s390x/tcg: Fix VECTOR MULTIPLY LOGICAL ODD
[qemu/ar7.git] / block / io.c
blobf0b86c1d19eee30ea741eb8852f10d956eb7b522
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "sysemu/replay.h"
38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int bytes, BdrvRequestFlags flags);
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48 bool ignore_bds_parents)
50 BdrvChild *c, *next;
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
54 continue;
56 bdrv_parent_drained_begin_single(c, false);
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61 int *drained_end_counter)
63 assert(c->parent_quiesce_counter > 0);
64 c->parent_quiesce_counter--;
65 if (c->role->drained_end) {
66 c->role->drained_end(c, drained_end_counter);
70 void bdrv_parent_drained_end_single(BdrvChild *c)
72 int drained_end_counter = 0;
73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78 bool ignore_bds_parents,
79 int *drained_end_counter)
81 BdrvChild *c;
83 QLIST_FOREACH(c, &bs->parents, next_parent) {
84 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
85 continue;
87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
93 if (c->role->drained_poll) {
94 return c->role->drained_poll(c);
96 return false;
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100 bool ignore_bds_parents)
102 BdrvChild *c, *next;
103 bool busy = false;
105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
107 continue;
109 busy |= bdrv_parent_drained_poll_single(c);
112 return busy;
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
117 c->parent_quiesce_counter++;
118 if (c->role->drained_begin) {
119 c->role->drained_begin(c);
121 if (poll) {
122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
131 src->opt_mem_alignment);
132 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
133 src->min_mem_alignment);
134 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
139 BlockDriver *drv = bs->drv;
140 Error *local_err = NULL;
142 memset(&bs->bl, 0, sizeof(bs->bl));
144 if (!drv) {
145 return;
148 /* Default alignment based on whether driver has byte interface */
149 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
150 drv->bdrv_aio_preadv ||
151 drv->bdrv_co_preadv_part) ? 1 : 512;
153 /* Take some limits from the children as a default */
154 if (bs->file) {
155 bdrv_refresh_limits(bs->file->bs, &local_err);
156 if (local_err) {
157 error_propagate(errp, local_err);
158 return;
160 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
161 } else {
162 bs->bl.min_mem_alignment = 512;
163 bs->bl.opt_mem_alignment = getpagesize();
165 /* Safe default since most protocols use readv()/writev()/etc */
166 bs->bl.max_iov = IOV_MAX;
169 if (bs->backing) {
170 bdrv_refresh_limits(bs->backing->bs, &local_err);
171 if (local_err) {
172 error_propagate(errp, local_err);
173 return;
175 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
178 /* Then let the driver override it */
179 if (drv->bdrv_refresh_limits) {
180 drv->bdrv_refresh_limits(bs, errp);
185 * The copy-on-read flag is actually a reference count so multiple users may
186 * use the feature without worrying about clobbering its previous state.
187 * Copy-on-read stays enabled until all users have called to disable it.
189 void bdrv_enable_copy_on_read(BlockDriverState *bs)
191 atomic_inc(&bs->copy_on_read);
194 void bdrv_disable_copy_on_read(BlockDriverState *bs)
196 int old = atomic_fetch_dec(&bs->copy_on_read);
197 assert(old >= 1);
200 typedef struct {
201 Coroutine *co;
202 BlockDriverState *bs;
203 bool done;
204 bool begin;
205 bool recursive;
206 bool poll;
207 BdrvChild *parent;
208 bool ignore_bds_parents;
209 int *drained_end_counter;
210 } BdrvCoDrainData;
212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
214 BdrvCoDrainData *data = opaque;
215 BlockDriverState *bs = data->bs;
217 if (data->begin) {
218 bs->drv->bdrv_co_drain_begin(bs);
219 } else {
220 bs->drv->bdrv_co_drain_end(bs);
223 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
224 atomic_mb_set(&data->done, true);
225 if (!data->begin) {
226 atomic_dec(data->drained_end_counter);
228 bdrv_dec_in_flight(bs);
230 g_free(data);
233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
235 int *drained_end_counter)
237 BdrvCoDrainData *data;
239 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
240 (!begin && !bs->drv->bdrv_co_drain_end)) {
241 return;
244 data = g_new(BdrvCoDrainData, 1);
245 *data = (BdrvCoDrainData) {
246 .bs = bs,
247 .done = false,
248 .begin = begin,
249 .drained_end_counter = drained_end_counter,
252 if (!begin) {
253 atomic_inc(drained_end_counter);
256 /* Make sure the driver callback completes during the polling phase for
257 * drain_begin. */
258 bdrv_inc_in_flight(bs);
259 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
260 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
265 BdrvChild *ignore_parent, bool ignore_bds_parents)
267 BdrvChild *child, *next;
269 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
270 return true;
273 if (atomic_read(&bs->in_flight)) {
274 return true;
277 if (recursive) {
278 assert(!ignore_bds_parents);
279 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
280 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
281 return true;
286 return false;
289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
290 BdrvChild *ignore_parent)
292 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
296 BdrvChild *parent, bool ignore_bds_parents,
297 bool poll);
298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
299 BdrvChild *parent, bool ignore_bds_parents,
300 int *drained_end_counter);
302 static void bdrv_co_drain_bh_cb(void *opaque)
304 BdrvCoDrainData *data = opaque;
305 Coroutine *co = data->co;
306 BlockDriverState *bs = data->bs;
308 if (bs) {
309 AioContext *ctx = bdrv_get_aio_context(bs);
310 AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
313 * When the coroutine yielded, the lock for its home context was
314 * released, so we need to re-acquire it here. If it explicitly
315 * acquired a different context, the lock is still held and we don't
316 * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
318 if (ctx == co_ctx) {
319 aio_context_acquire(ctx);
321 bdrv_dec_in_flight(bs);
322 if (data->begin) {
323 assert(!data->drained_end_counter);
324 bdrv_do_drained_begin(bs, data->recursive, data->parent,
325 data->ignore_bds_parents, data->poll);
326 } else {
327 assert(!data->poll);
328 bdrv_do_drained_end(bs, data->recursive, data->parent,
329 data->ignore_bds_parents,
330 data->drained_end_counter);
332 if (ctx == co_ctx) {
333 aio_context_release(ctx);
335 } else {
336 assert(data->begin);
337 bdrv_drain_all_begin();
340 data->done = true;
341 aio_co_wake(co);
344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
345 bool begin, bool recursive,
346 BdrvChild *parent,
347 bool ignore_bds_parents,
348 bool poll,
349 int *drained_end_counter)
351 BdrvCoDrainData data;
353 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
354 * other coroutines run if they were queued by aio_co_enter(). */
356 assert(qemu_in_coroutine());
357 data = (BdrvCoDrainData) {
358 .co = qemu_coroutine_self(),
359 .bs = bs,
360 .done = false,
361 .begin = begin,
362 .recursive = recursive,
363 .parent = parent,
364 .ignore_bds_parents = ignore_bds_parents,
365 .poll = poll,
366 .drained_end_counter = drained_end_counter,
369 if (bs) {
370 bdrv_inc_in_flight(bs);
372 replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs),
373 bdrv_co_drain_bh_cb, &data);
375 qemu_coroutine_yield();
376 /* If we are resumed from some other event (such as an aio completion or a
377 * timer callback), it is a bug in the caller that should be fixed. */
378 assert(data.done);
381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
382 BdrvChild *parent, bool ignore_bds_parents)
384 assert(!qemu_in_coroutine());
386 /* Stop things in parent-to-child order */
387 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
388 aio_disable_external(bdrv_get_aio_context(bs));
391 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
392 bdrv_drain_invoke(bs, true, NULL);
395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
396 BdrvChild *parent, bool ignore_bds_parents,
397 bool poll)
399 BdrvChild *child, *next;
401 if (qemu_in_coroutine()) {
402 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
403 poll, NULL);
404 return;
407 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
409 if (recursive) {
410 assert(!ignore_bds_parents);
411 bs->recursive_quiesce_counter++;
412 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
413 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
414 false);
419 * Wait for drained requests to finish.
421 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
422 * call is needed so things in this AioContext can make progress even
423 * though we don't return to the main AioContext loop - this automatically
424 * includes other nodes in the same AioContext and therefore all child
425 * nodes.
427 if (poll) {
428 assert(!ignore_bds_parents);
429 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
433 void bdrv_drained_begin(BlockDriverState *bs)
435 bdrv_do_drained_begin(bs, false, NULL, false, true);
438 void bdrv_subtree_drained_begin(BlockDriverState *bs)
440 bdrv_do_drained_begin(bs, true, NULL, false, true);
444 * This function does not poll, nor must any of its recursively called
445 * functions. The *drained_end_counter pointee will be incremented
446 * once for every background operation scheduled, and decremented once
447 * the operation settles. Therefore, the pointer must remain valid
448 * until the pointee reaches 0. That implies that whoever sets up the
449 * pointee has to poll until it is 0.
451 * We use atomic operations to access *drained_end_counter, because
452 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
453 * @bs may contain nodes in different AioContexts,
454 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
455 * regardless of which AioContext they are in.
457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
458 BdrvChild *parent, bool ignore_bds_parents,
459 int *drained_end_counter)
461 BdrvChild *child;
462 int old_quiesce_counter;
464 assert(drained_end_counter != NULL);
466 if (qemu_in_coroutine()) {
467 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
468 false, drained_end_counter);
469 return;
471 assert(bs->quiesce_counter > 0);
473 /* Re-enable things in child-to-parent order */
474 bdrv_drain_invoke(bs, false, drained_end_counter);
475 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
476 drained_end_counter);
478 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
479 if (old_quiesce_counter == 1) {
480 aio_enable_external(bdrv_get_aio_context(bs));
483 if (recursive) {
484 assert(!ignore_bds_parents);
485 bs->recursive_quiesce_counter--;
486 QLIST_FOREACH(child, &bs->children, next) {
487 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
488 drained_end_counter);
493 void bdrv_drained_end(BlockDriverState *bs)
495 int drained_end_counter = 0;
496 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
497 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
502 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
505 void bdrv_subtree_drained_end(BlockDriverState *bs)
507 int drained_end_counter = 0;
508 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
509 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
514 int i;
516 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
517 bdrv_do_drained_begin(child->bs, true, child, false, true);
521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
523 int drained_end_counter = 0;
524 int i;
526 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
527 bdrv_do_drained_end(child->bs, true, child, false,
528 &drained_end_counter);
531 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
535 * Wait for pending requests to complete on a single BlockDriverState subtree,
536 * and suspend block driver's internal I/O until next request arrives.
538 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
539 * AioContext.
541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
543 assert(qemu_in_coroutine());
544 bdrv_drained_begin(bs);
545 bdrv_drained_end(bs);
548 void bdrv_drain(BlockDriverState *bs)
550 bdrv_drained_begin(bs);
551 bdrv_drained_end(bs);
554 static void bdrv_drain_assert_idle(BlockDriverState *bs)
556 BdrvChild *child, *next;
558 assert(atomic_read(&bs->in_flight) == 0);
559 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
560 bdrv_drain_assert_idle(child->bs);
564 unsigned int bdrv_drain_all_count = 0;
566 static bool bdrv_drain_all_poll(void)
568 BlockDriverState *bs = NULL;
569 bool result = false;
571 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
572 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
573 while ((bs = bdrv_next_all_states(bs))) {
574 AioContext *aio_context = bdrv_get_aio_context(bs);
575 aio_context_acquire(aio_context);
576 result |= bdrv_drain_poll(bs, false, NULL, true);
577 aio_context_release(aio_context);
580 return result;
584 * Wait for pending requests to complete across all BlockDriverStates
586 * This function does not flush data to disk, use bdrv_flush_all() for that
587 * after calling this function.
589 * This pauses all block jobs and disables external clients. It must
590 * be paired with bdrv_drain_all_end().
592 * NOTE: no new block jobs or BlockDriverStates can be created between
593 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
595 void bdrv_drain_all_begin(void)
597 BlockDriverState *bs = NULL;
599 if (qemu_in_coroutine()) {
600 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
601 return;
605 * bdrv queue is managed by record/replay,
606 * waiting for finishing the I/O requests may
607 * be infinite
609 if (replay_events_enabled()) {
610 return;
613 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
614 * loop AioContext, so make sure we're in the main context. */
615 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
616 assert(bdrv_drain_all_count < INT_MAX);
617 bdrv_drain_all_count++;
619 /* Quiesce all nodes, without polling in-flight requests yet. The graph
620 * cannot change during this loop. */
621 while ((bs = bdrv_next_all_states(bs))) {
622 AioContext *aio_context = bdrv_get_aio_context(bs);
624 aio_context_acquire(aio_context);
625 bdrv_do_drained_begin(bs, false, NULL, true, false);
626 aio_context_release(aio_context);
629 /* Now poll the in-flight requests */
630 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
632 while ((bs = bdrv_next_all_states(bs))) {
633 bdrv_drain_assert_idle(bs);
637 void bdrv_drain_all_end(void)
639 BlockDriverState *bs = NULL;
640 int drained_end_counter = 0;
643 * bdrv queue is managed by record/replay,
644 * waiting for finishing the I/O requests may
645 * be endless
647 if (replay_events_enabled()) {
648 return;
651 while ((bs = bdrv_next_all_states(bs))) {
652 AioContext *aio_context = bdrv_get_aio_context(bs);
654 aio_context_acquire(aio_context);
655 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
656 aio_context_release(aio_context);
659 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
660 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
662 assert(bdrv_drain_all_count > 0);
663 bdrv_drain_all_count--;
666 void bdrv_drain_all(void)
668 bdrv_drain_all_begin();
669 bdrv_drain_all_end();
673 * Remove an active request from the tracked requests list
675 * This function should be called when a tracked request is completing.
677 static void tracked_request_end(BdrvTrackedRequest *req)
679 if (req->serialising) {
680 atomic_dec(&req->bs->serialising_in_flight);
683 qemu_co_mutex_lock(&req->bs->reqs_lock);
684 QLIST_REMOVE(req, list);
685 qemu_co_queue_restart_all(&req->wait_queue);
686 qemu_co_mutex_unlock(&req->bs->reqs_lock);
690 * Add an active request to the tracked requests list
692 static void tracked_request_begin(BdrvTrackedRequest *req,
693 BlockDriverState *bs,
694 int64_t offset,
695 uint64_t bytes,
696 enum BdrvTrackedRequestType type)
698 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
700 *req = (BdrvTrackedRequest){
701 .bs = bs,
702 .offset = offset,
703 .bytes = bytes,
704 .type = type,
705 .co = qemu_coroutine_self(),
706 .serialising = false,
707 .overlap_offset = offset,
708 .overlap_bytes = bytes,
711 qemu_co_queue_init(&req->wait_queue);
713 qemu_co_mutex_lock(&bs->reqs_lock);
714 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
715 qemu_co_mutex_unlock(&bs->reqs_lock);
718 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
720 int64_t overlap_offset = req->offset & ~(align - 1);
721 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
722 - overlap_offset;
724 if (!req->serialising) {
725 atomic_inc(&req->bs->serialising_in_flight);
726 req->serialising = true;
729 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
730 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
733 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
736 * If the request is serialising, overlap_offset and overlap_bytes are set,
737 * so we can check if the request is aligned. Otherwise, don't care and
738 * return false.
741 return req->serialising && (req->offset == req->overlap_offset) &&
742 (req->bytes == req->overlap_bytes);
746 * Round a region to cluster boundaries
748 void bdrv_round_to_clusters(BlockDriverState *bs,
749 int64_t offset, int64_t bytes,
750 int64_t *cluster_offset,
751 int64_t *cluster_bytes)
753 BlockDriverInfo bdi;
755 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
756 *cluster_offset = offset;
757 *cluster_bytes = bytes;
758 } else {
759 int64_t c = bdi.cluster_size;
760 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
761 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
765 static int bdrv_get_cluster_size(BlockDriverState *bs)
767 BlockDriverInfo bdi;
768 int ret;
770 ret = bdrv_get_info(bs, &bdi);
771 if (ret < 0 || bdi.cluster_size == 0) {
772 return bs->bl.request_alignment;
773 } else {
774 return bdi.cluster_size;
778 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
779 int64_t offset, uint64_t bytes)
781 /* aaaa bbbb */
782 if (offset >= req->overlap_offset + req->overlap_bytes) {
783 return false;
785 /* bbbb aaaa */
786 if (req->overlap_offset >= offset + bytes) {
787 return false;
789 return true;
792 void bdrv_inc_in_flight(BlockDriverState *bs)
794 atomic_inc(&bs->in_flight);
797 void bdrv_wakeup(BlockDriverState *bs)
799 aio_wait_kick();
802 void bdrv_dec_in_flight(BlockDriverState *bs)
804 atomic_dec(&bs->in_flight);
805 bdrv_wakeup(bs);
808 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
810 BlockDriverState *bs = self->bs;
811 BdrvTrackedRequest *req;
812 bool retry;
813 bool waited = false;
815 if (!atomic_read(&bs->serialising_in_flight)) {
816 return false;
819 do {
820 retry = false;
821 qemu_co_mutex_lock(&bs->reqs_lock);
822 QLIST_FOREACH(req, &bs->tracked_requests, list) {
823 if (req == self || (!req->serialising && !self->serialising)) {
824 continue;
826 if (tracked_request_overlaps(req, self->overlap_offset,
827 self->overlap_bytes))
829 /* Hitting this means there was a reentrant request, for
830 * example, a block driver issuing nested requests. This must
831 * never happen since it means deadlock.
833 assert(qemu_coroutine_self() != req->co);
835 /* If the request is already (indirectly) waiting for us, or
836 * will wait for us as soon as it wakes up, then just go on
837 * (instead of producing a deadlock in the former case). */
838 if (!req->waiting_for) {
839 self->waiting_for = req;
840 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
841 self->waiting_for = NULL;
842 retry = true;
843 waited = true;
844 break;
848 qemu_co_mutex_unlock(&bs->reqs_lock);
849 } while (retry);
851 return waited;
854 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
855 size_t size)
857 if (size > BDRV_REQUEST_MAX_BYTES) {
858 return -EIO;
861 if (!bdrv_is_inserted(bs)) {
862 return -ENOMEDIUM;
865 if (offset < 0) {
866 return -EIO;
869 return 0;
872 typedef struct RwCo {
873 BdrvChild *child;
874 int64_t offset;
875 QEMUIOVector *qiov;
876 bool is_write;
877 int ret;
878 BdrvRequestFlags flags;
879 } RwCo;
881 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
883 RwCo *rwco = opaque;
885 if (!rwco->is_write) {
886 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
887 rwco->qiov->size, rwco->qiov,
888 rwco->flags);
889 } else {
890 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
891 rwco->qiov->size, rwco->qiov,
892 rwco->flags);
894 aio_wait_kick();
898 * Process a vectored synchronous request using coroutines
900 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
901 QEMUIOVector *qiov, bool is_write,
902 BdrvRequestFlags flags)
904 Coroutine *co;
905 RwCo rwco = {
906 .child = child,
907 .offset = offset,
908 .qiov = qiov,
909 .is_write = is_write,
910 .ret = NOT_DONE,
911 .flags = flags,
914 if (qemu_in_coroutine()) {
915 /* Fast-path if already in coroutine context */
916 bdrv_rw_co_entry(&rwco);
917 } else {
918 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
919 bdrv_coroutine_enter(child->bs, co);
920 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
922 return rwco.ret;
925 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
926 int bytes, BdrvRequestFlags flags)
928 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
930 return bdrv_prwv_co(child, offset, &qiov, true,
931 BDRV_REQ_ZERO_WRITE | flags);
935 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
936 * The operation is sped up by checking the block status and only writing
937 * zeroes to the device if they currently do not return zeroes. Optional
938 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
939 * BDRV_REQ_FUA).
941 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
943 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
945 int ret;
946 int64_t target_size, bytes, offset = 0;
947 BlockDriverState *bs = child->bs;
949 target_size = bdrv_getlength(bs);
950 if (target_size < 0) {
951 return target_size;
954 for (;;) {
955 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
956 if (bytes <= 0) {
957 return 0;
959 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
960 if (ret < 0) {
961 return ret;
963 if (ret & BDRV_BLOCK_ZERO) {
964 offset += bytes;
965 continue;
967 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
968 if (ret < 0) {
969 return ret;
971 offset += bytes;
975 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
977 int ret;
979 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
980 if (ret < 0) {
981 return ret;
984 return qiov->size;
987 /* See bdrv_pwrite() for the return codes */
988 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
990 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
992 if (bytes < 0) {
993 return -EINVAL;
996 return bdrv_preadv(child, offset, &qiov);
999 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
1001 int ret;
1003 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
1004 if (ret < 0) {
1005 return ret;
1008 return qiov->size;
1011 /* Return no. of bytes on success or < 0 on error. Important errors are:
1012 -EIO generic I/O error (may happen for all errors)
1013 -ENOMEDIUM No media inserted.
1014 -EINVAL Invalid offset or number of bytes
1015 -EACCES Trying to write a read-only device
1017 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1019 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1021 if (bytes < 0) {
1022 return -EINVAL;
1025 return bdrv_pwritev(child, offset, &qiov);
1029 * Writes to the file and ensures that no writes are reordered across this
1030 * request (acts as a barrier)
1032 * Returns 0 on success, -errno in error cases.
1034 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1035 const void *buf, int count)
1037 int ret;
1039 ret = bdrv_pwrite(child, offset, buf, count);
1040 if (ret < 0) {
1041 return ret;
1044 ret = bdrv_flush(child->bs);
1045 if (ret < 0) {
1046 return ret;
1049 return 0;
1052 typedef struct CoroutineIOCompletion {
1053 Coroutine *coroutine;
1054 int ret;
1055 } CoroutineIOCompletion;
1057 static void bdrv_co_io_em_complete(void *opaque, int ret)
1059 CoroutineIOCompletion *co = opaque;
1061 co->ret = ret;
1062 aio_co_wake(co->coroutine);
1065 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1066 uint64_t offset, uint64_t bytes,
1067 QEMUIOVector *qiov,
1068 size_t qiov_offset, int flags)
1070 BlockDriver *drv = bs->drv;
1071 int64_t sector_num;
1072 unsigned int nb_sectors;
1073 QEMUIOVector local_qiov;
1074 int ret;
1076 assert(!(flags & ~BDRV_REQ_MASK));
1077 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1079 if (!drv) {
1080 return -ENOMEDIUM;
1083 if (drv->bdrv_co_preadv_part) {
1084 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1085 flags);
1088 if (qiov_offset > 0 || bytes != qiov->size) {
1089 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1090 qiov = &local_qiov;
1093 if (drv->bdrv_co_preadv) {
1094 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1095 goto out;
1098 if (drv->bdrv_aio_preadv) {
1099 BlockAIOCB *acb;
1100 CoroutineIOCompletion co = {
1101 .coroutine = qemu_coroutine_self(),
1104 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1105 bdrv_co_io_em_complete, &co);
1106 if (acb == NULL) {
1107 ret = -EIO;
1108 goto out;
1109 } else {
1110 qemu_coroutine_yield();
1111 ret = co.ret;
1112 goto out;
1116 sector_num = offset >> BDRV_SECTOR_BITS;
1117 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1119 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1120 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1121 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1122 assert(drv->bdrv_co_readv);
1124 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1126 out:
1127 if (qiov == &local_qiov) {
1128 qemu_iovec_destroy(&local_qiov);
1131 return ret;
1134 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1135 uint64_t offset, uint64_t bytes,
1136 QEMUIOVector *qiov,
1137 size_t qiov_offset, int flags)
1139 BlockDriver *drv = bs->drv;
1140 int64_t sector_num;
1141 unsigned int nb_sectors;
1142 QEMUIOVector local_qiov;
1143 int ret;
1145 assert(!(flags & ~BDRV_REQ_MASK));
1146 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1148 if (!drv) {
1149 return -ENOMEDIUM;
1152 if (drv->bdrv_co_pwritev_part) {
1153 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1154 flags & bs->supported_write_flags);
1155 flags &= ~bs->supported_write_flags;
1156 goto emulate_flags;
1159 if (qiov_offset > 0 || bytes != qiov->size) {
1160 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1161 qiov = &local_qiov;
1164 if (drv->bdrv_co_pwritev) {
1165 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1166 flags & bs->supported_write_flags);
1167 flags &= ~bs->supported_write_flags;
1168 goto emulate_flags;
1171 if (drv->bdrv_aio_pwritev) {
1172 BlockAIOCB *acb;
1173 CoroutineIOCompletion co = {
1174 .coroutine = qemu_coroutine_self(),
1177 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1178 flags & bs->supported_write_flags,
1179 bdrv_co_io_em_complete, &co);
1180 flags &= ~bs->supported_write_flags;
1181 if (acb == NULL) {
1182 ret = -EIO;
1183 } else {
1184 qemu_coroutine_yield();
1185 ret = co.ret;
1187 goto emulate_flags;
1190 sector_num = offset >> BDRV_SECTOR_BITS;
1191 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1193 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1194 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1195 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1197 assert(drv->bdrv_co_writev);
1198 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1199 flags & bs->supported_write_flags);
1200 flags &= ~bs->supported_write_flags;
1202 emulate_flags:
1203 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1204 ret = bdrv_co_flush(bs);
1207 if (qiov == &local_qiov) {
1208 qemu_iovec_destroy(&local_qiov);
1211 return ret;
1214 static int coroutine_fn
1215 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1216 uint64_t bytes, QEMUIOVector *qiov,
1217 size_t qiov_offset)
1219 BlockDriver *drv = bs->drv;
1220 QEMUIOVector local_qiov;
1221 int ret;
1223 if (!drv) {
1224 return -ENOMEDIUM;
1227 if (!block_driver_can_compress(drv)) {
1228 return -ENOTSUP;
1231 if (drv->bdrv_co_pwritev_compressed_part) {
1232 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1233 qiov, qiov_offset);
1236 if (qiov_offset == 0) {
1237 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1240 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1241 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1242 qemu_iovec_destroy(&local_qiov);
1244 return ret;
1247 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1248 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1249 size_t qiov_offset, int flags)
1251 BlockDriverState *bs = child->bs;
1253 /* Perform I/O through a temporary buffer so that users who scribble over
1254 * their read buffer while the operation is in progress do not end up
1255 * modifying the image file. This is critical for zero-copy guest I/O
1256 * where anything might happen inside guest memory.
1258 void *bounce_buffer = NULL;
1260 BlockDriver *drv = bs->drv;
1261 int64_t cluster_offset;
1262 int64_t cluster_bytes;
1263 size_t skip_bytes;
1264 int ret;
1265 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1266 BDRV_REQUEST_MAX_BYTES);
1267 unsigned int progress = 0;
1268 bool skip_write;
1270 if (!drv) {
1271 return -ENOMEDIUM;
1275 * Do not write anything when the BDS is inactive. That is not
1276 * allowed, and it would not help.
1278 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1280 /* FIXME We cannot require callers to have write permissions when all they
1281 * are doing is a read request. If we did things right, write permissions
1282 * would be obtained anyway, but internally by the copy-on-read code. As
1283 * long as it is implemented here rather than in a separate filter driver,
1284 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1285 * it could request permissions. Therefore we have to bypass the permission
1286 * system for the moment. */
1287 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1289 /* Cover entire cluster so no additional backing file I/O is required when
1290 * allocating cluster in the image file. Note that this value may exceed
1291 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1292 * is one reason we loop rather than doing it all at once.
1294 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1295 skip_bytes = offset - cluster_offset;
1297 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1298 cluster_offset, cluster_bytes);
1300 while (cluster_bytes) {
1301 int64_t pnum;
1303 if (skip_write) {
1304 ret = 1; /* "already allocated", so nothing will be copied */
1305 pnum = MIN(cluster_bytes, max_transfer);
1306 } else {
1307 ret = bdrv_is_allocated(bs, cluster_offset,
1308 MIN(cluster_bytes, max_transfer), &pnum);
1309 if (ret < 0) {
1311 * Safe to treat errors in querying allocation as if
1312 * unallocated; we'll probably fail again soon on the
1313 * read, but at least that will set a decent errno.
1315 pnum = MIN(cluster_bytes, max_transfer);
1318 /* Stop at EOF if the image ends in the middle of the cluster */
1319 if (ret == 0 && pnum == 0) {
1320 assert(progress >= bytes);
1321 break;
1324 assert(skip_bytes < pnum);
1327 if (ret <= 0) {
1328 QEMUIOVector local_qiov;
1330 /* Must copy-on-read; use the bounce buffer */
1331 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1332 if (!bounce_buffer) {
1333 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1334 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1335 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1337 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1338 if (!bounce_buffer) {
1339 ret = -ENOMEM;
1340 goto err;
1343 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1345 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1346 &local_qiov, 0, 0);
1347 if (ret < 0) {
1348 goto err;
1351 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1352 if (drv->bdrv_co_pwrite_zeroes &&
1353 buffer_is_zero(bounce_buffer, pnum)) {
1354 /* FIXME: Should we (perhaps conditionally) be setting
1355 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1356 * that still correctly reads as zero? */
1357 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1358 BDRV_REQ_WRITE_UNCHANGED);
1359 } else {
1360 /* This does not change the data on the disk, it is not
1361 * necessary to flush even in cache=writethrough mode.
1363 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1364 &local_qiov, 0,
1365 BDRV_REQ_WRITE_UNCHANGED);
1368 if (ret < 0) {
1369 /* It might be okay to ignore write errors for guest
1370 * requests. If this is a deliberate copy-on-read
1371 * then we don't want to ignore the error. Simply
1372 * report it in all cases.
1374 goto err;
1377 if (!(flags & BDRV_REQ_PREFETCH)) {
1378 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1379 bounce_buffer + skip_bytes,
1380 pnum - skip_bytes);
1382 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1383 /* Read directly into the destination */
1384 ret = bdrv_driver_preadv(bs, offset + progress,
1385 MIN(pnum - skip_bytes, bytes - progress),
1386 qiov, qiov_offset + progress, 0);
1387 if (ret < 0) {
1388 goto err;
1392 cluster_offset += pnum;
1393 cluster_bytes -= pnum;
1394 progress += pnum - skip_bytes;
1395 skip_bytes = 0;
1397 ret = 0;
1399 err:
1400 qemu_vfree(bounce_buffer);
1401 return ret;
1405 * Forwards an already correctly aligned request to the BlockDriver. This
1406 * handles copy on read, zeroing after EOF, and fragmentation of large
1407 * reads; any other features must be implemented by the caller.
1409 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1410 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1411 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1413 BlockDriverState *bs = child->bs;
1414 int64_t total_bytes, max_bytes;
1415 int ret = 0;
1416 uint64_t bytes_remaining = bytes;
1417 int max_transfer;
1419 assert(is_power_of_2(align));
1420 assert((offset & (align - 1)) == 0);
1421 assert((bytes & (align - 1)) == 0);
1422 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1423 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1424 align);
1426 /* TODO: We would need a per-BDS .supported_read_flags and
1427 * potential fallback support, if we ever implement any read flags
1428 * to pass through to drivers. For now, there aren't any
1429 * passthrough flags. */
1430 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ |
1431 BDRV_REQ_PREFETCH)));
1433 /* Handle Copy on Read and associated serialisation */
1434 if (flags & BDRV_REQ_COPY_ON_READ) {
1435 /* If we touch the same cluster it counts as an overlap. This
1436 * guarantees that allocating writes will be serialized and not race
1437 * with each other for the same cluster. For example, in copy-on-read
1438 * it ensures that the CoR read and write operations are atomic and
1439 * guest writes cannot interleave between them. */
1440 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1443 /* BDRV_REQ_SERIALISING is only for write operation */
1444 assert(!(flags & BDRV_REQ_SERIALISING));
1446 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1447 wait_serialising_requests(req);
1450 if (flags & BDRV_REQ_COPY_ON_READ) {
1451 int64_t pnum;
1453 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1454 if (ret < 0) {
1455 goto out;
1458 if (!ret || pnum != bytes) {
1459 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1460 qiov, qiov_offset, flags);
1461 goto out;
1462 } else if (flags & BDRV_REQ_PREFETCH) {
1463 goto out;
1467 /* Forward the request to the BlockDriver, possibly fragmenting it */
1468 total_bytes = bdrv_getlength(bs);
1469 if (total_bytes < 0) {
1470 ret = total_bytes;
1471 goto out;
1474 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1475 if (bytes <= max_bytes && bytes <= max_transfer) {
1476 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1477 goto out;
1480 while (bytes_remaining) {
1481 int num;
1483 if (max_bytes) {
1484 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1485 assert(num);
1487 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1488 num, qiov, bytes - bytes_remaining, 0);
1489 max_bytes -= num;
1490 } else {
1491 num = bytes_remaining;
1492 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1493 bytes_remaining);
1495 if (ret < 0) {
1496 goto out;
1498 bytes_remaining -= num;
1501 out:
1502 return ret < 0 ? ret : 0;
1506 * Request padding
1508 * |<---- align ----->| |<----- align ---->|
1509 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1510 * | | | | | |
1511 * -*----------$-------*-------- ... --------*-----$------------*---
1512 * | | | | | |
1513 * | offset | | end |
1514 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1515 * [buf ... ) [tail_buf )
1517 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1518 * is placed at the beginning of @buf and @tail at the @end.
1520 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1521 * around tail, if tail exists.
1523 * @merge_reads is true for small requests,
1524 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1525 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1527 typedef struct BdrvRequestPadding {
1528 uint8_t *buf;
1529 size_t buf_len;
1530 uint8_t *tail_buf;
1531 size_t head;
1532 size_t tail;
1533 bool merge_reads;
1534 QEMUIOVector local_qiov;
1535 } BdrvRequestPadding;
1537 static bool bdrv_init_padding(BlockDriverState *bs,
1538 int64_t offset, int64_t bytes,
1539 BdrvRequestPadding *pad)
1541 uint64_t align = bs->bl.request_alignment;
1542 size_t sum;
1544 memset(pad, 0, sizeof(*pad));
1546 pad->head = offset & (align - 1);
1547 pad->tail = ((offset + bytes) & (align - 1));
1548 if (pad->tail) {
1549 pad->tail = align - pad->tail;
1552 if ((!pad->head && !pad->tail) || !bytes) {
1553 return false;
1556 sum = pad->head + bytes + pad->tail;
1557 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1558 pad->buf = qemu_blockalign(bs, pad->buf_len);
1559 pad->merge_reads = sum == pad->buf_len;
1560 if (pad->tail) {
1561 pad->tail_buf = pad->buf + pad->buf_len - align;
1564 return true;
1567 static int bdrv_padding_rmw_read(BdrvChild *child,
1568 BdrvTrackedRequest *req,
1569 BdrvRequestPadding *pad,
1570 bool zero_middle)
1572 QEMUIOVector local_qiov;
1573 BlockDriverState *bs = child->bs;
1574 uint64_t align = bs->bl.request_alignment;
1575 int ret;
1577 assert(req->serialising && pad->buf);
1579 if (pad->head || pad->merge_reads) {
1580 uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1582 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1584 if (pad->head) {
1585 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1587 if (pad->merge_reads && pad->tail) {
1588 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1590 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1591 align, &local_qiov, 0, 0);
1592 if (ret < 0) {
1593 return ret;
1595 if (pad->head) {
1596 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1598 if (pad->merge_reads && pad->tail) {
1599 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1602 if (pad->merge_reads) {
1603 goto zero_mem;
1607 if (pad->tail) {
1608 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1610 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1611 ret = bdrv_aligned_preadv(
1612 child, req,
1613 req->overlap_offset + req->overlap_bytes - align,
1614 align, align, &local_qiov, 0, 0);
1615 if (ret < 0) {
1616 return ret;
1618 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1621 zero_mem:
1622 if (zero_middle) {
1623 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1626 return 0;
1629 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1631 if (pad->buf) {
1632 qemu_vfree(pad->buf);
1633 qemu_iovec_destroy(&pad->local_qiov);
1638 * bdrv_pad_request
1640 * Exchange request parameters with padded request if needed. Don't include RMW
1641 * read of padding, bdrv_padding_rmw_read() should be called separately if
1642 * needed.
1644 * All parameters except @bs are in-out: they represent original request at
1645 * function call and padded (if padding needed) at function finish.
1647 * Function always succeeds.
1649 static bool bdrv_pad_request(BlockDriverState *bs,
1650 QEMUIOVector **qiov, size_t *qiov_offset,
1651 int64_t *offset, unsigned int *bytes,
1652 BdrvRequestPadding *pad)
1654 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1655 return false;
1658 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1659 *qiov, *qiov_offset, *bytes,
1660 pad->buf + pad->buf_len - pad->tail, pad->tail);
1661 *bytes += pad->head + pad->tail;
1662 *offset -= pad->head;
1663 *qiov = &pad->local_qiov;
1664 *qiov_offset = 0;
1666 return true;
1669 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1670 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1671 BdrvRequestFlags flags)
1673 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1676 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1677 int64_t offset, unsigned int bytes,
1678 QEMUIOVector *qiov, size_t qiov_offset,
1679 BdrvRequestFlags flags)
1681 BlockDriverState *bs = child->bs;
1682 BdrvTrackedRequest req;
1683 BdrvRequestPadding pad;
1684 int ret;
1686 trace_bdrv_co_preadv(bs, offset, bytes, flags);
1688 ret = bdrv_check_byte_request(bs, offset, bytes);
1689 if (ret < 0) {
1690 return ret;
1693 bdrv_inc_in_flight(bs);
1695 /* Don't do copy-on-read if we read data before write operation */
1696 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1697 flags |= BDRV_REQ_COPY_ON_READ;
1700 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1702 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1703 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1704 bs->bl.request_alignment,
1705 qiov, qiov_offset, flags);
1706 tracked_request_end(&req);
1707 bdrv_dec_in_flight(bs);
1709 bdrv_padding_destroy(&pad);
1711 return ret;
1714 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1715 int64_t offset, int bytes, BdrvRequestFlags flags)
1717 BlockDriver *drv = bs->drv;
1718 QEMUIOVector qiov;
1719 void *buf = NULL;
1720 int ret = 0;
1721 bool need_flush = false;
1722 int head = 0;
1723 int tail = 0;
1725 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1726 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1727 bs->bl.request_alignment);
1728 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1730 if (!drv) {
1731 return -ENOMEDIUM;
1734 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1735 return -ENOTSUP;
1738 assert(alignment % bs->bl.request_alignment == 0);
1739 head = offset % alignment;
1740 tail = (offset + bytes) % alignment;
1741 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1742 assert(max_write_zeroes >= bs->bl.request_alignment);
1744 while (bytes > 0 && !ret) {
1745 int num = bytes;
1747 /* Align request. Block drivers can expect the "bulk" of the request
1748 * to be aligned, and that unaligned requests do not cross cluster
1749 * boundaries.
1751 if (head) {
1752 /* Make a small request up to the first aligned sector. For
1753 * convenience, limit this request to max_transfer even if
1754 * we don't need to fall back to writes. */
1755 num = MIN(MIN(bytes, max_transfer), alignment - head);
1756 head = (head + num) % alignment;
1757 assert(num < max_write_zeroes);
1758 } else if (tail && num > alignment) {
1759 /* Shorten the request to the last aligned sector. */
1760 num -= tail;
1763 /* limit request size */
1764 if (num > max_write_zeroes) {
1765 num = max_write_zeroes;
1768 ret = -ENOTSUP;
1769 /* First try the efficient write zeroes operation */
1770 if (drv->bdrv_co_pwrite_zeroes) {
1771 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1772 flags & bs->supported_zero_flags);
1773 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1774 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1775 need_flush = true;
1777 } else {
1778 assert(!bs->supported_zero_flags);
1781 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1782 /* Fall back to bounce buffer if write zeroes is unsupported */
1783 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1785 if ((flags & BDRV_REQ_FUA) &&
1786 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1787 /* No need for bdrv_driver_pwrite() to do a fallback
1788 * flush on each chunk; use just one at the end */
1789 write_flags &= ~BDRV_REQ_FUA;
1790 need_flush = true;
1792 num = MIN(num, max_transfer);
1793 if (buf == NULL) {
1794 buf = qemu_try_blockalign0(bs, num);
1795 if (buf == NULL) {
1796 ret = -ENOMEM;
1797 goto fail;
1800 qemu_iovec_init_buf(&qiov, buf, num);
1802 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1804 /* Keep bounce buffer around if it is big enough for all
1805 * all future requests.
1807 if (num < max_transfer) {
1808 qemu_vfree(buf);
1809 buf = NULL;
1813 offset += num;
1814 bytes -= num;
1817 fail:
1818 if (ret == 0 && need_flush) {
1819 ret = bdrv_co_flush(bs);
1821 qemu_vfree(buf);
1822 return ret;
1825 static inline int coroutine_fn
1826 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1827 BdrvTrackedRequest *req, int flags)
1829 BlockDriverState *bs = child->bs;
1830 bool waited;
1831 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1833 if (bs->read_only) {
1834 return -EPERM;
1837 /* BDRV_REQ_NO_SERIALISING is only for read operation */
1838 assert(!(flags & BDRV_REQ_NO_SERIALISING));
1839 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1840 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1841 assert(!(flags & ~BDRV_REQ_MASK));
1843 if (flags & BDRV_REQ_SERIALISING) {
1844 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1847 waited = wait_serialising_requests(req);
1849 assert(!waited || !req->serialising ||
1850 is_request_serialising_and_aligned(req));
1851 assert(req->overlap_offset <= offset);
1852 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1853 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1855 switch (req->type) {
1856 case BDRV_TRACKED_WRITE:
1857 case BDRV_TRACKED_DISCARD:
1858 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1859 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1860 } else {
1861 assert(child->perm & BLK_PERM_WRITE);
1863 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1864 req);
1865 case BDRV_TRACKED_TRUNCATE:
1866 assert(child->perm & BLK_PERM_RESIZE);
1867 return 0;
1868 default:
1869 abort();
1873 static inline void coroutine_fn
1874 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1875 BdrvTrackedRequest *req, int ret)
1877 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1878 BlockDriverState *bs = child->bs;
1880 atomic_inc(&bs->write_gen);
1883 * Discard cannot extend the image, but in error handling cases, such as
1884 * when reverting a qcow2 cluster allocation, the discarded range can pass
1885 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1886 * here. Instead, just skip it, since semantically a discard request
1887 * beyond EOF cannot expand the image anyway.
1889 if (ret == 0 &&
1890 (req->type == BDRV_TRACKED_TRUNCATE ||
1891 end_sector > bs->total_sectors) &&
1892 req->type != BDRV_TRACKED_DISCARD) {
1893 bs->total_sectors = end_sector;
1894 bdrv_parent_cb_resize(bs);
1895 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1897 if (req->bytes) {
1898 switch (req->type) {
1899 case BDRV_TRACKED_WRITE:
1900 stat64_max(&bs->wr_highest_offset, offset + bytes);
1901 /* fall through, to set dirty bits */
1902 case BDRV_TRACKED_DISCARD:
1903 bdrv_set_dirty(bs, offset, bytes);
1904 break;
1905 default:
1906 break;
1912 * Forwards an already correctly aligned write request to the BlockDriver,
1913 * after possibly fragmenting it.
1915 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1916 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1917 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1919 BlockDriverState *bs = child->bs;
1920 BlockDriver *drv = bs->drv;
1921 int ret;
1923 uint64_t bytes_remaining = bytes;
1924 int max_transfer;
1926 if (!drv) {
1927 return -ENOMEDIUM;
1930 if (bdrv_has_readonly_bitmaps(bs)) {
1931 return -EPERM;
1934 assert(is_power_of_2(align));
1935 assert((offset & (align - 1)) == 0);
1936 assert((bytes & (align - 1)) == 0);
1937 assert(!qiov || qiov_offset + bytes <= qiov->size);
1938 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1939 align);
1941 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1943 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1944 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1945 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1946 flags |= BDRV_REQ_ZERO_WRITE;
1947 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1948 flags |= BDRV_REQ_MAY_UNMAP;
1952 if (ret < 0) {
1953 /* Do nothing, write notifier decided to fail this request */
1954 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1955 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1956 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1957 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1958 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1959 qiov, qiov_offset);
1960 } else if (bytes <= max_transfer) {
1961 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1962 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1963 } else {
1964 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1965 while (bytes_remaining) {
1966 int num = MIN(bytes_remaining, max_transfer);
1967 int local_flags = flags;
1969 assert(num);
1970 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1971 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1972 /* If FUA is going to be emulated by flush, we only
1973 * need to flush on the last iteration */
1974 local_flags &= ~BDRV_REQ_FUA;
1977 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1978 num, qiov, bytes - bytes_remaining,
1979 local_flags);
1980 if (ret < 0) {
1981 break;
1983 bytes_remaining -= num;
1986 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1988 if (ret >= 0) {
1989 ret = 0;
1991 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1993 return ret;
1996 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1997 int64_t offset,
1998 unsigned int bytes,
1999 BdrvRequestFlags flags,
2000 BdrvTrackedRequest *req)
2002 BlockDriverState *bs = child->bs;
2003 QEMUIOVector local_qiov;
2004 uint64_t align = bs->bl.request_alignment;
2005 int ret = 0;
2006 bool padding;
2007 BdrvRequestPadding pad;
2009 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2010 if (padding) {
2011 mark_request_serialising(req, align);
2012 wait_serialising_requests(req);
2014 bdrv_padding_rmw_read(child, req, &pad, true);
2016 if (pad.head || pad.merge_reads) {
2017 int64_t aligned_offset = offset & ~(align - 1);
2018 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2020 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2021 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2022 align, &local_qiov, 0,
2023 flags & ~BDRV_REQ_ZERO_WRITE);
2024 if (ret < 0 || pad.merge_reads) {
2025 /* Error or all work is done */
2026 goto out;
2028 offset += write_bytes - pad.head;
2029 bytes -= write_bytes - pad.head;
2033 assert(!bytes || (offset & (align - 1)) == 0);
2034 if (bytes >= align) {
2035 /* Write the aligned part in the middle. */
2036 uint64_t aligned_bytes = bytes & ~(align - 1);
2037 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2038 NULL, 0, flags);
2039 if (ret < 0) {
2040 goto out;
2042 bytes -= aligned_bytes;
2043 offset += aligned_bytes;
2046 assert(!bytes || (offset & (align - 1)) == 0);
2047 if (bytes) {
2048 assert(align == pad.tail + bytes);
2050 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2051 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2052 &local_qiov, 0,
2053 flags & ~BDRV_REQ_ZERO_WRITE);
2056 out:
2057 bdrv_padding_destroy(&pad);
2059 return ret;
2063 * Handle a write request in coroutine context
2065 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2066 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2067 BdrvRequestFlags flags)
2069 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2072 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2073 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2074 BdrvRequestFlags flags)
2076 BlockDriverState *bs = child->bs;
2077 BdrvTrackedRequest req;
2078 uint64_t align = bs->bl.request_alignment;
2079 BdrvRequestPadding pad;
2080 int ret;
2082 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2084 if (!bs->drv) {
2085 return -ENOMEDIUM;
2088 ret = bdrv_check_byte_request(bs, offset, bytes);
2089 if (ret < 0) {
2090 return ret;
2093 /* If the request is misaligned then we can't make it efficient */
2094 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2095 !QEMU_IS_ALIGNED(offset | bytes, align))
2097 return -ENOTSUP;
2100 bdrv_inc_in_flight(bs);
2102 * Align write if necessary by performing a read-modify-write cycle.
2103 * Pad qiov with the read parts and be sure to have a tracked request not
2104 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2106 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2108 if (flags & BDRV_REQ_ZERO_WRITE) {
2109 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2110 goto out;
2113 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2114 mark_request_serialising(&req, align);
2115 wait_serialising_requests(&req);
2116 bdrv_padding_rmw_read(child, &req, &pad, false);
2119 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2120 qiov, qiov_offset, flags);
2122 bdrv_padding_destroy(&pad);
2124 out:
2125 tracked_request_end(&req);
2126 bdrv_dec_in_flight(bs);
2128 return ret;
2131 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2132 int bytes, BdrvRequestFlags flags)
2134 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2136 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2137 flags &= ~BDRV_REQ_MAY_UNMAP;
2140 return bdrv_co_pwritev(child, offset, bytes, NULL,
2141 BDRV_REQ_ZERO_WRITE | flags);
2145 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2147 int bdrv_flush_all(void)
2149 BdrvNextIterator it;
2150 BlockDriverState *bs = NULL;
2151 int result = 0;
2154 * bdrv queue is managed by record/replay,
2155 * creating new flush request for stopping
2156 * the VM may break the determinism
2158 if (replay_events_enabled()) {
2159 return result;
2162 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2163 AioContext *aio_context = bdrv_get_aio_context(bs);
2164 int ret;
2166 aio_context_acquire(aio_context);
2167 ret = bdrv_flush(bs);
2168 if (ret < 0 && !result) {
2169 result = ret;
2171 aio_context_release(aio_context);
2174 return result;
2178 typedef struct BdrvCoBlockStatusData {
2179 BlockDriverState *bs;
2180 BlockDriverState *base;
2181 bool want_zero;
2182 int64_t offset;
2183 int64_t bytes;
2184 int64_t *pnum;
2185 int64_t *map;
2186 BlockDriverState **file;
2187 int ret;
2188 bool done;
2189 } BdrvCoBlockStatusData;
2191 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2192 bool want_zero,
2193 int64_t offset,
2194 int64_t bytes,
2195 int64_t *pnum,
2196 int64_t *map,
2197 BlockDriverState **file)
2199 assert(bs->file && bs->file->bs);
2200 *pnum = bytes;
2201 *map = offset;
2202 *file = bs->file->bs;
2203 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2206 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2207 bool want_zero,
2208 int64_t offset,
2209 int64_t bytes,
2210 int64_t *pnum,
2211 int64_t *map,
2212 BlockDriverState **file)
2214 assert(bs->backing && bs->backing->bs);
2215 *pnum = bytes;
2216 *map = offset;
2217 *file = bs->backing->bs;
2218 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2222 * Returns the allocation status of the specified sectors.
2223 * Drivers not implementing the functionality are assumed to not support
2224 * backing files, hence all their sectors are reported as allocated.
2226 * If 'want_zero' is true, the caller is querying for mapping
2227 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2228 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2229 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2231 * If 'offset' is beyond the end of the disk image the return value is
2232 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2234 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2235 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2236 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2238 * 'pnum' is set to the number of bytes (including and immediately
2239 * following the specified offset) that are easily known to be in the
2240 * same allocated/unallocated state. Note that a second call starting
2241 * at the original offset plus returned pnum may have the same status.
2242 * The returned value is non-zero on success except at end-of-file.
2244 * Returns negative errno on failure. Otherwise, if the
2245 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2246 * set to the host mapping and BDS corresponding to the guest offset.
2248 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2249 bool want_zero,
2250 int64_t offset, int64_t bytes,
2251 int64_t *pnum, int64_t *map,
2252 BlockDriverState **file)
2254 int64_t total_size;
2255 int64_t n; /* bytes */
2256 int ret;
2257 int64_t local_map = 0;
2258 BlockDriverState *local_file = NULL;
2259 int64_t aligned_offset, aligned_bytes;
2260 uint32_t align;
2262 assert(pnum);
2263 *pnum = 0;
2264 total_size = bdrv_getlength(bs);
2265 if (total_size < 0) {
2266 ret = total_size;
2267 goto early_out;
2270 if (offset >= total_size) {
2271 ret = BDRV_BLOCK_EOF;
2272 goto early_out;
2274 if (!bytes) {
2275 ret = 0;
2276 goto early_out;
2279 n = total_size - offset;
2280 if (n < bytes) {
2281 bytes = n;
2284 /* Must be non-NULL or bdrv_getlength() would have failed */
2285 assert(bs->drv);
2286 if (!bs->drv->bdrv_co_block_status) {
2287 *pnum = bytes;
2288 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2289 if (offset + bytes == total_size) {
2290 ret |= BDRV_BLOCK_EOF;
2292 if (bs->drv->protocol_name) {
2293 ret |= BDRV_BLOCK_OFFSET_VALID;
2294 local_map = offset;
2295 local_file = bs;
2297 goto early_out;
2300 bdrv_inc_in_flight(bs);
2302 /* Round out to request_alignment boundaries */
2303 align = bs->bl.request_alignment;
2304 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2305 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2307 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2308 aligned_bytes, pnum, &local_map,
2309 &local_file);
2310 if (ret < 0) {
2311 *pnum = 0;
2312 goto out;
2316 * The driver's result must be a non-zero multiple of request_alignment.
2317 * Clamp pnum and adjust map to original request.
2319 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2320 align > offset - aligned_offset);
2321 if (ret & BDRV_BLOCK_RECURSE) {
2322 assert(ret & BDRV_BLOCK_DATA);
2323 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2324 assert(!(ret & BDRV_BLOCK_ZERO));
2327 *pnum -= offset - aligned_offset;
2328 if (*pnum > bytes) {
2329 *pnum = bytes;
2331 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2332 local_map += offset - aligned_offset;
2335 if (ret & BDRV_BLOCK_RAW) {
2336 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2337 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2338 *pnum, pnum, &local_map, &local_file);
2339 goto out;
2342 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2343 ret |= BDRV_BLOCK_ALLOCATED;
2344 } else if (want_zero) {
2345 if (bdrv_unallocated_blocks_are_zero(bs)) {
2346 ret |= BDRV_BLOCK_ZERO;
2347 } else if (bs->backing) {
2348 BlockDriverState *bs2 = bs->backing->bs;
2349 int64_t size2 = bdrv_getlength(bs2);
2351 if (size2 >= 0 && offset >= size2) {
2352 ret |= BDRV_BLOCK_ZERO;
2357 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2358 local_file && local_file != bs &&
2359 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2360 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2361 int64_t file_pnum;
2362 int ret2;
2364 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2365 *pnum, &file_pnum, NULL, NULL);
2366 if (ret2 >= 0) {
2367 /* Ignore errors. This is just providing extra information, it
2368 * is useful but not necessary.
2370 if (ret2 & BDRV_BLOCK_EOF &&
2371 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2373 * It is valid for the format block driver to read
2374 * beyond the end of the underlying file's current
2375 * size; such areas read as zero.
2377 ret |= BDRV_BLOCK_ZERO;
2378 } else {
2379 /* Limit request to the range reported by the protocol driver */
2380 *pnum = file_pnum;
2381 ret |= (ret2 & BDRV_BLOCK_ZERO);
2386 out:
2387 bdrv_dec_in_flight(bs);
2388 if (ret >= 0 && offset + *pnum == total_size) {
2389 ret |= BDRV_BLOCK_EOF;
2391 early_out:
2392 if (file) {
2393 *file = local_file;
2395 if (map) {
2396 *map = local_map;
2398 return ret;
2401 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2402 BlockDriverState *base,
2403 bool want_zero,
2404 int64_t offset,
2405 int64_t bytes,
2406 int64_t *pnum,
2407 int64_t *map,
2408 BlockDriverState **file)
2410 BlockDriverState *p;
2411 int ret = 0;
2412 bool first = true;
2414 assert(bs != base);
2415 for (p = bs; p != base; p = backing_bs(p)) {
2416 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2417 file);
2418 if (ret < 0) {
2419 break;
2421 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2423 * Reading beyond the end of the file continues to read
2424 * zeroes, but we can only widen the result to the
2425 * unallocated length we learned from an earlier
2426 * iteration.
2428 *pnum = bytes;
2430 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2431 break;
2433 /* [offset, pnum] unallocated on this layer, which could be only
2434 * the first part of [offset, bytes]. */
2435 bytes = MIN(bytes, *pnum);
2436 first = false;
2438 return ret;
2441 /* Coroutine wrapper for bdrv_block_status_above() */
2442 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2444 BdrvCoBlockStatusData *data = opaque;
2446 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2447 data->want_zero,
2448 data->offset, data->bytes,
2449 data->pnum, data->map, data->file);
2450 data->done = true;
2451 aio_wait_kick();
2455 * Synchronous wrapper around bdrv_co_block_status_above().
2457 * See bdrv_co_block_status_above() for details.
2459 static int bdrv_common_block_status_above(BlockDriverState *bs,
2460 BlockDriverState *base,
2461 bool want_zero, int64_t offset,
2462 int64_t bytes, int64_t *pnum,
2463 int64_t *map,
2464 BlockDriverState **file)
2466 Coroutine *co;
2467 BdrvCoBlockStatusData data = {
2468 .bs = bs,
2469 .base = base,
2470 .want_zero = want_zero,
2471 .offset = offset,
2472 .bytes = bytes,
2473 .pnum = pnum,
2474 .map = map,
2475 .file = file,
2476 .done = false,
2479 if (qemu_in_coroutine()) {
2480 /* Fast-path if already in coroutine context */
2481 bdrv_block_status_above_co_entry(&data);
2482 } else {
2483 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2484 bdrv_coroutine_enter(bs, co);
2485 BDRV_POLL_WHILE(bs, !data.done);
2487 return data.ret;
2490 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2491 int64_t offset, int64_t bytes, int64_t *pnum,
2492 int64_t *map, BlockDriverState **file)
2494 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2495 pnum, map, file);
2498 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2499 int64_t *pnum, int64_t *map, BlockDriverState **file)
2501 return bdrv_block_status_above(bs, backing_bs(bs),
2502 offset, bytes, pnum, map, file);
2505 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2506 int64_t bytes, int64_t *pnum)
2508 int ret;
2509 int64_t dummy;
2511 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2512 bytes, pnum ? pnum : &dummy, NULL,
2513 NULL);
2514 if (ret < 0) {
2515 return ret;
2517 return !!(ret & BDRV_BLOCK_ALLOCATED);
2521 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2523 * Return 1 if (a prefix of) the given range is allocated in any image
2524 * between BASE and TOP (BASE is only included if include_base is set).
2525 * BASE can be NULL to check if the given offset is allocated in any
2526 * image of the chain. Return 0 otherwise, or negative errno on
2527 * failure.
2529 * 'pnum' is set to the number of bytes (including and immediately
2530 * following the specified offset) that are known to be in the same
2531 * allocated/unallocated state. Note that a subsequent call starting
2532 * at 'offset + *pnum' may return the same allocation status (in other
2533 * words, the result is not necessarily the maximum possible range);
2534 * but 'pnum' will only be 0 when end of file is reached.
2537 int bdrv_is_allocated_above(BlockDriverState *top,
2538 BlockDriverState *base,
2539 bool include_base, int64_t offset,
2540 int64_t bytes, int64_t *pnum)
2542 BlockDriverState *intermediate;
2543 int ret;
2544 int64_t n = bytes;
2546 assert(base || !include_base);
2548 intermediate = top;
2549 while (include_base || intermediate != base) {
2550 int64_t pnum_inter;
2551 int64_t size_inter;
2553 assert(intermediate);
2554 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2555 if (ret < 0) {
2556 return ret;
2558 if (ret) {
2559 *pnum = pnum_inter;
2560 return 1;
2563 size_inter = bdrv_getlength(intermediate);
2564 if (size_inter < 0) {
2565 return size_inter;
2567 if (n > pnum_inter &&
2568 (intermediate == top || offset + pnum_inter < size_inter)) {
2569 n = pnum_inter;
2572 if (intermediate == base) {
2573 break;
2576 intermediate = backing_bs(intermediate);
2579 *pnum = n;
2580 return 0;
2583 typedef struct BdrvVmstateCo {
2584 BlockDriverState *bs;
2585 QEMUIOVector *qiov;
2586 int64_t pos;
2587 bool is_read;
2588 int ret;
2589 } BdrvVmstateCo;
2591 static int coroutine_fn
2592 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2593 bool is_read)
2595 BlockDriver *drv = bs->drv;
2596 int ret = -ENOTSUP;
2598 bdrv_inc_in_flight(bs);
2600 if (!drv) {
2601 ret = -ENOMEDIUM;
2602 } else if (drv->bdrv_load_vmstate) {
2603 if (is_read) {
2604 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2605 } else {
2606 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2608 } else if (bs->file) {
2609 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2612 bdrv_dec_in_flight(bs);
2613 return ret;
2616 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2618 BdrvVmstateCo *co = opaque;
2619 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2620 aio_wait_kick();
2623 static inline int
2624 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2625 bool is_read)
2627 if (qemu_in_coroutine()) {
2628 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2629 } else {
2630 BdrvVmstateCo data = {
2631 .bs = bs,
2632 .qiov = qiov,
2633 .pos = pos,
2634 .is_read = is_read,
2635 .ret = -EINPROGRESS,
2637 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2639 bdrv_coroutine_enter(bs, co);
2640 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2641 return data.ret;
2645 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2646 int64_t pos, int size)
2648 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2649 int ret;
2651 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2652 if (ret < 0) {
2653 return ret;
2656 return size;
2659 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2661 return bdrv_rw_vmstate(bs, qiov, pos, false);
2664 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2665 int64_t pos, int size)
2667 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2668 int ret;
2670 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2671 if (ret < 0) {
2672 return ret;
2675 return size;
2678 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2680 return bdrv_rw_vmstate(bs, qiov, pos, true);
2683 /**************************************************************/
2684 /* async I/Os */
2686 void bdrv_aio_cancel(BlockAIOCB *acb)
2688 qemu_aio_ref(acb);
2689 bdrv_aio_cancel_async(acb);
2690 while (acb->refcnt > 1) {
2691 if (acb->aiocb_info->get_aio_context) {
2692 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2693 } else if (acb->bs) {
2694 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2695 * assert that we're not using an I/O thread. Thread-safe
2696 * code should use bdrv_aio_cancel_async exclusively.
2698 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2699 aio_poll(bdrv_get_aio_context(acb->bs), true);
2700 } else {
2701 abort();
2704 qemu_aio_unref(acb);
2707 /* Async version of aio cancel. The caller is not blocked if the acb implements
2708 * cancel_async, otherwise we do nothing and let the request normally complete.
2709 * In either case the completion callback must be called. */
2710 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2712 if (acb->aiocb_info->cancel_async) {
2713 acb->aiocb_info->cancel_async(acb);
2717 /**************************************************************/
2718 /* Coroutine block device emulation */
2720 typedef struct FlushCo {
2721 BlockDriverState *bs;
2722 int ret;
2723 } FlushCo;
2726 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2728 FlushCo *rwco = opaque;
2730 rwco->ret = bdrv_co_flush(rwco->bs);
2731 aio_wait_kick();
2734 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2736 int current_gen;
2737 int ret = 0;
2739 bdrv_inc_in_flight(bs);
2741 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2742 bdrv_is_sg(bs)) {
2743 goto early_exit;
2746 qemu_co_mutex_lock(&bs->reqs_lock);
2747 current_gen = atomic_read(&bs->write_gen);
2749 /* Wait until any previous flushes are completed */
2750 while (bs->active_flush_req) {
2751 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2754 /* Flushes reach this point in nondecreasing current_gen order. */
2755 bs->active_flush_req = true;
2756 qemu_co_mutex_unlock(&bs->reqs_lock);
2758 /* Write back all layers by calling one driver function */
2759 if (bs->drv->bdrv_co_flush) {
2760 ret = bs->drv->bdrv_co_flush(bs);
2761 goto out;
2764 /* Write back cached data to the OS even with cache=unsafe */
2765 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2766 if (bs->drv->bdrv_co_flush_to_os) {
2767 ret = bs->drv->bdrv_co_flush_to_os(bs);
2768 if (ret < 0) {
2769 goto out;
2773 /* But don't actually force it to the disk with cache=unsafe */
2774 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2775 goto flush_parent;
2778 /* Check if we really need to flush anything */
2779 if (bs->flushed_gen == current_gen) {
2780 goto flush_parent;
2783 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2784 if (!bs->drv) {
2785 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2786 * (even in case of apparent success) */
2787 ret = -ENOMEDIUM;
2788 goto out;
2790 if (bs->drv->bdrv_co_flush_to_disk) {
2791 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2792 } else if (bs->drv->bdrv_aio_flush) {
2793 BlockAIOCB *acb;
2794 CoroutineIOCompletion co = {
2795 .coroutine = qemu_coroutine_self(),
2798 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2799 if (acb == NULL) {
2800 ret = -EIO;
2801 } else {
2802 qemu_coroutine_yield();
2803 ret = co.ret;
2805 } else {
2807 * Some block drivers always operate in either writethrough or unsafe
2808 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2809 * know how the server works (because the behaviour is hardcoded or
2810 * depends on server-side configuration), so we can't ensure that
2811 * everything is safe on disk. Returning an error doesn't work because
2812 * that would break guests even if the server operates in writethrough
2813 * mode.
2815 * Let's hope the user knows what he's doing.
2817 ret = 0;
2820 if (ret < 0) {
2821 goto out;
2824 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2825 * in the case of cache=unsafe, so there are no useless flushes.
2827 flush_parent:
2828 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2829 out:
2830 /* Notify any pending flushes that we have completed */
2831 if (ret == 0) {
2832 bs->flushed_gen = current_gen;
2835 qemu_co_mutex_lock(&bs->reqs_lock);
2836 bs->active_flush_req = false;
2837 /* Return value is ignored - it's ok if wait queue is empty */
2838 qemu_co_queue_next(&bs->flush_queue);
2839 qemu_co_mutex_unlock(&bs->reqs_lock);
2841 early_exit:
2842 bdrv_dec_in_flight(bs);
2843 return ret;
2846 int bdrv_flush(BlockDriverState *bs)
2848 Coroutine *co;
2849 FlushCo flush_co = {
2850 .bs = bs,
2851 .ret = NOT_DONE,
2854 if (qemu_in_coroutine()) {
2855 /* Fast-path if already in coroutine context */
2856 bdrv_flush_co_entry(&flush_co);
2857 } else {
2858 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2859 bdrv_coroutine_enter(bs, co);
2860 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2863 return flush_co.ret;
2866 typedef struct DiscardCo {
2867 BdrvChild *child;
2868 int64_t offset;
2869 int64_t bytes;
2870 int ret;
2871 } DiscardCo;
2872 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2874 DiscardCo *rwco = opaque;
2876 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2877 aio_wait_kick();
2880 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2881 int64_t bytes)
2883 BdrvTrackedRequest req;
2884 int max_pdiscard, ret;
2885 int head, tail, align;
2886 BlockDriverState *bs = child->bs;
2888 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2889 return -ENOMEDIUM;
2892 if (bdrv_has_readonly_bitmaps(bs)) {
2893 return -EPERM;
2896 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2897 return -EIO;
2900 /* Do nothing if disabled. */
2901 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2902 return 0;
2905 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2906 return 0;
2909 /* Discard is advisory, but some devices track and coalesce
2910 * unaligned requests, so we must pass everything down rather than
2911 * round here. Still, most devices will just silently ignore
2912 * unaligned requests (by returning -ENOTSUP), so we must fragment
2913 * the request accordingly. */
2914 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2915 assert(align % bs->bl.request_alignment == 0);
2916 head = offset % align;
2917 tail = (offset + bytes) % align;
2919 bdrv_inc_in_flight(bs);
2920 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2922 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2923 if (ret < 0) {
2924 goto out;
2927 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2928 align);
2929 assert(max_pdiscard >= bs->bl.request_alignment);
2931 while (bytes > 0) {
2932 int64_t num = bytes;
2934 if (head) {
2935 /* Make small requests to get to alignment boundaries. */
2936 num = MIN(bytes, align - head);
2937 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2938 num %= bs->bl.request_alignment;
2940 head = (head + num) % align;
2941 assert(num < max_pdiscard);
2942 } else if (tail) {
2943 if (num > align) {
2944 /* Shorten the request to the last aligned cluster. */
2945 num -= tail;
2946 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2947 tail > bs->bl.request_alignment) {
2948 tail %= bs->bl.request_alignment;
2949 num -= tail;
2952 /* limit request size */
2953 if (num > max_pdiscard) {
2954 num = max_pdiscard;
2957 if (!bs->drv) {
2958 ret = -ENOMEDIUM;
2959 goto out;
2961 if (bs->drv->bdrv_co_pdiscard) {
2962 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2963 } else {
2964 BlockAIOCB *acb;
2965 CoroutineIOCompletion co = {
2966 .coroutine = qemu_coroutine_self(),
2969 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2970 bdrv_co_io_em_complete, &co);
2971 if (acb == NULL) {
2972 ret = -EIO;
2973 goto out;
2974 } else {
2975 qemu_coroutine_yield();
2976 ret = co.ret;
2979 if (ret && ret != -ENOTSUP) {
2980 goto out;
2983 offset += num;
2984 bytes -= num;
2986 ret = 0;
2987 out:
2988 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2989 tracked_request_end(&req);
2990 bdrv_dec_in_flight(bs);
2991 return ret;
2994 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
2996 Coroutine *co;
2997 DiscardCo rwco = {
2998 .child = child,
2999 .offset = offset,
3000 .bytes = bytes,
3001 .ret = NOT_DONE,
3004 if (qemu_in_coroutine()) {
3005 /* Fast-path if already in coroutine context */
3006 bdrv_pdiscard_co_entry(&rwco);
3007 } else {
3008 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
3009 bdrv_coroutine_enter(child->bs, co);
3010 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
3013 return rwco.ret;
3016 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3018 BlockDriver *drv = bs->drv;
3019 CoroutineIOCompletion co = {
3020 .coroutine = qemu_coroutine_self(),
3022 BlockAIOCB *acb;
3024 bdrv_inc_in_flight(bs);
3025 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3026 co.ret = -ENOTSUP;
3027 goto out;
3030 if (drv->bdrv_co_ioctl) {
3031 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3032 } else {
3033 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3034 if (!acb) {
3035 co.ret = -ENOTSUP;
3036 goto out;
3038 qemu_coroutine_yield();
3040 out:
3041 bdrv_dec_in_flight(bs);
3042 return co.ret;
3045 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3047 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3050 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3052 return memset(qemu_blockalign(bs, size), 0, size);
3055 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3057 size_t align = bdrv_opt_mem_align(bs);
3059 /* Ensure that NULL is never returned on success */
3060 assert(align > 0);
3061 if (size == 0) {
3062 size = align;
3065 return qemu_try_memalign(align, size);
3068 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3070 void *mem = qemu_try_blockalign(bs, size);
3072 if (mem) {
3073 memset(mem, 0, size);
3076 return mem;
3080 * Check if all memory in this vector is sector aligned.
3082 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3084 int i;
3085 size_t alignment = bdrv_min_mem_align(bs);
3087 for (i = 0; i < qiov->niov; i++) {
3088 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3089 return false;
3091 if (qiov->iov[i].iov_len % alignment) {
3092 return false;
3096 return true;
3099 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3100 NotifierWithReturn *notifier)
3102 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3105 void bdrv_io_plug(BlockDriverState *bs)
3107 BdrvChild *child;
3109 QLIST_FOREACH(child, &bs->children, next) {
3110 bdrv_io_plug(child->bs);
3113 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
3114 BlockDriver *drv = bs->drv;
3115 if (drv && drv->bdrv_io_plug) {
3116 drv->bdrv_io_plug(bs);
3121 void bdrv_io_unplug(BlockDriverState *bs)
3123 BdrvChild *child;
3125 assert(bs->io_plugged);
3126 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
3127 BlockDriver *drv = bs->drv;
3128 if (drv && drv->bdrv_io_unplug) {
3129 drv->bdrv_io_unplug(bs);
3133 QLIST_FOREACH(child, &bs->children, next) {
3134 bdrv_io_unplug(child->bs);
3138 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3140 BdrvChild *child;
3142 if (bs->drv && bs->drv->bdrv_register_buf) {
3143 bs->drv->bdrv_register_buf(bs, host, size);
3145 QLIST_FOREACH(child, &bs->children, next) {
3146 bdrv_register_buf(child->bs, host, size);
3150 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3152 BdrvChild *child;
3154 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3155 bs->drv->bdrv_unregister_buf(bs, host);
3157 QLIST_FOREACH(child, &bs->children, next) {
3158 bdrv_unregister_buf(child->bs, host);
3162 static int coroutine_fn bdrv_co_copy_range_internal(
3163 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3164 uint64_t dst_offset, uint64_t bytes,
3165 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3166 bool recurse_src)
3168 BdrvTrackedRequest req;
3169 int ret;
3171 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3172 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3173 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3175 if (!dst || !dst->bs) {
3176 return -ENOMEDIUM;
3178 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3179 if (ret) {
3180 return ret;
3182 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3183 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3186 if (!src || !src->bs) {
3187 return -ENOMEDIUM;
3189 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3190 if (ret) {
3191 return ret;
3194 if (!src->bs->drv->bdrv_co_copy_range_from
3195 || !dst->bs->drv->bdrv_co_copy_range_to
3196 || src->bs->encrypted || dst->bs->encrypted) {
3197 return -ENOTSUP;
3200 if (recurse_src) {
3201 bdrv_inc_in_flight(src->bs);
3202 tracked_request_begin(&req, src->bs, src_offset, bytes,
3203 BDRV_TRACKED_READ);
3205 /* BDRV_REQ_SERIALISING is only for write operation */
3206 assert(!(read_flags & BDRV_REQ_SERIALISING));
3207 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
3208 wait_serialising_requests(&req);
3211 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3212 src, src_offset,
3213 dst, dst_offset,
3214 bytes,
3215 read_flags, write_flags);
3217 tracked_request_end(&req);
3218 bdrv_dec_in_flight(src->bs);
3219 } else {
3220 bdrv_inc_in_flight(dst->bs);
3221 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3222 BDRV_TRACKED_WRITE);
3223 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3224 write_flags);
3225 if (!ret) {
3226 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3227 src, src_offset,
3228 dst, dst_offset,
3229 bytes,
3230 read_flags, write_flags);
3232 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3233 tracked_request_end(&req);
3234 bdrv_dec_in_flight(dst->bs);
3237 return ret;
3240 /* Copy range from @src to @dst.
3242 * See the comment of bdrv_co_copy_range for the parameter and return value
3243 * semantics. */
3244 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3245 BdrvChild *dst, uint64_t dst_offset,
3246 uint64_t bytes,
3247 BdrvRequestFlags read_flags,
3248 BdrvRequestFlags write_flags)
3250 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3251 read_flags, write_flags);
3252 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3253 bytes, read_flags, write_flags, true);
3256 /* Copy range from @src to @dst.
3258 * See the comment of bdrv_co_copy_range for the parameter and return value
3259 * semantics. */
3260 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3261 BdrvChild *dst, uint64_t dst_offset,
3262 uint64_t bytes,
3263 BdrvRequestFlags read_flags,
3264 BdrvRequestFlags write_flags)
3266 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3267 read_flags, write_flags);
3268 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3269 bytes, read_flags, write_flags, false);
3272 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3273 BdrvChild *dst, uint64_t dst_offset,
3274 uint64_t bytes, BdrvRequestFlags read_flags,
3275 BdrvRequestFlags write_flags)
3277 return bdrv_co_copy_range_from(src, src_offset,
3278 dst, dst_offset,
3279 bytes, read_flags, write_flags);
3282 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3284 BdrvChild *c;
3285 QLIST_FOREACH(c, &bs->parents, next_parent) {
3286 if (c->role->resize) {
3287 c->role->resize(c);
3293 * Truncate file to 'offset' bytes (needed only for file protocols)
3295 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3296 PreallocMode prealloc, Error **errp)
3298 BlockDriverState *bs = child->bs;
3299 BlockDriver *drv = bs->drv;
3300 BdrvTrackedRequest req;
3301 int64_t old_size, new_bytes;
3302 int ret;
3305 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3306 if (!drv) {
3307 error_setg(errp, "No medium inserted");
3308 return -ENOMEDIUM;
3310 if (offset < 0) {
3311 error_setg(errp, "Image size cannot be negative");
3312 return -EINVAL;
3315 old_size = bdrv_getlength(bs);
3316 if (old_size < 0) {
3317 error_setg_errno(errp, -old_size, "Failed to get old image size");
3318 return old_size;
3321 if (offset > old_size) {
3322 new_bytes = offset - old_size;
3323 } else {
3324 new_bytes = 0;
3327 bdrv_inc_in_flight(bs);
3328 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3329 BDRV_TRACKED_TRUNCATE);
3331 /* If we are growing the image and potentially using preallocation for the
3332 * new area, we need to make sure that no write requests are made to it
3333 * concurrently or they might be overwritten by preallocation. */
3334 if (new_bytes) {
3335 mark_request_serialising(&req, 1);
3337 if (bs->read_only) {
3338 error_setg(errp, "Image is read-only");
3339 ret = -EACCES;
3340 goto out;
3342 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3344 if (ret < 0) {
3345 error_setg_errno(errp, -ret,
3346 "Failed to prepare request for truncation");
3347 goto out;
3350 if (!drv->bdrv_co_truncate) {
3351 if (bs->file && drv->is_filter) {
3352 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3353 goto out;
3355 error_setg(errp, "Image format driver does not support resize");
3356 ret = -ENOTSUP;
3357 goto out;
3360 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3361 if (ret < 0) {
3362 goto out;
3364 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3365 if (ret < 0) {
3366 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3367 } else {
3368 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3370 /* It's possible that truncation succeeded but refresh_total_sectors
3371 * failed, but the latter doesn't affect how we should finish the request.
3372 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3373 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3375 out:
3376 tracked_request_end(&req);
3377 bdrv_dec_in_flight(bs);
3379 return ret;
3382 typedef struct TruncateCo {
3383 BdrvChild *child;
3384 int64_t offset;
3385 PreallocMode prealloc;
3386 Error **errp;
3387 int ret;
3388 } TruncateCo;
3390 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3392 TruncateCo *tco = opaque;
3393 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3394 tco->errp);
3395 aio_wait_kick();
3398 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3399 Error **errp)
3401 Coroutine *co;
3402 TruncateCo tco = {
3403 .child = child,
3404 .offset = offset,
3405 .prealloc = prealloc,
3406 .errp = errp,
3407 .ret = NOT_DONE,
3410 if (qemu_in_coroutine()) {
3411 /* Fast-path if already in coroutine context */
3412 bdrv_truncate_co_entry(&tco);
3413 } else {
3414 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3415 bdrv_coroutine_enter(child->bs, co);
3416 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3419 return tco.ret;