2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
18 #include "block/block_int.h"
19 #include "qemu/cutils.h"
21 /* The layout of a QED file is as follows:
23 * +--------+----------+----------+----------+-----+
24 * | header | L1 table | cluster0 | cluster1 | ... |
25 * +--------+----------+----------+----------+-----+
27 * There is a 2-level pagetable for cluster allocation:
33 * +----------+ | +----------+
34 * | L2 table | ... | L2 table |
35 * +----------+ +----------+
37 * +----------+ | +----------+
38 * | Data | ... | Data |
39 * +----------+ +----------+
41 * The L1 table is fixed size and always present. L2 tables are allocated on
42 * demand. The L1 table size determines the maximum possible image size; it
43 * can be influenced using the cluster_size and table_size values.
45 * All fields are little-endian on disk.
47 #define QED_DEFAULT_CLUSTER_SIZE 65536
49 QED_MAGIC
= 'Q' | 'E' << 8 | 'D' << 16 | '\0' << 24,
51 /* The image supports a backing file */
52 QED_F_BACKING_FILE
= 0x01,
54 /* The image needs a consistency check before use */
55 QED_F_NEED_CHECK
= 0x02,
57 /* The backing file format must not be probed, treat as raw image */
58 QED_F_BACKING_FORMAT_NO_PROBE
= 0x04,
60 /* Feature bits must be used when the on-disk format changes */
61 QED_FEATURE_MASK
= QED_F_BACKING_FILE
| /* supported feature bits */
63 QED_F_BACKING_FORMAT_NO_PROBE
,
64 QED_COMPAT_FEATURE_MASK
= 0, /* supported compat feature bits */
65 QED_AUTOCLEAR_FEATURE_MASK
= 0, /* supported autoclear feature bits */
67 /* Data is stored in groups of sectors called clusters. Cluster size must
68 * be large to avoid keeping too much metadata. I/O requests that have
69 * sub-cluster size will require read-modify-write.
71 QED_MIN_CLUSTER_SIZE
= 4 * 1024, /* in bytes */
72 QED_MAX_CLUSTER_SIZE
= 64 * 1024 * 1024,
74 /* Allocated clusters are tracked using a 2-level pagetable. Table size is
75 * a multiple of clusters so large maximum image sizes can be supported
76 * without jacking up the cluster size too much.
78 QED_MIN_TABLE_SIZE
= 1, /* in clusters */
79 QED_MAX_TABLE_SIZE
= 16,
80 QED_DEFAULT_TABLE_SIZE
= 4,
82 /* Delay to flush and clean image after last allocating write completes */
83 QED_NEED_CHECK_TIMEOUT
= 5, /* in seconds */
87 uint32_t magic
; /* QED\0 */
89 uint32_t cluster_size
; /* in bytes */
90 uint32_t table_size
; /* for L1 and L2 tables, in clusters */
91 uint32_t header_size
; /* in clusters */
93 uint64_t features
; /* format feature bits */
94 uint64_t compat_features
; /* compatible feature bits */
95 uint64_t autoclear_features
; /* self-resetting feature bits */
97 uint64_t l1_table_offset
; /* in bytes */
98 uint64_t image_size
; /* total logical image size, in bytes */
100 /* if (features & QED_F_BACKING_FILE) */
101 uint32_t backing_filename_offset
; /* in bytes from start of header */
102 uint32_t backing_filename_size
; /* in bytes */
103 } QEMU_PACKED QEDHeader
;
106 uint64_t offsets
[0]; /* in bytes */
109 /* The L2 cache is a simple write-through cache for L2 structures */
110 typedef struct CachedL2Table
{
112 uint64_t offset
; /* offset=0 indicates an invalidate entry */
113 QTAILQ_ENTRY(CachedL2Table
) node
;
118 QTAILQ_HEAD(, CachedL2Table
) entries
;
119 unsigned int n_entries
;
122 typedef struct QEDRequest
{
123 CachedL2Table
*l2_table
;
127 QED_AIOCB_WRITE
= 0x0001, /* read or write? */
128 QED_AIOCB_ZERO
= 0x0002, /* zero write, used with QED_AIOCB_WRITE */
131 typedef struct QEDAIOCB
{
133 int bh_ret
; /* final return status for completion bh */
134 QSIMPLEQ_ENTRY(QEDAIOCB
) next
; /* next request */
135 int flags
; /* QED_AIOCB_* bits ORed together */
136 uint64_t end_pos
; /* request end on block device, in bytes */
138 /* User scatter-gather list */
140 size_t qiov_offset
; /* byte count already processed */
142 /* Current cluster scatter-gather list */
143 QEMUIOVector cur_qiov
;
144 QEMUIOVector
*backing_qiov
;
145 uint64_t cur_pos
; /* position on block device, in bytes */
146 uint64_t cur_cluster
; /* cluster offset in image file */
147 unsigned int cur_nclusters
; /* number of clusters being accessed */
148 int find_cluster_ret
; /* used for L1/L2 update */
154 BlockDriverState
*bs
; /* device */
155 uint64_t file_size
; /* length of image file, in bytes */
157 QEDHeader header
; /* always cpu-endian */
159 L2TableCache l2_cache
; /* l2 table cache */
160 uint32_t table_nelems
;
165 /* Allocating write request queue */
166 QSIMPLEQ_HEAD(, QEDAIOCB
) allocating_write_reqs
;
167 bool allocating_write_reqs_plugged
;
169 /* Periodic flush and clear need check flag */
170 QEMUTimer
*need_check_timer
;
174 QED_CLUSTER_FOUND
, /* cluster found */
175 QED_CLUSTER_ZERO
, /* zero cluster found */
176 QED_CLUSTER_L2
, /* cluster missing in L2 */
177 QED_CLUSTER_L1
, /* cluster missing in L1 */
181 * qed_find_cluster() completion callback
183 * @opaque: User data for completion callback
184 * @ret: QED_CLUSTER_FOUND Success
185 * QED_CLUSTER_L2 Data cluster unallocated in L2
186 * QED_CLUSTER_L1 L2 unallocated in L1
187 * -errno POSIX error occurred
188 * @offset: Data cluster offset
189 * @len: Contiguous bytes starting from cluster offset
191 * This function is invoked when qed_find_cluster() completes.
193 * On success ret is QED_CLUSTER_FOUND and offset/len are a contiguous range
196 * On failure ret is QED_CLUSTER_L2 or QED_CLUSTER_L1 for missing L2 or L1
197 * table offset, respectively. len is number of contiguous unallocated bytes.
199 typedef void QEDFindClusterFunc(void *opaque
, int ret
, uint64_t offset
, size_t len
);
202 * Generic callback for chaining async callbacks
205 BlockCompletionFunc
*cb
;
209 void *gencb_alloc(size_t len
, BlockCompletionFunc
*cb
, void *opaque
);
210 void gencb_complete(void *opaque
, int ret
);
215 int qed_write_header_sync(BDRVQEDState
*s
);
220 void qed_init_l2_cache(L2TableCache
*l2_cache
);
221 void qed_free_l2_cache(L2TableCache
*l2_cache
);
222 CachedL2Table
*qed_alloc_l2_cache_entry(L2TableCache
*l2_cache
);
223 void qed_unref_l2_cache_entry(CachedL2Table
*entry
);
224 CachedL2Table
*qed_find_l2_cache_entry(L2TableCache
*l2_cache
, uint64_t offset
);
225 void qed_commit_l2_cache_entry(L2TableCache
*l2_cache
, CachedL2Table
*l2_table
);
228 * Table I/O functions
230 int qed_read_l1_table_sync(BDRVQEDState
*s
);
231 void qed_write_l1_table(BDRVQEDState
*s
, unsigned int index
, unsigned int n
,
232 BlockCompletionFunc
*cb
, void *opaque
);
233 int qed_write_l1_table_sync(BDRVQEDState
*s
, unsigned int index
,
235 int qed_read_l2_table_sync(BDRVQEDState
*s
, QEDRequest
*request
,
237 void qed_read_l2_table(BDRVQEDState
*s
, QEDRequest
*request
, uint64_t offset
,
238 BlockCompletionFunc
*cb
, void *opaque
);
239 void qed_write_l2_table(BDRVQEDState
*s
, QEDRequest
*request
,
240 unsigned int index
, unsigned int n
, bool flush
,
241 BlockCompletionFunc
*cb
, void *opaque
);
242 int qed_write_l2_table_sync(BDRVQEDState
*s
, QEDRequest
*request
,
243 unsigned int index
, unsigned int n
, bool flush
);
248 void qed_find_cluster(BDRVQEDState
*s
, QEDRequest
*request
, uint64_t pos
,
249 size_t len
, QEDFindClusterFunc
*cb
, void *opaque
);
254 int qed_check(BDRVQEDState
*s
, BdrvCheckResult
*result
, bool fix
);
256 QEDTable
*qed_alloc_table(BDRVQEDState
*s
);
259 * Round down to the start of a cluster
261 static inline uint64_t qed_start_of_cluster(BDRVQEDState
*s
, uint64_t offset
)
263 return offset
& ~(uint64_t)(s
->header
.cluster_size
- 1);
266 static inline uint64_t qed_offset_into_cluster(BDRVQEDState
*s
, uint64_t offset
)
268 return offset
& (s
->header
.cluster_size
- 1);
271 static inline uint64_t qed_bytes_to_clusters(BDRVQEDState
*s
, uint64_t bytes
)
273 return qed_start_of_cluster(s
, bytes
+ (s
->header
.cluster_size
- 1)) /
274 (s
->header
.cluster_size
- 1);
277 static inline unsigned int qed_l1_index(BDRVQEDState
*s
, uint64_t pos
)
279 return pos
>> s
->l1_shift
;
282 static inline unsigned int qed_l2_index(BDRVQEDState
*s
, uint64_t pos
)
284 return (pos
>> s
->l2_shift
) & s
->l2_mask
;
288 * Test if a cluster offset is valid
290 static inline bool qed_check_cluster_offset(BDRVQEDState
*s
, uint64_t offset
)
292 uint64_t header_size
= (uint64_t)s
->header
.header_size
*
293 s
->header
.cluster_size
;
295 if (offset
& (s
->header
.cluster_size
- 1)) {
298 return offset
>= header_size
&& offset
< s
->file_size
;
302 * Test if a table offset is valid
304 static inline bool qed_check_table_offset(BDRVQEDState
*s
, uint64_t offset
)
306 uint64_t end_offset
= offset
+ (s
->header
.table_size
- 1) *
307 s
->header
.cluster_size
;
310 if (end_offset
<= offset
) {
314 return qed_check_cluster_offset(s
, offset
) &&
315 qed_check_cluster_offset(s
, end_offset
);
318 static inline bool qed_offset_is_cluster_aligned(BDRVQEDState
*s
,
321 if (qed_offset_into_cluster(s
, offset
)) {
327 static inline bool qed_offset_is_unalloc_cluster(uint64_t offset
)
335 static inline bool qed_offset_is_zero_cluster(uint64_t offset
)
343 #endif /* BLOCK_QED_H */