hw/riscv: sifive_u: Sort the SoC memmap table entries
[qemu/ar7.git] / exec.c
blobd6712fba7eb08b6800fb1abc68d5b0fbde1e010d
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg/tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/timer.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/qemu-print.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include "qemu.h"
45 #else /* !CONFIG_USER_ONLY */
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
59 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 #include "exec/log.h"
69 #include "qemu/pmem.h"
71 #include "migration/vmstate.h"
73 #include "qemu/range.h"
74 #ifndef _WIN32
75 #include "qemu/mmap-alloc.h"
76 #endif
78 #include "monitor/monitor.h"
80 //#define DEBUG_SUBPAGE
82 #if !defined(CONFIG_USER_ONLY)
83 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
86 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
88 static MemoryRegion *system_memory;
89 static MemoryRegion *system_io;
91 AddressSpace address_space_io;
92 AddressSpace address_space_memory;
94 static MemoryRegion io_mem_unassigned;
95 #endif
97 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
99 /* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
101 __thread CPUState *current_cpu;
103 uintptr_t qemu_host_page_size;
104 intptr_t qemu_host_page_mask;
106 #if !defined(CONFIG_USER_ONLY)
107 /* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110 int use_icount;
112 typedef struct PhysPageEntry PhysPageEntry;
114 struct PhysPageEntry {
115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
116 uint32_t skip : 6;
117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
118 uint32_t ptr : 26;
121 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
123 /* Size of the L2 (and L3, etc) page tables. */
124 #define ADDR_SPACE_BITS 64
126 #define P_L2_BITS 9
127 #define P_L2_SIZE (1 << P_L2_BITS)
129 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
131 typedef PhysPageEntry Node[P_L2_SIZE];
133 typedef struct PhysPageMap {
134 struct rcu_head rcu;
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142 } PhysPageMap;
144 struct AddressSpaceDispatch {
145 MemoryRegionSection *mru_section;
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
149 PhysPageEntry phys_map;
150 PhysPageMap map;
153 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154 typedef struct subpage_t {
155 MemoryRegion iomem;
156 FlatView *fv;
157 hwaddr base;
158 uint16_t sub_section[];
159 } subpage_t;
161 #define PHYS_SECTION_UNASSIGNED 0
163 static void io_mem_init(void);
164 static void memory_map_init(void);
165 static void tcg_log_global_after_sync(MemoryListener *listener);
166 static void tcg_commit(MemoryListener *listener);
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
175 struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
182 struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
188 #endif
190 #if !defined(CONFIG_USER_ONLY)
192 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
194 static unsigned alloc_hint = 16;
195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
198 alloc_hint = map->nodes_nb_alloc;
202 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
204 unsigned i;
205 uint32_t ret;
206 PhysPageEntry e;
207 PhysPageEntry *p;
209 ret = map->nodes_nb++;
210 p = map->nodes[ret];
211 assert(ret != PHYS_MAP_NODE_NIL);
212 assert(ret != map->nodes_nb_alloc);
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
216 for (i = 0; i < P_L2_SIZE; ++i) {
217 memcpy(&p[i], &e, sizeof(e));
219 return ret;
222 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
223 hwaddr *index, uint64_t *nb, uint16_t leaf,
224 int level)
226 PhysPageEntry *p;
227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
230 lp->ptr = phys_map_node_alloc(map, level == 0);
232 p = map->nodes[lp->ptr];
233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
235 while (*nb && lp < &p[P_L2_SIZE]) {
236 if ((*index & (step - 1)) == 0 && *nb >= step) {
237 lp->skip = 0;
238 lp->ptr = leaf;
239 *index += step;
240 *nb -= step;
241 } else {
242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
244 ++lp;
248 static void phys_page_set(AddressSpaceDispatch *d,
249 hwaddr index, uint64_t nb,
250 uint16_t leaf)
252 /* Wildly overreserve - it doesn't matter much. */
253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
258 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
261 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
281 phys_page_compact(&p[i], nodes);
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
290 assert(valid_ptr < P_L2_SIZE);
292 /* Don't compress if it won't fit in the # of bits we have. */
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
295 return;
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
312 void address_space_dispatch_compact(AddressSpaceDispatch *d)
314 if (d->phys_map.skip) {
315 phys_page_compact(&d->phys_map, d->map.nodes);
319 static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
325 return int128_gethi(section->size) ||
326 range_covers_byte(section->offset_within_address_space,
327 int128_getlo(section->size), addr);
330 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
335 hwaddr index = addr >> TARGET_PAGE_BITS;
336 int i;
338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
340 return &sections[PHYS_SECTION_UNASSIGNED];
342 p = nodes[lp.ptr];
343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
346 if (section_covers_addr(&sections[lp.ptr], addr)) {
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
353 /* Called from RCU critical section */
354 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
355 hwaddr addr,
356 bool resolve_subpage)
358 MemoryRegionSection *section = atomic_read(&d->mru_section);
359 subpage_t *subpage;
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
363 section = phys_page_find(d, addr);
364 atomic_set(&d->mru_section, section);
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
370 return section;
373 /* Called from RCU critical section */
374 static MemoryRegionSection *
375 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
376 hwaddr *plen, bool resolve_subpage)
378 MemoryRegionSection *section;
379 MemoryRegion *mr;
380 Int128 diff;
382 section = address_space_lookup_region(d, addr, resolve_subpage);
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
389 mr = section->mr;
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
402 if (memory_region_is_ram(mr)) {
403 diff = int128_sub(section->size, int128_make64(addr));
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
406 return section;
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
426 * @attrs: transaction attributes
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
431 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
476 return *section;
478 unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
483 * flatview_do_translate - translate an address in FlatView
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
497 * @target_as: the address space targeted by the IOMMU
498 * @attrs: memory transaction attributes
500 * This function is called from RCU critical section
502 static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
507 bool is_write,
508 bool is_mmio,
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
512 MemoryRegionSection *section;
513 IOMMUMemoryRegion *iommu_mr;
514 hwaddr plen = (hwaddr)(-1);
516 if (!plen_out) {
517 plen_out = &plen;
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
529 target_as, attrs);
531 if (page_mask_out) {
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
536 return *section;
539 /* Called from RCU critical section */
540 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
541 bool is_write, MemTxAttrs attrs)
543 MemoryRegionSection section;
544 hwaddr xlat, page_mask;
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
563 return (IOMMUTLBEntry) {
564 .target_as = as,
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
572 iotlb_fail:
573 return (IOMMUTLBEntry) {0};
576 /* Called from RCU critical section */
577 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
581 MemoryRegion *mr;
582 MemoryRegionSection section;
583 AddressSpace *as = NULL;
585 /* This can be MMIO, so setup MMIO bit. */
586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
587 is_write, true, &as, attrs);
588 mr = section.mr;
590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
592 *plen = MIN(page, *plen);
595 return mr;
598 typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604 } TCGIOMMUNotifier;
606 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
610 if (!notifier->active) {
611 return;
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
622 static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
632 Error *err = NULL;
633 int i, ret;
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
660 HWADDR_MAX,
661 iommu_idx);
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
670 if (!notifier->active) {
671 notifier->active = true;
675 static void tcg_iommu_free_notifier_list(CPUState *cpu)
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
684 g_free(notifier);
686 g_array_free(cpu->iommu_notifiers, true);
689 /* Called from RCU critical section */
690 MemoryRegionSection *
691 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
695 MemoryRegionSection *section;
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
731 if (!*prot) {
732 goto translate_fail;
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
738 assert(!memory_region_is_iommu(section->mr));
739 *xlat = addr;
740 return section;
742 translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
745 #endif
747 #if !defined(CONFIG_USER_ONLY)
749 static int cpu_common_post_load(void *opaque, int version_id)
751 CPUState *cpu = opaque;
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
755 cpu->interrupt_request &= ~0x01;
756 tlb_flush(cpu);
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
763 tb_flush(cpu);
765 return 0;
768 static int cpu_common_pre_load(void *opaque)
770 CPUState *cpu = opaque;
772 cpu->exception_index = -1;
774 return 0;
777 static bool cpu_common_exception_index_needed(void *opaque)
779 CPUState *cpu = opaque;
781 return tcg_enabled() && cpu->exception_index != -1;
784 static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
788 .needed = cpu_common_exception_index_needed,
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
795 static bool cpu_common_crash_occurred_needed(void *opaque)
797 CPUState *cpu = opaque;
799 return cpu->crash_occurred;
802 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
813 const VMStateDescription vmstate_cpu_common = {
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
817 .pre_load = cpu_common_pre_load,
818 .post_load = cpu_common_post_load,
819 .fields = (VMStateField[]) {
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
822 VMSTATE_END_OF_LIST()
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
826 &vmstate_cpu_common_crash_occurred,
827 NULL
831 #endif
833 CPUState *qemu_get_cpu(int index)
835 CPUState *cpu;
837 CPU_FOREACH(cpu) {
838 if (cpu->cpu_index == index) {
839 return cpu;
843 return NULL;
846 #if !defined(CONFIG_USER_ONLY)
847 void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
850 CPUAddressSpace *newas;
851 AddressSpace *as = g_new0(AddressSpace, 1);
852 char *as_name;
854 assert(mr);
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
877 if (tcg_enabled()) {
878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
884 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
889 #endif
891 void cpu_exec_unrealizefn(CPUState *cpu)
893 CPUClass *cc = CPU_GET_CLASS(cpu);
895 tlb_destroy(cpu);
896 cpu_list_remove(cpu);
898 if (cc->vmsd != NULL) {
899 vmstate_unregister(NULL, cc->vmsd, cpu);
901 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
902 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
904 #ifndef CONFIG_USER_ONLY
905 tcg_iommu_free_notifier_list(cpu);
906 #endif
909 Property cpu_common_props[] = {
910 #ifndef CONFIG_USER_ONLY
911 /* Create a memory property for softmmu CPU object,
912 * so users can wire up its memory. (This can't go in hw/core/cpu.c
913 * because that file is compiled only once for both user-mode
914 * and system builds.) The default if no link is set up is to use
915 * the system address space.
917 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
918 MemoryRegion *),
919 #endif
920 DEFINE_PROP_END_OF_LIST(),
923 void cpu_exec_initfn(CPUState *cpu)
925 cpu->as = NULL;
926 cpu->num_ases = 0;
928 #ifndef CONFIG_USER_ONLY
929 cpu->thread_id = qemu_get_thread_id();
930 cpu->memory = system_memory;
931 object_ref(OBJECT(cpu->memory));
932 #endif
935 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
937 CPUClass *cc = CPU_GET_CLASS(cpu);
938 static bool tcg_target_initialized;
940 cpu_list_add(cpu);
942 if (tcg_enabled() && !tcg_target_initialized) {
943 tcg_target_initialized = true;
944 cc->tcg_initialize();
946 tlb_init(cpu);
948 qemu_plugin_vcpu_init_hook(cpu);
950 #ifdef CONFIG_USER_ONLY
951 assert(cc->vmsd == NULL);
952 #else /* !CONFIG_USER_ONLY */
953 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
954 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
956 if (cc->vmsd != NULL) {
957 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
960 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
961 #endif
964 const char *parse_cpu_option(const char *cpu_option)
966 ObjectClass *oc;
967 CPUClass *cc;
968 gchar **model_pieces;
969 const char *cpu_type;
971 model_pieces = g_strsplit(cpu_option, ",", 2);
972 if (!model_pieces[0]) {
973 error_report("-cpu option cannot be empty");
974 exit(1);
977 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
978 if (oc == NULL) {
979 error_report("unable to find CPU model '%s'", model_pieces[0]);
980 g_strfreev(model_pieces);
981 exit(EXIT_FAILURE);
984 cpu_type = object_class_get_name(oc);
985 cc = CPU_CLASS(oc);
986 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
987 g_strfreev(model_pieces);
988 return cpu_type;
991 #if defined(CONFIG_USER_ONLY)
992 void tb_invalidate_phys_addr(target_ulong addr)
994 mmap_lock();
995 tb_invalidate_phys_page_range(addr, addr + 1);
996 mmap_unlock();
999 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1001 tb_invalidate_phys_addr(pc);
1003 #else
1004 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1006 ram_addr_t ram_addr;
1007 MemoryRegion *mr;
1008 hwaddr l = 1;
1010 if (!tcg_enabled()) {
1011 return;
1014 RCU_READ_LOCK_GUARD();
1015 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1016 if (!(memory_region_is_ram(mr)
1017 || memory_region_is_romd(mr))) {
1018 return;
1020 ram_addr = memory_region_get_ram_addr(mr) + addr;
1021 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1024 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1027 * There may not be a virtual to physical translation for the pc
1028 * right now, but there may exist cached TB for this pc.
1029 * Flush the whole TB cache to force re-translation of such TBs.
1030 * This is heavyweight, but we're debugging anyway.
1032 tb_flush(cpu);
1034 #endif
1036 #ifndef CONFIG_USER_ONLY
1037 /* Add a watchpoint. */
1038 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1039 int flags, CPUWatchpoint **watchpoint)
1041 CPUWatchpoint *wp;
1042 vaddr in_page;
1044 /* forbid ranges which are empty or run off the end of the address space */
1045 if (len == 0 || (addr + len - 1) < addr) {
1046 error_report("tried to set invalid watchpoint at %"
1047 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1048 return -EINVAL;
1050 wp = g_malloc(sizeof(*wp));
1052 wp->vaddr = addr;
1053 wp->len = len;
1054 wp->flags = flags;
1056 /* keep all GDB-injected watchpoints in front */
1057 if (flags & BP_GDB) {
1058 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1059 } else {
1060 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1063 in_page = -(addr | TARGET_PAGE_MASK);
1064 if (len <= in_page) {
1065 tlb_flush_page(cpu, addr);
1066 } else {
1067 tlb_flush(cpu);
1070 if (watchpoint)
1071 *watchpoint = wp;
1072 return 0;
1075 /* Remove a specific watchpoint. */
1076 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1077 int flags)
1079 CPUWatchpoint *wp;
1081 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1082 if (addr == wp->vaddr && len == wp->len
1083 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1084 cpu_watchpoint_remove_by_ref(cpu, wp);
1085 return 0;
1088 return -ENOENT;
1091 /* Remove a specific watchpoint by reference. */
1092 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1094 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1096 tlb_flush_page(cpu, watchpoint->vaddr);
1098 g_free(watchpoint);
1101 /* Remove all matching watchpoints. */
1102 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1104 CPUWatchpoint *wp, *next;
1106 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1107 if (wp->flags & mask) {
1108 cpu_watchpoint_remove_by_ref(cpu, wp);
1113 /* Return true if this watchpoint address matches the specified
1114 * access (ie the address range covered by the watchpoint overlaps
1115 * partially or completely with the address range covered by the
1116 * access).
1118 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1119 vaddr addr, vaddr len)
1121 /* We know the lengths are non-zero, but a little caution is
1122 * required to avoid errors in the case where the range ends
1123 * exactly at the top of the address space and so addr + len
1124 * wraps round to zero.
1126 vaddr wpend = wp->vaddr + wp->len - 1;
1127 vaddr addrend = addr + len - 1;
1129 return !(addr > wpend || wp->vaddr > addrend);
1132 /* Return flags for watchpoints that match addr + prot. */
1133 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1135 CPUWatchpoint *wp;
1136 int ret = 0;
1138 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1139 if (watchpoint_address_matches(wp, addr, len)) {
1140 ret |= wp->flags;
1143 return ret;
1145 #endif /* !CONFIG_USER_ONLY */
1147 /* Add a breakpoint. */
1148 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1149 CPUBreakpoint **breakpoint)
1151 CPUBreakpoint *bp;
1153 bp = g_malloc(sizeof(*bp));
1155 bp->pc = pc;
1156 bp->flags = flags;
1158 /* keep all GDB-injected breakpoints in front */
1159 if (flags & BP_GDB) {
1160 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1161 } else {
1162 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1165 breakpoint_invalidate(cpu, pc);
1167 if (breakpoint) {
1168 *breakpoint = bp;
1170 return 0;
1173 /* Remove a specific breakpoint. */
1174 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1176 CPUBreakpoint *bp;
1178 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1179 if (bp->pc == pc && bp->flags == flags) {
1180 cpu_breakpoint_remove_by_ref(cpu, bp);
1181 return 0;
1184 return -ENOENT;
1187 /* Remove a specific breakpoint by reference. */
1188 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1190 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1192 breakpoint_invalidate(cpu, breakpoint->pc);
1194 g_free(breakpoint);
1197 /* Remove all matching breakpoints. */
1198 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1200 CPUBreakpoint *bp, *next;
1202 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1203 if (bp->flags & mask) {
1204 cpu_breakpoint_remove_by_ref(cpu, bp);
1209 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1210 CPU loop after each instruction */
1211 void cpu_single_step(CPUState *cpu, int enabled)
1213 if (cpu->singlestep_enabled != enabled) {
1214 cpu->singlestep_enabled = enabled;
1215 if (kvm_enabled()) {
1216 kvm_update_guest_debug(cpu, 0);
1217 } else {
1218 /* must flush all the translated code to avoid inconsistencies */
1219 /* XXX: only flush what is necessary */
1220 tb_flush(cpu);
1225 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1227 va_list ap;
1228 va_list ap2;
1230 va_start(ap, fmt);
1231 va_copy(ap2, ap);
1232 fprintf(stderr, "qemu: fatal: ");
1233 vfprintf(stderr, fmt, ap);
1234 fprintf(stderr, "\n");
1235 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1236 if (qemu_log_separate()) {
1237 FILE *logfile = qemu_log_lock();
1238 qemu_log("qemu: fatal: ");
1239 qemu_log_vprintf(fmt, ap2);
1240 qemu_log("\n");
1241 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1242 qemu_log_flush();
1243 qemu_log_unlock(logfile);
1244 qemu_log_close();
1246 va_end(ap2);
1247 va_end(ap);
1248 replay_finish();
1249 #if defined(CONFIG_USER_ONLY)
1251 struct sigaction act;
1252 sigfillset(&act.sa_mask);
1253 act.sa_handler = SIG_DFL;
1254 act.sa_flags = 0;
1255 sigaction(SIGABRT, &act, NULL);
1257 #endif
1258 abort();
1261 #if !defined(CONFIG_USER_ONLY)
1262 /* Called from RCU critical section */
1263 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1265 RAMBlock *block;
1267 block = atomic_rcu_read(&ram_list.mru_block);
1268 if (block && addr - block->offset < block->max_length) {
1269 return block;
1271 RAMBLOCK_FOREACH(block) {
1272 if (addr - block->offset < block->max_length) {
1273 goto found;
1277 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1278 abort();
1280 found:
1281 /* It is safe to write mru_block outside the iothread lock. This
1282 * is what happens:
1284 * mru_block = xxx
1285 * rcu_read_unlock()
1286 * xxx removed from list
1287 * rcu_read_lock()
1288 * read mru_block
1289 * mru_block = NULL;
1290 * call_rcu(reclaim_ramblock, xxx);
1291 * rcu_read_unlock()
1293 * atomic_rcu_set is not needed here. The block was already published
1294 * when it was placed into the list. Here we're just making an extra
1295 * copy of the pointer.
1297 ram_list.mru_block = block;
1298 return block;
1301 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1303 CPUState *cpu;
1304 ram_addr_t start1;
1305 RAMBlock *block;
1306 ram_addr_t end;
1308 assert(tcg_enabled());
1309 end = TARGET_PAGE_ALIGN(start + length);
1310 start &= TARGET_PAGE_MASK;
1312 RCU_READ_LOCK_GUARD();
1313 block = qemu_get_ram_block(start);
1314 assert(block == qemu_get_ram_block(end - 1));
1315 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1316 CPU_FOREACH(cpu) {
1317 tlb_reset_dirty(cpu, start1, length);
1321 /* Note: start and end must be within the same ram block. */
1322 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1323 ram_addr_t length,
1324 unsigned client)
1326 DirtyMemoryBlocks *blocks;
1327 unsigned long end, page, start_page;
1328 bool dirty = false;
1329 RAMBlock *ramblock;
1330 uint64_t mr_offset, mr_size;
1332 if (length == 0) {
1333 return false;
1336 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1337 start_page = start >> TARGET_PAGE_BITS;
1338 page = start_page;
1340 WITH_RCU_READ_LOCK_GUARD() {
1341 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1342 ramblock = qemu_get_ram_block(start);
1343 /* Range sanity check on the ramblock */
1344 assert(start >= ramblock->offset &&
1345 start + length <= ramblock->offset + ramblock->used_length);
1347 while (page < end) {
1348 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1349 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1350 unsigned long num = MIN(end - page,
1351 DIRTY_MEMORY_BLOCK_SIZE - offset);
1353 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1354 offset, num);
1355 page += num;
1358 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1359 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1360 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1363 if (dirty && tcg_enabled()) {
1364 tlb_reset_dirty_range_all(start, length);
1367 return dirty;
1370 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1371 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1373 DirtyMemoryBlocks *blocks;
1374 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1375 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1376 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1377 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1378 DirtyBitmapSnapshot *snap;
1379 unsigned long page, end, dest;
1381 snap = g_malloc0(sizeof(*snap) +
1382 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1383 snap->start = first;
1384 snap->end = last;
1386 page = first >> TARGET_PAGE_BITS;
1387 end = last >> TARGET_PAGE_BITS;
1388 dest = 0;
1390 WITH_RCU_READ_LOCK_GUARD() {
1391 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1393 while (page < end) {
1394 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1395 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1396 unsigned long num = MIN(end - page,
1397 DIRTY_MEMORY_BLOCK_SIZE - offset);
1399 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1400 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1401 offset >>= BITS_PER_LEVEL;
1403 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1404 blocks->blocks[idx] + offset,
1405 num);
1406 page += num;
1407 dest += num >> BITS_PER_LEVEL;
1411 if (tcg_enabled()) {
1412 tlb_reset_dirty_range_all(start, length);
1415 memory_region_clear_dirty_bitmap(mr, offset, length);
1417 return snap;
1420 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1421 ram_addr_t start,
1422 ram_addr_t length)
1424 unsigned long page, end;
1426 assert(start >= snap->start);
1427 assert(start + length <= snap->end);
1429 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1430 page = (start - snap->start) >> TARGET_PAGE_BITS;
1432 while (page < end) {
1433 if (test_bit(page, snap->dirty)) {
1434 return true;
1436 page++;
1438 return false;
1441 /* Called from RCU critical section */
1442 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1443 MemoryRegionSection *section)
1445 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1446 return section - d->map.sections;
1448 #endif /* defined(CONFIG_USER_ONLY) */
1450 #if !defined(CONFIG_USER_ONLY)
1452 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1453 uint16_t section);
1454 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1456 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1457 qemu_anon_ram_alloc;
1460 * Set a custom physical guest memory alloator.
1461 * Accelerators with unusual needs may need this. Hopefully, we can
1462 * get rid of it eventually.
1464 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1466 phys_mem_alloc = alloc;
1469 static uint16_t phys_section_add(PhysPageMap *map,
1470 MemoryRegionSection *section)
1472 /* The physical section number is ORed with a page-aligned
1473 * pointer to produce the iotlb entries. Thus it should
1474 * never overflow into the page-aligned value.
1476 assert(map->sections_nb < TARGET_PAGE_SIZE);
1478 if (map->sections_nb == map->sections_nb_alloc) {
1479 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1480 map->sections = g_renew(MemoryRegionSection, map->sections,
1481 map->sections_nb_alloc);
1483 map->sections[map->sections_nb] = *section;
1484 memory_region_ref(section->mr);
1485 return map->sections_nb++;
1488 static void phys_section_destroy(MemoryRegion *mr)
1490 bool have_sub_page = mr->subpage;
1492 memory_region_unref(mr);
1494 if (have_sub_page) {
1495 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1496 object_unref(OBJECT(&subpage->iomem));
1497 g_free(subpage);
1501 static void phys_sections_free(PhysPageMap *map)
1503 while (map->sections_nb > 0) {
1504 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1505 phys_section_destroy(section->mr);
1507 g_free(map->sections);
1508 g_free(map->nodes);
1511 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1513 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1514 subpage_t *subpage;
1515 hwaddr base = section->offset_within_address_space
1516 & TARGET_PAGE_MASK;
1517 MemoryRegionSection *existing = phys_page_find(d, base);
1518 MemoryRegionSection subsection = {
1519 .offset_within_address_space = base,
1520 .size = int128_make64(TARGET_PAGE_SIZE),
1522 hwaddr start, end;
1524 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1526 if (!(existing->mr->subpage)) {
1527 subpage = subpage_init(fv, base);
1528 subsection.fv = fv;
1529 subsection.mr = &subpage->iomem;
1530 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1531 phys_section_add(&d->map, &subsection));
1532 } else {
1533 subpage = container_of(existing->mr, subpage_t, iomem);
1535 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1536 end = start + int128_get64(section->size) - 1;
1537 subpage_register(subpage, start, end,
1538 phys_section_add(&d->map, section));
1542 static void register_multipage(FlatView *fv,
1543 MemoryRegionSection *section)
1545 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1546 hwaddr start_addr = section->offset_within_address_space;
1547 uint16_t section_index = phys_section_add(&d->map, section);
1548 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1549 TARGET_PAGE_BITS));
1551 assert(num_pages);
1552 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1556 * The range in *section* may look like this:
1558 * |s|PPPPPPP|s|
1560 * where s stands for subpage and P for page.
1562 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1564 MemoryRegionSection remain = *section;
1565 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1567 /* register first subpage */
1568 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1569 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1570 - remain.offset_within_address_space;
1572 MemoryRegionSection now = remain;
1573 now.size = int128_min(int128_make64(left), now.size);
1574 register_subpage(fv, &now);
1575 if (int128_eq(remain.size, now.size)) {
1576 return;
1578 remain.size = int128_sub(remain.size, now.size);
1579 remain.offset_within_address_space += int128_get64(now.size);
1580 remain.offset_within_region += int128_get64(now.size);
1583 /* register whole pages */
1584 if (int128_ge(remain.size, page_size)) {
1585 MemoryRegionSection now = remain;
1586 now.size = int128_and(now.size, int128_neg(page_size));
1587 register_multipage(fv, &now);
1588 if (int128_eq(remain.size, now.size)) {
1589 return;
1591 remain.size = int128_sub(remain.size, now.size);
1592 remain.offset_within_address_space += int128_get64(now.size);
1593 remain.offset_within_region += int128_get64(now.size);
1596 /* register last subpage */
1597 register_subpage(fv, &remain);
1600 void qemu_flush_coalesced_mmio_buffer(void)
1602 if (kvm_enabled())
1603 kvm_flush_coalesced_mmio_buffer();
1606 void qemu_mutex_lock_ramlist(void)
1608 qemu_mutex_lock(&ram_list.mutex);
1611 void qemu_mutex_unlock_ramlist(void)
1613 qemu_mutex_unlock(&ram_list.mutex);
1616 void ram_block_dump(Monitor *mon)
1618 RAMBlock *block;
1619 char *psize;
1621 RCU_READ_LOCK_GUARD();
1622 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1623 "Block Name", "PSize", "Offset", "Used", "Total");
1624 RAMBLOCK_FOREACH(block) {
1625 psize = size_to_str(block->page_size);
1626 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1627 " 0x%016" PRIx64 "\n", block->idstr, psize,
1628 (uint64_t)block->offset,
1629 (uint64_t)block->used_length,
1630 (uint64_t)block->max_length);
1631 g_free(psize);
1635 #ifdef __linux__
1637 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1638 * may or may not name the same files / on the same filesystem now as
1639 * when we actually open and map them. Iterate over the file
1640 * descriptors instead, and use qemu_fd_getpagesize().
1642 static int find_min_backend_pagesize(Object *obj, void *opaque)
1644 long *hpsize_min = opaque;
1646 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1647 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1648 long hpsize = host_memory_backend_pagesize(backend);
1650 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1651 *hpsize_min = hpsize;
1655 return 0;
1658 static int find_max_backend_pagesize(Object *obj, void *opaque)
1660 long *hpsize_max = opaque;
1662 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1663 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1664 long hpsize = host_memory_backend_pagesize(backend);
1666 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1667 *hpsize_max = hpsize;
1671 return 0;
1675 * TODO: We assume right now that all mapped host memory backends are
1676 * used as RAM, however some might be used for different purposes.
1678 long qemu_minrampagesize(void)
1680 long hpsize = LONG_MAX;
1681 Object *memdev_root = object_resolve_path("/objects", NULL);
1683 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1684 return hpsize;
1687 long qemu_maxrampagesize(void)
1689 long pagesize = 0;
1690 Object *memdev_root = object_resolve_path("/objects", NULL);
1692 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1693 return pagesize;
1695 #else
1696 long qemu_minrampagesize(void)
1698 return qemu_real_host_page_size;
1700 long qemu_maxrampagesize(void)
1702 return qemu_real_host_page_size;
1704 #endif
1706 #ifdef CONFIG_POSIX
1707 static int64_t get_file_size(int fd)
1709 int64_t size;
1710 #if defined(__linux__)
1711 struct stat st;
1713 if (fstat(fd, &st) < 0) {
1714 return -errno;
1717 /* Special handling for devdax character devices */
1718 if (S_ISCHR(st.st_mode)) {
1719 g_autofree char *subsystem_path = NULL;
1720 g_autofree char *subsystem = NULL;
1722 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1723 major(st.st_rdev), minor(st.st_rdev));
1724 subsystem = g_file_read_link(subsystem_path, NULL);
1726 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1727 g_autofree char *size_path = NULL;
1728 g_autofree char *size_str = NULL;
1730 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1731 major(st.st_rdev), minor(st.st_rdev));
1733 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1734 return g_ascii_strtoll(size_str, NULL, 0);
1738 #endif /* defined(__linux__) */
1740 /* st.st_size may be zero for special files yet lseek(2) works */
1741 size = lseek(fd, 0, SEEK_END);
1742 if (size < 0) {
1743 return -errno;
1745 return size;
1748 static int file_ram_open(const char *path,
1749 const char *region_name,
1750 bool *created,
1751 Error **errp)
1753 char *filename;
1754 char *sanitized_name;
1755 char *c;
1756 int fd = -1;
1758 *created = false;
1759 for (;;) {
1760 fd = open(path, O_RDWR);
1761 if (fd >= 0) {
1762 /* @path names an existing file, use it */
1763 break;
1765 if (errno == ENOENT) {
1766 /* @path names a file that doesn't exist, create it */
1767 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1768 if (fd >= 0) {
1769 *created = true;
1770 break;
1772 } else if (errno == EISDIR) {
1773 /* @path names a directory, create a file there */
1774 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1775 sanitized_name = g_strdup(region_name);
1776 for (c = sanitized_name; *c != '\0'; c++) {
1777 if (*c == '/') {
1778 *c = '_';
1782 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1783 sanitized_name);
1784 g_free(sanitized_name);
1786 fd = mkstemp(filename);
1787 if (fd >= 0) {
1788 unlink(filename);
1789 g_free(filename);
1790 break;
1792 g_free(filename);
1794 if (errno != EEXIST && errno != EINTR) {
1795 error_setg_errno(errp, errno,
1796 "can't open backing store %s for guest RAM",
1797 path);
1798 return -1;
1801 * Try again on EINTR and EEXIST. The latter happens when
1802 * something else creates the file between our two open().
1806 return fd;
1809 static void *file_ram_alloc(RAMBlock *block,
1810 ram_addr_t memory,
1811 int fd,
1812 bool truncate,
1813 Error **errp)
1815 void *area;
1817 block->page_size = qemu_fd_getpagesize(fd);
1818 if (block->mr->align % block->page_size) {
1819 error_setg(errp, "alignment 0x%" PRIx64
1820 " must be multiples of page size 0x%zx",
1821 block->mr->align, block->page_size);
1822 return NULL;
1823 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1824 error_setg(errp, "alignment 0x%" PRIx64
1825 " must be a power of two", block->mr->align);
1826 return NULL;
1828 block->mr->align = MAX(block->page_size, block->mr->align);
1829 #if defined(__s390x__)
1830 if (kvm_enabled()) {
1831 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1833 #endif
1835 if (memory < block->page_size) {
1836 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1837 "or larger than page size 0x%zx",
1838 memory, block->page_size);
1839 return NULL;
1842 memory = ROUND_UP(memory, block->page_size);
1845 * ftruncate is not supported by hugetlbfs in older
1846 * hosts, so don't bother bailing out on errors.
1847 * If anything goes wrong with it under other filesystems,
1848 * mmap will fail.
1850 * Do not truncate the non-empty backend file to avoid corrupting
1851 * the existing data in the file. Disabling shrinking is not
1852 * enough. For example, the current vNVDIMM implementation stores
1853 * the guest NVDIMM labels at the end of the backend file. If the
1854 * backend file is later extended, QEMU will not be able to find
1855 * those labels. Therefore, extending the non-empty backend file
1856 * is disabled as well.
1858 if (truncate && ftruncate(fd, memory)) {
1859 perror("ftruncate");
1862 area = qemu_ram_mmap(fd, memory, block->mr->align,
1863 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1864 if (area == MAP_FAILED) {
1865 error_setg_errno(errp, errno,
1866 "unable to map backing store for guest RAM");
1867 return NULL;
1870 block->fd = fd;
1871 return area;
1873 #endif
1875 /* Allocate space within the ram_addr_t space that governs the
1876 * dirty bitmaps.
1877 * Called with the ramlist lock held.
1879 static ram_addr_t find_ram_offset(ram_addr_t size)
1881 RAMBlock *block, *next_block;
1882 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1884 assert(size != 0); /* it would hand out same offset multiple times */
1886 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1887 return 0;
1890 RAMBLOCK_FOREACH(block) {
1891 ram_addr_t candidate, next = RAM_ADDR_MAX;
1893 /* Align blocks to start on a 'long' in the bitmap
1894 * which makes the bitmap sync'ing take the fast path.
1896 candidate = block->offset + block->max_length;
1897 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1899 /* Search for the closest following block
1900 * and find the gap.
1902 RAMBLOCK_FOREACH(next_block) {
1903 if (next_block->offset >= candidate) {
1904 next = MIN(next, next_block->offset);
1908 /* If it fits remember our place and remember the size
1909 * of gap, but keep going so that we might find a smaller
1910 * gap to fill so avoiding fragmentation.
1912 if (next - candidate >= size && next - candidate < mingap) {
1913 offset = candidate;
1914 mingap = next - candidate;
1917 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1920 if (offset == RAM_ADDR_MAX) {
1921 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1922 (uint64_t)size);
1923 abort();
1926 trace_find_ram_offset(size, offset);
1928 return offset;
1931 static unsigned long last_ram_page(void)
1933 RAMBlock *block;
1934 ram_addr_t last = 0;
1936 RCU_READ_LOCK_GUARD();
1937 RAMBLOCK_FOREACH(block) {
1938 last = MAX(last, block->offset + block->max_length);
1940 return last >> TARGET_PAGE_BITS;
1943 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1945 int ret;
1947 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1948 if (!machine_dump_guest_core(current_machine)) {
1949 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1950 if (ret) {
1951 perror("qemu_madvise");
1952 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1953 "but dump_guest_core=off specified\n");
1958 const char *qemu_ram_get_idstr(RAMBlock *rb)
1960 return rb->idstr;
1963 void *qemu_ram_get_host_addr(RAMBlock *rb)
1965 return rb->host;
1968 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1970 return rb->offset;
1973 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1975 return rb->used_length;
1978 bool qemu_ram_is_shared(RAMBlock *rb)
1980 return rb->flags & RAM_SHARED;
1983 /* Note: Only set at the start of postcopy */
1984 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1986 return rb->flags & RAM_UF_ZEROPAGE;
1989 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1991 rb->flags |= RAM_UF_ZEROPAGE;
1994 bool qemu_ram_is_migratable(RAMBlock *rb)
1996 return rb->flags & RAM_MIGRATABLE;
1999 void qemu_ram_set_migratable(RAMBlock *rb)
2001 rb->flags |= RAM_MIGRATABLE;
2004 void qemu_ram_unset_migratable(RAMBlock *rb)
2006 rb->flags &= ~RAM_MIGRATABLE;
2009 /* Called with iothread lock held. */
2010 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2012 RAMBlock *block;
2014 assert(new_block);
2015 assert(!new_block->idstr[0]);
2017 if (dev) {
2018 char *id = qdev_get_dev_path(dev);
2019 if (id) {
2020 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2021 g_free(id);
2024 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2026 RCU_READ_LOCK_GUARD();
2027 RAMBLOCK_FOREACH(block) {
2028 if (block != new_block &&
2029 !strcmp(block->idstr, new_block->idstr)) {
2030 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2031 new_block->idstr);
2032 abort();
2037 /* Called with iothread lock held. */
2038 void qemu_ram_unset_idstr(RAMBlock *block)
2040 /* FIXME: arch_init.c assumes that this is not called throughout
2041 * migration. Ignore the problem since hot-unplug during migration
2042 * does not work anyway.
2044 if (block) {
2045 memset(block->idstr, 0, sizeof(block->idstr));
2049 size_t qemu_ram_pagesize(RAMBlock *rb)
2051 return rb->page_size;
2054 /* Returns the largest size of page in use */
2055 size_t qemu_ram_pagesize_largest(void)
2057 RAMBlock *block;
2058 size_t largest = 0;
2060 RAMBLOCK_FOREACH(block) {
2061 largest = MAX(largest, qemu_ram_pagesize(block));
2064 return largest;
2067 static int memory_try_enable_merging(void *addr, size_t len)
2069 if (!machine_mem_merge(current_machine)) {
2070 /* disabled by the user */
2071 return 0;
2074 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2077 /* Only legal before guest might have detected the memory size: e.g. on
2078 * incoming migration, or right after reset.
2080 * As memory core doesn't know how is memory accessed, it is up to
2081 * resize callback to update device state and/or add assertions to detect
2082 * misuse, if necessary.
2084 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2086 const ram_addr_t unaligned_size = newsize;
2088 assert(block);
2090 newsize = HOST_PAGE_ALIGN(newsize);
2092 if (block->used_length == newsize) {
2094 * We don't have to resize the ram block (which only knows aligned
2095 * sizes), however, we have to notify if the unaligned size changed.
2097 if (unaligned_size != memory_region_size(block->mr)) {
2098 memory_region_set_size(block->mr, unaligned_size);
2099 if (block->resized) {
2100 block->resized(block->idstr, unaligned_size, block->host);
2103 return 0;
2106 if (!(block->flags & RAM_RESIZEABLE)) {
2107 error_setg_errno(errp, EINVAL,
2108 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2109 " in != 0x" RAM_ADDR_FMT, block->idstr,
2110 newsize, block->used_length);
2111 return -EINVAL;
2114 if (block->max_length < newsize) {
2115 error_setg_errno(errp, EINVAL,
2116 "Length too large: %s: 0x" RAM_ADDR_FMT
2117 " > 0x" RAM_ADDR_FMT, block->idstr,
2118 newsize, block->max_length);
2119 return -EINVAL;
2122 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2123 block->used_length = newsize;
2124 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2125 DIRTY_CLIENTS_ALL);
2126 memory_region_set_size(block->mr, unaligned_size);
2127 if (block->resized) {
2128 block->resized(block->idstr, unaligned_size, block->host);
2130 return 0;
2134 * Trigger sync on the given ram block for range [start, start + length]
2135 * with the backing store if one is available.
2136 * Otherwise no-op.
2137 * @Note: this is supposed to be a synchronous op.
2139 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2141 /* The requested range should fit in within the block range */
2142 g_assert((start + length) <= block->used_length);
2144 #ifdef CONFIG_LIBPMEM
2145 /* The lack of support for pmem should not block the sync */
2146 if (ramblock_is_pmem(block)) {
2147 void *addr = ramblock_ptr(block, start);
2148 pmem_persist(addr, length);
2149 return;
2151 #endif
2152 if (block->fd >= 0) {
2154 * Case there is no support for PMEM or the memory has not been
2155 * specified as persistent (or is not one) - use the msync.
2156 * Less optimal but still achieves the same goal
2158 void *addr = ramblock_ptr(block, start);
2159 if (qemu_msync(addr, length, block->fd)) {
2160 warn_report("%s: failed to sync memory range: start: "
2161 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2162 __func__, start, length);
2167 /* Called with ram_list.mutex held */
2168 static void dirty_memory_extend(ram_addr_t old_ram_size,
2169 ram_addr_t new_ram_size)
2171 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2172 DIRTY_MEMORY_BLOCK_SIZE);
2173 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2174 DIRTY_MEMORY_BLOCK_SIZE);
2175 int i;
2177 /* Only need to extend if block count increased */
2178 if (new_num_blocks <= old_num_blocks) {
2179 return;
2182 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2183 DirtyMemoryBlocks *old_blocks;
2184 DirtyMemoryBlocks *new_blocks;
2185 int j;
2187 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2188 new_blocks = g_malloc(sizeof(*new_blocks) +
2189 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2191 if (old_num_blocks) {
2192 memcpy(new_blocks->blocks, old_blocks->blocks,
2193 old_num_blocks * sizeof(old_blocks->blocks[0]));
2196 for (j = old_num_blocks; j < new_num_blocks; j++) {
2197 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2200 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2202 if (old_blocks) {
2203 g_free_rcu(old_blocks, rcu);
2208 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2210 RAMBlock *block;
2211 RAMBlock *last_block = NULL;
2212 ram_addr_t old_ram_size, new_ram_size;
2213 Error *err = NULL;
2215 old_ram_size = last_ram_page();
2217 qemu_mutex_lock_ramlist();
2218 new_block->offset = find_ram_offset(new_block->max_length);
2220 if (!new_block->host) {
2221 if (xen_enabled()) {
2222 xen_ram_alloc(new_block->offset, new_block->max_length,
2223 new_block->mr, &err);
2224 if (err) {
2225 error_propagate(errp, err);
2226 qemu_mutex_unlock_ramlist();
2227 return;
2229 } else {
2230 new_block->host = phys_mem_alloc(new_block->max_length,
2231 &new_block->mr->align, shared);
2232 if (!new_block->host) {
2233 error_setg_errno(errp, errno,
2234 "cannot set up guest memory '%s'",
2235 memory_region_name(new_block->mr));
2236 qemu_mutex_unlock_ramlist();
2237 return;
2239 memory_try_enable_merging(new_block->host, new_block->max_length);
2243 new_ram_size = MAX(old_ram_size,
2244 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2245 if (new_ram_size > old_ram_size) {
2246 dirty_memory_extend(old_ram_size, new_ram_size);
2248 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2249 * QLIST (which has an RCU-friendly variant) does not have insertion at
2250 * tail, so save the last element in last_block.
2252 RAMBLOCK_FOREACH(block) {
2253 last_block = block;
2254 if (block->max_length < new_block->max_length) {
2255 break;
2258 if (block) {
2259 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2260 } else if (last_block) {
2261 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2262 } else { /* list is empty */
2263 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2265 ram_list.mru_block = NULL;
2267 /* Write list before version */
2268 smp_wmb();
2269 ram_list.version++;
2270 qemu_mutex_unlock_ramlist();
2272 cpu_physical_memory_set_dirty_range(new_block->offset,
2273 new_block->used_length,
2274 DIRTY_CLIENTS_ALL);
2276 if (new_block->host) {
2277 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2278 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2280 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2281 * Configure it unless the machine is a qtest server, in which case
2282 * KVM is not used and it may be forked (eg for fuzzing purposes).
2284 if (!qtest_enabled()) {
2285 qemu_madvise(new_block->host, new_block->max_length,
2286 QEMU_MADV_DONTFORK);
2288 ram_block_notify_add(new_block->host, new_block->max_length);
2292 #ifdef CONFIG_POSIX
2293 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2294 uint32_t ram_flags, int fd,
2295 Error **errp)
2297 RAMBlock *new_block;
2298 Error *local_err = NULL;
2299 int64_t file_size;
2301 /* Just support these ram flags by now. */
2302 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2304 if (xen_enabled()) {
2305 error_setg(errp, "-mem-path not supported with Xen");
2306 return NULL;
2309 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2310 error_setg(errp,
2311 "host lacks kvm mmu notifiers, -mem-path unsupported");
2312 return NULL;
2315 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2317 * file_ram_alloc() needs to allocate just like
2318 * phys_mem_alloc, but we haven't bothered to provide
2319 * a hook there.
2321 error_setg(errp,
2322 "-mem-path not supported with this accelerator");
2323 return NULL;
2326 size = HOST_PAGE_ALIGN(size);
2327 file_size = get_file_size(fd);
2328 if (file_size > 0 && file_size < size) {
2329 error_setg(errp, "backing store size 0x%" PRIx64
2330 " does not match 'size' option 0x" RAM_ADDR_FMT,
2331 file_size, size);
2332 return NULL;
2335 new_block = g_malloc0(sizeof(*new_block));
2336 new_block->mr = mr;
2337 new_block->used_length = size;
2338 new_block->max_length = size;
2339 new_block->flags = ram_flags;
2340 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2341 if (!new_block->host) {
2342 g_free(new_block);
2343 return NULL;
2346 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2347 if (local_err) {
2348 g_free(new_block);
2349 error_propagate(errp, local_err);
2350 return NULL;
2352 return new_block;
2357 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2358 uint32_t ram_flags, const char *mem_path,
2359 Error **errp)
2361 int fd;
2362 bool created;
2363 RAMBlock *block;
2365 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2366 if (fd < 0) {
2367 return NULL;
2370 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2371 if (!block) {
2372 if (created) {
2373 unlink(mem_path);
2375 close(fd);
2376 return NULL;
2379 return block;
2381 #endif
2383 static
2384 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2385 void (*resized)(const char*,
2386 uint64_t length,
2387 void *host),
2388 void *host, bool resizeable, bool share,
2389 MemoryRegion *mr, Error **errp)
2391 RAMBlock *new_block;
2392 Error *local_err = NULL;
2394 size = HOST_PAGE_ALIGN(size);
2395 max_size = HOST_PAGE_ALIGN(max_size);
2396 new_block = g_malloc0(sizeof(*new_block));
2397 new_block->mr = mr;
2398 new_block->resized = resized;
2399 new_block->used_length = size;
2400 new_block->max_length = max_size;
2401 assert(max_size >= size);
2402 new_block->fd = -1;
2403 new_block->page_size = qemu_real_host_page_size;
2404 new_block->host = host;
2405 if (host) {
2406 new_block->flags |= RAM_PREALLOC;
2408 if (resizeable) {
2409 new_block->flags |= RAM_RESIZEABLE;
2411 ram_block_add(new_block, &local_err, share);
2412 if (local_err) {
2413 g_free(new_block);
2414 error_propagate(errp, local_err);
2415 return NULL;
2417 return new_block;
2420 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2421 MemoryRegion *mr, Error **errp)
2423 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2424 false, mr, errp);
2427 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2428 MemoryRegion *mr, Error **errp)
2430 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2431 share, mr, errp);
2434 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2435 void (*resized)(const char*,
2436 uint64_t length,
2437 void *host),
2438 MemoryRegion *mr, Error **errp)
2440 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2441 false, mr, errp);
2444 static void reclaim_ramblock(RAMBlock *block)
2446 if (block->flags & RAM_PREALLOC) {
2448 } else if (xen_enabled()) {
2449 xen_invalidate_map_cache_entry(block->host);
2450 #ifndef _WIN32
2451 } else if (block->fd >= 0) {
2452 qemu_ram_munmap(block->fd, block->host, block->max_length);
2453 close(block->fd);
2454 #endif
2455 } else {
2456 qemu_anon_ram_free(block->host, block->max_length);
2458 g_free(block);
2461 void qemu_ram_free(RAMBlock *block)
2463 if (!block) {
2464 return;
2467 if (block->host) {
2468 ram_block_notify_remove(block->host, block->max_length);
2471 qemu_mutex_lock_ramlist();
2472 QLIST_REMOVE_RCU(block, next);
2473 ram_list.mru_block = NULL;
2474 /* Write list before version */
2475 smp_wmb();
2476 ram_list.version++;
2477 call_rcu(block, reclaim_ramblock, rcu);
2478 qemu_mutex_unlock_ramlist();
2481 #ifndef _WIN32
2482 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2484 RAMBlock *block;
2485 ram_addr_t offset;
2486 int flags;
2487 void *area, *vaddr;
2489 RAMBLOCK_FOREACH(block) {
2490 offset = addr - block->offset;
2491 if (offset < block->max_length) {
2492 vaddr = ramblock_ptr(block, offset);
2493 if (block->flags & RAM_PREALLOC) {
2495 } else if (xen_enabled()) {
2496 abort();
2497 } else {
2498 flags = MAP_FIXED;
2499 if (block->fd >= 0) {
2500 flags |= (block->flags & RAM_SHARED ?
2501 MAP_SHARED : MAP_PRIVATE);
2502 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2503 flags, block->fd, offset);
2504 } else {
2506 * Remap needs to match alloc. Accelerators that
2507 * set phys_mem_alloc never remap. If they did,
2508 * we'd need a remap hook here.
2510 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2512 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2513 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2514 flags, -1, 0);
2516 if (area != vaddr) {
2517 error_report("Could not remap addr: "
2518 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2519 length, addr);
2520 exit(1);
2522 memory_try_enable_merging(vaddr, length);
2523 qemu_ram_setup_dump(vaddr, length);
2528 #endif /* !_WIN32 */
2530 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2531 * This should not be used for general purpose DMA. Use address_space_map
2532 * or address_space_rw instead. For local memory (e.g. video ram) that the
2533 * device owns, use memory_region_get_ram_ptr.
2535 * Called within RCU critical section.
2537 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2539 RAMBlock *block = ram_block;
2541 if (block == NULL) {
2542 block = qemu_get_ram_block(addr);
2543 addr -= block->offset;
2546 if (xen_enabled() && block->host == NULL) {
2547 /* We need to check if the requested address is in the RAM
2548 * because we don't want to map the entire memory in QEMU.
2549 * In that case just map until the end of the page.
2551 if (block->offset == 0) {
2552 return xen_map_cache(addr, 0, 0, false);
2555 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2557 return ramblock_ptr(block, addr);
2560 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2561 * but takes a size argument.
2563 * Called within RCU critical section.
2565 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2566 hwaddr *size, bool lock)
2568 RAMBlock *block = ram_block;
2569 if (*size == 0) {
2570 return NULL;
2573 if (block == NULL) {
2574 block = qemu_get_ram_block(addr);
2575 addr -= block->offset;
2577 *size = MIN(*size, block->max_length - addr);
2579 if (xen_enabled() && block->host == NULL) {
2580 /* We need to check if the requested address is in the RAM
2581 * because we don't want to map the entire memory in QEMU.
2582 * In that case just map the requested area.
2584 if (block->offset == 0) {
2585 return xen_map_cache(addr, *size, lock, lock);
2588 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2591 return ramblock_ptr(block, addr);
2594 /* Return the offset of a hostpointer within a ramblock */
2595 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2597 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2598 assert((uintptr_t)host >= (uintptr_t)rb->host);
2599 assert(res < rb->max_length);
2601 return res;
2605 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2606 * in that RAMBlock.
2608 * ptr: Host pointer to look up
2609 * round_offset: If true round the result offset down to a page boundary
2610 * *ram_addr: set to result ram_addr
2611 * *offset: set to result offset within the RAMBlock
2613 * Returns: RAMBlock (or NULL if not found)
2615 * By the time this function returns, the returned pointer is not protected
2616 * by RCU anymore. If the caller is not within an RCU critical section and
2617 * does not hold the iothread lock, it must have other means of protecting the
2618 * pointer, such as a reference to the region that includes the incoming
2619 * ram_addr_t.
2621 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2622 ram_addr_t *offset)
2624 RAMBlock *block;
2625 uint8_t *host = ptr;
2627 if (xen_enabled()) {
2628 ram_addr_t ram_addr;
2629 RCU_READ_LOCK_GUARD();
2630 ram_addr = xen_ram_addr_from_mapcache(ptr);
2631 block = qemu_get_ram_block(ram_addr);
2632 if (block) {
2633 *offset = ram_addr - block->offset;
2635 return block;
2638 RCU_READ_LOCK_GUARD();
2639 block = atomic_rcu_read(&ram_list.mru_block);
2640 if (block && block->host && host - block->host < block->max_length) {
2641 goto found;
2644 RAMBLOCK_FOREACH(block) {
2645 /* This case append when the block is not mapped. */
2646 if (block->host == NULL) {
2647 continue;
2649 if (host - block->host < block->max_length) {
2650 goto found;
2654 return NULL;
2656 found:
2657 *offset = (host - block->host);
2658 if (round_offset) {
2659 *offset &= TARGET_PAGE_MASK;
2661 return block;
2665 * Finds the named RAMBlock
2667 * name: The name of RAMBlock to find
2669 * Returns: RAMBlock (or NULL if not found)
2671 RAMBlock *qemu_ram_block_by_name(const char *name)
2673 RAMBlock *block;
2675 RAMBLOCK_FOREACH(block) {
2676 if (!strcmp(name, block->idstr)) {
2677 return block;
2681 return NULL;
2684 /* Some of the softmmu routines need to translate from a host pointer
2685 (typically a TLB entry) back to a ram offset. */
2686 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2688 RAMBlock *block;
2689 ram_addr_t offset;
2691 block = qemu_ram_block_from_host(ptr, false, &offset);
2692 if (!block) {
2693 return RAM_ADDR_INVALID;
2696 return block->offset + offset;
2699 /* Generate a debug exception if a watchpoint has been hit. */
2700 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2701 MemTxAttrs attrs, int flags, uintptr_t ra)
2703 CPUClass *cc = CPU_GET_CLASS(cpu);
2704 CPUWatchpoint *wp;
2706 assert(tcg_enabled());
2707 if (cpu->watchpoint_hit) {
2709 * We re-entered the check after replacing the TB.
2710 * Now raise the debug interrupt so that it will
2711 * trigger after the current instruction.
2713 qemu_mutex_lock_iothread();
2714 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2715 qemu_mutex_unlock_iothread();
2716 return;
2719 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2720 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2721 if (watchpoint_address_matches(wp, addr, len)
2722 && (wp->flags & flags)) {
2723 if (flags == BP_MEM_READ) {
2724 wp->flags |= BP_WATCHPOINT_HIT_READ;
2725 } else {
2726 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2728 wp->hitaddr = MAX(addr, wp->vaddr);
2729 wp->hitattrs = attrs;
2730 if (!cpu->watchpoint_hit) {
2731 if (wp->flags & BP_CPU &&
2732 !cc->debug_check_watchpoint(cpu, wp)) {
2733 wp->flags &= ~BP_WATCHPOINT_HIT;
2734 continue;
2736 cpu->watchpoint_hit = wp;
2738 mmap_lock();
2739 tb_check_watchpoint(cpu, ra);
2740 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2741 cpu->exception_index = EXCP_DEBUG;
2742 mmap_unlock();
2743 cpu_loop_exit_restore(cpu, ra);
2744 } else {
2745 /* Force execution of one insn next time. */
2746 cpu->cflags_next_tb = 1 | curr_cflags();
2747 mmap_unlock();
2748 if (ra) {
2749 cpu_restore_state(cpu, ra, true);
2751 cpu_loop_exit_noexc(cpu);
2754 } else {
2755 wp->flags &= ~BP_WATCHPOINT_HIT;
2760 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2761 MemTxAttrs attrs, void *buf, hwaddr len);
2762 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2763 const void *buf, hwaddr len);
2764 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2765 bool is_write, MemTxAttrs attrs);
2767 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2768 unsigned len, MemTxAttrs attrs)
2770 subpage_t *subpage = opaque;
2771 uint8_t buf[8];
2772 MemTxResult res;
2774 #if defined(DEBUG_SUBPAGE)
2775 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2776 subpage, len, addr);
2777 #endif
2778 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2779 if (res) {
2780 return res;
2782 *data = ldn_p(buf, len);
2783 return MEMTX_OK;
2786 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2787 uint64_t value, unsigned len, MemTxAttrs attrs)
2789 subpage_t *subpage = opaque;
2790 uint8_t buf[8];
2792 #if defined(DEBUG_SUBPAGE)
2793 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2794 " value %"PRIx64"\n",
2795 __func__, subpage, len, addr, value);
2796 #endif
2797 stn_p(buf, len, value);
2798 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2801 static bool subpage_accepts(void *opaque, hwaddr addr,
2802 unsigned len, bool is_write,
2803 MemTxAttrs attrs)
2805 subpage_t *subpage = opaque;
2806 #if defined(DEBUG_SUBPAGE)
2807 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2808 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2809 #endif
2811 return flatview_access_valid(subpage->fv, addr + subpage->base,
2812 len, is_write, attrs);
2815 static const MemoryRegionOps subpage_ops = {
2816 .read_with_attrs = subpage_read,
2817 .write_with_attrs = subpage_write,
2818 .impl.min_access_size = 1,
2819 .impl.max_access_size = 8,
2820 .valid.min_access_size = 1,
2821 .valid.max_access_size = 8,
2822 .valid.accepts = subpage_accepts,
2823 .endianness = DEVICE_NATIVE_ENDIAN,
2826 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2827 uint16_t section)
2829 int idx, eidx;
2831 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2832 return -1;
2833 idx = SUBPAGE_IDX(start);
2834 eidx = SUBPAGE_IDX(end);
2835 #if defined(DEBUG_SUBPAGE)
2836 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2837 __func__, mmio, start, end, idx, eidx, section);
2838 #endif
2839 for (; idx <= eidx; idx++) {
2840 mmio->sub_section[idx] = section;
2843 return 0;
2846 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2848 subpage_t *mmio;
2850 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2851 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2852 mmio->fv = fv;
2853 mmio->base = base;
2854 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2855 NULL, TARGET_PAGE_SIZE);
2856 mmio->iomem.subpage = true;
2857 #if defined(DEBUG_SUBPAGE)
2858 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2859 mmio, base, TARGET_PAGE_SIZE);
2860 #endif
2862 return mmio;
2865 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2867 assert(fv);
2868 MemoryRegionSection section = {
2869 .fv = fv,
2870 .mr = mr,
2871 .offset_within_address_space = 0,
2872 .offset_within_region = 0,
2873 .size = int128_2_64(),
2876 return phys_section_add(map, &section);
2879 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2880 hwaddr index, MemTxAttrs attrs)
2882 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2883 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2884 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2885 MemoryRegionSection *sections = d->map.sections;
2887 return &sections[index & ~TARGET_PAGE_MASK];
2890 static void io_mem_init(void)
2892 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2893 NULL, UINT64_MAX);
2896 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2898 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2899 uint16_t n;
2901 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2902 assert(n == PHYS_SECTION_UNASSIGNED);
2904 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2906 return d;
2909 void address_space_dispatch_free(AddressSpaceDispatch *d)
2911 phys_sections_free(&d->map);
2912 g_free(d);
2915 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2919 static void tcg_log_global_after_sync(MemoryListener *listener)
2921 CPUAddressSpace *cpuas;
2923 /* Wait for the CPU to end the current TB. This avoids the following
2924 * incorrect race:
2926 * vCPU migration
2927 * ---------------------- -------------------------
2928 * TLB check -> slow path
2929 * notdirty_mem_write
2930 * write to RAM
2931 * mark dirty
2932 * clear dirty flag
2933 * TLB check -> fast path
2934 * read memory
2935 * write to RAM
2937 * by pushing the migration thread's memory read after the vCPU thread has
2938 * written the memory.
2940 if (replay_mode == REPLAY_MODE_NONE) {
2942 * VGA can make calls to this function while updating the screen.
2943 * In record/replay mode this causes a deadlock, because
2944 * run_on_cpu waits for rr mutex. Therefore no races are possible
2945 * in this case and no need for making run_on_cpu when
2946 * record/replay is not enabled.
2948 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2949 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2953 static void tcg_commit(MemoryListener *listener)
2955 CPUAddressSpace *cpuas;
2956 AddressSpaceDispatch *d;
2958 assert(tcg_enabled());
2959 /* since each CPU stores ram addresses in its TLB cache, we must
2960 reset the modified entries */
2961 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2962 cpu_reloading_memory_map();
2963 /* The CPU and TLB are protected by the iothread lock.
2964 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2965 * may have split the RCU critical section.
2967 d = address_space_to_dispatch(cpuas->as);
2968 atomic_rcu_set(&cpuas->memory_dispatch, d);
2969 tlb_flush(cpuas->cpu);
2972 static void memory_map_init(void)
2974 system_memory = g_malloc(sizeof(*system_memory));
2976 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2977 address_space_init(&address_space_memory, system_memory, "memory");
2979 system_io = g_malloc(sizeof(*system_io));
2980 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2981 65536);
2982 address_space_init(&address_space_io, system_io, "I/O");
2985 MemoryRegion *get_system_memory(void)
2987 return system_memory;
2990 MemoryRegion *get_system_io(void)
2992 return system_io;
2995 #endif /* !defined(CONFIG_USER_ONLY) */
2997 /* physical memory access (slow version, mainly for debug) */
2998 #if defined(CONFIG_USER_ONLY)
2999 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3000 void *ptr, target_ulong len, bool is_write)
3002 int flags;
3003 target_ulong l, page;
3004 void * p;
3005 uint8_t *buf = ptr;
3007 while (len > 0) {
3008 page = addr & TARGET_PAGE_MASK;
3009 l = (page + TARGET_PAGE_SIZE) - addr;
3010 if (l > len)
3011 l = len;
3012 flags = page_get_flags(page);
3013 if (!(flags & PAGE_VALID))
3014 return -1;
3015 if (is_write) {
3016 if (!(flags & PAGE_WRITE))
3017 return -1;
3018 /* XXX: this code should not depend on lock_user */
3019 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3020 return -1;
3021 memcpy(p, buf, l);
3022 unlock_user(p, addr, l);
3023 } else {
3024 if (!(flags & PAGE_READ))
3025 return -1;
3026 /* XXX: this code should not depend on lock_user */
3027 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3028 return -1;
3029 memcpy(buf, p, l);
3030 unlock_user(p, addr, 0);
3032 len -= l;
3033 buf += l;
3034 addr += l;
3036 return 0;
3039 #else
3041 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3042 hwaddr length)
3044 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3045 addr += memory_region_get_ram_addr(mr);
3047 /* No early return if dirty_log_mask is or becomes 0, because
3048 * cpu_physical_memory_set_dirty_range will still call
3049 * xen_modified_memory.
3051 if (dirty_log_mask) {
3052 dirty_log_mask =
3053 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3055 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3056 assert(tcg_enabled());
3057 tb_invalidate_phys_range(addr, addr + length);
3058 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3060 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3063 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3066 * In principle this function would work on other memory region types too,
3067 * but the ROM device use case is the only one where this operation is
3068 * necessary. Other memory regions should use the
3069 * address_space_read/write() APIs.
3071 assert(memory_region_is_romd(mr));
3073 invalidate_and_set_dirty(mr, addr, size);
3076 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3078 unsigned access_size_max = mr->ops->valid.max_access_size;
3080 /* Regions are assumed to support 1-4 byte accesses unless
3081 otherwise specified. */
3082 if (access_size_max == 0) {
3083 access_size_max = 4;
3086 /* Bound the maximum access by the alignment of the address. */
3087 if (!mr->ops->impl.unaligned) {
3088 unsigned align_size_max = addr & -addr;
3089 if (align_size_max != 0 && align_size_max < access_size_max) {
3090 access_size_max = align_size_max;
3094 /* Don't attempt accesses larger than the maximum. */
3095 if (l > access_size_max) {
3096 l = access_size_max;
3098 l = pow2floor(l);
3100 return l;
3103 static bool prepare_mmio_access(MemoryRegion *mr)
3105 bool unlocked = !qemu_mutex_iothread_locked();
3106 bool release_lock = false;
3108 if (unlocked && mr->global_locking) {
3109 qemu_mutex_lock_iothread();
3110 unlocked = false;
3111 release_lock = true;
3113 if (mr->flush_coalesced_mmio) {
3114 if (unlocked) {
3115 qemu_mutex_lock_iothread();
3117 qemu_flush_coalesced_mmio_buffer();
3118 if (unlocked) {
3119 qemu_mutex_unlock_iothread();
3123 return release_lock;
3126 /* Called within RCU critical section. */
3127 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3128 MemTxAttrs attrs,
3129 const void *ptr,
3130 hwaddr len, hwaddr addr1,
3131 hwaddr l, MemoryRegion *mr)
3133 uint8_t *ram_ptr;
3134 uint64_t val;
3135 MemTxResult result = MEMTX_OK;
3136 bool release_lock = false;
3137 const uint8_t *buf = ptr;
3139 for (;;) {
3140 if (!memory_access_is_direct(mr, true)) {
3141 release_lock |= prepare_mmio_access(mr);
3142 l = memory_access_size(mr, l, addr1);
3143 /* XXX: could force current_cpu to NULL to avoid
3144 potential bugs */
3145 val = ldn_he_p(buf, l);
3146 result |= memory_region_dispatch_write(mr, addr1, val,
3147 size_memop(l), attrs);
3148 } else {
3149 /* RAM case */
3150 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3151 memcpy(ram_ptr, buf, l);
3152 invalidate_and_set_dirty(mr, addr1, l);
3155 if (release_lock) {
3156 qemu_mutex_unlock_iothread();
3157 release_lock = false;
3160 len -= l;
3161 buf += l;
3162 addr += l;
3164 if (!len) {
3165 break;
3168 l = len;
3169 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3172 return result;
3175 /* Called from RCU critical section. */
3176 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3177 const void *buf, hwaddr len)
3179 hwaddr l;
3180 hwaddr addr1;
3181 MemoryRegion *mr;
3182 MemTxResult result = MEMTX_OK;
3184 l = len;
3185 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3186 result = flatview_write_continue(fv, addr, attrs, buf, len,
3187 addr1, l, mr);
3189 return result;
3192 /* Called within RCU critical section. */
3193 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3194 MemTxAttrs attrs, void *ptr,
3195 hwaddr len, hwaddr addr1, hwaddr l,
3196 MemoryRegion *mr)
3198 uint8_t *ram_ptr;
3199 uint64_t val;
3200 MemTxResult result = MEMTX_OK;
3201 bool release_lock = false;
3202 uint8_t *buf = ptr;
3204 for (;;) {
3205 if (!memory_access_is_direct(mr, false)) {
3206 /* I/O case */
3207 release_lock |= prepare_mmio_access(mr);
3208 l = memory_access_size(mr, l, addr1);
3209 result |= memory_region_dispatch_read(mr, addr1, &val,
3210 size_memop(l), attrs);
3211 stn_he_p(buf, l, val);
3212 } else {
3213 /* RAM case */
3214 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3215 memcpy(buf, ram_ptr, l);
3218 if (release_lock) {
3219 qemu_mutex_unlock_iothread();
3220 release_lock = false;
3223 len -= l;
3224 buf += l;
3225 addr += l;
3227 if (!len) {
3228 break;
3231 l = len;
3232 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3235 return result;
3238 /* Called from RCU critical section. */
3239 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3240 MemTxAttrs attrs, void *buf, hwaddr len)
3242 hwaddr l;
3243 hwaddr addr1;
3244 MemoryRegion *mr;
3246 l = len;
3247 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3248 return flatview_read_continue(fv, addr, attrs, buf, len,
3249 addr1, l, mr);
3252 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3253 MemTxAttrs attrs, void *buf, hwaddr len)
3255 MemTxResult result = MEMTX_OK;
3256 FlatView *fv;
3258 if (len > 0) {
3259 RCU_READ_LOCK_GUARD();
3260 fv = address_space_to_flatview(as);
3261 result = flatview_read(fv, addr, attrs, buf, len);
3264 return result;
3267 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3268 MemTxAttrs attrs,
3269 const void *buf, hwaddr len)
3271 MemTxResult result = MEMTX_OK;
3272 FlatView *fv;
3274 if (len > 0) {
3275 RCU_READ_LOCK_GUARD();
3276 fv = address_space_to_flatview(as);
3277 result = flatview_write(fv, addr, attrs, buf, len);
3280 return result;
3283 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3284 void *buf, hwaddr len, bool is_write)
3286 if (is_write) {
3287 return address_space_write(as, addr, attrs, buf, len);
3288 } else {
3289 return address_space_read_full(as, addr, attrs, buf, len);
3293 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3294 hwaddr len, bool is_write)
3296 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3297 buf, len, is_write);
3300 enum write_rom_type {
3301 WRITE_DATA,
3302 FLUSH_CACHE,
3305 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3306 hwaddr addr,
3307 MemTxAttrs attrs,
3308 const void *ptr,
3309 hwaddr len,
3310 enum write_rom_type type)
3312 hwaddr l;
3313 uint8_t *ram_ptr;
3314 hwaddr addr1;
3315 MemoryRegion *mr;
3316 const uint8_t *buf = ptr;
3318 RCU_READ_LOCK_GUARD();
3319 while (len > 0) {
3320 l = len;
3321 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3323 if (!(memory_region_is_ram(mr) ||
3324 memory_region_is_romd(mr))) {
3325 l = memory_access_size(mr, l, addr1);
3326 } else {
3327 /* ROM/RAM case */
3328 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3329 switch (type) {
3330 case WRITE_DATA:
3331 memcpy(ram_ptr, buf, l);
3332 invalidate_and_set_dirty(mr, addr1, l);
3333 break;
3334 case FLUSH_CACHE:
3335 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
3336 break;
3339 len -= l;
3340 buf += l;
3341 addr += l;
3343 return MEMTX_OK;
3346 /* used for ROM loading : can write in RAM and ROM */
3347 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3348 MemTxAttrs attrs,
3349 const void *buf, hwaddr len)
3351 return address_space_write_rom_internal(as, addr, attrs,
3352 buf, len, WRITE_DATA);
3355 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3358 * This function should do the same thing as an icache flush that was
3359 * triggered from within the guest. For TCG we are always cache coherent,
3360 * so there is no need to flush anything. For KVM / Xen we need to flush
3361 * the host's instruction cache at least.
3363 if (tcg_enabled()) {
3364 return;
3367 address_space_write_rom_internal(&address_space_memory,
3368 start, MEMTXATTRS_UNSPECIFIED,
3369 NULL, len, FLUSH_CACHE);
3372 typedef struct {
3373 MemoryRegion *mr;
3374 void *buffer;
3375 hwaddr addr;
3376 hwaddr len;
3377 bool in_use;
3378 } BounceBuffer;
3380 static BounceBuffer bounce;
3382 typedef struct MapClient {
3383 QEMUBH *bh;
3384 QLIST_ENTRY(MapClient) link;
3385 } MapClient;
3387 QemuMutex map_client_list_lock;
3388 static QLIST_HEAD(, MapClient) map_client_list
3389 = QLIST_HEAD_INITIALIZER(map_client_list);
3391 static void cpu_unregister_map_client_do(MapClient *client)
3393 QLIST_REMOVE(client, link);
3394 g_free(client);
3397 static void cpu_notify_map_clients_locked(void)
3399 MapClient *client;
3401 while (!QLIST_EMPTY(&map_client_list)) {
3402 client = QLIST_FIRST(&map_client_list);
3403 qemu_bh_schedule(client->bh);
3404 cpu_unregister_map_client_do(client);
3408 void cpu_register_map_client(QEMUBH *bh)
3410 MapClient *client = g_malloc(sizeof(*client));
3412 qemu_mutex_lock(&map_client_list_lock);
3413 client->bh = bh;
3414 QLIST_INSERT_HEAD(&map_client_list, client, link);
3415 if (!atomic_read(&bounce.in_use)) {
3416 cpu_notify_map_clients_locked();
3418 qemu_mutex_unlock(&map_client_list_lock);
3421 void cpu_exec_init_all(void)
3423 qemu_mutex_init(&ram_list.mutex);
3424 /* The data structures we set up here depend on knowing the page size,
3425 * so no more changes can be made after this point.
3426 * In an ideal world, nothing we did before we had finished the
3427 * machine setup would care about the target page size, and we could
3428 * do this much later, rather than requiring board models to state
3429 * up front what their requirements are.
3431 finalize_target_page_bits();
3432 io_mem_init();
3433 memory_map_init();
3434 qemu_mutex_init(&map_client_list_lock);
3437 void cpu_unregister_map_client(QEMUBH *bh)
3439 MapClient *client;
3441 qemu_mutex_lock(&map_client_list_lock);
3442 QLIST_FOREACH(client, &map_client_list, link) {
3443 if (client->bh == bh) {
3444 cpu_unregister_map_client_do(client);
3445 break;
3448 qemu_mutex_unlock(&map_client_list_lock);
3451 static void cpu_notify_map_clients(void)
3453 qemu_mutex_lock(&map_client_list_lock);
3454 cpu_notify_map_clients_locked();
3455 qemu_mutex_unlock(&map_client_list_lock);
3458 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3459 bool is_write, MemTxAttrs attrs)
3461 MemoryRegion *mr;
3462 hwaddr l, xlat;
3464 while (len > 0) {
3465 l = len;
3466 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3467 if (!memory_access_is_direct(mr, is_write)) {
3468 l = memory_access_size(mr, l, addr);
3469 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3470 return false;
3474 len -= l;
3475 addr += l;
3477 return true;
3480 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3481 hwaddr len, bool is_write,
3482 MemTxAttrs attrs)
3484 FlatView *fv;
3485 bool result;
3487 RCU_READ_LOCK_GUARD();
3488 fv = address_space_to_flatview(as);
3489 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3490 return result;
3493 static hwaddr
3494 flatview_extend_translation(FlatView *fv, hwaddr addr,
3495 hwaddr target_len,
3496 MemoryRegion *mr, hwaddr base, hwaddr len,
3497 bool is_write, MemTxAttrs attrs)
3499 hwaddr done = 0;
3500 hwaddr xlat;
3501 MemoryRegion *this_mr;
3503 for (;;) {
3504 target_len -= len;
3505 addr += len;
3506 done += len;
3507 if (target_len == 0) {
3508 return done;
3511 len = target_len;
3512 this_mr = flatview_translate(fv, addr, &xlat,
3513 &len, is_write, attrs);
3514 if (this_mr != mr || xlat != base + done) {
3515 return done;
3520 /* Map a physical memory region into a host virtual address.
3521 * May map a subset of the requested range, given by and returned in *plen.
3522 * May return NULL if resources needed to perform the mapping are exhausted.
3523 * Use only for reads OR writes - not for read-modify-write operations.
3524 * Use cpu_register_map_client() to know when retrying the map operation is
3525 * likely to succeed.
3527 void *address_space_map(AddressSpace *as,
3528 hwaddr addr,
3529 hwaddr *plen,
3530 bool is_write,
3531 MemTxAttrs attrs)
3533 hwaddr len = *plen;
3534 hwaddr l, xlat;
3535 MemoryRegion *mr;
3536 void *ptr;
3537 FlatView *fv;
3539 if (len == 0) {
3540 return NULL;
3543 l = len;
3544 RCU_READ_LOCK_GUARD();
3545 fv = address_space_to_flatview(as);
3546 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3548 if (!memory_access_is_direct(mr, is_write)) {
3549 if (atomic_xchg(&bounce.in_use, true)) {
3550 *plen = 0;
3551 return NULL;
3553 /* Avoid unbounded allocations */
3554 l = MIN(l, TARGET_PAGE_SIZE);
3555 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3556 bounce.addr = addr;
3557 bounce.len = l;
3559 memory_region_ref(mr);
3560 bounce.mr = mr;
3561 if (!is_write) {
3562 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3563 bounce.buffer, l);
3566 *plen = l;
3567 return bounce.buffer;
3571 memory_region_ref(mr);
3572 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3573 l, is_write, attrs);
3574 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3576 return ptr;
3579 /* Unmaps a memory region previously mapped by address_space_map().
3580 * Will also mark the memory as dirty if is_write is true. access_len gives
3581 * the amount of memory that was actually read or written by the caller.
3583 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3584 bool is_write, hwaddr access_len)
3586 if (buffer != bounce.buffer) {
3587 MemoryRegion *mr;
3588 ram_addr_t addr1;
3590 mr = memory_region_from_host(buffer, &addr1);
3591 assert(mr != NULL);
3592 if (is_write) {
3593 invalidate_and_set_dirty(mr, addr1, access_len);
3595 if (xen_enabled()) {
3596 xen_invalidate_map_cache_entry(buffer);
3598 memory_region_unref(mr);
3599 return;
3601 if (is_write) {
3602 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3603 bounce.buffer, access_len);
3605 qemu_vfree(bounce.buffer);
3606 bounce.buffer = NULL;
3607 memory_region_unref(bounce.mr);
3608 atomic_mb_set(&bounce.in_use, false);
3609 cpu_notify_map_clients();
3612 void *cpu_physical_memory_map(hwaddr addr,
3613 hwaddr *plen,
3614 bool is_write)
3616 return address_space_map(&address_space_memory, addr, plen, is_write,
3617 MEMTXATTRS_UNSPECIFIED);
3620 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3621 bool is_write, hwaddr access_len)
3623 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3626 #define ARG1_DECL AddressSpace *as
3627 #define ARG1 as
3628 #define SUFFIX
3629 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3630 #define RCU_READ_LOCK(...) rcu_read_lock()
3631 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3632 #include "memory_ldst.inc.c"
3634 int64_t address_space_cache_init(MemoryRegionCache *cache,
3635 AddressSpace *as,
3636 hwaddr addr,
3637 hwaddr len,
3638 bool is_write)
3640 AddressSpaceDispatch *d;
3641 hwaddr l;
3642 MemoryRegion *mr;
3644 assert(len > 0);
3646 l = len;
3647 cache->fv = address_space_get_flatview(as);
3648 d = flatview_to_dispatch(cache->fv);
3649 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3651 mr = cache->mrs.mr;
3652 memory_region_ref(mr);
3653 if (memory_access_is_direct(mr, is_write)) {
3654 /* We don't care about the memory attributes here as we're only
3655 * doing this if we found actual RAM, which behaves the same
3656 * regardless of attributes; so UNSPECIFIED is fine.
3658 l = flatview_extend_translation(cache->fv, addr, len, mr,
3659 cache->xlat, l, is_write,
3660 MEMTXATTRS_UNSPECIFIED);
3661 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3662 } else {
3663 cache->ptr = NULL;
3666 cache->len = l;
3667 cache->is_write = is_write;
3668 return l;
3671 void address_space_cache_invalidate(MemoryRegionCache *cache,
3672 hwaddr addr,
3673 hwaddr access_len)
3675 assert(cache->is_write);
3676 if (likely(cache->ptr)) {
3677 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3681 void address_space_cache_destroy(MemoryRegionCache *cache)
3683 if (!cache->mrs.mr) {
3684 return;
3687 if (xen_enabled()) {
3688 xen_invalidate_map_cache_entry(cache->ptr);
3690 memory_region_unref(cache->mrs.mr);
3691 flatview_unref(cache->fv);
3692 cache->mrs.mr = NULL;
3693 cache->fv = NULL;
3696 /* Called from RCU critical section. This function has the same
3697 * semantics as address_space_translate, but it only works on a
3698 * predefined range of a MemoryRegion that was mapped with
3699 * address_space_cache_init.
3701 static inline MemoryRegion *address_space_translate_cached(
3702 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3703 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3705 MemoryRegionSection section;
3706 MemoryRegion *mr;
3707 IOMMUMemoryRegion *iommu_mr;
3708 AddressSpace *target_as;
3710 assert(!cache->ptr);
3711 *xlat = addr + cache->xlat;
3713 mr = cache->mrs.mr;
3714 iommu_mr = memory_region_get_iommu(mr);
3715 if (!iommu_mr) {
3716 /* MMIO region. */
3717 return mr;
3720 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3721 NULL, is_write, true,
3722 &target_as, attrs);
3723 return section.mr;
3726 /* Called from RCU critical section. address_space_read_cached uses this
3727 * out of line function when the target is an MMIO or IOMMU region.
3729 MemTxResult
3730 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3731 void *buf, hwaddr len)
3733 hwaddr addr1, l;
3734 MemoryRegion *mr;
3736 l = len;
3737 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3738 MEMTXATTRS_UNSPECIFIED);
3739 return flatview_read_continue(cache->fv,
3740 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3741 addr1, l, mr);
3744 /* Called from RCU critical section. address_space_write_cached uses this
3745 * out of line function when the target is an MMIO or IOMMU region.
3747 MemTxResult
3748 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3749 const void *buf, hwaddr len)
3751 hwaddr addr1, l;
3752 MemoryRegion *mr;
3754 l = len;
3755 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3756 MEMTXATTRS_UNSPECIFIED);
3757 return flatview_write_continue(cache->fv,
3758 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3759 addr1, l, mr);
3762 #define ARG1_DECL MemoryRegionCache *cache
3763 #define ARG1 cache
3764 #define SUFFIX _cached_slow
3765 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3766 #define RCU_READ_LOCK() ((void)0)
3767 #define RCU_READ_UNLOCK() ((void)0)
3768 #include "memory_ldst.inc.c"
3770 /* virtual memory access for debug (includes writing to ROM) */
3771 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3772 void *ptr, target_ulong len, bool is_write)
3774 hwaddr phys_addr;
3775 target_ulong l, page;
3776 uint8_t *buf = ptr;
3778 cpu_synchronize_state(cpu);
3779 while (len > 0) {
3780 int asidx;
3781 MemTxAttrs attrs;
3782 MemTxResult res;
3784 page = addr & TARGET_PAGE_MASK;
3785 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3786 asidx = cpu_asidx_from_attrs(cpu, attrs);
3787 /* if no physical page mapped, return an error */
3788 if (phys_addr == -1)
3789 return -1;
3790 l = (page + TARGET_PAGE_SIZE) - addr;
3791 if (l > len)
3792 l = len;
3793 phys_addr += (addr & ~TARGET_PAGE_MASK);
3794 if (is_write) {
3795 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3796 attrs, buf, l);
3797 } else {
3798 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3799 attrs, buf, l);
3801 if (res != MEMTX_OK) {
3802 return -1;
3804 len -= l;
3805 buf += l;
3806 addr += l;
3808 return 0;
3812 * Allows code that needs to deal with migration bitmaps etc to still be built
3813 * target independent.
3815 size_t qemu_target_page_size(void)
3817 return TARGET_PAGE_SIZE;
3820 int qemu_target_page_bits(void)
3822 return TARGET_PAGE_BITS;
3825 int qemu_target_page_bits_min(void)
3827 return TARGET_PAGE_BITS_MIN;
3829 #endif
3831 bool target_words_bigendian(void)
3833 #if defined(TARGET_WORDS_BIGENDIAN)
3834 return true;
3835 #else
3836 return false;
3837 #endif
3840 #ifndef CONFIG_USER_ONLY
3841 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3843 MemoryRegion*mr;
3844 hwaddr l = 1;
3845 bool res;
3847 RCU_READ_LOCK_GUARD();
3848 mr = address_space_translate(&address_space_memory,
3849 phys_addr, &phys_addr, &l, false,
3850 MEMTXATTRS_UNSPECIFIED);
3852 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3853 return res;
3856 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3858 RAMBlock *block;
3859 int ret = 0;
3861 RCU_READ_LOCK_GUARD();
3862 RAMBLOCK_FOREACH(block) {
3863 ret = func(block, opaque);
3864 if (ret) {
3865 break;
3868 return ret;
3872 * Unmap pages of memory from start to start+length such that
3873 * they a) read as 0, b) Trigger whatever fault mechanism
3874 * the OS provides for postcopy.
3875 * The pages must be unmapped by the end of the function.
3876 * Returns: 0 on success, none-0 on failure
3879 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3881 int ret = -1;
3883 uint8_t *host_startaddr = rb->host + start;
3885 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3886 error_report("ram_block_discard_range: Unaligned start address: %p",
3887 host_startaddr);
3888 goto err;
3891 if ((start + length) <= rb->used_length) {
3892 bool need_madvise, need_fallocate;
3893 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3894 error_report("ram_block_discard_range: Unaligned length: %zx",
3895 length);
3896 goto err;
3899 errno = ENOTSUP; /* If we are missing MADVISE etc */
3901 /* The logic here is messy;
3902 * madvise DONTNEED fails for hugepages
3903 * fallocate works on hugepages and shmem
3905 need_madvise = (rb->page_size == qemu_host_page_size);
3906 need_fallocate = rb->fd != -1;
3907 if (need_fallocate) {
3908 /* For a file, this causes the area of the file to be zero'd
3909 * if read, and for hugetlbfs also causes it to be unmapped
3910 * so a userfault will trigger.
3912 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3913 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3914 start, length);
3915 if (ret) {
3916 ret = -errno;
3917 error_report("ram_block_discard_range: Failed to fallocate "
3918 "%s:%" PRIx64 " +%zx (%d)",
3919 rb->idstr, start, length, ret);
3920 goto err;
3922 #else
3923 ret = -ENOSYS;
3924 error_report("ram_block_discard_range: fallocate not available/file"
3925 "%s:%" PRIx64 " +%zx (%d)",
3926 rb->idstr, start, length, ret);
3927 goto err;
3928 #endif
3930 if (need_madvise) {
3931 /* For normal RAM this causes it to be unmapped,
3932 * for shared memory it causes the local mapping to disappear
3933 * and to fall back on the file contents (which we just
3934 * fallocate'd away).
3936 #if defined(CONFIG_MADVISE)
3937 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3938 if (ret) {
3939 ret = -errno;
3940 error_report("ram_block_discard_range: Failed to discard range "
3941 "%s:%" PRIx64 " +%zx (%d)",
3942 rb->idstr, start, length, ret);
3943 goto err;
3945 #else
3946 ret = -ENOSYS;
3947 error_report("ram_block_discard_range: MADVISE not available"
3948 "%s:%" PRIx64 " +%zx (%d)",
3949 rb->idstr, start, length, ret);
3950 goto err;
3951 #endif
3953 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3954 need_madvise, need_fallocate, ret);
3955 } else {
3956 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3957 "/%zx/" RAM_ADDR_FMT")",
3958 rb->idstr, start, length, rb->used_length);
3961 err:
3962 return ret;
3965 bool ramblock_is_pmem(RAMBlock *rb)
3967 return rb->flags & RAM_PMEM;
3970 #endif
3972 void page_size_init(void)
3974 /* NOTE: we can always suppose that qemu_host_page_size >=
3975 TARGET_PAGE_SIZE */
3976 if (qemu_host_page_size == 0) {
3977 qemu_host_page_size = qemu_real_host_page_size;
3979 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3980 qemu_host_page_size = TARGET_PAGE_SIZE;
3982 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3985 #if !defined(CONFIG_USER_ONLY)
3987 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3989 if (start == end - 1) {
3990 qemu_printf("\t%3d ", start);
3991 } else {
3992 qemu_printf("\t%3d..%-3d ", start, end - 1);
3994 qemu_printf(" skip=%d ", skip);
3995 if (ptr == PHYS_MAP_NODE_NIL) {
3996 qemu_printf(" ptr=NIL");
3997 } else if (!skip) {
3998 qemu_printf(" ptr=#%d", ptr);
3999 } else {
4000 qemu_printf(" ptr=[%d]", ptr);
4002 qemu_printf("\n");
4005 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4006 int128_sub((size), int128_one())) : 0)
4008 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4010 int i;
4012 qemu_printf(" Dispatch\n");
4013 qemu_printf(" Physical sections\n");
4015 for (i = 0; i < d->map.sections_nb; ++i) {
4016 MemoryRegionSection *s = d->map.sections + i;
4017 const char *names[] = { " [unassigned]", " [not dirty]",
4018 " [ROM]", " [watch]" };
4020 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4021 " %s%s%s%s%s",
4023 s->offset_within_address_space,
4024 s->offset_within_address_space + MR_SIZE(s->mr->size),
4025 s->mr->name ? s->mr->name : "(noname)",
4026 i < ARRAY_SIZE(names) ? names[i] : "",
4027 s->mr == root ? " [ROOT]" : "",
4028 s == d->mru_section ? " [MRU]" : "",
4029 s->mr->is_iommu ? " [iommu]" : "");
4031 if (s->mr->alias) {
4032 qemu_printf(" alias=%s", s->mr->alias->name ?
4033 s->mr->alias->name : "noname");
4035 qemu_printf("\n");
4038 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4039 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4040 for (i = 0; i < d->map.nodes_nb; ++i) {
4041 int j, jprev;
4042 PhysPageEntry prev;
4043 Node *n = d->map.nodes + i;
4045 qemu_printf(" [%d]\n", i);
4047 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4048 PhysPageEntry *pe = *n + j;
4050 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4051 continue;
4054 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4056 jprev = j;
4057 prev = *pe;
4060 if (jprev != ARRAY_SIZE(*n)) {
4061 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4066 #endif