s390x/tcg: Fix VECTOR MULTIPLY LOGICAL ODD
[qemu/ar7.git] / hw / core / ptimer.c
blob7239b8227cc3714efc79a37c04a0560480d47273
1 /*
2 * General purpose implementation of a simple periodic countdown timer.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GNU LGPL.
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "migration/vmstate.h"
13 #include "qemu/host-utils.h"
14 #include "sysemu/replay.h"
15 #include "sysemu/qtest.h"
16 #include "block/aio.h"
17 #include "sysemu/cpus.h"
19 #define DELTA_ADJUST 1
20 #define DELTA_NO_ADJUST -1
22 struct ptimer_state
24 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
25 uint64_t limit;
26 uint64_t delta;
27 uint32_t period_frac;
28 int64_t period;
29 int64_t last_event;
30 int64_t next_event;
31 uint8_t policy_mask;
32 QEMUBH *bh;
33 QEMUTimer *timer;
34 ptimer_cb callback;
35 void *callback_opaque;
37 * These track whether we're in a transaction block, and if we
38 * need to do a timer reload when the block finishes. They don't
39 * need to be migrated because migration can never happen in the
40 * middle of a transaction block.
42 bool in_transaction;
43 bool need_reload;
46 /* Use a bottom-half routine to avoid reentrancy issues. */
47 static void ptimer_trigger(ptimer_state *s)
49 if (s->bh) {
50 replay_bh_schedule_event(s->bh);
52 if (s->callback) {
53 s->callback(s->callback_opaque);
57 static void ptimer_reload(ptimer_state *s, int delta_adjust)
59 uint32_t period_frac;
60 uint64_t period;
61 uint64_t delta;
62 bool suppress_trigger = false;
65 * Note that if delta_adjust is 0 then we must be here because of
66 * a count register write or timer start, not because of timer expiry.
67 * In that case the policy might require us to suppress the timer trigger
68 * that we would otherwise generate for a zero delta.
70 if (delta_adjust == 0 &&
71 (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
72 suppress_trigger = true;
74 if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
75 && !suppress_trigger) {
76 ptimer_trigger(s);
80 * Note that ptimer_trigger() might call the device callback function,
81 * which can then modify timer state, so we must not cache any fields
82 * from ptimer_state until after we have called it.
84 delta = s->delta;
85 period = s->period;
86 period_frac = s->period_frac;
88 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
89 delta = s->delta = s->limit;
92 if (s->period == 0) {
93 if (!qtest_enabled()) {
94 fprintf(stderr, "Timer with period zero, disabling\n");
96 timer_del(s->timer);
97 s->enabled = 0;
98 return;
101 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
102 if (delta_adjust != DELTA_NO_ADJUST) {
103 delta += delta_adjust;
107 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
108 if (s->enabled == 1 && s->limit == 0) {
109 delta = 1;
113 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
114 if (delta_adjust != DELTA_NO_ADJUST) {
115 delta = 1;
119 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
120 if (s->enabled == 1 && s->limit != 0) {
121 delta = 1;
125 if (delta == 0) {
126 if (!qtest_enabled()) {
127 fprintf(stderr, "Timer with delta zero, disabling\n");
129 timer_del(s->timer);
130 s->enabled = 0;
131 return;
135 * Artificially limit timeout rate to something
136 * achievable under QEMU. Otherwise, QEMU spends all
137 * its time generating timer interrupts, and there
138 * is no forward progress.
139 * About ten microseconds is the fastest that really works
140 * on the current generation of host machines.
143 if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
144 period = 10000 / delta;
145 period_frac = 0;
148 s->last_event = s->next_event;
149 s->next_event = s->last_event + delta * period;
150 if (period_frac) {
151 s->next_event += ((int64_t)period_frac * delta) >> 32;
153 timer_mod(s->timer, s->next_event);
156 static void ptimer_tick(void *opaque)
158 ptimer_state *s = (ptimer_state *)opaque;
159 bool trigger = true;
162 * We perform all the tick actions within a begin/commit block
163 * because the callback function that ptimer_trigger() calls
164 * might make calls into the ptimer APIs that provoke another
165 * trigger, and we want that to cause the callback function
166 * to be called iteratively, not recursively.
168 ptimer_transaction_begin(s);
170 if (s->enabled == 2) {
171 s->delta = 0;
172 s->enabled = 0;
173 } else {
174 int delta_adjust = DELTA_ADJUST;
176 if (s->delta == 0 || s->limit == 0) {
177 /* If a "continuous trigger" policy is not used and limit == 0,
178 we should error out. delta == 0 means that this tick is
179 caused by a "no immediate reload" policy, so it shouldn't
180 be adjusted. */
181 delta_adjust = DELTA_NO_ADJUST;
184 if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
185 /* Avoid re-trigger on deferred reload if "no immediate trigger"
186 policy isn't used. */
187 trigger = (delta_adjust == DELTA_ADJUST);
190 s->delta = s->limit;
192 ptimer_reload(s, delta_adjust);
195 if (trigger) {
196 ptimer_trigger(s);
199 ptimer_transaction_commit(s);
202 uint64_t ptimer_get_count(ptimer_state *s)
204 uint64_t counter;
206 if (s->enabled && s->delta != 0) {
207 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
208 int64_t next = s->next_event;
209 int64_t last = s->last_event;
210 bool expired = (now - next >= 0);
211 bool oneshot = (s->enabled == 2);
213 /* Figure out the current counter value. */
214 if (expired) {
215 /* Prevent timer underflowing if it should already have
216 triggered. */
217 counter = 0;
218 } else {
219 uint64_t rem;
220 uint64_t div;
221 int clz1, clz2;
222 int shift;
223 uint32_t period_frac = s->period_frac;
224 uint64_t period = s->period;
226 if (!oneshot && (s->delta * period < 10000) && !use_icount) {
227 period = 10000 / s->delta;
228 period_frac = 0;
231 /* We need to divide time by period, where time is stored in
232 rem (64-bit integer) and period is stored in period/period_frac
233 (64.32 fixed point).
235 Doing full precision division is hard, so scale values and
236 do a 64-bit division. The result should be rounded down,
237 so that the rounding error never causes the timer to go
238 backwards.
241 rem = next - now;
242 div = period;
244 clz1 = clz64(rem);
245 clz2 = clz64(div);
246 shift = clz1 < clz2 ? clz1 : clz2;
248 rem <<= shift;
249 div <<= shift;
250 if (shift >= 32) {
251 div |= ((uint64_t)period_frac << (shift - 32));
252 } else {
253 if (shift != 0)
254 div |= (period_frac >> (32 - shift));
255 /* Look at remaining bits of period_frac and round div up if
256 necessary. */
257 if ((uint32_t)(period_frac << shift))
258 div += 1;
260 counter = rem / div;
262 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
263 /* Before wrapping around, timer should stay with counter = 0
264 for a one period. */
265 if (!oneshot && s->delta == s->limit) {
266 if (now == last) {
267 /* Counter == delta here, check whether it was
268 adjusted and if it was, then right now it is
269 that "one period". */
270 if (counter == s->limit + DELTA_ADJUST) {
271 return 0;
273 } else if (counter == s->limit) {
274 /* Since the counter is rounded down and now != last,
275 the counter == limit means that delta was adjusted
276 by +1 and right now it is that adjusted period. */
277 return 0;
283 if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
284 /* If now == last then delta == limit, i.e. the counter already
285 represents the correct value. It would be rounded down a 1ns
286 later. */
287 if (now != last) {
288 counter += 1;
291 } else {
292 counter = s->delta;
294 return counter;
297 void ptimer_set_count(ptimer_state *s, uint64_t count)
299 assert(s->in_transaction || !s->callback);
300 s->delta = count;
301 if (s->enabled) {
302 if (!s->callback) {
303 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
304 ptimer_reload(s, 0);
305 } else {
306 s->need_reload = true;
311 void ptimer_run(ptimer_state *s, int oneshot)
313 bool was_disabled = !s->enabled;
315 assert(s->in_transaction || !s->callback);
317 if (was_disabled && s->period == 0) {
318 if (!qtest_enabled()) {
319 fprintf(stderr, "Timer with period zero, disabling\n");
321 return;
323 s->enabled = oneshot ? 2 : 1;
324 if (was_disabled) {
325 if (!s->callback) {
326 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
327 ptimer_reload(s, 0);
328 } else {
329 s->need_reload = true;
334 /* Pause a timer. Note that this may cause it to "lose" time, even if it
335 is immediately restarted. */
336 void ptimer_stop(ptimer_state *s)
338 assert(s->in_transaction || !s->callback);
340 if (!s->enabled)
341 return;
343 s->delta = ptimer_get_count(s);
344 timer_del(s->timer);
345 s->enabled = 0;
346 if (s->callback) {
347 s->need_reload = false;
351 /* Set counter increment interval in nanoseconds. */
352 void ptimer_set_period(ptimer_state *s, int64_t period)
354 assert(s->in_transaction || !s->callback);
355 s->delta = ptimer_get_count(s);
356 s->period = period;
357 s->period_frac = 0;
358 if (s->enabled) {
359 if (!s->callback) {
360 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
361 ptimer_reload(s, 0);
362 } else {
363 s->need_reload = true;
368 /* Set counter frequency in Hz. */
369 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
371 assert(s->in_transaction || !s->callback);
372 s->delta = ptimer_get_count(s);
373 s->period = 1000000000ll / freq;
374 s->period_frac = (1000000000ll << 32) / freq;
375 if (s->enabled) {
376 if (!s->callback) {
377 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
378 ptimer_reload(s, 0);
379 } else {
380 s->need_reload = true;
385 /* Set the initial countdown value. If reload is nonzero then also set
386 count = limit. */
387 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
389 assert(s->in_transaction || !s->callback);
390 s->limit = limit;
391 if (reload)
392 s->delta = limit;
393 if (s->enabled && reload) {
394 if (!s->callback) {
395 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
396 ptimer_reload(s, 0);
397 } else {
398 s->need_reload = true;
403 uint64_t ptimer_get_limit(ptimer_state *s)
405 return s->limit;
408 void ptimer_transaction_begin(ptimer_state *s)
410 assert(!s->in_transaction || !s->callback);
411 s->in_transaction = true;
412 s->need_reload = false;
415 void ptimer_transaction_commit(ptimer_state *s)
417 assert(s->in_transaction);
419 * We must loop here because ptimer_reload() can call the callback
420 * function, which might then update ptimer state in a way that
421 * means we need to do another reload and possibly another callback.
422 * A disabled timer never needs reloading (and if we don't check
423 * this then we loop forever if ptimer_reload() disables the timer).
425 while (s->need_reload && s->enabled) {
426 s->need_reload = false;
427 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
428 ptimer_reload(s, 0);
430 /* Now we've finished reload we can leave the transaction block. */
431 s->in_transaction = false;
434 const VMStateDescription vmstate_ptimer = {
435 .name = "ptimer",
436 .version_id = 1,
437 .minimum_version_id = 1,
438 .fields = (VMStateField[]) {
439 VMSTATE_UINT8(enabled, ptimer_state),
440 VMSTATE_UINT64(limit, ptimer_state),
441 VMSTATE_UINT64(delta, ptimer_state),
442 VMSTATE_UINT32(period_frac, ptimer_state),
443 VMSTATE_INT64(period, ptimer_state),
444 VMSTATE_INT64(last_event, ptimer_state),
445 VMSTATE_INT64(next_event, ptimer_state),
446 VMSTATE_TIMER_PTR(timer, ptimer_state),
447 VMSTATE_END_OF_LIST()
451 ptimer_state *ptimer_init_with_bh(QEMUBH *bh, uint8_t policy_mask)
453 ptimer_state *s;
455 s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
456 s->bh = bh;
457 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
458 s->policy_mask = policy_mask;
461 * These two policies are incompatible -- trigger-on-decrement implies
462 * a timer trigger when the count becomes 0, but no-immediate-trigger
463 * implies a trigger when the count stops being 0.
465 assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
466 (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
467 return s;
470 ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
471 uint8_t policy_mask)
473 ptimer_state *s;
476 * The callback function is mandatory; so we use it to distinguish
477 * old-style QEMUBH ptimers from new transaction API ptimers.
478 * (ptimer_init_with_bh() allows a NULL bh pointer and at least
479 * one device (digic-timer) passes NULL, so it's not the case
480 * that either s->bh != NULL or s->callback != NULL.)
482 assert(callback);
484 s = g_new0(ptimer_state, 1);
485 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
486 s->policy_mask = policy_mask;
487 s->callback = callback;
488 s->callback_opaque = callback_opaque;
491 * These two policies are incompatible -- trigger-on-decrement implies
492 * a timer trigger when the count becomes 0, but no-immediate-trigger
493 * implies a trigger when the count stops being 0.
495 assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
496 (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
497 return s;
500 void ptimer_free(ptimer_state *s)
502 if (s->bh) {
503 qemu_bh_delete(s->bh);
505 timer_free(s->timer);
506 g_free(s);