2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/timer.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/timer/mc146818rtc.h"
28 #include "qapi/visitor.h"
29 #include "qapi-event.h"
30 #include "qmp-commands.h"
33 #include "hw/i386/apic.h"
37 //#define DEBUG_COALESCED
40 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
42 # define CMOS_DPRINTF(format, ...) do { } while (0)
45 #ifdef DEBUG_COALESCED
46 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
48 # define DPRINTF_C(format, ...) do { } while (0)
51 #define SEC_PER_MIN 60
52 #define MIN_PER_HOUR 60
53 #define SEC_PER_HOUR 3600
54 #define HOUR_PER_DAY 24
55 #define SEC_PER_DAY 86400
57 #define RTC_REINJECT_ON_ACK_COUNT 20
58 #define RTC_CLOCK_RATE 32768
59 #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
61 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
63 typedef struct RTCState
{
67 uint8_t cmos_data
[128];
76 QEMUTimer
*periodic_timer
;
77 int64_t next_periodic_time
;
78 /* update-ended timer */
79 QEMUTimer
*update_timer
;
80 uint64_t next_alarm_time
;
81 uint16_t irq_reinject_on_ack_count
;
82 uint32_t irq_coalesced
;
84 QEMUTimer
*coalesced_timer
;
85 Notifier clock_reset_notifier
;
86 LostTickPolicy lost_tick_policy
;
87 Notifier suspend_notifier
;
88 QLIST_ENTRY(RTCState
) link
;
91 static void rtc_set_time(RTCState
*s
);
92 static void rtc_update_time(RTCState
*s
);
93 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
94 static inline int rtc_from_bcd(RTCState
*s
, int a
);
95 static uint64_t get_next_alarm(RTCState
*s
);
97 static inline bool rtc_running(RTCState
*s
)
99 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
100 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
103 static uint64_t get_guest_rtc_ns(RTCState
*s
)
106 uint64_t guest_clock
= qemu_clock_get_ns(rtc_clock
);
108 guest_rtc
= s
->base_rtc
* NSEC_PER_SEC
109 + guest_clock
- s
->last_update
+ s
->offset
;
114 static void rtc_coalesced_timer_update(RTCState
*s
)
116 if (s
->irq_coalesced
== 0) {
117 timer_del(s
->coalesced_timer
);
119 /* divide each RTC interval to 2 - 8 smaller intervals */
120 int c
= MIN(s
->irq_coalesced
, 7) + 1;
121 int64_t next_clock
= qemu_clock_get_ns(rtc_clock
) +
122 muldiv64(s
->period
/ c
, get_ticks_per_sec(), RTC_CLOCK_RATE
);
123 timer_mod(s
->coalesced_timer
, next_clock
);
127 static void rtc_coalesced_timer(void *opaque
)
129 RTCState
*s
= opaque
;
131 if (s
->irq_coalesced
!= 0) {
132 apic_reset_irq_delivered();
133 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
134 DPRINTF_C("cmos: injecting from timer\n");
135 qemu_irq_raise(s
->irq
);
136 if (apic_get_irq_delivered()) {
138 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
143 rtc_coalesced_timer_update(s
);
147 /* handle periodic timer */
148 static void periodic_timer_update(RTCState
*s
, int64_t current_time
)
150 int period_code
, period
;
151 int64_t cur_clock
, next_irq_clock
;
153 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
155 && (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
156 if (period_code
<= 2)
158 /* period in 32 Khz cycles */
159 period
= 1 << (period_code
- 1);
161 if (period
!= s
->period
) {
162 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
163 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
167 /* compute 32 khz clock */
168 cur_clock
= muldiv64(current_time
, RTC_CLOCK_RATE
, get_ticks_per_sec());
169 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
170 s
->next_periodic_time
=
171 muldiv64(next_irq_clock
, get_ticks_per_sec(), RTC_CLOCK_RATE
) + 1;
172 timer_mod(s
->periodic_timer
, s
->next_periodic_time
);
175 s
->irq_coalesced
= 0;
177 timer_del(s
->periodic_timer
);
181 static void rtc_periodic_timer(void *opaque
)
183 RTCState
*s
= opaque
;
185 periodic_timer_update(s
, s
->next_periodic_time
);
186 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
187 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
188 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
190 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
191 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
192 s
->irq_reinject_on_ack_count
= 0;
193 apic_reset_irq_delivered();
194 qemu_irq_raise(s
->irq
);
195 if (!apic_get_irq_delivered()) {
197 rtc_coalesced_timer_update(s
);
198 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
203 qemu_irq_raise(s
->irq
);
207 /* handle update-ended timer */
208 static void check_update_timer(RTCState
*s
)
210 uint64_t next_update_time
;
214 /* From the data sheet: "Holding the dividers in reset prevents
215 * interrupts from operating, while setting the SET bit allows"
216 * them to occur. However, it will prevent an alarm interrupt
217 * from occurring, because the time of day is not updated.
219 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
220 timer_del(s
->update_timer
);
223 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
224 (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
225 timer_del(s
->update_timer
);
228 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
229 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
230 timer_del(s
->update_timer
);
234 guest_nsec
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
235 /* if UF is clear, reprogram to next second */
236 next_update_time
= qemu_clock_get_ns(rtc_clock
)
237 + NSEC_PER_SEC
- guest_nsec
;
239 /* Compute time of next alarm. One second is already accounted
240 * for in next_update_time.
242 next_alarm_sec
= get_next_alarm(s
);
243 s
->next_alarm_time
= next_update_time
+ (next_alarm_sec
- 1) * NSEC_PER_SEC
;
245 if (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) {
246 /* UF is set, but AF is clear. Program the timer to target
248 next_update_time
= s
->next_alarm_time
;
250 if (next_update_time
!= timer_expire_time_ns(s
->update_timer
)) {
251 timer_mod(s
->update_timer
, next_update_time
);
255 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
257 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
259 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
266 static uint64_t get_next_alarm(RTCState
*s
)
268 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
269 int32_t hour
, min
, sec
;
273 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
274 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
275 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
276 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
278 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
279 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
280 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
281 cur_hour
= convert_hour(s
, cur_hour
);
283 if (alarm_hour
== -1) {
284 alarm_hour
= cur_hour
;
285 if (alarm_min
== -1) {
287 if (alarm_sec
== -1) {
288 alarm_sec
= cur_sec
+ 1;
289 } else if (cur_sec
> alarm_sec
) {
292 } else if (cur_min
== alarm_min
) {
293 if (alarm_sec
== -1) {
294 alarm_sec
= cur_sec
+ 1;
296 if (cur_sec
> alarm_sec
) {
300 if (alarm_sec
== SEC_PER_MIN
) {
301 /* wrap to next hour, minutes is not in don't care mode */
305 } else if (cur_min
> alarm_min
) {
308 } else if (cur_hour
== alarm_hour
) {
309 if (alarm_min
== -1) {
311 if (alarm_sec
== -1) {
312 alarm_sec
= cur_sec
+ 1;
313 } else if (cur_sec
> alarm_sec
) {
317 if (alarm_sec
== SEC_PER_MIN
) {
321 /* wrap to next day, hour is not in don't care mode */
322 alarm_min
%= MIN_PER_HOUR
;
323 } else if (cur_min
== alarm_min
) {
324 if (alarm_sec
== -1) {
325 alarm_sec
= cur_sec
+ 1;
327 /* wrap to next day, hours+minutes not in don't care mode */
328 alarm_sec
%= SEC_PER_MIN
;
332 /* values that are still don't care fire at the next min/sec */
333 if (alarm_min
== -1) {
336 if (alarm_sec
== -1) {
340 /* keep values in range */
341 if (alarm_sec
== SEC_PER_MIN
) {
345 if (alarm_min
== MIN_PER_HOUR
) {
349 alarm_hour
%= HOUR_PER_DAY
;
351 hour
= alarm_hour
- cur_hour
;
352 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
353 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
354 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
357 static void rtc_update_timer(void *opaque
)
359 RTCState
*s
= opaque
;
360 int32_t irqs
= REG_C_UF
;
363 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
365 /* UIP might have been latched, update time and clear it. */
367 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
369 if (qemu_clock_get_ns(rtc_clock
) >= s
->next_alarm_time
) {
371 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
372 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
);
376 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
377 s
->cmos_data
[RTC_REG_C
] |= irqs
;
378 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
379 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
380 qemu_irq_raise(s
->irq
);
382 check_update_timer(s
);
385 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
386 uint64_t data
, unsigned size
)
388 RTCState
*s
= opaque
;
390 if ((addr
& 1) == 0) {
391 s
->cmos_index
= data
& 0x7f;
393 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64
"\n",
394 s
->cmos_index
, data
);
395 switch(s
->cmos_index
) {
396 case RTC_SECONDS_ALARM
:
397 case RTC_MINUTES_ALARM
:
398 case RTC_HOURS_ALARM
:
399 s
->cmos_data
[s
->cmos_index
] = data
;
400 check_update_timer(s
);
402 case RTC_IBM_PS2_CENTURY_BYTE
:
403 s
->cmos_index
= RTC_CENTURY
;
409 case RTC_DAY_OF_WEEK
:
410 case RTC_DAY_OF_MONTH
:
413 s
->cmos_data
[s
->cmos_index
] = data
;
414 /* if in set mode, do not update the time */
415 if (rtc_running(s
)) {
417 check_update_timer(s
);
421 if ((data
& 0x60) == 0x60) {
422 if (rtc_running(s
)) {
425 /* What happens to UIP when divider reset is enabled is
426 * unclear from the datasheet. Shouldn't matter much
429 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
430 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
431 (data
& 0x70) <= 0x20) {
432 /* when the divider reset is removed, the first update cycle
433 * begins one-half second later*/
434 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
435 s
->offset
= 500000000;
438 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
440 /* UIP bit is read only */
441 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
442 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
443 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
444 check_update_timer(s
);
447 if (data
& REG_B_SET
) {
448 /* update cmos to when the rtc was stopping */
449 if (rtc_running(s
)) {
452 /* set mode: reset UIP mode */
453 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
456 /* if disabling set mode, update the time */
457 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
458 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
459 s
->offset
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
463 /* if an interrupt flag is already set when the interrupt
464 * becomes enabled, raise an interrupt immediately. */
465 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
466 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
467 qemu_irq_raise(s
->irq
);
469 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
470 qemu_irq_lower(s
->irq
);
472 s
->cmos_data
[RTC_REG_B
] = data
;
473 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
474 check_update_timer(s
);
478 /* cannot write to them */
481 s
->cmos_data
[s
->cmos_index
] = data
;
487 static inline int rtc_to_bcd(RTCState
*s
, int a
)
489 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
492 return ((a
/ 10) << 4) | (a
% 10);
496 static inline int rtc_from_bcd(RTCState
*s
, int a
)
498 if ((a
& 0xc0) == 0xc0) {
501 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
504 return ((a
>> 4) * 10) + (a
& 0x0f);
508 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
510 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
511 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
512 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
513 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
515 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
519 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
520 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
521 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
523 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
524 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
527 static QLIST_HEAD(, RTCState
) rtc_devices
=
528 QLIST_HEAD_INITIALIZER(rtc_devices
);
531 void qmp_rtc_reset_reinjection(Error
**errp
)
535 QLIST_FOREACH(s
, &rtc_devices
, link
) {
536 s
->irq_coalesced
= 0;
541 static void rtc_set_time(RTCState
*s
)
545 rtc_get_time(s
, &tm
);
546 s
->base_rtc
= mktimegm(&tm
);
547 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
549 qapi_event_send_rtc_change(qemu_timedate_diff(&tm
), &error_abort
);
552 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
556 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
557 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
558 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
560 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
563 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
564 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
565 if (tm
->tm_hour
>= 12)
566 s
->cmos_data
[RTC_HOURS
] |= 0x80;
568 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
569 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
570 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
571 year
= tm
->tm_year
+ 1900 - s
->base_year
;
572 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
573 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
576 static void rtc_update_time(RTCState
*s
)
582 guest_nsec
= get_guest_rtc_ns(s
);
583 guest_sec
= guest_nsec
/ NSEC_PER_SEC
;
584 gmtime_r(&guest_sec
, &ret
);
586 /* Is SET flag of Register B disabled? */
587 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
588 rtc_set_cmos(s
, &ret
);
592 static int update_in_progress(RTCState
*s
)
596 if (!rtc_running(s
)) {
599 if (timer_pending(s
->update_timer
)) {
600 int64_t next_update_time
= timer_expire_time_ns(s
->update_timer
);
601 /* Latch UIP until the timer expires. */
602 if (qemu_clock_get_ns(rtc_clock
) >=
603 (next_update_time
- UIP_HOLD_LENGTH
)) {
604 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
609 guest_nsec
= get_guest_rtc_ns(s
);
610 /* UIP bit will be set at last 244us of every second. */
611 if ((guest_nsec
% NSEC_PER_SEC
) >= (NSEC_PER_SEC
- UIP_HOLD_LENGTH
)) {
617 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
620 RTCState
*s
= opaque
;
622 if ((addr
& 1) == 0) {
625 switch(s
->cmos_index
) {
626 case RTC_IBM_PS2_CENTURY_BYTE
:
627 s
->cmos_index
= RTC_CENTURY
;
633 case RTC_DAY_OF_WEEK
:
634 case RTC_DAY_OF_MONTH
:
637 /* if not in set mode, calibrate cmos before
639 if (rtc_running(s
)) {
642 ret
= s
->cmos_data
[s
->cmos_index
];
645 if (update_in_progress(s
)) {
646 s
->cmos_data
[s
->cmos_index
] |= REG_A_UIP
;
648 s
->cmos_data
[s
->cmos_index
] &= ~REG_A_UIP
;
650 ret
= s
->cmos_data
[s
->cmos_index
];
653 ret
= s
->cmos_data
[s
->cmos_index
];
654 qemu_irq_lower(s
->irq
);
655 s
->cmos_data
[RTC_REG_C
] = 0x00;
656 if (ret
& (REG_C_UF
| REG_C_AF
)) {
657 check_update_timer(s
);
660 if(s
->irq_coalesced
&&
661 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
662 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
663 s
->irq_reinject_on_ack_count
++;
664 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
665 apic_reset_irq_delivered();
666 DPRINTF_C("cmos: injecting on ack\n");
667 qemu_irq_raise(s
->irq
);
668 if (apic_get_irq_delivered()) {
670 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
677 ret
= s
->cmos_data
[s
->cmos_index
];
680 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
686 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
688 RTCState
*s
= MC146818_RTC(dev
);
689 if (addr
>= 0 && addr
<= 127)
690 s
->cmos_data
[addr
] = val
;
693 int rtc_get_memory(ISADevice
*dev
, int addr
)
695 RTCState
*s
= MC146818_RTC(dev
);
696 assert(addr
>= 0 && addr
<= 127);
697 return s
->cmos_data
[addr
];
700 static void rtc_set_date_from_host(ISADevice
*dev
)
702 RTCState
*s
= MC146818_RTC(dev
);
705 qemu_get_timedate(&tm
, 0);
707 s
->base_rtc
= mktimegm(&tm
);
708 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
711 /* set the CMOS date */
712 rtc_set_cmos(s
, &tm
);
715 static int rtc_post_load(void *opaque
, int version_id
)
717 RTCState
*s
= opaque
;
719 if (version_id
<= 2) {
722 check_update_timer(s
);
725 uint64_t now
= qemu_clock_get_ns(rtc_clock
);
726 if (now
< s
->next_periodic_time
||
727 now
> (s
->next_periodic_time
+ get_max_clock_jump())) {
728 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
732 if (version_id
>= 2) {
733 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
734 rtc_coalesced_timer_update(s
);
741 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque
)
743 RTCState
*s
= (RTCState
*)opaque
;
744 return s
->irq_reinject_on_ack_count
!= 0;
747 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count
= {
748 .name
= "mc146818rtc/irq_reinject_on_ack_count",
750 .minimum_version_id
= 1,
751 .needed
= rtc_irq_reinject_on_ack_count_needed
,
752 .fields
= (VMStateField
[]) {
753 VMSTATE_UINT16(irq_reinject_on_ack_count
, RTCState
),
754 VMSTATE_END_OF_LIST()
758 static const VMStateDescription vmstate_rtc
= {
759 .name
= "mc146818rtc",
761 .minimum_version_id
= 1,
762 .post_load
= rtc_post_load
,
763 .fields
= (VMStateField
[]) {
764 VMSTATE_BUFFER(cmos_data
, RTCState
),
765 VMSTATE_UINT8(cmos_index
, RTCState
),
767 VMSTATE_TIMER_PTR(periodic_timer
, RTCState
),
768 VMSTATE_INT64(next_periodic_time
, RTCState
),
770 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
771 VMSTATE_UINT32_V(period
, RTCState
, 2),
772 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
773 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
774 VMSTATE_INT64_V(offset
, RTCState
, 3),
775 VMSTATE_TIMER_PTR_V(update_timer
, RTCState
, 3),
776 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
777 VMSTATE_END_OF_LIST()
779 .subsections
= (const VMStateDescription
*[]) {
780 &vmstate_rtc_irq_reinject_on_ack_count
,
785 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
787 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
788 int64_t now
= *(int64_t *)data
;
790 rtc_set_date_from_host(ISA_DEVICE(s
));
791 periodic_timer_update(s
, now
);
792 check_update_timer(s
);
794 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
795 rtc_coalesced_timer_update(s
);
800 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
801 BIOS will read it and start S3 resume at POST Entry */
802 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
804 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
805 rtc_set_memory(ISA_DEVICE(s
), 0xF, 0xFE);
808 static void rtc_reset(void *opaque
)
810 RTCState
*s
= opaque
;
812 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
813 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
814 check_update_timer(s
);
816 qemu_irq_lower(s
->irq
);
819 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
820 s
->irq_coalesced
= 0;
821 s
->irq_reinject_on_ack_count
= 0;
826 static const MemoryRegionOps cmos_ops
= {
827 .read
= cmos_ioport_read
,
828 .write
= cmos_ioport_write
,
830 .min_access_size
= 1,
831 .max_access_size
= 1,
833 .endianness
= DEVICE_LITTLE_ENDIAN
,
836 static void rtc_get_date(Object
*obj
, struct tm
*current_tm
, Error
**errp
)
838 RTCState
*s
= MC146818_RTC(obj
);
841 rtc_get_time(s
, current_tm
);
844 static void rtc_realizefn(DeviceState
*dev
, Error
**errp
)
846 ISADevice
*isadev
= ISA_DEVICE(dev
);
847 RTCState
*s
= MC146818_RTC(dev
);
850 s
->cmos_data
[RTC_REG_A
] = 0x26;
851 s
->cmos_data
[RTC_REG_B
] = 0x02;
852 s
->cmos_data
[RTC_REG_C
] = 0x00;
853 s
->cmos_data
[RTC_REG_D
] = 0x80;
855 /* This is for historical reasons. The default base year qdev property
856 * was set to 2000 for most machine types before the century byte was
859 * This if statement means that the century byte will be always 0
860 * (at least until 2079...) for base_year = 1980, but will be set
861 * correctly for base_year = 2000.
863 if (s
->base_year
== 2000) {
867 rtc_set_date_from_host(isadev
);
870 switch (s
->lost_tick_policy
) {
871 case LOST_TICK_POLICY_SLEW
:
873 timer_new_ns(rtc_clock
, rtc_coalesced_timer
, s
);
875 case LOST_TICK_POLICY_DISCARD
:
878 error_setg(errp
, "Invalid lost tick policy.");
883 s
->periodic_timer
= timer_new_ns(rtc_clock
, rtc_periodic_timer
, s
);
884 s
->update_timer
= timer_new_ns(rtc_clock
, rtc_update_timer
, s
);
885 check_update_timer(s
);
887 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
888 qemu_clock_register_reset_notifier(rtc_clock
,
889 &s
->clock_reset_notifier
);
891 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
892 qemu_register_suspend_notifier(&s
->suspend_notifier
);
894 memory_region_init_io(&s
->io
, OBJECT(s
), &cmos_ops
, s
, "rtc", 2);
895 isa_register_ioport(isadev
, &s
->io
, base
);
897 qdev_set_legacy_instance_id(dev
, base
, 3);
898 qemu_register_reset(rtc_reset
, s
);
900 object_property_add_tm(OBJECT(s
), "date", rtc_get_date
, NULL
);
902 object_property_add_alias(qdev_get_machine(), "rtc-time",
903 OBJECT(s
), "date", NULL
);
906 ISADevice
*rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
912 isadev
= isa_create(bus
, TYPE_MC146818_RTC
);
913 dev
= DEVICE(isadev
);
914 s
= MC146818_RTC(isadev
);
915 qdev_prop_set_int32(dev
, "base_year", base_year
);
916 qdev_init_nofail(dev
);
918 s
->irq
= intercept_irq
;
920 isa_init_irq(isadev
, &s
->irq
, RTC_ISA_IRQ
);
922 QLIST_INSERT_HEAD(&rtc_devices
, s
, link
);
927 static Property mc146818rtc_properties
[] = {
928 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
929 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
930 lost_tick_policy
, LOST_TICK_POLICY_DISCARD
),
931 DEFINE_PROP_END_OF_LIST(),
934 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
936 DeviceClass
*dc
= DEVICE_CLASS(klass
);
938 dc
->realize
= rtc_realizefn
;
939 dc
->vmsd
= &vmstate_rtc
;
940 dc
->props
= mc146818rtc_properties
;
941 /* Reason: needs to be wired up by rtc_init() */
942 dc
->cannot_instantiate_with_device_add_yet
= true;
945 static void rtc_finalize(Object
*obj
)
947 object_property_del(qdev_get_machine(), "rtc", NULL
);
950 static const TypeInfo mc146818rtc_info
= {
951 .name
= TYPE_MC146818_RTC
,
952 .parent
= TYPE_ISA_DEVICE
,
953 .instance_size
= sizeof(RTCState
),
954 .class_init
= rtc_class_initfn
,
955 .instance_finalize
= rtc_finalize
,
958 static void mc146818rtc_register_types(void)
960 type_register_static(&mc146818rtc_info
);
963 type_init(mc146818rtc_register_types
)