usb: Fix compilation for Windows
[qemu/ar7.git] / hw / block / fdc.c
blobfc3aef9cd1ec88af39f82bd393ffa2a1b5a9b09c
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/isa/isa.h"
36 #include "hw/sysbus.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/blockdev.h"
39 #include "sysemu/sysemu.h"
40 #include "qemu/log.h"
42 /********************************************************/
43 /* debug Floppy devices */
45 #define DEBUG_FLOPPY 0
47 #define FLOPPY_DPRINTF(fmt, ...) \
48 do { \
49 if (DEBUG_FLOPPY) { \
50 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
51 } \
52 } while (0)
54 /********************************************************/
55 /* Floppy drive emulation */
57 typedef enum FDriveRate {
58 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
59 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
60 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
61 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
62 } FDriveRate;
64 typedef enum FDriveSize {
65 FDRIVE_SIZE_UNKNOWN,
66 FDRIVE_SIZE_350,
67 FDRIVE_SIZE_525,
68 } FDriveSize;
70 typedef struct FDFormat {
71 FloppyDriveType drive;
72 uint8_t last_sect;
73 uint8_t max_track;
74 uint8_t max_head;
75 FDriveRate rate;
76 } FDFormat;
78 /* In many cases, the total sector size of a format is enough to uniquely
79 * identify it. However, there are some total sector collisions between
80 * formats of different physical size, and these are noted below by
81 * highlighting the total sector size for entries with collisions. */
82 static const FDFormat fd_formats[] = {
83 /* First entry is default format */
84 /* 1.44 MB 3"1/2 floppy disks */
85 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
86 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
87 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
88 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
89 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
90 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
91 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
92 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
93 /* 2.88 MB 3"1/2 floppy disks */
94 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
95 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
96 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
97 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
98 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
99 /* 720 kB 3"1/2 floppy disks */
100 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
101 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
102 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
103 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
104 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
105 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
106 /* 1.2 MB 5"1/4 floppy disks */
107 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
108 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
109 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
110 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
111 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
112 /* 720 kB 5"1/4 floppy disks */
113 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
114 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
115 /* 360 kB 5"1/4 floppy disks */
116 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
117 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
118 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
119 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
120 /* 320 kB 5"1/4 floppy disks */
121 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
122 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
123 /* 360 kB must match 5"1/4 better than 3"1/2... */
124 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
125 /* end */
126 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
129 static FDriveSize drive_size(FloppyDriveType drive)
131 switch (drive) {
132 case FLOPPY_DRIVE_TYPE_120:
133 return FDRIVE_SIZE_525;
134 case FLOPPY_DRIVE_TYPE_144:
135 case FLOPPY_DRIVE_TYPE_288:
136 return FDRIVE_SIZE_350;
137 default:
138 return FDRIVE_SIZE_UNKNOWN;
142 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
143 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
145 /* Will always be a fixed parameter for us */
146 #define FD_SECTOR_LEN 512
147 #define FD_SECTOR_SC 2 /* Sector size code */
148 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
150 typedef struct FDCtrl FDCtrl;
152 /* Floppy disk drive emulation */
153 typedef enum FDiskFlags {
154 FDISK_DBL_SIDES = 0x01,
155 } FDiskFlags;
157 typedef struct FDrive {
158 FDCtrl *fdctrl;
159 BlockBackend *blk;
160 /* Drive status */
161 FloppyDriveType drive; /* CMOS drive type */
162 uint8_t perpendicular; /* 2.88 MB access mode */
163 /* Position */
164 uint8_t head;
165 uint8_t track;
166 uint8_t sect;
167 /* Media */
168 FloppyDriveType disk; /* Current disk type */
169 FDiskFlags flags;
170 uint8_t last_sect; /* Nb sector per track */
171 uint8_t max_track; /* Nb of tracks */
172 uint16_t bps; /* Bytes per sector */
173 uint8_t ro; /* Is read-only */
174 uint8_t media_changed; /* Is media changed */
175 uint8_t media_rate; /* Data rate of medium */
177 bool media_validated; /* Have we validated the media? */
178 } FDrive;
181 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
183 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
184 * currently goes through some pains to keep seeks within the bounds
185 * established by last_sect and max_track. Correcting this is difficult,
186 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
188 * For now: allow empty drives to have large bounds so we can seek around,
189 * with the understanding that when a diskette is inserted, the bounds will
190 * properly tighten to match the geometry of that inserted medium.
192 static void fd_empty_seek_hack(FDrive *drv)
194 drv->last_sect = 0xFF;
195 drv->max_track = 0xFF;
198 static void fd_init(FDrive *drv)
200 /* Drive */
201 drv->perpendicular = 0;
202 /* Disk */
203 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
204 drv->last_sect = 0;
205 drv->max_track = 0;
206 drv->ro = true;
207 drv->media_changed = 1;
210 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
212 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
213 uint8_t last_sect, uint8_t num_sides)
215 return (((track * num_sides) + head) * last_sect) + sect - 1;
218 /* Returns current position, in sectors, for given drive */
219 static int fd_sector(FDrive *drv)
221 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
222 NUM_SIDES(drv));
225 /* Seek to a new position:
226 * returns 0 if already on right track
227 * returns 1 if track changed
228 * returns 2 if track is invalid
229 * returns 3 if sector is invalid
230 * returns 4 if seek is disabled
232 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
233 int enable_seek)
235 uint32_t sector;
236 int ret;
238 if (track > drv->max_track ||
239 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
240 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
241 head, track, sect, 1,
242 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
243 drv->max_track, drv->last_sect);
244 return 2;
246 if (sect > drv->last_sect) {
247 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
248 head, track, sect, 1,
249 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
250 drv->max_track, drv->last_sect);
251 return 3;
253 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
254 ret = 0;
255 if (sector != fd_sector(drv)) {
256 #if 0
257 if (!enable_seek) {
258 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
259 " (max=%d %02x %02x)\n",
260 head, track, sect, 1, drv->max_track,
261 drv->last_sect);
262 return 4;
264 #endif
265 drv->head = head;
266 if (drv->track != track) {
267 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
268 drv->media_changed = 0;
270 ret = 1;
272 drv->track = track;
273 drv->sect = sect;
276 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
277 ret = 2;
280 return ret;
283 /* Set drive back to track 0 */
284 static void fd_recalibrate(FDrive *drv)
286 FLOPPY_DPRINTF("recalibrate\n");
287 fd_seek(drv, 0, 0, 1, 1);
291 * Determine geometry based on inserted diskette.
292 * Will not operate on an empty drive.
294 * @return: 0 on success, -1 if the drive is empty.
296 static int pick_geometry(FDrive *drv)
298 BlockBackend *blk = drv->blk;
299 const FDFormat *parse;
300 uint64_t nb_sectors, size;
301 int i;
302 int match, size_match, type_match;
303 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
305 /* We can only pick a geometry if we have a diskette. */
306 if (!drv->blk || !blk_is_inserted(drv->blk) ||
307 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
309 return -1;
312 /* We need to determine the likely geometry of the inserted medium.
313 * In order of preference, we look for:
314 * (1) The same drive type and number of sectors,
315 * (2) The same diskette size and number of sectors,
316 * (3) The same drive type.
318 * In all cases, matches that occur higher in the drive table will take
319 * precedence over matches that occur later in the table.
321 blk_get_geometry(blk, &nb_sectors);
322 match = size_match = type_match = -1;
323 for (i = 0; ; i++) {
324 parse = &fd_formats[i];
325 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
326 break;
328 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
329 if (nb_sectors == size) {
330 if (magic || parse->drive == drv->drive) {
331 /* (1) perfect match -- nb_sectors and drive type */
332 goto out;
333 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
334 /* (2) size match -- nb_sectors and physical medium size */
335 match = (match == -1) ? i : match;
336 } else {
337 /* This is suspicious -- Did the user misconfigure? */
338 size_match = (size_match == -1) ? i : size_match;
340 } else if (type_match == -1) {
341 if ((parse->drive == drv->drive) ||
342 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
343 /* (3) type match -- nb_sectors mismatch, but matches the type
344 * specified explicitly by the user, or matches the fallback
345 * default type when using the drive autodetect mechanism */
346 type_match = i;
351 /* No exact match found */
352 if (match == -1) {
353 if (size_match != -1) {
354 parse = &fd_formats[size_match];
355 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
356 "but inserted medium appears to be a "
357 "%"PRId64" sector '%s' type\n",
358 FloppyDriveType_lookup[drv->drive],
359 nb_sectors,
360 FloppyDriveType_lookup[parse->drive]);
362 match = type_match;
365 /* No match of any kind found -- fd_format is misconfigured, abort. */
366 if (match == -1) {
367 error_setg(&error_abort, "No candidate geometries present in table "
368 " for floppy drive type '%s'",
369 FloppyDriveType_lookup[drv->drive]);
372 parse = &(fd_formats[match]);
374 out:
375 if (parse->max_head == 0) {
376 drv->flags &= ~FDISK_DBL_SIDES;
377 } else {
378 drv->flags |= FDISK_DBL_SIDES;
380 drv->max_track = parse->max_track;
381 drv->last_sect = parse->last_sect;
382 drv->disk = parse->drive;
383 drv->media_rate = parse->rate;
384 return 0;
387 static void pick_drive_type(FDrive *drv)
389 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
390 return;
393 if (pick_geometry(drv) == 0) {
394 drv->drive = drv->disk;
395 } else {
396 drv->drive = get_fallback_drive_type(drv);
399 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
402 /* Revalidate a disk drive after a disk change */
403 static void fd_revalidate(FDrive *drv)
405 int rc;
407 FLOPPY_DPRINTF("revalidate\n");
408 if (drv->blk != NULL) {
409 drv->ro = blk_is_read_only(drv->blk);
410 if (!blk_is_inserted(drv->blk)) {
411 FLOPPY_DPRINTF("No disk in drive\n");
412 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
413 fd_empty_seek_hack(drv);
414 } else if (!drv->media_validated) {
415 rc = pick_geometry(drv);
416 if (rc) {
417 FLOPPY_DPRINTF("Could not validate floppy drive media");
418 } else {
419 drv->media_validated = true;
420 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
421 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
422 drv->max_track, drv->last_sect,
423 drv->ro ? "ro" : "rw");
426 } else {
427 FLOPPY_DPRINTF("No drive connected\n");
428 drv->last_sect = 0;
429 drv->max_track = 0;
430 drv->flags &= ~FDISK_DBL_SIDES;
431 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
432 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
436 /********************************************************/
437 /* Intel 82078 floppy disk controller emulation */
439 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
440 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
441 static int fdctrl_transfer_handler (void *opaque, int nchan,
442 int dma_pos, int dma_len);
443 static void fdctrl_raise_irq(FDCtrl *fdctrl);
444 static FDrive *get_cur_drv(FDCtrl *fdctrl);
446 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
447 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
448 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
449 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
450 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
451 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
452 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
453 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
454 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
455 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
456 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
457 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
459 enum {
460 FD_DIR_WRITE = 0,
461 FD_DIR_READ = 1,
462 FD_DIR_SCANE = 2,
463 FD_DIR_SCANL = 3,
464 FD_DIR_SCANH = 4,
465 FD_DIR_VERIFY = 5,
468 enum {
469 FD_STATE_MULTI = 0x01, /* multi track flag */
470 FD_STATE_FORMAT = 0x02, /* format flag */
473 enum {
474 FD_REG_SRA = 0x00,
475 FD_REG_SRB = 0x01,
476 FD_REG_DOR = 0x02,
477 FD_REG_TDR = 0x03,
478 FD_REG_MSR = 0x04,
479 FD_REG_DSR = 0x04,
480 FD_REG_FIFO = 0x05,
481 FD_REG_DIR = 0x07,
482 FD_REG_CCR = 0x07,
485 enum {
486 FD_CMD_READ_TRACK = 0x02,
487 FD_CMD_SPECIFY = 0x03,
488 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
489 FD_CMD_WRITE = 0x05,
490 FD_CMD_READ = 0x06,
491 FD_CMD_RECALIBRATE = 0x07,
492 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
493 FD_CMD_WRITE_DELETED = 0x09,
494 FD_CMD_READ_ID = 0x0a,
495 FD_CMD_READ_DELETED = 0x0c,
496 FD_CMD_FORMAT_TRACK = 0x0d,
497 FD_CMD_DUMPREG = 0x0e,
498 FD_CMD_SEEK = 0x0f,
499 FD_CMD_VERSION = 0x10,
500 FD_CMD_SCAN_EQUAL = 0x11,
501 FD_CMD_PERPENDICULAR_MODE = 0x12,
502 FD_CMD_CONFIGURE = 0x13,
503 FD_CMD_LOCK = 0x14,
504 FD_CMD_VERIFY = 0x16,
505 FD_CMD_POWERDOWN_MODE = 0x17,
506 FD_CMD_PART_ID = 0x18,
507 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
508 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
509 FD_CMD_SAVE = 0x2e,
510 FD_CMD_OPTION = 0x33,
511 FD_CMD_RESTORE = 0x4e,
512 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
513 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
514 FD_CMD_FORMAT_AND_WRITE = 0xcd,
515 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
518 enum {
519 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
520 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
521 FD_CONFIG_POLL = 0x10, /* Poll enabled */
522 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
523 FD_CONFIG_EIS = 0x40, /* No implied seeks */
526 enum {
527 FD_SR0_DS0 = 0x01,
528 FD_SR0_DS1 = 0x02,
529 FD_SR0_HEAD = 0x04,
530 FD_SR0_EQPMT = 0x10,
531 FD_SR0_SEEK = 0x20,
532 FD_SR0_ABNTERM = 0x40,
533 FD_SR0_INVCMD = 0x80,
534 FD_SR0_RDYCHG = 0xc0,
537 enum {
538 FD_SR1_MA = 0x01, /* Missing address mark */
539 FD_SR1_NW = 0x02, /* Not writable */
540 FD_SR1_EC = 0x80, /* End of cylinder */
543 enum {
544 FD_SR2_SNS = 0x04, /* Scan not satisfied */
545 FD_SR2_SEH = 0x08, /* Scan equal hit */
548 enum {
549 FD_SRA_DIR = 0x01,
550 FD_SRA_nWP = 0x02,
551 FD_SRA_nINDX = 0x04,
552 FD_SRA_HDSEL = 0x08,
553 FD_SRA_nTRK0 = 0x10,
554 FD_SRA_STEP = 0x20,
555 FD_SRA_nDRV2 = 0x40,
556 FD_SRA_INTPEND = 0x80,
559 enum {
560 FD_SRB_MTR0 = 0x01,
561 FD_SRB_MTR1 = 0x02,
562 FD_SRB_WGATE = 0x04,
563 FD_SRB_RDATA = 0x08,
564 FD_SRB_WDATA = 0x10,
565 FD_SRB_DR0 = 0x20,
568 enum {
569 #if MAX_FD == 4
570 FD_DOR_SELMASK = 0x03,
571 #else
572 FD_DOR_SELMASK = 0x01,
573 #endif
574 FD_DOR_nRESET = 0x04,
575 FD_DOR_DMAEN = 0x08,
576 FD_DOR_MOTEN0 = 0x10,
577 FD_DOR_MOTEN1 = 0x20,
578 FD_DOR_MOTEN2 = 0x40,
579 FD_DOR_MOTEN3 = 0x80,
582 enum {
583 #if MAX_FD == 4
584 FD_TDR_BOOTSEL = 0x0c,
585 #else
586 FD_TDR_BOOTSEL = 0x04,
587 #endif
590 enum {
591 FD_DSR_DRATEMASK= 0x03,
592 FD_DSR_PWRDOWN = 0x40,
593 FD_DSR_SWRESET = 0x80,
596 enum {
597 FD_MSR_DRV0BUSY = 0x01,
598 FD_MSR_DRV1BUSY = 0x02,
599 FD_MSR_DRV2BUSY = 0x04,
600 FD_MSR_DRV3BUSY = 0x08,
601 FD_MSR_CMDBUSY = 0x10,
602 FD_MSR_NONDMA = 0x20,
603 FD_MSR_DIO = 0x40,
604 FD_MSR_RQM = 0x80,
607 enum {
608 FD_DIR_DSKCHG = 0x80,
612 * See chapter 5.0 "Controller phases" of the spec:
614 * Command phase:
615 * The host writes a command and its parameters into the FIFO. The command
616 * phase is completed when all parameters for the command have been supplied,
617 * and execution phase is entered.
619 * Execution phase:
620 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
621 * contains the payload now, otherwise it's unused. When all bytes of the
622 * required data have been transferred, the state is switched to either result
623 * phase (if the command produces status bytes) or directly back into the
624 * command phase for the next command.
626 * Result phase:
627 * The host reads out the FIFO, which contains one or more result bytes now.
629 enum {
630 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
631 FD_PHASE_RECONSTRUCT = 0,
633 FD_PHASE_COMMAND = 1,
634 FD_PHASE_EXECUTION = 2,
635 FD_PHASE_RESULT = 3,
638 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
639 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
641 struct FDCtrl {
642 MemoryRegion iomem;
643 qemu_irq irq;
644 /* Controller state */
645 QEMUTimer *result_timer;
646 int dma_chann;
647 uint8_t phase;
648 IsaDma *dma;
649 /* Controller's identification */
650 uint8_t version;
651 /* HW */
652 uint8_t sra;
653 uint8_t srb;
654 uint8_t dor;
655 uint8_t dor_vmstate; /* only used as temp during vmstate */
656 uint8_t tdr;
657 uint8_t dsr;
658 uint8_t msr;
659 uint8_t cur_drv;
660 uint8_t status0;
661 uint8_t status1;
662 uint8_t status2;
663 /* Command FIFO */
664 uint8_t *fifo;
665 int32_t fifo_size;
666 uint32_t data_pos;
667 uint32_t data_len;
668 uint8_t data_state;
669 uint8_t data_dir;
670 uint8_t eot; /* last wanted sector */
671 /* States kept only to be returned back */
672 /* precompensation */
673 uint8_t precomp_trk;
674 uint8_t config;
675 uint8_t lock;
676 /* Power down config (also with status regB access mode */
677 uint8_t pwrd;
678 /* Floppy drives */
679 uint8_t num_floppies;
680 FDrive drives[MAX_FD];
681 int reset_sensei;
682 uint32_t check_media_rate;
683 FloppyDriveType fallback; /* type=auto failure fallback */
684 /* Timers state */
685 uint8_t timer0;
686 uint8_t timer1;
689 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
691 return drv->fdctrl->fallback;
694 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
695 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
697 typedef struct FDCtrlSysBus {
698 /*< private >*/
699 SysBusDevice parent_obj;
700 /*< public >*/
702 struct FDCtrl state;
703 } FDCtrlSysBus;
705 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
707 typedef struct FDCtrlISABus {
708 ISADevice parent_obj;
710 uint32_t iobase;
711 uint32_t irq;
712 uint32_t dma;
713 struct FDCtrl state;
714 int32_t bootindexA;
715 int32_t bootindexB;
716 } FDCtrlISABus;
718 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
720 FDCtrl *fdctrl = opaque;
721 uint32_t retval;
723 reg &= 7;
724 switch (reg) {
725 case FD_REG_SRA:
726 retval = fdctrl_read_statusA(fdctrl);
727 break;
728 case FD_REG_SRB:
729 retval = fdctrl_read_statusB(fdctrl);
730 break;
731 case FD_REG_DOR:
732 retval = fdctrl_read_dor(fdctrl);
733 break;
734 case FD_REG_TDR:
735 retval = fdctrl_read_tape(fdctrl);
736 break;
737 case FD_REG_MSR:
738 retval = fdctrl_read_main_status(fdctrl);
739 break;
740 case FD_REG_FIFO:
741 retval = fdctrl_read_data(fdctrl);
742 break;
743 case FD_REG_DIR:
744 retval = fdctrl_read_dir(fdctrl);
745 break;
746 default:
747 retval = (uint32_t)(-1);
748 break;
750 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
752 return retval;
755 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
757 FDCtrl *fdctrl = opaque;
759 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
761 reg &= 7;
762 switch (reg) {
763 case FD_REG_DOR:
764 fdctrl_write_dor(fdctrl, value);
765 break;
766 case FD_REG_TDR:
767 fdctrl_write_tape(fdctrl, value);
768 break;
769 case FD_REG_DSR:
770 fdctrl_write_rate(fdctrl, value);
771 break;
772 case FD_REG_FIFO:
773 fdctrl_write_data(fdctrl, value);
774 break;
775 case FD_REG_CCR:
776 fdctrl_write_ccr(fdctrl, value);
777 break;
778 default:
779 break;
783 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
784 unsigned ize)
786 return fdctrl_read(opaque, (uint32_t)reg);
789 static void fdctrl_write_mem (void *opaque, hwaddr reg,
790 uint64_t value, unsigned size)
792 fdctrl_write(opaque, (uint32_t)reg, value);
795 static const MemoryRegionOps fdctrl_mem_ops = {
796 .read = fdctrl_read_mem,
797 .write = fdctrl_write_mem,
798 .endianness = DEVICE_NATIVE_ENDIAN,
801 static const MemoryRegionOps fdctrl_mem_strict_ops = {
802 .read = fdctrl_read_mem,
803 .write = fdctrl_write_mem,
804 .endianness = DEVICE_NATIVE_ENDIAN,
805 .valid = {
806 .min_access_size = 1,
807 .max_access_size = 1,
811 static bool fdrive_media_changed_needed(void *opaque)
813 FDrive *drive = opaque;
815 return (drive->blk != NULL && drive->media_changed != 1);
818 static const VMStateDescription vmstate_fdrive_media_changed = {
819 .name = "fdrive/media_changed",
820 .version_id = 1,
821 .minimum_version_id = 1,
822 .needed = fdrive_media_changed_needed,
823 .fields = (VMStateField[]) {
824 VMSTATE_UINT8(media_changed, FDrive),
825 VMSTATE_END_OF_LIST()
829 static bool fdrive_media_rate_needed(void *opaque)
831 FDrive *drive = opaque;
833 return drive->fdctrl->check_media_rate;
836 static const VMStateDescription vmstate_fdrive_media_rate = {
837 .name = "fdrive/media_rate",
838 .version_id = 1,
839 .minimum_version_id = 1,
840 .needed = fdrive_media_rate_needed,
841 .fields = (VMStateField[]) {
842 VMSTATE_UINT8(media_rate, FDrive),
843 VMSTATE_END_OF_LIST()
847 static bool fdrive_perpendicular_needed(void *opaque)
849 FDrive *drive = opaque;
851 return drive->perpendicular != 0;
854 static const VMStateDescription vmstate_fdrive_perpendicular = {
855 .name = "fdrive/perpendicular",
856 .version_id = 1,
857 .minimum_version_id = 1,
858 .needed = fdrive_perpendicular_needed,
859 .fields = (VMStateField[]) {
860 VMSTATE_UINT8(perpendicular, FDrive),
861 VMSTATE_END_OF_LIST()
865 static int fdrive_post_load(void *opaque, int version_id)
867 fd_revalidate(opaque);
868 return 0;
871 static const VMStateDescription vmstate_fdrive = {
872 .name = "fdrive",
873 .version_id = 1,
874 .minimum_version_id = 1,
875 .post_load = fdrive_post_load,
876 .fields = (VMStateField[]) {
877 VMSTATE_UINT8(head, FDrive),
878 VMSTATE_UINT8(track, FDrive),
879 VMSTATE_UINT8(sect, FDrive),
880 VMSTATE_END_OF_LIST()
882 .subsections = (const VMStateDescription*[]) {
883 &vmstate_fdrive_media_changed,
884 &vmstate_fdrive_media_rate,
885 &vmstate_fdrive_perpendicular,
886 NULL
891 * Reconstructs the phase from register values according to the logic that was
892 * implemented in qemu 2.3. This is the default value that is used if the phase
893 * subsection is not present on migration.
895 * Don't change this function to reflect newer qemu versions, it is part of
896 * the migration ABI.
898 static int reconstruct_phase(FDCtrl *fdctrl)
900 if (fdctrl->msr & FD_MSR_NONDMA) {
901 return FD_PHASE_EXECUTION;
902 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
903 /* qemu 2.3 disabled RQM only during DMA transfers */
904 return FD_PHASE_EXECUTION;
905 } else if (fdctrl->msr & FD_MSR_DIO) {
906 return FD_PHASE_RESULT;
907 } else {
908 return FD_PHASE_COMMAND;
912 static void fdc_pre_save(void *opaque)
914 FDCtrl *s = opaque;
916 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
919 static int fdc_pre_load(void *opaque)
921 FDCtrl *s = opaque;
922 s->phase = FD_PHASE_RECONSTRUCT;
923 return 0;
926 static int fdc_post_load(void *opaque, int version_id)
928 FDCtrl *s = opaque;
930 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
931 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
933 if (s->phase == FD_PHASE_RECONSTRUCT) {
934 s->phase = reconstruct_phase(s);
937 return 0;
940 static bool fdc_reset_sensei_needed(void *opaque)
942 FDCtrl *s = opaque;
944 return s->reset_sensei != 0;
947 static const VMStateDescription vmstate_fdc_reset_sensei = {
948 .name = "fdc/reset_sensei",
949 .version_id = 1,
950 .minimum_version_id = 1,
951 .needed = fdc_reset_sensei_needed,
952 .fields = (VMStateField[]) {
953 VMSTATE_INT32(reset_sensei, FDCtrl),
954 VMSTATE_END_OF_LIST()
958 static bool fdc_result_timer_needed(void *opaque)
960 FDCtrl *s = opaque;
962 return timer_pending(s->result_timer);
965 static const VMStateDescription vmstate_fdc_result_timer = {
966 .name = "fdc/result_timer",
967 .version_id = 1,
968 .minimum_version_id = 1,
969 .needed = fdc_result_timer_needed,
970 .fields = (VMStateField[]) {
971 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
972 VMSTATE_END_OF_LIST()
976 static bool fdc_phase_needed(void *opaque)
978 FDCtrl *fdctrl = opaque;
980 return reconstruct_phase(fdctrl) != fdctrl->phase;
983 static const VMStateDescription vmstate_fdc_phase = {
984 .name = "fdc/phase",
985 .version_id = 1,
986 .minimum_version_id = 1,
987 .needed = fdc_phase_needed,
988 .fields = (VMStateField[]) {
989 VMSTATE_UINT8(phase, FDCtrl),
990 VMSTATE_END_OF_LIST()
994 static const VMStateDescription vmstate_fdc = {
995 .name = "fdc",
996 .version_id = 2,
997 .minimum_version_id = 2,
998 .pre_save = fdc_pre_save,
999 .pre_load = fdc_pre_load,
1000 .post_load = fdc_post_load,
1001 .fields = (VMStateField[]) {
1002 /* Controller State */
1003 VMSTATE_UINT8(sra, FDCtrl),
1004 VMSTATE_UINT8(srb, FDCtrl),
1005 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1006 VMSTATE_UINT8(tdr, FDCtrl),
1007 VMSTATE_UINT8(dsr, FDCtrl),
1008 VMSTATE_UINT8(msr, FDCtrl),
1009 VMSTATE_UINT8(status0, FDCtrl),
1010 VMSTATE_UINT8(status1, FDCtrl),
1011 VMSTATE_UINT8(status2, FDCtrl),
1012 /* Command FIFO */
1013 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1014 uint8_t),
1015 VMSTATE_UINT32(data_pos, FDCtrl),
1016 VMSTATE_UINT32(data_len, FDCtrl),
1017 VMSTATE_UINT8(data_state, FDCtrl),
1018 VMSTATE_UINT8(data_dir, FDCtrl),
1019 VMSTATE_UINT8(eot, FDCtrl),
1020 /* States kept only to be returned back */
1021 VMSTATE_UINT8(timer0, FDCtrl),
1022 VMSTATE_UINT8(timer1, FDCtrl),
1023 VMSTATE_UINT8(precomp_trk, FDCtrl),
1024 VMSTATE_UINT8(config, FDCtrl),
1025 VMSTATE_UINT8(lock, FDCtrl),
1026 VMSTATE_UINT8(pwrd, FDCtrl),
1027 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1028 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1029 vmstate_fdrive, FDrive),
1030 VMSTATE_END_OF_LIST()
1032 .subsections = (const VMStateDescription*[]) {
1033 &vmstate_fdc_reset_sensei,
1034 &vmstate_fdc_result_timer,
1035 &vmstate_fdc_phase,
1036 NULL
1040 static void fdctrl_external_reset_sysbus(DeviceState *d)
1042 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1043 FDCtrl *s = &sys->state;
1045 fdctrl_reset(s, 0);
1048 static void fdctrl_external_reset_isa(DeviceState *d)
1050 FDCtrlISABus *isa = ISA_FDC(d);
1051 FDCtrl *s = &isa->state;
1053 fdctrl_reset(s, 0);
1056 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1058 //FDCtrl *s = opaque;
1060 if (level) {
1061 // XXX
1062 FLOPPY_DPRINTF("TC pulsed\n");
1066 /* Change IRQ state */
1067 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1069 fdctrl->status0 = 0;
1070 if (!(fdctrl->sra & FD_SRA_INTPEND))
1071 return;
1072 FLOPPY_DPRINTF("Reset interrupt\n");
1073 qemu_set_irq(fdctrl->irq, 0);
1074 fdctrl->sra &= ~FD_SRA_INTPEND;
1077 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1079 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1080 qemu_set_irq(fdctrl->irq, 1);
1081 fdctrl->sra |= FD_SRA_INTPEND;
1084 fdctrl->reset_sensei = 0;
1085 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1088 /* Reset controller */
1089 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1091 int i;
1093 FLOPPY_DPRINTF("reset controller\n");
1094 fdctrl_reset_irq(fdctrl);
1095 /* Initialise controller */
1096 fdctrl->sra = 0;
1097 fdctrl->srb = 0xc0;
1098 if (!fdctrl->drives[1].blk) {
1099 fdctrl->sra |= FD_SRA_nDRV2;
1101 fdctrl->cur_drv = 0;
1102 fdctrl->dor = FD_DOR_nRESET;
1103 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1104 fdctrl->msr = FD_MSR_RQM;
1105 fdctrl->reset_sensei = 0;
1106 timer_del(fdctrl->result_timer);
1107 /* FIFO state */
1108 fdctrl->data_pos = 0;
1109 fdctrl->data_len = 0;
1110 fdctrl->data_state = 0;
1111 fdctrl->data_dir = FD_DIR_WRITE;
1112 for (i = 0; i < MAX_FD; i++)
1113 fd_recalibrate(&fdctrl->drives[i]);
1114 fdctrl_to_command_phase(fdctrl);
1115 if (do_irq) {
1116 fdctrl->status0 |= FD_SR0_RDYCHG;
1117 fdctrl_raise_irq(fdctrl);
1118 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1122 static inline FDrive *drv0(FDCtrl *fdctrl)
1124 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1127 static inline FDrive *drv1(FDCtrl *fdctrl)
1129 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1130 return &fdctrl->drives[1];
1131 else
1132 return &fdctrl->drives[0];
1135 #if MAX_FD == 4
1136 static inline FDrive *drv2(FDCtrl *fdctrl)
1138 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1139 return &fdctrl->drives[2];
1140 else
1141 return &fdctrl->drives[1];
1144 static inline FDrive *drv3(FDCtrl *fdctrl)
1146 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1147 return &fdctrl->drives[3];
1148 else
1149 return &fdctrl->drives[2];
1151 #endif
1153 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1155 switch (fdctrl->cur_drv) {
1156 case 0: return drv0(fdctrl);
1157 case 1: return drv1(fdctrl);
1158 #if MAX_FD == 4
1159 case 2: return drv2(fdctrl);
1160 case 3: return drv3(fdctrl);
1161 #endif
1162 default: return NULL;
1166 /* Status A register : 0x00 (read-only) */
1167 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1169 uint32_t retval = fdctrl->sra;
1171 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1173 return retval;
1176 /* Status B register : 0x01 (read-only) */
1177 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1179 uint32_t retval = fdctrl->srb;
1181 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1183 return retval;
1186 /* Digital output register : 0x02 */
1187 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1189 uint32_t retval = fdctrl->dor;
1191 /* Selected drive */
1192 retval |= fdctrl->cur_drv;
1193 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1195 return retval;
1198 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1200 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1202 /* Motors */
1203 if (value & FD_DOR_MOTEN0)
1204 fdctrl->srb |= FD_SRB_MTR0;
1205 else
1206 fdctrl->srb &= ~FD_SRB_MTR0;
1207 if (value & FD_DOR_MOTEN1)
1208 fdctrl->srb |= FD_SRB_MTR1;
1209 else
1210 fdctrl->srb &= ~FD_SRB_MTR1;
1212 /* Drive */
1213 if (value & 1)
1214 fdctrl->srb |= FD_SRB_DR0;
1215 else
1216 fdctrl->srb &= ~FD_SRB_DR0;
1218 /* Reset */
1219 if (!(value & FD_DOR_nRESET)) {
1220 if (fdctrl->dor & FD_DOR_nRESET) {
1221 FLOPPY_DPRINTF("controller enter RESET state\n");
1223 } else {
1224 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1225 FLOPPY_DPRINTF("controller out of RESET state\n");
1226 fdctrl_reset(fdctrl, 1);
1227 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1230 /* Selected drive */
1231 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1233 fdctrl->dor = value;
1236 /* Tape drive register : 0x03 */
1237 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1239 uint32_t retval = fdctrl->tdr;
1241 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1243 return retval;
1246 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1248 /* Reset mode */
1249 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1250 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1251 return;
1253 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1254 /* Disk boot selection indicator */
1255 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1256 /* Tape indicators: never allow */
1259 /* Main status register : 0x04 (read) */
1260 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1262 uint32_t retval = fdctrl->msr;
1264 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1265 fdctrl->dor |= FD_DOR_nRESET;
1267 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1269 return retval;
1272 /* Data select rate register : 0x04 (write) */
1273 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1275 /* Reset mode */
1276 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1277 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1278 return;
1280 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1281 /* Reset: autoclear */
1282 if (value & FD_DSR_SWRESET) {
1283 fdctrl->dor &= ~FD_DOR_nRESET;
1284 fdctrl_reset(fdctrl, 1);
1285 fdctrl->dor |= FD_DOR_nRESET;
1287 if (value & FD_DSR_PWRDOWN) {
1288 fdctrl_reset(fdctrl, 1);
1290 fdctrl->dsr = value;
1293 /* Configuration control register: 0x07 (write) */
1294 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1296 /* Reset mode */
1297 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1298 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1299 return;
1301 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1303 /* Only the rate selection bits used in AT mode, and we
1304 * store those in the DSR.
1306 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1307 (value & FD_DSR_DRATEMASK);
1310 static int fdctrl_media_changed(FDrive *drv)
1312 return drv->media_changed;
1315 /* Digital input register : 0x07 (read-only) */
1316 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1318 uint32_t retval = 0;
1320 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1321 retval |= FD_DIR_DSKCHG;
1323 if (retval != 0) {
1324 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1327 return retval;
1330 /* Clear the FIFO and update the state for receiving the next command */
1331 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1333 fdctrl->phase = FD_PHASE_COMMAND;
1334 fdctrl->data_dir = FD_DIR_WRITE;
1335 fdctrl->data_pos = 0;
1336 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1337 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1338 fdctrl->msr |= FD_MSR_RQM;
1341 /* Update the state to allow the guest to read out the command status.
1342 * @fifo_len is the number of result bytes to be read out. */
1343 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1345 fdctrl->phase = FD_PHASE_RESULT;
1346 fdctrl->data_dir = FD_DIR_READ;
1347 fdctrl->data_len = fifo_len;
1348 fdctrl->data_pos = 0;
1349 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1352 /* Set an error: unimplemented/unknown command */
1353 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1355 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1356 fdctrl->fifo[0]);
1357 fdctrl->fifo[0] = FD_SR0_INVCMD;
1358 fdctrl_to_result_phase(fdctrl, 1);
1361 /* Seek to next sector
1362 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1363 * otherwise returns 1
1365 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1367 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1368 cur_drv->head, cur_drv->track, cur_drv->sect,
1369 fd_sector(cur_drv));
1370 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1371 error in fact */
1372 uint8_t new_head = cur_drv->head;
1373 uint8_t new_track = cur_drv->track;
1374 uint8_t new_sect = cur_drv->sect;
1376 int ret = 1;
1378 if (new_sect >= cur_drv->last_sect ||
1379 new_sect == fdctrl->eot) {
1380 new_sect = 1;
1381 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1382 if (new_head == 0 &&
1383 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1384 new_head = 1;
1385 } else {
1386 new_head = 0;
1387 new_track++;
1388 fdctrl->status0 |= FD_SR0_SEEK;
1389 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1390 ret = 0;
1393 } else {
1394 fdctrl->status0 |= FD_SR0_SEEK;
1395 new_track++;
1396 ret = 0;
1398 if (ret == 1) {
1399 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1400 new_head, new_track, new_sect, fd_sector(cur_drv));
1402 } else {
1403 new_sect++;
1405 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1406 return ret;
1409 /* Callback for transfer end (stop or abort) */
1410 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1411 uint8_t status1, uint8_t status2)
1413 FDrive *cur_drv;
1414 cur_drv = get_cur_drv(fdctrl);
1416 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1417 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1418 if (cur_drv->head) {
1419 fdctrl->status0 |= FD_SR0_HEAD;
1421 fdctrl->status0 |= status0;
1423 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1424 status0, status1, status2, fdctrl->status0);
1425 fdctrl->fifo[0] = fdctrl->status0;
1426 fdctrl->fifo[1] = status1;
1427 fdctrl->fifo[2] = status2;
1428 fdctrl->fifo[3] = cur_drv->track;
1429 fdctrl->fifo[4] = cur_drv->head;
1430 fdctrl->fifo[5] = cur_drv->sect;
1431 fdctrl->fifo[6] = FD_SECTOR_SC;
1432 fdctrl->data_dir = FD_DIR_READ;
1433 if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1434 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1435 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1437 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1438 fdctrl->msr &= ~FD_MSR_NONDMA;
1440 fdctrl_to_result_phase(fdctrl, 7);
1441 fdctrl_raise_irq(fdctrl);
1444 /* Prepare a data transfer (either DMA or FIFO) */
1445 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1447 FDrive *cur_drv;
1448 uint8_t kh, kt, ks;
1450 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1451 cur_drv = get_cur_drv(fdctrl);
1452 kt = fdctrl->fifo[2];
1453 kh = fdctrl->fifo[3];
1454 ks = fdctrl->fifo[4];
1455 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1456 GET_CUR_DRV(fdctrl), kh, kt, ks,
1457 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1458 NUM_SIDES(cur_drv)));
1459 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1460 case 2:
1461 /* sect too big */
1462 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1463 fdctrl->fifo[3] = kt;
1464 fdctrl->fifo[4] = kh;
1465 fdctrl->fifo[5] = ks;
1466 return;
1467 case 3:
1468 /* track too big */
1469 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1470 fdctrl->fifo[3] = kt;
1471 fdctrl->fifo[4] = kh;
1472 fdctrl->fifo[5] = ks;
1473 return;
1474 case 4:
1475 /* No seek enabled */
1476 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1477 fdctrl->fifo[3] = kt;
1478 fdctrl->fifo[4] = kh;
1479 fdctrl->fifo[5] = ks;
1480 return;
1481 case 1:
1482 fdctrl->status0 |= FD_SR0_SEEK;
1483 break;
1484 default:
1485 break;
1488 /* Check the data rate. If the programmed data rate does not match
1489 * the currently inserted medium, the operation has to fail. */
1490 if (fdctrl->check_media_rate &&
1491 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1492 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1493 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1494 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1495 fdctrl->fifo[3] = kt;
1496 fdctrl->fifo[4] = kh;
1497 fdctrl->fifo[5] = ks;
1498 return;
1501 /* Set the FIFO state */
1502 fdctrl->data_dir = direction;
1503 fdctrl->data_pos = 0;
1504 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1505 if (fdctrl->fifo[0] & 0x80)
1506 fdctrl->data_state |= FD_STATE_MULTI;
1507 else
1508 fdctrl->data_state &= ~FD_STATE_MULTI;
1509 if (fdctrl->fifo[5] == 0) {
1510 fdctrl->data_len = fdctrl->fifo[8];
1511 } else {
1512 int tmp;
1513 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1514 tmp = (fdctrl->fifo[6] - ks + 1);
1515 if (fdctrl->fifo[0] & 0x80)
1516 tmp += fdctrl->fifo[6];
1517 fdctrl->data_len *= tmp;
1519 fdctrl->eot = fdctrl->fifo[6];
1520 if (fdctrl->dor & FD_DOR_DMAEN) {
1521 IsaDmaTransferMode dma_mode;
1522 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1523 bool dma_mode_ok;
1524 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1525 dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1526 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1527 dma_mode, direction,
1528 (128 << fdctrl->fifo[5]) *
1529 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1530 switch (direction) {
1531 case FD_DIR_SCANE:
1532 case FD_DIR_SCANL:
1533 case FD_DIR_SCANH:
1534 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1535 break;
1536 case FD_DIR_WRITE:
1537 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1538 break;
1539 case FD_DIR_READ:
1540 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1541 break;
1542 case FD_DIR_VERIFY:
1543 dma_mode_ok = true;
1544 break;
1545 default:
1546 dma_mode_ok = false;
1547 break;
1549 if (dma_mode_ok) {
1550 /* No access is allowed until DMA transfer has completed */
1551 fdctrl->msr &= ~FD_MSR_RQM;
1552 if (direction != FD_DIR_VERIFY) {
1553 /* Now, we just have to wait for the DMA controller to
1554 * recall us...
1556 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1557 k->schedule(fdctrl->dma);
1558 } else {
1559 /* Start transfer */
1560 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1561 fdctrl->data_len);
1563 return;
1564 } else {
1565 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1566 direction);
1569 FLOPPY_DPRINTF("start non-DMA transfer\n");
1570 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1571 if (direction != FD_DIR_WRITE)
1572 fdctrl->msr |= FD_MSR_DIO;
1573 /* IO based transfer: calculate len */
1574 fdctrl_raise_irq(fdctrl);
1577 /* Prepare a transfer of deleted data */
1578 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1580 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1582 /* We don't handle deleted data,
1583 * so we don't return *ANYTHING*
1585 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1588 /* handlers for DMA transfers */
1589 static int fdctrl_transfer_handler (void *opaque, int nchan,
1590 int dma_pos, int dma_len)
1592 FDCtrl *fdctrl;
1593 FDrive *cur_drv;
1594 int len, start_pos, rel_pos;
1595 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1596 IsaDmaClass *k;
1598 fdctrl = opaque;
1599 if (fdctrl->msr & FD_MSR_RQM) {
1600 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1601 return 0;
1603 k = ISADMA_GET_CLASS(fdctrl->dma);
1604 cur_drv = get_cur_drv(fdctrl);
1605 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1606 fdctrl->data_dir == FD_DIR_SCANH)
1607 status2 = FD_SR2_SNS;
1608 if (dma_len > fdctrl->data_len)
1609 dma_len = fdctrl->data_len;
1610 if (cur_drv->blk == NULL) {
1611 if (fdctrl->data_dir == FD_DIR_WRITE)
1612 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1613 else
1614 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1615 len = 0;
1616 goto transfer_error;
1618 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1619 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1620 len = dma_len - fdctrl->data_pos;
1621 if (len + rel_pos > FD_SECTOR_LEN)
1622 len = FD_SECTOR_LEN - rel_pos;
1623 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1624 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1625 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1626 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1627 fd_sector(cur_drv) * FD_SECTOR_LEN);
1628 if (fdctrl->data_dir != FD_DIR_WRITE ||
1629 len < FD_SECTOR_LEN || rel_pos != 0) {
1630 /* READ & SCAN commands and realign to a sector for WRITE */
1631 if (blk_read(cur_drv->blk, fd_sector(cur_drv),
1632 fdctrl->fifo, 1) < 0) {
1633 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1634 fd_sector(cur_drv));
1635 /* Sure, image size is too small... */
1636 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1639 switch (fdctrl->data_dir) {
1640 case FD_DIR_READ:
1641 /* READ commands */
1642 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1643 fdctrl->data_pos, len);
1644 break;
1645 case FD_DIR_WRITE:
1646 /* WRITE commands */
1647 if (cur_drv->ro) {
1648 /* Handle readonly medium early, no need to do DMA, touch the
1649 * LED or attempt any writes. A real floppy doesn't attempt
1650 * to write to readonly media either. */
1651 fdctrl_stop_transfer(fdctrl,
1652 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1653 0x00);
1654 goto transfer_error;
1657 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1658 fdctrl->data_pos, len);
1659 if (blk_write(cur_drv->blk, fd_sector(cur_drv),
1660 fdctrl->fifo, 1) < 0) {
1661 FLOPPY_DPRINTF("error writing sector %d\n",
1662 fd_sector(cur_drv));
1663 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1664 goto transfer_error;
1666 break;
1667 case FD_DIR_VERIFY:
1668 /* VERIFY commands */
1669 break;
1670 default:
1671 /* SCAN commands */
1673 uint8_t tmpbuf[FD_SECTOR_LEN];
1674 int ret;
1675 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1676 len);
1677 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1678 if (ret == 0) {
1679 status2 = FD_SR2_SEH;
1680 goto end_transfer;
1682 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1683 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1684 status2 = 0x00;
1685 goto end_transfer;
1688 break;
1690 fdctrl->data_pos += len;
1691 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1692 if (rel_pos == 0) {
1693 /* Seek to next sector */
1694 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1695 break;
1698 end_transfer:
1699 len = fdctrl->data_pos - start_pos;
1700 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1701 fdctrl->data_pos, len, fdctrl->data_len);
1702 if (fdctrl->data_dir == FD_DIR_SCANE ||
1703 fdctrl->data_dir == FD_DIR_SCANL ||
1704 fdctrl->data_dir == FD_DIR_SCANH)
1705 status2 = FD_SR2_SEH;
1706 fdctrl->data_len -= len;
1707 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1708 transfer_error:
1710 return len;
1713 /* Data register : 0x05 */
1714 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1716 FDrive *cur_drv;
1717 uint32_t retval = 0;
1718 uint32_t pos;
1720 cur_drv = get_cur_drv(fdctrl);
1721 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1722 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1723 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1724 return 0;
1727 /* If data_len spans multiple sectors, the current position in the FIFO
1728 * wraps around while fdctrl->data_pos is the real position in the whole
1729 * request. */
1730 pos = fdctrl->data_pos;
1731 pos %= FD_SECTOR_LEN;
1733 switch (fdctrl->phase) {
1734 case FD_PHASE_EXECUTION:
1735 assert(fdctrl->msr & FD_MSR_NONDMA);
1736 if (pos == 0) {
1737 if (fdctrl->data_pos != 0)
1738 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1739 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1740 fd_sector(cur_drv));
1741 return 0;
1743 if (blk_read(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
1744 < 0) {
1745 FLOPPY_DPRINTF("error getting sector %d\n",
1746 fd_sector(cur_drv));
1747 /* Sure, image size is too small... */
1748 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1752 if (++fdctrl->data_pos == fdctrl->data_len) {
1753 fdctrl->msr &= ~FD_MSR_RQM;
1754 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1756 break;
1758 case FD_PHASE_RESULT:
1759 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1760 if (++fdctrl->data_pos == fdctrl->data_len) {
1761 fdctrl->msr &= ~FD_MSR_RQM;
1762 fdctrl_to_command_phase(fdctrl);
1763 fdctrl_reset_irq(fdctrl);
1765 break;
1767 case FD_PHASE_COMMAND:
1768 default:
1769 abort();
1772 retval = fdctrl->fifo[pos];
1773 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1775 return retval;
1778 static void fdctrl_format_sector(FDCtrl *fdctrl)
1780 FDrive *cur_drv;
1781 uint8_t kh, kt, ks;
1783 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1784 cur_drv = get_cur_drv(fdctrl);
1785 kt = fdctrl->fifo[6];
1786 kh = fdctrl->fifo[7];
1787 ks = fdctrl->fifo[8];
1788 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1789 GET_CUR_DRV(fdctrl), kh, kt, ks,
1790 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1791 NUM_SIDES(cur_drv)));
1792 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1793 case 2:
1794 /* sect too big */
1795 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1796 fdctrl->fifo[3] = kt;
1797 fdctrl->fifo[4] = kh;
1798 fdctrl->fifo[5] = ks;
1799 return;
1800 case 3:
1801 /* track too big */
1802 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1803 fdctrl->fifo[3] = kt;
1804 fdctrl->fifo[4] = kh;
1805 fdctrl->fifo[5] = ks;
1806 return;
1807 case 4:
1808 /* No seek enabled */
1809 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1810 fdctrl->fifo[3] = kt;
1811 fdctrl->fifo[4] = kh;
1812 fdctrl->fifo[5] = ks;
1813 return;
1814 case 1:
1815 fdctrl->status0 |= FD_SR0_SEEK;
1816 break;
1817 default:
1818 break;
1820 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1821 if (cur_drv->blk == NULL ||
1822 blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
1823 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1824 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1825 } else {
1826 if (cur_drv->sect == cur_drv->last_sect) {
1827 fdctrl->data_state &= ~FD_STATE_FORMAT;
1828 /* Last sector done */
1829 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1830 } else {
1831 /* More to do */
1832 fdctrl->data_pos = 0;
1833 fdctrl->data_len = 4;
1838 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1840 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1841 fdctrl->fifo[0] = fdctrl->lock << 4;
1842 fdctrl_to_result_phase(fdctrl, 1);
1845 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1847 FDrive *cur_drv = get_cur_drv(fdctrl);
1849 /* Drives position */
1850 fdctrl->fifo[0] = drv0(fdctrl)->track;
1851 fdctrl->fifo[1] = drv1(fdctrl)->track;
1852 #if MAX_FD == 4
1853 fdctrl->fifo[2] = drv2(fdctrl)->track;
1854 fdctrl->fifo[3] = drv3(fdctrl)->track;
1855 #else
1856 fdctrl->fifo[2] = 0;
1857 fdctrl->fifo[3] = 0;
1858 #endif
1859 /* timers */
1860 fdctrl->fifo[4] = fdctrl->timer0;
1861 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1862 fdctrl->fifo[6] = cur_drv->last_sect;
1863 fdctrl->fifo[7] = (fdctrl->lock << 7) |
1864 (cur_drv->perpendicular << 2);
1865 fdctrl->fifo[8] = fdctrl->config;
1866 fdctrl->fifo[9] = fdctrl->precomp_trk;
1867 fdctrl_to_result_phase(fdctrl, 10);
1870 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1872 /* Controller's version */
1873 fdctrl->fifo[0] = fdctrl->version;
1874 fdctrl_to_result_phase(fdctrl, 1);
1877 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1879 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1880 fdctrl_to_result_phase(fdctrl, 1);
1883 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1885 FDrive *cur_drv = get_cur_drv(fdctrl);
1887 /* Drives position */
1888 drv0(fdctrl)->track = fdctrl->fifo[3];
1889 drv1(fdctrl)->track = fdctrl->fifo[4];
1890 #if MAX_FD == 4
1891 drv2(fdctrl)->track = fdctrl->fifo[5];
1892 drv3(fdctrl)->track = fdctrl->fifo[6];
1893 #endif
1894 /* timers */
1895 fdctrl->timer0 = fdctrl->fifo[7];
1896 fdctrl->timer1 = fdctrl->fifo[8];
1897 cur_drv->last_sect = fdctrl->fifo[9];
1898 fdctrl->lock = fdctrl->fifo[10] >> 7;
1899 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1900 fdctrl->config = fdctrl->fifo[11];
1901 fdctrl->precomp_trk = fdctrl->fifo[12];
1902 fdctrl->pwrd = fdctrl->fifo[13];
1903 fdctrl_to_command_phase(fdctrl);
1906 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1908 FDrive *cur_drv = get_cur_drv(fdctrl);
1910 fdctrl->fifo[0] = 0;
1911 fdctrl->fifo[1] = 0;
1912 /* Drives position */
1913 fdctrl->fifo[2] = drv0(fdctrl)->track;
1914 fdctrl->fifo[3] = drv1(fdctrl)->track;
1915 #if MAX_FD == 4
1916 fdctrl->fifo[4] = drv2(fdctrl)->track;
1917 fdctrl->fifo[5] = drv3(fdctrl)->track;
1918 #else
1919 fdctrl->fifo[4] = 0;
1920 fdctrl->fifo[5] = 0;
1921 #endif
1922 /* timers */
1923 fdctrl->fifo[6] = fdctrl->timer0;
1924 fdctrl->fifo[7] = fdctrl->timer1;
1925 fdctrl->fifo[8] = cur_drv->last_sect;
1926 fdctrl->fifo[9] = (fdctrl->lock << 7) |
1927 (cur_drv->perpendicular << 2);
1928 fdctrl->fifo[10] = fdctrl->config;
1929 fdctrl->fifo[11] = fdctrl->precomp_trk;
1930 fdctrl->fifo[12] = fdctrl->pwrd;
1931 fdctrl->fifo[13] = 0;
1932 fdctrl->fifo[14] = 0;
1933 fdctrl_to_result_phase(fdctrl, 15);
1936 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1938 FDrive *cur_drv = get_cur_drv(fdctrl);
1940 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1941 timer_mod(fdctrl->result_timer,
1942 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / 50));
1945 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1947 FDrive *cur_drv;
1949 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1950 cur_drv = get_cur_drv(fdctrl);
1951 fdctrl->data_state |= FD_STATE_FORMAT;
1952 if (fdctrl->fifo[0] & 0x80)
1953 fdctrl->data_state |= FD_STATE_MULTI;
1954 else
1955 fdctrl->data_state &= ~FD_STATE_MULTI;
1956 cur_drv->bps =
1957 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1958 #if 0
1959 cur_drv->last_sect =
1960 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1961 fdctrl->fifo[3] / 2;
1962 #else
1963 cur_drv->last_sect = fdctrl->fifo[3];
1964 #endif
1965 /* TODO: implement format using DMA expected by the Bochs BIOS
1966 * and Linux fdformat (read 3 bytes per sector via DMA and fill
1967 * the sector with the specified fill byte
1969 fdctrl->data_state &= ~FD_STATE_FORMAT;
1970 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1973 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1975 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1976 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1977 if (fdctrl->fifo[2] & 1)
1978 fdctrl->dor &= ~FD_DOR_DMAEN;
1979 else
1980 fdctrl->dor |= FD_DOR_DMAEN;
1981 /* No result back */
1982 fdctrl_to_command_phase(fdctrl);
1985 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1987 FDrive *cur_drv;
1989 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1990 cur_drv = get_cur_drv(fdctrl);
1991 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1992 /* 1 Byte status back */
1993 fdctrl->fifo[0] = (cur_drv->ro << 6) |
1994 (cur_drv->track == 0 ? 0x10 : 0x00) |
1995 (cur_drv->head << 2) |
1996 GET_CUR_DRV(fdctrl) |
1997 0x28;
1998 fdctrl_to_result_phase(fdctrl, 1);
2001 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2003 FDrive *cur_drv;
2005 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2006 cur_drv = get_cur_drv(fdctrl);
2007 fd_recalibrate(cur_drv);
2008 fdctrl_to_command_phase(fdctrl);
2009 /* Raise Interrupt */
2010 fdctrl->status0 |= FD_SR0_SEEK;
2011 fdctrl_raise_irq(fdctrl);
2014 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2016 FDrive *cur_drv = get_cur_drv(fdctrl);
2018 if (fdctrl->reset_sensei > 0) {
2019 fdctrl->fifo[0] =
2020 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2021 fdctrl->reset_sensei--;
2022 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2023 fdctrl->fifo[0] = FD_SR0_INVCMD;
2024 fdctrl_to_result_phase(fdctrl, 1);
2025 return;
2026 } else {
2027 fdctrl->fifo[0] =
2028 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2029 | GET_CUR_DRV(fdctrl);
2032 fdctrl->fifo[1] = cur_drv->track;
2033 fdctrl_to_result_phase(fdctrl, 2);
2034 fdctrl_reset_irq(fdctrl);
2035 fdctrl->status0 = FD_SR0_RDYCHG;
2038 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2040 FDrive *cur_drv;
2042 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2043 cur_drv = get_cur_drv(fdctrl);
2044 fdctrl_to_command_phase(fdctrl);
2045 /* The seek command just sends step pulses to the drive and doesn't care if
2046 * there is a medium inserted of if it's banging the head against the drive.
2048 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2049 /* Raise Interrupt */
2050 fdctrl->status0 |= FD_SR0_SEEK;
2051 fdctrl_raise_irq(fdctrl);
2054 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2056 FDrive *cur_drv = get_cur_drv(fdctrl);
2058 if (fdctrl->fifo[1] & 0x80)
2059 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2060 /* No result back */
2061 fdctrl_to_command_phase(fdctrl);
2064 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2066 fdctrl->config = fdctrl->fifo[2];
2067 fdctrl->precomp_trk = fdctrl->fifo[3];
2068 /* No result back */
2069 fdctrl_to_command_phase(fdctrl);
2072 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2074 fdctrl->pwrd = fdctrl->fifo[1];
2075 fdctrl->fifo[0] = fdctrl->fifo[1];
2076 fdctrl_to_result_phase(fdctrl, 1);
2079 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2081 /* No result back */
2082 fdctrl_to_command_phase(fdctrl);
2085 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2087 FDrive *cur_drv = get_cur_drv(fdctrl);
2088 uint32_t pos;
2090 pos = fdctrl->data_pos - 1;
2091 pos %= FD_SECTOR_LEN;
2092 if (fdctrl->fifo[pos] & 0x80) {
2093 /* Command parameters done */
2094 if (fdctrl->fifo[pos] & 0x40) {
2095 fdctrl->fifo[0] = fdctrl->fifo[1];
2096 fdctrl->fifo[2] = 0;
2097 fdctrl->fifo[3] = 0;
2098 fdctrl_to_result_phase(fdctrl, 4);
2099 } else {
2100 fdctrl_to_command_phase(fdctrl);
2102 } else if (fdctrl->data_len > 7) {
2103 /* ERROR */
2104 fdctrl->fifo[0] = 0x80 |
2105 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2106 fdctrl_to_result_phase(fdctrl, 1);
2110 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2112 FDrive *cur_drv;
2114 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2115 cur_drv = get_cur_drv(fdctrl);
2116 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2117 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2118 cur_drv->sect, 1);
2119 } else {
2120 fd_seek(cur_drv, cur_drv->head,
2121 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2123 fdctrl_to_command_phase(fdctrl);
2124 /* Raise Interrupt */
2125 fdctrl->status0 |= FD_SR0_SEEK;
2126 fdctrl_raise_irq(fdctrl);
2129 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2131 FDrive *cur_drv;
2133 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2134 cur_drv = get_cur_drv(fdctrl);
2135 if (fdctrl->fifo[2] > cur_drv->track) {
2136 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2137 } else {
2138 fd_seek(cur_drv, cur_drv->head,
2139 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2141 fdctrl_to_command_phase(fdctrl);
2142 /* Raise Interrupt */
2143 fdctrl->status0 |= FD_SR0_SEEK;
2144 fdctrl_raise_irq(fdctrl);
2148 * Handlers for the execution phase of each command
2150 typedef struct FDCtrlCommand {
2151 uint8_t value;
2152 uint8_t mask;
2153 const char* name;
2154 int parameters;
2155 void (*handler)(FDCtrl *fdctrl, int direction);
2156 int direction;
2157 } FDCtrlCommand;
2159 static const FDCtrlCommand handlers[] = {
2160 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2161 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2162 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2163 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2164 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2165 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2166 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2167 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2168 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2169 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2170 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2171 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2172 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2173 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2174 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2175 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2176 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2177 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2178 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2179 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2180 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2181 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2182 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2183 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2184 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2185 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2186 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2187 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2188 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2189 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2190 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2191 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2193 /* Associate command to an index in the 'handlers' array */
2194 static uint8_t command_to_handler[256];
2196 static const FDCtrlCommand *get_command(uint8_t cmd)
2198 int idx;
2200 idx = command_to_handler[cmd];
2201 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2202 return &handlers[idx];
2205 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2207 FDrive *cur_drv;
2208 const FDCtrlCommand *cmd;
2209 uint32_t pos;
2211 /* Reset mode */
2212 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2213 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2214 return;
2216 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2217 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2218 return;
2220 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2222 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2224 /* If data_len spans multiple sectors, the current position in the FIFO
2225 * wraps around while fdctrl->data_pos is the real position in the whole
2226 * request. */
2227 pos = fdctrl->data_pos++;
2228 pos %= FD_SECTOR_LEN;
2229 fdctrl->fifo[pos] = value;
2231 if (fdctrl->data_pos == fdctrl->data_len) {
2232 fdctrl->msr &= ~FD_MSR_RQM;
2235 switch (fdctrl->phase) {
2236 case FD_PHASE_EXECUTION:
2237 /* For DMA requests, RQM should be cleared during execution phase, so
2238 * we would have errored out above. */
2239 assert(fdctrl->msr & FD_MSR_NONDMA);
2241 /* FIFO data write */
2242 if (pos == FD_SECTOR_LEN - 1 ||
2243 fdctrl->data_pos == fdctrl->data_len) {
2244 cur_drv = get_cur_drv(fdctrl);
2245 if (blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
2246 < 0) {
2247 FLOPPY_DPRINTF("error writing sector %d\n",
2248 fd_sector(cur_drv));
2249 break;
2251 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2252 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2253 fd_sector(cur_drv));
2254 break;
2258 /* Switch to result phase when done with the transfer */
2259 if (fdctrl->data_pos == fdctrl->data_len) {
2260 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2262 break;
2264 case FD_PHASE_COMMAND:
2265 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2266 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2268 if (pos == 0) {
2269 /* The first byte specifies the command. Now we start reading
2270 * as many parameters as this command requires. */
2271 cmd = get_command(value);
2272 fdctrl->data_len = cmd->parameters + 1;
2273 if (cmd->parameters) {
2274 fdctrl->msr |= FD_MSR_RQM;
2276 fdctrl->msr |= FD_MSR_CMDBUSY;
2279 if (fdctrl->data_pos == fdctrl->data_len) {
2280 /* We have all parameters now, execute the command */
2281 fdctrl->phase = FD_PHASE_EXECUTION;
2283 if (fdctrl->data_state & FD_STATE_FORMAT) {
2284 fdctrl_format_sector(fdctrl);
2285 break;
2288 cmd = get_command(fdctrl->fifo[0]);
2289 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2290 cmd->handler(fdctrl, cmd->direction);
2292 break;
2294 case FD_PHASE_RESULT:
2295 default:
2296 abort();
2300 static void fdctrl_result_timer(void *opaque)
2302 FDCtrl *fdctrl = opaque;
2303 FDrive *cur_drv = get_cur_drv(fdctrl);
2305 /* Pretend we are spinning.
2306 * This is needed for Coherent, which uses READ ID to check for
2307 * sector interleaving.
2309 if (cur_drv->last_sect != 0) {
2310 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2312 /* READ_ID can't automatically succeed! */
2313 if (fdctrl->check_media_rate &&
2314 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2315 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2316 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2317 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2318 } else {
2319 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2323 static void fdctrl_change_cb(void *opaque, bool load)
2325 FDrive *drive = opaque;
2327 drive->media_changed = 1;
2328 drive->media_validated = false;
2329 fd_revalidate(drive);
2332 static const BlockDevOps fdctrl_block_ops = {
2333 .change_media_cb = fdctrl_change_cb,
2336 /* Init functions */
2337 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2339 unsigned int i;
2340 FDrive *drive;
2342 for (i = 0; i < MAX_FD; i++) {
2343 drive = &fdctrl->drives[i];
2344 drive->fdctrl = fdctrl;
2346 if (drive->blk) {
2347 if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2348 error_setg(errp, "fdc doesn't support drive option werror");
2349 return;
2351 if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2352 error_setg(errp, "fdc doesn't support drive option rerror");
2353 return;
2357 fd_init(drive);
2358 if (drive->blk) {
2359 blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2360 pick_drive_type(drive);
2362 fd_revalidate(drive);
2366 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2368 DeviceState *dev;
2369 ISADevice *isadev;
2371 isadev = isa_try_create(bus, TYPE_ISA_FDC);
2372 if (!isadev) {
2373 return NULL;
2375 dev = DEVICE(isadev);
2377 if (fds[0]) {
2378 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2379 &error_fatal);
2381 if (fds[1]) {
2382 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2383 &error_fatal);
2385 qdev_init_nofail(dev);
2387 return isadev;
2390 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2391 hwaddr mmio_base, DriveInfo **fds)
2393 FDCtrl *fdctrl;
2394 DeviceState *dev;
2395 SysBusDevice *sbd;
2396 FDCtrlSysBus *sys;
2398 dev = qdev_create(NULL, "sysbus-fdc");
2399 sys = SYSBUS_FDC(dev);
2400 fdctrl = &sys->state;
2401 fdctrl->dma_chann = dma_chann; /* FIXME */
2402 if (fds[0]) {
2403 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2404 &error_fatal);
2406 if (fds[1]) {
2407 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2408 &error_fatal);
2410 qdev_init_nofail(dev);
2411 sbd = SYS_BUS_DEVICE(dev);
2412 sysbus_connect_irq(sbd, 0, irq);
2413 sysbus_mmio_map(sbd, 0, mmio_base);
2416 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2417 DriveInfo **fds, qemu_irq *fdc_tc)
2419 DeviceState *dev;
2420 FDCtrlSysBus *sys;
2422 dev = qdev_create(NULL, "SUNW,fdtwo");
2423 if (fds[0]) {
2424 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2425 &error_fatal);
2427 qdev_init_nofail(dev);
2428 sys = SYSBUS_FDC(dev);
2429 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2430 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2431 *fdc_tc = qdev_get_gpio_in(dev, 0);
2434 static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2436 int i, j;
2437 static int command_tables_inited = 0;
2439 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2440 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2443 /* Fill 'command_to_handler' lookup table */
2444 if (!command_tables_inited) {
2445 command_tables_inited = 1;
2446 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2447 for (j = 0; j < sizeof(command_to_handler); j++) {
2448 if ((j & handlers[i].mask) == handlers[i].value) {
2449 command_to_handler[j] = i;
2455 FLOPPY_DPRINTF("init controller\n");
2456 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2457 fdctrl->fifo_size = 512;
2458 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2459 fdctrl_result_timer, fdctrl);
2461 fdctrl->version = 0x90; /* Intel 82078 controller */
2462 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2463 fdctrl->num_floppies = MAX_FD;
2465 if (fdctrl->dma_chann != -1) {
2466 IsaDmaClass *k;
2467 assert(fdctrl->dma);
2468 k = ISADMA_GET_CLASS(fdctrl->dma);
2469 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2470 &fdctrl_transfer_handler, fdctrl);
2472 fdctrl_connect_drives(fdctrl, errp);
2475 static const MemoryRegionPortio fdc_portio_list[] = {
2476 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2477 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2478 PORTIO_END_OF_LIST(),
2481 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2483 ISADevice *isadev = ISA_DEVICE(dev);
2484 FDCtrlISABus *isa = ISA_FDC(dev);
2485 FDCtrl *fdctrl = &isa->state;
2486 Error *err = NULL;
2488 isa_register_portio_list(isadev, isa->iobase, fdc_portio_list, fdctrl,
2489 "fdc");
2491 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2492 fdctrl->dma_chann = isa->dma;
2493 if (fdctrl->dma_chann != -1) {
2494 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2495 assert(fdctrl->dma);
2498 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2499 fdctrl_realize_common(fdctrl, &err);
2500 if (err != NULL) {
2501 error_propagate(errp, err);
2502 return;
2506 static void sysbus_fdc_initfn(Object *obj)
2508 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2509 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2510 FDCtrl *fdctrl = &sys->state;
2512 fdctrl->dma_chann = -1;
2514 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2515 "fdc", 0x08);
2516 sysbus_init_mmio(sbd, &fdctrl->iomem);
2519 static void sun4m_fdc_initfn(Object *obj)
2521 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2522 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2523 FDCtrl *fdctrl = &sys->state;
2525 fdctrl->dma_chann = -1;
2527 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2528 fdctrl, "fdctrl", 0x08);
2529 sysbus_init_mmio(sbd, &fdctrl->iomem);
2532 static void sysbus_fdc_common_initfn(Object *obj)
2534 DeviceState *dev = DEVICE(obj);
2535 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2536 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2537 FDCtrl *fdctrl = &sys->state;
2539 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2541 sysbus_init_irq(sbd, &fdctrl->irq);
2542 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2545 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2547 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2548 FDCtrl *fdctrl = &sys->state;
2550 fdctrl_realize_common(fdctrl, errp);
2553 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2555 FDCtrlISABus *isa = ISA_FDC(fdc);
2557 return isa->state.drives[i].drive;
2560 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2561 uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2563 const FDFormat *fdf;
2565 *maxc = *maxh = *maxs = 0;
2566 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2567 if (fdf->drive != type) {
2568 continue;
2570 if (*maxc < fdf->max_track) {
2571 *maxc = fdf->max_track;
2573 if (*maxh < fdf->max_head) {
2574 *maxh = fdf->max_head;
2576 if (*maxs < fdf->last_sect) {
2577 *maxs = fdf->last_sect;
2580 (*maxc)--;
2583 static const VMStateDescription vmstate_isa_fdc ={
2584 .name = "fdc",
2585 .version_id = 2,
2586 .minimum_version_id = 2,
2587 .fields = (VMStateField[]) {
2588 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2589 VMSTATE_END_OF_LIST()
2593 static Property isa_fdc_properties[] = {
2594 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2595 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2596 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2597 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2598 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2599 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2600 0, true),
2601 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.drives[0].drive,
2602 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2603 FloppyDriveType),
2604 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.drives[1].drive,
2605 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2606 FloppyDriveType),
2607 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2608 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2609 FloppyDriveType),
2610 DEFINE_PROP_END_OF_LIST(),
2613 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2615 DeviceClass *dc = DEVICE_CLASS(klass);
2617 dc->realize = isabus_fdc_realize;
2618 dc->fw_name = "fdc";
2619 dc->reset = fdctrl_external_reset_isa;
2620 dc->vmsd = &vmstate_isa_fdc;
2621 dc->props = isa_fdc_properties;
2622 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2625 static void isabus_fdc_instance_init(Object *obj)
2627 FDCtrlISABus *isa = ISA_FDC(obj);
2629 device_add_bootindex_property(obj, &isa->bootindexA,
2630 "bootindexA", "/floppy@0",
2631 DEVICE(obj), NULL);
2632 device_add_bootindex_property(obj, &isa->bootindexB,
2633 "bootindexB", "/floppy@1",
2634 DEVICE(obj), NULL);
2637 static const TypeInfo isa_fdc_info = {
2638 .name = TYPE_ISA_FDC,
2639 .parent = TYPE_ISA_DEVICE,
2640 .instance_size = sizeof(FDCtrlISABus),
2641 .class_init = isabus_fdc_class_init,
2642 .instance_init = isabus_fdc_instance_init,
2645 static const VMStateDescription vmstate_sysbus_fdc ={
2646 .name = "fdc",
2647 .version_id = 2,
2648 .minimum_version_id = 2,
2649 .fields = (VMStateField[]) {
2650 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2651 VMSTATE_END_OF_LIST()
2655 static Property sysbus_fdc_properties[] = {
2656 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2657 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2658 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.drives[0].drive,
2659 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2660 FloppyDriveType),
2661 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.drives[1].drive,
2662 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2663 FloppyDriveType),
2664 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2665 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2666 FloppyDriveType),
2667 DEFINE_PROP_END_OF_LIST(),
2670 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2672 DeviceClass *dc = DEVICE_CLASS(klass);
2674 dc->props = sysbus_fdc_properties;
2675 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2678 static const TypeInfo sysbus_fdc_info = {
2679 .name = "sysbus-fdc",
2680 .parent = TYPE_SYSBUS_FDC,
2681 .instance_init = sysbus_fdc_initfn,
2682 .class_init = sysbus_fdc_class_init,
2685 static Property sun4m_fdc_properties[] = {
2686 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2687 DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.drives[0].drive,
2688 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2689 FloppyDriveType),
2690 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2691 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2692 FloppyDriveType),
2693 DEFINE_PROP_END_OF_LIST(),
2696 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2698 DeviceClass *dc = DEVICE_CLASS(klass);
2700 dc->props = sun4m_fdc_properties;
2701 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2704 static const TypeInfo sun4m_fdc_info = {
2705 .name = "SUNW,fdtwo",
2706 .parent = TYPE_SYSBUS_FDC,
2707 .instance_init = sun4m_fdc_initfn,
2708 .class_init = sun4m_fdc_class_init,
2711 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2713 DeviceClass *dc = DEVICE_CLASS(klass);
2715 dc->realize = sysbus_fdc_common_realize;
2716 dc->reset = fdctrl_external_reset_sysbus;
2717 dc->vmsd = &vmstate_sysbus_fdc;
2720 static const TypeInfo sysbus_fdc_type_info = {
2721 .name = TYPE_SYSBUS_FDC,
2722 .parent = TYPE_SYS_BUS_DEVICE,
2723 .instance_size = sizeof(FDCtrlSysBus),
2724 .instance_init = sysbus_fdc_common_initfn,
2725 .abstract = true,
2726 .class_init = sysbus_fdc_common_class_init,
2729 static void fdc_register_types(void)
2731 type_register_static(&isa_fdc_info);
2732 type_register_static(&sysbus_fdc_type_info);
2733 type_register_static(&sysbus_fdc_info);
2734 type_register_static(&sun4m_fdc_info);
2737 type_init(fdc_register_types)