintptr_t)(block->local_host_addr +
1996 (current_addr - block->offset));
1997 sge.length = length;
1999 chunk = ram_chunk_index(block->local_host_addr,
2000 (uint8_t *)(uintptr_t)sge.addr);
2001 chunk_start = ram_chunk_start(block, chunk);
2003 if (block->is_ram_block) {
2004 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2006 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2007 chunks--;
2009 } else {
2010 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2012 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2013 chunks--;
2017 trace_qemu_rdma_write_one_top(chunks + 1,
2018 (chunks + 1) *
2019 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2021 chunk_end = ram_chunk_end(block, chunk + chunks);
2023 if (!rdma->pin_all) {
2024 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2025 qemu_rdma_unregister_waiting(rdma);
2026 #endif
2029 while (test_bit(chunk, block->transit_bitmap)) {
2030 (void)count;
2031 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2032 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2034 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2036 if (ret < 0) {
2037 error_report("Failed to Wait for previous write to complete "
2038 "block %d chunk %" PRIu64
2039 " current %" PRIu64 " len %" PRIu64 " %d",
2040 current_index, chunk, sge.addr, length, rdma->nb_sent);
2041 return ret;
2045 if (!rdma->pin_all || !block->is_ram_block) {
2046 if (!block->remote_keys[chunk]) {
2048 * This chunk has not yet been registered, so first check to see
2049 * if the entire chunk is zero. If so, tell the other size to
2050 * memset() + madvise() the entire chunk without RDMA.
2053 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2054 RDMACompress comp = {
2055 .offset = current_addr,
2056 .value = 0,
2057 .block_idx = current_index,
2058 .length = length,
2061 head.len = sizeof(comp);
2062 head.type = RDMA_CONTROL_COMPRESS;
2064 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2065 current_index, current_addr);
2067 compress_to_network(rdma, &comp);
2068 ret = qemu_rdma_exchange_send(rdma, &head,
2069 (uint8_t *) &comp, NULL, NULL, NULL);
2071 if (ret < 0) {
2072 return -EIO;
2075 acct_update_position(f, sge.length, true);
2077 return 1;
2081 * Otherwise, tell other side to register.
2083 reg.current_index = current_index;
2084 if (block->is_ram_block) {
2085 reg.key.current_addr = current_addr;
2086 } else {
2087 reg.key.chunk = chunk;
2089 reg.chunks = chunks;
2091 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2092 current_addr);
2094 register_to_network(rdma, &reg);
2095 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2096 &resp, &reg_result_idx, NULL);
2097 if (ret < 0) {
2098 return ret;
2101 /* try to overlap this single registration with the one we sent. */
2102 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2103 &sge.lkey, NULL, chunk,
2104 chunk_start, chunk_end)) {
2105 error_report("cannot get lkey");
2106 return -EINVAL;
2109 reg_result = (RDMARegisterResult *)
2110 rdma->wr_data[reg_result_idx].control_curr;
2112 network_to_result(reg_result);
2114 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2115 reg_result->rkey, chunk);
2117 block->remote_keys[chunk] = reg_result->rkey;
2118 block->remote_host_addr = reg_result->host_addr;
2119 } else {
2120 /* already registered before */
2121 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2122 &sge.lkey, NULL, chunk,
2123 chunk_start, chunk_end)) {
2124 error_report("cannot get lkey!");
2125 return -EINVAL;
2129 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2130 } else {
2131 send_wr.wr.rdma.rkey = block->remote_rkey;
2133 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2134 &sge.lkey, NULL, chunk,
2135 chunk_start, chunk_end)) {
2136 error_report("cannot get lkey!");
2137 return -EINVAL;
2142 * Encode the ram block index and chunk within this wrid.
2143 * We will use this information at the time of completion
2144 * to figure out which bitmap to check against and then which
2145 * chunk in the bitmap to look for.
2147 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2148 current_index, chunk);
2150 send_wr.opcode = IBV_WR_RDMA_WRITE;
2151 send_wr.send_flags = IBV_SEND_SIGNALED;
2152 send_wr.sg_list = &sge;
2153 send_wr.num_sge = 1;
2154 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2155 (current_addr - block->offset);
2157 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2158 sge.length);
2161 * ibv_post_send() does not return negative error numbers,
2162 * per the specification they are positive - no idea why.
2164 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2166 if (ret == ENOMEM) {
2167 trace_qemu_rdma_write_one_queue_full();
2168 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2169 if (ret < 0) {
2170 error_report("rdma migration: failed to make "
2171 "room in full send queue! %d", ret);
2172 return ret;
2175 goto retry;
2177 } else if (ret > 0) {
2178 perror("rdma migration: post rdma write failed");
2179 return -ret;
2182 set_bit(chunk, block->transit_bitmap);
2183 acct_update_position(f, sge.length, false);
2184 rdma->total_writes++;
2186 return 0;
2190 * Push out any unwritten RDMA operations.
2192 * We support sending out multiple chunks at the same time.
2193 * Not all of them need to get signaled in the completion queue.
2195 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2197 int ret;
2199 if (!rdma->current_length) {
2200 return 0;
2203 ret = qemu_rdma_write_one(f, rdma,
2204 rdma->current_index, rdma->current_addr, rdma->current_length);
2206 if (ret < 0) {
2207 return ret;
2210 if (ret == 0) {
2211 rdma->nb_sent++;
2212 trace_qemu_rdma_write_flush(rdma->nb_sent);
2215 rdma->current_length = 0;
2216 rdma->current_addr = 0;
2218 return 0;
2221 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2222 uint64_t offset, uint64_t len)
2224 RDMALocalBlock *block;
2225 uint8_t *host_addr;
2226 uint8_t *chunk_end;
2228 if (rdma->current_index < 0) {
2229 return 0;
2232 if (rdma->current_chunk < 0) {
2233 return 0;
2236 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2237 host_addr = block->local_host_addr + (offset - block->offset);
2238 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2240 if (rdma->current_length == 0) {
2241 return 0;
2245 * Only merge into chunk sequentially.
2247 if (offset != (rdma->current_addr + rdma->current_length)) {
2248 return 0;
2251 if (offset < block->offset) {
2252 return 0;
2255 if ((offset + len) > (block->offset + block->length)) {
2256 return 0;
2259 if ((host_addr + len) > chunk_end) {
2260 return 0;
2263 return 1;
2267 * We're not actually writing here, but doing three things:
2269 * 1. Identify the chunk the buffer belongs to.
2270 * 2. If the chunk is full or the buffer doesn't belong to the current
2271 * chunk, then start a new chunk and flush() the old chunk.
2272 * 3. To keep the hardware busy, we also group chunks into batches
2273 * and only require that a batch gets acknowledged in the completion
2274 * queue instead of each individual chunk.
2276 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2277 uint64_t block_offset, uint64_t offset,
2278 uint64_t len)
2280 uint64_t current_addr = block_offset + offset;
2281 uint64_t index = rdma->current_index;
2282 uint64_t chunk = rdma->current_chunk;
2283 int ret;
2285 /* If we cannot merge it, we flush the current buffer first. */
2286 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2287 ret = qemu_rdma_write_flush(f, rdma);
2288 if (ret) {
2289 return ret;
2291 rdma->current_length = 0;
2292 rdma->current_addr = current_addr;
2294 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2295 offset, len, &index, &chunk);
2296 if (ret) {
2297 error_report("ram block search failed");
2298 return ret;
2300 rdma->current_index = index;
2301 rdma->current_chunk = chunk;
2304 /* merge it */
2305 rdma->current_length += len;
2307 /* flush it if buffer is too large */
2308 if (rdma->current_length >= RDMA_MERGE_MAX) {
2309 return qemu_rdma_write_flush(f, rdma);
2312 return 0;
2315 static void qemu_rdma_cleanup(RDMAContext *rdma)
2317 int idx;
2319 if (rdma->cm_id && rdma->connected) {
2320 if ((rdma->error_state ||
2321 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2322 !rdma->received_error) {
2323 RDMAControlHeader head = { .len = 0,
2324 .type = RDMA_CONTROL_ERROR,
2325 .repeat = 1,
2327 error_report("Early error. Sending error.");
2328 qemu_rdma_post_send_control(rdma, NULL, &head);
2331 rdma_disconnect(rdma->cm_id);
2332 trace_qemu_rdma_cleanup_disconnect();
2333 rdma->connected = false;
2336 if (rdma->channel) {
2337 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2339 g_free(rdma->dest_blocks);
2340 rdma->dest_blocks = NULL;
2342 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2343 if (rdma->wr_data[idx].control_mr) {
2344 rdma->total_registrations--;
2345 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2347 rdma->wr_data[idx].control_mr = NULL;
2350 if (rdma->local_ram_blocks.block) {
2351 while (rdma->local_ram_blocks.nb_blocks) {
2352 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2356 if (rdma->qp) {
2357 rdma_destroy_qp(rdma->cm_id);
2358 rdma->qp = NULL;
2360 if (rdma->cq) {
2361 ibv_destroy_cq(rdma->cq);
2362 rdma->cq = NULL;
2364 if (rdma->comp_channel) {
2365 ibv_destroy_comp_channel(rdma->comp_channel);
2366 rdma->comp_channel = NULL;
2368 if (rdma->pd) {
2369 ibv_dealloc_pd(rdma->pd);
2370 rdma->pd = NULL;
2372 if (rdma->cm_id) {
2373 rdma_destroy_id(rdma->cm_id);
2374 rdma->cm_id = NULL;
2377 /* the destination side, listen_id and channel is shared */
2378 if (rdma->listen_id) {
2379 if (!rdma->is_return_path) {
2380 rdma_destroy_id(rdma->listen_id);
2382 rdma->listen_id = NULL;
2384 if (rdma->channel) {
2385 if (!rdma->is_return_path) {
2386 rdma_destroy_event_channel(rdma->channel);
2388 rdma->channel = NULL;
2392 if (rdma->channel) {
2393 rdma_destroy_event_channel(rdma->channel);
2394 rdma->channel = NULL;
2396 g_free(rdma->host);
2397 g_free(rdma->host_port);
2398 rdma->host = NULL;
2399 rdma->host_port = NULL;
2403 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2405 int ret, idx;
2406 Error *local_err = NULL, **temp = &local_err;
2409 * Will be validated against destination's actual capabilities
2410 * after the connect() completes.
2412 rdma->pin_all = pin_all;
2414 ret = qemu_rdma_resolve_host(rdma, temp);
2415 if (ret) {
2416 goto err_rdma_source_init;
2419 ret = qemu_rdma_alloc_pd_cq(rdma);
2420 if (ret) {
2421 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2422 " limits may be too low. Please check $ ulimit -a # and "
2423 "search for 'ulimit -l' in the output");
2424 goto err_rdma_source_init;
2427 ret = qemu_rdma_alloc_qp(rdma);
2428 if (ret) {
2429 ERROR(temp, "rdma migration: error allocating qp!");
2430 goto err_rdma_source_init;
2433 ret = qemu_rdma_init_ram_blocks(rdma);
2434 if (ret) {
2435 ERROR(temp, "rdma migration: error initializing ram blocks!");
2436 goto err_rdma_source_init;
2439 /* Build the hash that maps from offset to RAMBlock */
2440 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2441 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2442 g_hash_table_insert(rdma->blockmap,
2443 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2444 &rdma->local_ram_blocks.block[idx]);
2447 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2448 ret = qemu_rdma_reg_control(rdma, idx);
2449 if (ret) {
2450 ERROR(temp, "rdma migration: error registering %d control!",
2451 idx);
2452 goto err_rdma_source_init;
2456 return 0;
2458 err_rdma_source_init:
2459 error_propagate(errp, local_err);
2460 qemu_rdma_cleanup(rdma);
2461 return -1;
2464 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2465 struct rdma_cm_event **cm_event,
2466 long msec, Error **errp)
2468 int ret;
2469 struct pollfd poll_fd = {
2470 .fd = rdma->channel->fd,
2471 .events = POLLIN,
2472 .revents = 0
2475 do {
2476 ret = poll(&poll_fd, 1, msec);
2477 } while (ret < 0 && errno == EINTR);
2479 if (ret == 0) {
2480 ERROR(errp, "poll cm event timeout");
2481 return -1;
2482 } else if (ret < 0) {
2483 ERROR(errp, "failed to poll cm event, errno=%i", errno);
2484 return -1;
2485 } else if (poll_fd.revents & POLLIN) {
2486 return rdma_get_cm_event(rdma->channel, cm_event);
2487 } else {
2488 ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2489 return -1;
2493 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2495 RDMACapabilities cap = {
2496 .version = RDMA_CONTROL_VERSION_CURRENT,
2497 .flags = 0,
2499 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2500 .retry_count = 5,
2501 .private_data = &cap,
2502 .private_data_len = sizeof(cap),
2504 struct rdma_cm_event *cm_event;
2505 int ret;
2508 * Only negotiate the capability with destination if the user
2509 * on the source first requested the capability.
2511 if (rdma->pin_all) {
2512 trace_qemu_rdma_connect_pin_all_requested();
2513 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2516 caps_to_network(&cap);
2518 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2519 if (ret) {
2520 ERROR(errp, "posting second control recv");
2521 goto err_rdma_source_connect;
2524 ret = rdma_connect(rdma->cm_id, &conn_param);
2525 if (ret) {
2526 perror("rdma_connect");
2527 ERROR(errp, "connecting to destination!");
2528 goto err_rdma_source_connect;
2531 if (return_path) {
2532 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2533 } else {
2534 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2536 if (ret) {
2537 perror("rdma_get_cm_event after rdma_connect");
2538 ERROR(errp, "connecting to destination!");
2539 goto err_rdma_source_connect;
2542 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2543 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2544 ERROR(errp, "connecting to destination!");
2545 rdma_ack_cm_event(cm_event);
2546 goto err_rdma_source_connect;
2548 rdma->connected = true;
2550 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2551 network_to_caps(&cap);
2554 * Verify that the *requested* capabilities are supported by the destination
2555 * and disable them otherwise.
2557 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2558 ERROR(errp, "Server cannot support pinning all memory. "
2559 "Will register memory dynamically.");
2560 rdma->pin_all = false;
2563 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2565 rdma_ack_cm_event(cm_event);
2567 rdma->control_ready_expected = 1;
2568 rdma->nb_sent = 0;
2569 return 0;
2571 err_rdma_source_connect:
2572 qemu_rdma_cleanup(rdma);
2573 return -1;
2576 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2578 int ret, idx;
2579 struct rdma_cm_id *listen_id;
2580 char ip[40] = "unknown";
2581 struct rdma_addrinfo *res, *e;
2582 char port_str[16];
2584 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2585 rdma->wr_data[idx].control_len = 0;
2586 rdma->wr_data[idx].control_curr = NULL;
2589 if (!rdma->host || !rdma->host[0]) {
2590 ERROR(errp, "RDMA host is not set!");
2591 rdma->error_state = -EINVAL;
2592 return -1;
2594 /* create CM channel */
2595 rdma->channel = rdma_create_event_channel();
2596 if (!rdma->channel) {
2597 ERROR(errp, "could not create rdma event channel");
2598 rdma->error_state = -EINVAL;
2599 return -1;
2602 /* create CM id */
2603 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2604 if (ret) {
2605 ERROR(errp, "could not create cm_id!");
2606 goto err_dest_init_create_listen_id;
2609 snprintf(port_str, 16, "%d", rdma->port);
2610 port_str[15] = '\0';
2612 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2613 if (ret < 0) {
2614 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2615 goto err_dest_init_bind_addr;
2618 for (e = res; e != NULL; e = e->ai_next) {
2619 inet_ntop(e->ai_family,
2620 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2621 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2622 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2623 if (ret) {
2624 continue;
2626 if (e->ai_family == AF_INET6) {
2627 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2628 if (ret) {
2629 continue;
2632 break;
2635 rdma_freeaddrinfo(res);
2636 if (!e) {
2637 ERROR(errp, "Error: could not rdma_bind_addr!");
2638 goto err_dest_init_bind_addr;
2641 rdma->listen_id = listen_id;
2642 qemu_rdma_dump_gid("dest_init", listen_id);
2643 return 0;
2645 err_dest_init_bind_addr:
2646 rdma_destroy_id(listen_id);
2647 err_dest_init_create_listen_id:
2648 rdma_destroy_event_channel(rdma->channel);
2649 rdma->channel = NULL;
2650 rdma->error_state = ret;
2651 return ret;
2655 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2656 RDMAContext *rdma)
2658 int idx;
2660 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2661 rdma_return_path->wr_data[idx].control_len = 0;
2662 rdma_return_path->wr_data[idx].control_curr = NULL;
2665 /*the CM channel and CM id is shared*/
2666 rdma_return_path->channel = rdma->channel;
2667 rdma_return_path->listen_id = rdma->listen_id;
2669 rdma->return_path = rdma_return_path;
2670 rdma_return_path->return_path = rdma;
2671 rdma_return_path->is_return_path = true;
2674 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2676 RDMAContext *rdma = NULL;
2677 InetSocketAddress *addr;
2679 if (host_port) {
2680 rdma = g_new0(RDMAContext, 1);
2681 rdma->current_index = -1;
2682 rdma->current_chunk = -1;
2684 addr = g_new(InetSocketAddress, 1);
2685 if (!inet_parse(addr, host_port, NULL)) {
2686 rdma->port = atoi(addr->port);
2687 rdma->host = g_strdup(addr->host);
2688 rdma->host_port = g_strdup(host_port);
2689 } else {
2690 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2691 g_free(rdma);
2692 rdma = NULL;
2695 qapi_free_InetSocketAddress(addr);
2698 return rdma;
2702 * QEMUFile interface to the control channel.
2703 * SEND messages for control only.
2704 * VM's ram is handled with regular RDMA messages.
2706 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2707 const struct iovec *iov,
2708 size_t niov,
2709 int *fds,
2710 size_t nfds,
2711 Error **errp)
2713 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2714 QEMUFile *f = rioc->file;
2715 RDMAContext *rdma;
2716 int ret;
2717 ssize_t done = 0;
2718 size_t i;
2719 size_t len = 0;
2721 RCU_READ_LOCK_GUARD();
2722 rdma = qatomic_rcu_read(&rioc->rdmaout);
2724 if (!rdma) {
2725 return -EIO;
2728 CHECK_ERROR_STATE();
2731 * Push out any writes that
2732 * we're queued up for VM's ram.
2734 ret = qemu_rdma_write_flush(f, rdma);
2735 if (ret < 0) {
2736 rdma->error_state = ret;
2737 return ret;
2740 for (i = 0; i < niov; i++) {
2741 size_t remaining = iov[i].iov_len;
2742 uint8_t * data = (void *)iov[i].iov_base;
2743 while (remaining) {
2744 RDMAControlHeader head;
2746 len = MIN(remaining, RDMA_SEND_INCREMENT);
2747 remaining -= len;
2749 head.len = len;
2750 head.type = RDMA_CONTROL_QEMU_FILE;
2752 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2754 if (ret < 0) {
2755 rdma->error_state = ret;
2756 return ret;
2759 data += len;
2760 done += len;
2764 return done;
2767 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2768 size_t size, int idx)
2770 size_t len = 0;
2772 if (rdma->wr_data[idx].control_len) {
2773 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2775 len = MIN(size, rdma->wr_data[idx].control_len);
2776 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2777 rdma->wr_data[idx].control_curr += len;
2778 rdma->wr_data[idx].control_len -= len;
2781 return len;
2785 * QEMUFile interface to the control channel.
2786 * RDMA links don't use bytestreams, so we have to
2787 * return bytes to QEMUFile opportunistically.
2789 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2790 const struct iovec *iov,
2791 size_t niov,
2792 int **fds,
2793 size_t *nfds,
2794 Error **errp)
2796 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2797 RDMAContext *rdma;
2798 RDMAControlHeader head;
2799 int ret = 0;
2800 ssize_t i;
2801 size_t done = 0;
2803 RCU_READ_LOCK_GUARD();
2804 rdma = qatomic_rcu_read(&rioc->rdmain);
2806 if (!rdma) {
2807 return -EIO;
2810 CHECK_ERROR_STATE();
2812 for (i = 0; i < niov; i++) {
2813 size_t want = iov[i].iov_len;
2814 uint8_t *data = (void *)iov[i].iov_base;
2817 * First, we hold on to the last SEND message we
2818 * were given and dish out the bytes until we run
2819 * out of bytes.
2821 ret = qemu_rdma_fill(rdma, data, want, 0);
2822 done += ret;
2823 want -= ret;
2824 /* Got what we needed, so go to next iovec */
2825 if (want == 0) {
2826 continue;
2829 /* If we got any data so far, then don't wait
2830 * for more, just return what we have */
2831 if (done > 0) {
2832 break;
2836 /* We've got nothing at all, so lets wait for
2837 * more to arrive
2839 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2841 if (ret < 0) {
2842 rdma->error_state = ret;
2843 return ret;
2847 * SEND was received with new bytes, now try again.
2849 ret = qemu_rdma_fill(rdma, data, want, 0);
2850 done += ret;
2851 want -= ret;
2853 /* Still didn't get enough, so lets just return */
2854 if (want) {
2855 if (done == 0) {
2856 return QIO_CHANNEL_ERR_BLOCK;
2857 } else {
2858 break;
2862 return done;
2866 * Block until all the outstanding chunks have been delivered by the hardware.
2868 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2870 int ret;
2872 if (qemu_rdma_write_flush(f, rdma) < 0) {
2873 return -EIO;
2876 while (rdma->nb_sent) {
2877 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2878 if (ret < 0) {
2879 error_report("rdma migration: complete polling error!");
2880 return -EIO;
2884 qemu_rdma_unregister_waiting(rdma);
2886 return 0;
2890 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2891 bool blocking,
2892 Error **errp)
2894 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2895 /* XXX we should make readv/writev actually honour this :-) */
2896 rioc->blocking = blocking;
2897 return 0;
2901 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2902 struct QIOChannelRDMASource {
2903 GSource parent;
2904 QIOChannelRDMA *rioc;
2905 GIOCondition condition;
2908 static gboolean
2909 qio_channel_rdma_source_prepare(GSource *source,
2910 gint *timeout)
2912 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2913 RDMAContext *rdma;
2914 GIOCondition cond = 0;
2915 *timeout = -1;
2917 RCU_READ_LOCK_GUARD();
2918 if (rsource->condition == G_IO_IN) {
2919 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2920 } else {
2921 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2924 if (!rdma) {
2925 error_report("RDMAContext is NULL when prepare Gsource");
2926 return FALSE;
2929 if (rdma->wr_data[0].control_len) {
2930 cond |= G_IO_IN;
2932 cond |= G_IO_OUT;
2934 return cond & rsource->condition;
2937 static gboolean
2938 qio_channel_rdma_source_check(GSource *source)
2940 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2941 RDMAContext *rdma;
2942 GIOCondition cond = 0;
2944 RCU_READ_LOCK_GUARD();
2945 if (rsource->condition == G_IO_IN) {
2946 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2947 } else {
2948 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2951 if (!rdma) {
2952 error_report("RDMAContext is NULL when check Gsource");
2953 return FALSE;
2956 if (rdma->wr_data[0].control_len) {
2957 cond |= G_IO_IN;
2959 cond |= G_IO_OUT;
2961 return cond & rsource->condition;
2964 static gboolean
2965 qio_channel_rdma_source_dispatch(GSource *source,
2966 GSourceFunc callback,
2967 gpointer user_data)
2969 QIOChannelFunc func = (QIOChannelFunc)callback;
2970 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2971 RDMAContext *rdma;
2972 GIOCondition cond = 0;
2974 RCU_READ_LOCK_GUARD();
2975 if (rsource->condition == G_IO_IN) {
2976 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2977 } else {
2978 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2981 if (!rdma) {
2982 error_report("RDMAContext is NULL when dispatch Gsource");
2983 return FALSE;
2986 if (rdma->wr_data[0].control_len) {
2987 cond |= G_IO_IN;
2989 cond |= G_IO_OUT;
2991 return (*func)(QIO_CHANNEL(rsource->rioc),
2992 (cond & rsource->condition),
2993 user_data);
2996 static void
2997 qio_channel_rdma_source_finalize(GSource *source)
2999 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3001 object_unref(OBJECT(ssource->rioc));
3004 GSourceFuncs qio_channel_rdma_source_funcs = {
3005 qio_channel_rdma_source_prepare,
3006 qio_channel_rdma_source_check,
3007 qio_channel_rdma_source_dispatch,
3008 qio_channel_rdma_source_finalize
3011 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3012 GIOCondition condition)
3014 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3015 QIOChannelRDMASource *ssource;
3016 GSource *source;
3018 source = g_source_new(&qio_channel_rdma_source_funcs,
3019 sizeof(QIOChannelRDMASource));
3020 ssource = (QIOChannelRDMASource *)source;
3022 ssource->rioc = rioc;
3023 object_ref(OBJECT(rioc));
3025 ssource->condition = condition;
3027 return source;
3030 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3031 AioContext *ctx,
3032 IOHandler *io_read,
3033 IOHandler *io_write,
3034 void *opaque)
3036 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3037 if (io_read) {
3038 aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3039 false, io_read, io_write, NULL, opaque);
3040 } else {
3041 aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3042 false, io_read, io_write, NULL, opaque);
3046 struct rdma_close_rcu {
3047 struct rcu_head rcu;
3048 RDMAContext *rdmain;
3049 RDMAContext *rdmaout;
3052 /* callback from qio_channel_rdma_close via call_rcu */
3053 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3055 if (rcu->rdmain) {
3056 qemu_rdma_cleanup(rcu->rdmain);
3059 if (rcu->rdmaout) {
3060 qemu_rdma_cleanup(rcu->rdmaout);
3063 g_free(rcu->rdmain);
3064 g_free(rcu->rdmaout);
3065 g_free(rcu);
3068 static int qio_channel_rdma_close(QIOChannel *ioc,
3069 Error **errp)
3071 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3072 RDMAContext *rdmain, *rdmaout;
3073 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3075 trace_qemu_rdma_close();
3077 rdmain = rioc->rdmain;
3078 if (rdmain) {
3079 qatomic_rcu_set(&rioc->rdmain, NULL);
3082 rdmaout = rioc->rdmaout;
3083 if (rdmaout) {
3084 qatomic_rcu_set(&rioc->rdmaout, NULL);
3087 rcu->rdmain = rdmain;
3088 rcu->rdmaout = rdmaout;
3089 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3091 return 0;
3094 static int
3095 qio_channel_rdma_shutdown(QIOChannel *ioc,
3096 QIOChannelShutdown how,
3097 Error **errp)
3099 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3100 RDMAContext *rdmain, *rdmaout;
3102 RCU_READ_LOCK_GUARD();
3104 rdmain = qatomic_rcu_read(&rioc->rdmain);
3105 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3107 switch (how) {
3108 case QIO_CHANNEL_SHUTDOWN_READ:
3109 if (rdmain) {
3110 rdmain->error_state = -1;
3112 break;
3113 case QIO_CHANNEL_SHUTDOWN_WRITE:
3114 if (rdmaout) {
3115 rdmaout->error_state = -1;
3117 break;
3118 case QIO_CHANNEL_SHUTDOWN_BOTH:
3119 default:
3120 if (rdmain) {
3121 rdmain->error_state = -1;
3123 if (rdmaout) {
3124 rdmaout->error_state = -1;
3126 break;
3129 return 0;
3133 * Parameters:
3134 * @offset == 0 :
3135 * This means that 'block_offset' is a full virtual address that does not
3136 * belong to a RAMBlock of the virtual machine and instead
3137 * represents a private malloc'd memory area that the caller wishes to
3138 * transfer.
3140 * @offset != 0 :
3141 * Offset is an offset to be added to block_offset and used
3142 * to also lookup the corresponding RAMBlock.
3144 * @size > 0 :
3145 * Initiate an transfer this size.
3147 * @size == 0 :
3148 * A 'hint' or 'advice' that means that we wish to speculatively
3149 * and asynchronously unregister this memory. In this case, there is no
3150 * guarantee that the unregister will actually happen, for example,
3151 * if the memory is being actively transmitted. Additionally, the memory
3152 * may be re-registered at any future time if a write within the same
3153 * chunk was requested again, even if you attempted to unregister it
3154 * here.
3156 * @size < 0 : TODO, not yet supported
3157 * Unregister the memory NOW. This means that the caller does not
3158 * expect there to be any future RDMA transfers and we just want to clean
3159 * things up. This is used in case the upper layer owns the memory and
3160 * cannot wait for qemu_fclose() to occur.
3162 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3163 * sent. Usually, this will not be more than a few bytes of
3164 * the protocol because most transfers are sent asynchronously.
3166 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3167 ram_addr_t block_offset, ram_addr_t offset,
3168 size_t size, uint64_t *bytes_sent)
3170 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3171 RDMAContext *rdma;
3172 int ret;
3174 RCU_READ_LOCK_GUARD();
3175 rdma = qatomic_rcu_read(&rioc->rdmaout);
3177 if (!rdma) {
3178 return -EIO;
3181 CHECK_ERROR_STATE();
3183 if (migration_in_postcopy()) {
3184 return RAM_SAVE_CONTROL_NOT_SUPP;
3187 qemu_fflush(f);
3189 if (size > 0) {
3191 * Add this page to the current 'chunk'. If the chunk
3192 * is full, or the page doesn't belong to the current chunk,
3193 * an actual RDMA write will occur and a new chunk will be formed.
3195 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3196 if (ret < 0) {
3197 error_report("rdma migration: write error! %d", ret);
3198 goto err;
3202 * We always return 1 bytes because the RDMA
3203 * protocol is completely asynchronous. We do not yet know
3204 * whether an identified chunk is zero or not because we're
3205 * waiting for other pages to potentially be merged with
3206 * the current chunk. So, we have to call qemu_update_position()
3207 * later on when the actual write occurs.
3209 if (bytes_sent) {
3210 *bytes_sent = 1;
3212 } else {
3213 uint64_t index, chunk;
3215 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3216 if (size < 0) {
3217 ret = qemu_rdma_drain_cq(f, rdma);
3218 if (ret < 0) {
3219 fprintf(stderr, "rdma: failed to synchronously drain"
3220 " completion queue before unregistration.\n");
3221 goto err;
3226 ret = qemu_rdma_search_ram_block(rdma, block_offset,
3227 offset, size, &index, &chunk);
3229 if (ret) {
3230 error_report("ram block search failed");
3231 goto err;
3234 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3237 * TODO: Synchronous, guaranteed unregistration (should not occur during
3238 * fast-path). Otherwise, unregisters will process on the next call to
3239 * qemu_rdma_drain_cq()
3240 if (size < 0) {
3241 qemu_rdma_unregister_waiting(rdma);
3247 * Drain the Completion Queue if possible, but do not block,
3248 * just poll.
3250 * If nothing to poll, the end of the iteration will do this
3251 * again to make sure we don't overflow the request queue.
3253 while (1) {
3254 uint64_t wr_id, wr_id_in;
3255 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3256 if (ret < 0) {
3257 error_report("rdma migration: polling error! %d", ret);
3258 goto err;
3261 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3263 if (wr_id == RDMA_WRID_NONE) {
3264 break;
3268 return RAM_SAVE_CONTROL_DELAYED;
3269 err:
3270 rdma->error_state = ret;
3271 return ret;
3274 static void rdma_accept_incoming_migration(void *opaque);
3276 static void rdma_cm_poll_handler(void *opaque)
3278 RDMAContext *rdma = opaque;
3279 int ret;
3280 struct rdma_cm_event *cm_event;
3281 MigrationIncomingState *mis = migration_incoming_get_current();
3283 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3284 if (ret) {
3285 error_report("get_cm_event failed %d", errno);
3286 return;
3288 rdma_ack_cm_event(cm_event);
3290 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3291 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3292 if (!rdma->error_state &&
3293 migration_incoming_get_current()->state !=
3294 MIGRATION_STATUS_COMPLETED) {
3295 error_report("receive cm event, cm event is %d", cm_event->event);
3296 rdma->error_state = -EPIPE;
3297 if (rdma->return_path) {
3298 rdma->return_path->error_state = -EPIPE;
3302 if (mis->migration_incoming_co) {
3303 qemu_coroutine_enter(mis->migration_incoming_co);
3305 return;
3309 static int qemu_rdma_accept(RDMAContext *rdma)
3311 RDMACapabilities cap;
3312 struct rdma_conn_param conn_param = {
3313 .responder_resources = 2,
3314 .private_data = &cap,
3315 .private_data_len = sizeof(cap),
3317 RDMAContext *rdma_return_path = NULL;
3318 struct rdma_cm_event *cm_event;
3319 struct ibv_context *verbs;
3320 int ret = -EINVAL;
3321 int idx;
3323 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3324 if (ret) {
3325 goto err_rdma_dest_wait;
3328 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3329 rdma_ack_cm_event(cm_event);
3330 goto err_rdma_dest_wait;
3334 * initialize the RDMAContext for return path for postcopy after first
3335 * connection request reached.
3337 if (migrate_postcopy() && !rdma->is_return_path) {
3338 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3339 if (rdma_return_path == NULL) {
3340 rdma_ack_cm_event(cm_event);
3341 goto err_rdma_dest_wait;
3344 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3347 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3349 network_to_caps(&cap);
3351 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3352 error_report("Unknown source RDMA version: %d, bailing...",
3353 cap.version);
3354 rdma_ack_cm_event(cm_event);
3355 goto err_rdma_dest_wait;
3359 * Respond with only the capabilities this version of QEMU knows about.
3361 cap.flags &= known_capabilities;
3364 * Enable the ones that we do know about.
3365 * Add other checks here as new ones are introduced.
3367 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3368 rdma->pin_all = true;
3371 rdma->cm_id = cm_event->id;
3372 verbs = cm_event->id->verbs;
3374 rdma_ack_cm_event(cm_event);
3376 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3378 caps_to_network(&cap);
3380 trace_qemu_rdma_accept_pin_verbsc(verbs);
3382 if (!rdma->verbs) {
3383 rdma->verbs = verbs;
3384 } else if (rdma->verbs != verbs) {
3385 error_report("ibv context not matching %p, %p!", rdma->verbs,
3386 verbs);
3387 goto err_rdma_dest_wait;
3390 qemu_rdma_dump_id("dest_init", verbs);
3392 ret = qemu_rdma_alloc_pd_cq(rdma);
3393 if (ret) {
3394 error_report("rdma migration: error allocating pd and cq!");
3395 goto err_rdma_dest_wait;
3398 ret = qemu_rdma_alloc_qp(rdma);
3399 if (ret) {
3400 error_report("rdma migration: error allocating qp!");
3401 goto err_rdma_dest_wait;
3404 ret = qemu_rdma_init_ram_blocks(rdma);
3405 if (ret) {
3406 error_report("rdma migration: error initializing ram blocks!");
3407 goto err_rdma_dest_wait;
3410 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3411 ret = qemu_rdma_reg_control(rdma, idx);
3412 if (ret) {
3413 error_report("rdma: error registering %d control", idx);
3414 goto err_rdma_dest_wait;
3418 /* Accept the second connection request for return path */
3419 if (migrate_postcopy() && !rdma->is_return_path) {
3420 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3421 NULL,
3422 (void *)(intptr_t)rdma->return_path);
3423 } else {
3424 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3425 NULL, rdma);
3428 ret = rdma_accept(rdma->cm_id, &conn_param);
3429 if (ret) {
3430 error_report("rdma_accept returns %d", ret);
3431 goto err_rdma_dest_wait;
3434 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3435 if (ret) {
3436 error_report("rdma_accept get_cm_event failed %d", ret);
3437 goto err_rdma_dest_wait;
3440 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3441 error_report("rdma_accept not event established");
3442 rdma_ack_cm_event(cm_event);
3443 goto err_rdma_dest_wait;
3446 rdma_ack_cm_event(cm_event);
3447 rdma->connected = true;
3449 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3450 if (ret) {
3451 error_report("rdma migration: error posting second control recv");
3452 goto err_rdma_dest_wait;
3455 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3457 return 0;
3459 err_rdma_dest_wait:
3460 rdma->error_state = ret;
3461 qemu_rdma_cleanup(rdma);
3462 g_free(rdma_return_path);
3463 return ret;
3466 static int dest_ram_sort_func(const void *a, const void *b)
3468 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3469 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3471 return (a_index < b_index) ? -1 : (a_index != b_index);
3475 * During each iteration of the migration, we listen for instructions
3476 * by the source VM to perform dynamic page registrations before they
3477 * can perform RDMA operations.
3479 * We respond with the 'rkey'.
3481 * Keep doing this until the source tells us to stop.
3483 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3485 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3486 .type = RDMA_CONTROL_REGISTER_RESULT,
3487 .repeat = 0,
3489 RDMAControlHeader unreg_resp = { .len = 0,
3490 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3491 .repeat = 0,
3493 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3494 .repeat = 1 };
3495 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3496 RDMAContext *rdma;
3497 RDMALocalBlocks *local;
3498 RDMAControlHeader head;
3499 RDMARegister *reg, *registers;
3500 RDMACompress *comp;
3501 RDMARegisterResult *reg_result;
3502 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3503 RDMALocalBlock *block;
3504 void *host_addr;
3505 int ret = 0;
3506 int idx = 0;
3507 int count = 0;
3508 int i = 0;
3510 RCU_READ_LOCK_GUARD();
3511 rdma = qatomic_rcu_read(&rioc->rdmain);
3513 if (!rdma) {
3514 return -EIO;
3517 CHECK_ERROR_STATE();
3519 local = &rdma->local_ram_blocks;
3520 do {
3521 trace_qemu_rdma_registration_handle_wait();
3523 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3525 if (ret < 0) {
3526 break;
3529 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3530 error_report("rdma: Too many requests in this message (%d)."
3531 "Bailing.", head.repeat);
3532 ret = -EIO;
3533 break;
3536 switch (head.type) {
3537 case RDMA_CONTROL_COMPRESS:
3538 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3539 network_to_compress(comp);
3541 trace_qemu_rdma_registration_handle_compress(comp->length,
3542 comp->block_idx,
3543 comp->offset);
3544 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3545 error_report("rdma: 'compress' bad block index %u (vs %d)",
3546 (unsigned int)comp->block_idx,
3547 rdma->local_ram_blocks.nb_blocks);
3548 ret = -EIO;
3549 goto out;
3551 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3553 host_addr = block->local_host_addr +
3554 (comp->offset - block->offset);
3556 ram_handle_compressed(host_addr, comp->value, comp->length);
3557 break;
3559 case RDMA_CONTROL_REGISTER_FINISHED:
3560 trace_qemu_rdma_registration_handle_finished();
3561 goto out;
3563 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3564 trace_qemu_rdma_registration_handle_ram_blocks();
3566 /* Sort our local RAM Block list so it's the same as the source,
3567 * we can do this since we've filled in a src_index in the list
3568 * as we received the RAMBlock list earlier.
3570 qsort(rdma->local_ram_blocks.block,
3571 rdma->local_ram_blocks.nb_blocks,
3572 sizeof(RDMALocalBlock), dest_ram_sort_func);
3573 for (i = 0; i < local->nb_blocks; i++) {
3574 local->block[i].index = i;
3577 if (rdma->pin_all) {
3578 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3579 if (ret) {
3580 error_report("rdma migration: error dest "
3581 "registering ram blocks");
3582 goto out;
3587 * Dest uses this to prepare to transmit the RAMBlock descriptions
3588 * to the source VM after connection setup.
3589 * Both sides use the "remote" structure to communicate and update
3590 * their "local" descriptions with what was sent.
3592 for (i = 0; i < local->nb_blocks; i++) {
3593 rdma->dest_blocks[i].remote_host_addr =
3594 (uintptr_t)(local->block[i].local_host_addr);
3596 if (rdma->pin_all) {
3597 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3600 rdma->dest_blocks[i].offset = local->block[i].offset;
3601 rdma->dest_blocks[i].length = local->block[i].length;
3603 dest_block_to_network(&rdma->dest_blocks[i]);
3604 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3605 local->block[i].block_name,
3606 local->block[i].offset,
3607 local->block[i].length,
3608 local->block[i].local_host_addr,
3609 local->block[i].src_index);
3612 blocks.len = rdma->local_ram_blocks.nb_blocks
3613 * sizeof(RDMADestBlock);
3616 ret = qemu_rdma_post_send_control(rdma,
3617 (uint8_t *) rdma->dest_blocks, &blocks);
3619 if (ret < 0) {
3620 error_report("rdma migration: error sending remote info");
3621 goto out;
3624 break;
3625 case RDMA_CONTROL_REGISTER_REQUEST:
3626 trace_qemu_rdma_registration_handle_register(head.repeat);
3628 reg_resp.repeat = head.repeat;
3629 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3631 for (count = 0; count < head.repeat; count++) {
3632 uint64_t chunk;
3633 uint8_t *chunk_start, *chunk_end;
3635 reg = &registers[count];
3636 network_to_register(reg);
3638 reg_result = &results[count];
3640 trace_qemu_rdma_registration_handle_register_loop(count,
3641 reg->current_index, reg->key.current_addr, reg->chunks);
3643 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3644 error_report("rdma: 'register' bad block index %u (vs %d)",
3645 (unsigned int)reg->current_index,
3646 rdma->local_ram_blocks.nb_blocks);
3647 ret = -ENOENT;
3648 goto out;
3650 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3651 if (block->is_ram_block) {
3652 if (block->offset > reg->key.current_addr) {
3653 error_report("rdma: bad register address for block %s"
3654 " offset: %" PRIx64 " current_addr: %" PRIx64,
3655 block->block_name, block->offset,
3656 reg->key.current_addr);
3657 ret = -ERANGE;
3658 goto out;
3660 host_addr = (block->local_host_addr +
3661 (reg->key.current_addr - block->offset));
3662 chunk = ram_chunk_index(block->local_host_addr,
3663 (uint8_t *) host_addr);
3664 } else {
3665 chunk = reg->key.chunk;
3666 host_addr = block->local_host_addr +
3667 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3668 /* Check for particularly bad chunk value */
3669 if (host_addr < (void *)block->local_host_addr) {
3670 error_report("rdma: bad chunk for block %s"
3671 " chunk: %" PRIx64,
3672 block->block_name, reg->key.chunk);
3673 ret = -ERANGE;
3674 goto out;
3677 chunk_start = ram_chunk_start(block, chunk);
3678 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3679 /* avoid "-Waddress-of-packed-member" warning */
3680 uint32_t tmp_rkey = 0;
3681 if (qemu_rdma_register_and_get_keys(rdma, block,
3682 (uintptr_t)host_addr, NULL, &tmp_rkey,
3683 chunk, chunk_start, chunk_end)) {
3684 error_report("cannot get rkey");
3685 ret = -EINVAL;
3686 goto out;
3688 reg_result->rkey = tmp_rkey;
3690 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3692 trace_qemu_rdma_registration_handle_register_rkey(
3693 reg_result->rkey);
3695 result_to_network(reg_result);
3698 ret = qemu_rdma_post_send_control(rdma,
3699 (uint8_t *) results, &reg_resp);
3701 if (ret < 0) {
3702 error_report("Failed to send control buffer");
3703 goto out;
3705 break;
3706 case RDMA_CONTROL_UNREGISTER_REQUEST:
3707 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3708 unreg_resp.repeat = head.repeat;
3709 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3711 for (count = 0; count < head.repeat; count++) {
3712 reg = &registers[count];
3713 network_to_register(reg);
3715 trace_qemu_rdma_registration_handle_unregister_loop(count,
3716 reg->current_index, reg->key.chunk);
3718 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3720 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3721 block->pmr[reg->key.chunk] = NULL;
3723 if (ret != 0) {
3724 perror("rdma unregistration chunk failed");
3725 ret = -ret;
3726 goto out;
3729 rdma->total_registrations--;
3731 trace_qemu_rdma_registration_handle_unregister_success(
3732 reg->key.chunk);
3735 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3737 if (ret < 0) {
3738 error_report("Failed to send control buffer");
3739 goto out;
3741 break;
3742 case RDMA_CONTROL_REGISTER_RESULT:
3743 error_report("Invalid RESULT message at dest.");
3744 ret = -EIO;
3745 goto out;
3746 default:
3747 error_report("Unknown control message %s", control_desc(head.type));
3748 ret = -EIO;
3749 goto out;
3751 } while (1);
3752 out:
3753 if (ret < 0) {
3754 rdma->error_state = ret;
3756 return ret;
3759 /* Destination:
3760 * Called via a ram_control_load_hook during the initial RAM load section which
3761 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3762 * on the source.
3763 * We've already built our local RAMBlock list, but not yet sent the list to
3764 * the source.
3766 static int
3767 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3769 RDMAContext *rdma;
3770 int curr;
3771 int found = -1;
3773 RCU_READ_LOCK_GUARD();
3774 rdma = qatomic_rcu_read(&rioc->rdmain);
3776 if (!rdma) {
3777 return -EIO;
3780 /* Find the matching RAMBlock in our local list */
3781 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3782 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3783 found = curr;
3784 break;
3788 if (found == -1) {
3789 error_report("RAMBlock '%s' not found on destination", name);
3790 return -ENOENT;
3793 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3794 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3795 rdma->next_src_index++;
3797 return 0;
3800 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3802 switch (flags) {
3803 case RAM_CONTROL_BLOCK_REG:
3804 return rdma_block_notification_handle(opaque, data);
3806 case RAM_CONTROL_HOOK:
3807 return qemu_rdma_registration_handle(f, opaque);
3809 default:
3810 /* Shouldn't be called with any other values */
3811 abort();
3815 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3816 uint64_t flags, void *data)
3818 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3819 RDMAContext *rdma;
3821 RCU_READ_LOCK_GUARD();
3822 rdma = qatomic_rcu_read(&rioc->rdmaout);
3823 if (!rdma) {
3824 return -EIO;
3827 CHECK_ERROR_STATE();
3829 if (migration_in_postcopy()) {
3830 return 0;
3833 trace_qemu_rdma_registration_start(flags);
3834 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3835 qemu_fflush(f);
3837 return 0;
3841 * Inform dest that dynamic registrations are done for now.
3842 * First, flush writes, if any.
3844 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3845 uint64_t flags, void *data)
3847 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3848 RDMAContext *rdma;
3849 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3850 int ret = 0;
3852 RCU_READ_LOCK_GUARD();
3853 rdma = qatomic_rcu_read(&rioc->rdmaout);
3854 if (!rdma) {
3855 return -EIO;
3858 CHECK_ERROR_STATE();
3860 if (migration_in_postcopy()) {
3861 return 0;
3864 qemu_fflush(f);
3865 ret = qemu_rdma_drain_cq(f, rdma);
3867 if (ret < 0) {
3868 goto err;
3871 if (flags == RAM_CONTROL_SETUP) {
3872 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3873 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3874 int reg_result_idx, i, nb_dest_blocks;
3876 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3877 trace_qemu_rdma_registration_stop_ram();
3880 * Make sure that we parallelize the pinning on both sides.
3881 * For very large guests, doing this serially takes a really
3882 * long time, so we have to 'interleave' the pinning locally
3883 * with the control messages by performing the pinning on this
3884 * side before we receive the control response from the other
3885 * side that the pinning has completed.
3887 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3888 &reg_result_idx, rdma->pin_all ?
3889 qemu_rdma_reg_whole_ram_blocks : NULL);
3890 if (ret < 0) {
3891 fprintf(stderr, "receiving remote info!");
3892 return ret;
3895 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3898 * The protocol uses two different sets of rkeys (mutually exclusive):
3899 * 1. One key to represent the virtual address of the entire ram block.
3900 * (dynamic chunk registration disabled - pin everything with one rkey.)
3901 * 2. One to represent individual chunks within a ram block.
3902 * (dynamic chunk registration enabled - pin individual chunks.)
3904 * Once the capability is successfully negotiated, the destination transmits
3905 * the keys to use (or sends them later) including the virtual addresses
3906 * and then propagates the remote ram block descriptions to his local copy.
3909 if (local->nb_blocks != nb_dest_blocks) {
3910 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3911 "Your QEMU command line parameters are probably "
3912 "not identical on both the source and destination.",
3913 local->nb_blocks, nb_dest_blocks);
3914 rdma->error_state = -EINVAL;
3915 return -EINVAL;
3918 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3919 memcpy(rdma->dest_blocks,
3920 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3921 for (i = 0; i < nb_dest_blocks; i++) {
3922 network_to_dest_block(&rdma->dest_blocks[i]);
3924 /* We require that the blocks are in the same order */
3925 if (rdma->dest_blocks[i].length != local->block[i].length) {
3926 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3927 "vs %" PRIu64, local->block[i].block_name, i,
3928 local->block[i].length,
3929 rdma->dest_blocks[i].length);
3930 rdma->error_state = -EINVAL;
3931 return -EINVAL;
3933 local->block[i].remote_host_addr =
3934 rdma->dest_blocks[i].remote_host_addr;
3935 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3939 trace_qemu_rdma_registration_stop(flags);
3941 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3942 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3944 if (ret < 0) {
3945 goto err;
3948 return 0;
3949 err:
3950 rdma->error_state = ret;
3951 return ret;
3954 static const QEMUFileHooks rdma_read_hooks = {
3955 .hook_ram_load = rdma_load_hook,
3958 static const QEMUFileHooks rdma_write_hooks = {
3959 .before_ram_iterate = qemu_rdma_registration_start,
3960 .after_ram_iterate = qemu_rdma_registration_stop,
3961 .save_page = qemu_rdma_save_page,
3965 static void qio_channel_rdma_finalize(Object *obj)
3967 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3968 if (rioc->rdmain) {
3969 qemu_rdma_cleanup(rioc->rdmain);
3970 g_free(rioc->rdmain);
3971 rioc->rdmain = NULL;
3973 if (rioc->rdmaout) {
3974 qemu_rdma_cleanup(rioc->rdmaout);
3975 g_free(rioc->rdmaout);
3976 rioc->rdmaout = NULL;
3980 static void qio_channel_rdma_class_init(ObjectClass *klass,
3981 void *class_data G_GNUC_UNUSED)
3983 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3985 ioc_klass->io_writev = qio_channel_rdma_writev;
3986 ioc_klass->io_readv = qio_channel_rdma_readv;
3987 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3988 ioc_klass->io_close = qio_channel_rdma_close;
3989 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3990 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3991 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3994 static const TypeInfo qio_channel_rdma_info = {
3995 .parent = TYPE_QIO_CHANNEL,
3996 .name = TYPE_QIO_CHANNEL_RDMA,
3997 .instance_size = sizeof(QIOChannelRDMA),
3998 .instance_finalize = qio_channel_rdma_finalize,
3999 .class_init = qio_channel_rdma_class_init,
4002 static void qio_channel_rdma_register_types(void)
4004 type_register_static(&qio_channel_rdma_info);
4007 type_init(qio_channel_rdma_register_types);
4009 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4011 QIOChannelRDMA *rioc;
4013 if (qemu_file_mode_is_not_valid(mode)) {
4014 return NULL;
4017 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4019 if (mode[0] == 'w') {
4020 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
4021 rioc->rdmaout = rdma;
4022 rioc->rdmain = rdma->return_path;
4023 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4024 } else {
4025 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
4026 rioc->rdmain = rdma;
4027 rioc->rdmaout = rdma->return_path;
4028 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4031 return rioc->file;
4034 static void rdma_accept_incoming_migration(void *opaque)
4036 RDMAContext *rdma = opaque;
4037 int ret;
4038 QEMUFile *f;
4039 Error *local_err = NULL;
4041 trace_qemu_rdma_accept_incoming_migration();
4042 ret = qemu_rdma_accept(rdma);
4044 if (ret) {
4045 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4046 return;
4049 trace_qemu_rdma_accept_incoming_migration_accepted();
4051 if (rdma->is_return_path) {
4052 return;
4055 f = qemu_fopen_rdma(rdma, "rb");
4056 if (f == NULL) {
4057 fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4058 qemu_rdma_cleanup(rdma);
4059 return;
4062 rdma->migration_started_on_destination = 1;
4063 migration_fd_process_incoming(f, &local_err);
4064 if (local_err) {
4065 error_reportf_err(local_err, "RDMA ERROR:");
4069 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4071 int ret;
4072 RDMAContext *rdma, *rdma_return_path = NULL;
4073 Error *local_err = NULL;
4075 trace_rdma_start_incoming_migration();
4077 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4078 if (ram_block_discard_is_required()) {
4079 error_setg(errp, "RDMA: cannot disable RAM discard");
4080 return;
4083 rdma = qemu_rdma_data_init(host_port, &local_err);
4084 if (rdma == NULL) {
4085 goto err;
4088 ret = qemu_rdma_dest_init(rdma, &local_err);
4090 if (ret) {
4091 goto err;
4094 trace_rdma_start_incoming_migration_after_dest_init();
4096 ret = rdma_listen(rdma->listen_id, 5);
4098 if (ret) {
4099 ERROR(errp, "listening on socket!");
4100 goto cleanup_rdma;
4103 trace_rdma_start_incoming_migration_after_rdma_listen();
4105 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4106 NULL, (void *)(intptr_t)rdma);
4107 return;
4109 cleanup_rdma:
4110 qemu_rdma_cleanup(rdma);
4111 err:
4112 error_propagate(errp, local_err);
4113 if (rdma) {
4114 g_free(rdma->host);
4115 g_free(rdma->host_port);
4117 g_free(rdma);
4118 g_free(rdma_return_path);
4121 void rdma_start_outgoing_migration(void *opaque,
4122 const char *host_port, Error **errp)
4124 MigrationState *s = opaque;
4125 RDMAContext *rdma_return_path = NULL;
4126 RDMAContext *rdma;
4127 int ret = 0;
4129 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4130 if (ram_block_discard_is_required()) {
4131 error_setg(errp, "RDMA: cannot disable RAM discard");
4132 return;
4135 rdma = qemu_rdma_data_init(host_port, errp);
4136 if (rdma == NULL) {
4137 goto err;
4140 ret = qemu_rdma_source_init(rdma,
4141 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4143 if (ret) {
4144 goto err;
4147 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4148 ret = qemu_rdma_connect(rdma, errp, false);
4150 if (ret) {
4151 goto err;
4154 /* RDMA postcopy need a separate queue pair for return path */
4155 if (migrate_postcopy()) {
4156 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4158 if (rdma_return_path == NULL) {
4159 goto return_path_err;
4162 ret = qemu_rdma_source_init(rdma_return_path,
4163 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4165 if (ret) {
4166 goto return_path_err;
4169 ret = qemu_rdma_connect(rdma_return_path, errp, true);
4171 if (ret) {
4172 goto return_path_err;
4175 rdma->return_path = rdma_return_path;
4176 rdma_return_path->return_path = rdma;
4177 rdma_return_path->is_return_path = true;
4180 trace_rdma_start_outgoing_migration_after_rdma_connect();
4182 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4183 migrate_fd_connect(s, NULL);
4184 return;
4185 return_path_err:
4186 qemu_rdma_cleanup(rdma);
4187 err:
4188 g_free(rdma);
4189 g_free(rdma_return_path);