2 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "qemu/module.h"
32 #include "hw/char/escc.h"
33 #include "ui/console.h"
35 #include "qemu/cutils.h"
40 * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
41 * http://www.zilog.com/docs/serial/scc_escc_um.pdf
43 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
44 * (Slave I/O), also produced as NCR89C105. See
45 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
47 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
48 * mouse and keyboard ports don't implement all functions and they are
49 * only asynchronous. There is no DMA.
51 * Z85C30 is also used on PowerMacs and m68k Macs.
53 * There are some small differences between Sparc version (sunzilog)
54 * and PowerMac (pmac):
55 * Offset between control and data registers
56 * There is some kind of lockup bug, but we can ignore it
58 * DMA on pmac using DBDMA chip
59 * pmac can do IRDA and faster rates, sunzilog can only do 38400
60 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
62 * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
63 * but registers are grouped by type and not by channel:
64 * channel is selected by bit 0 of the address (instead of bit 1)
65 * and register is selected by bit 1 of the address (instead of bit 0).
70 * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
72 * Implemented serial mouse protocol.
74 * 2010-May-23 Artyom Tarasenko: Reworked IUS logic
77 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
83 #define CMD_PTR_MASK 0x07
84 #define CMD_CMD_MASK 0x38
86 #define CMD_CLR_TXINT 0x28
87 #define CMD_CLR_IUS 0x38
89 #define INTR_INTALL 0x01
90 #define INTR_TXINT 0x02
91 #define INTR_PAR_SPEC 0x04
92 #define INTR_RXMODEMSK 0x18
93 #define INTR_RXINT1ST 0x08
94 #define INTR_RXINTALL 0x10
95 #define INTR_WTRQ_TXRX 0x20
98 #define RXCTRL_RXEN 0x01
99 #define RXCTRL_HUNT 0x10
101 #define TXCTRL1_PAREN 0x01
102 #define TXCTRL1_PAREV 0x02
103 #define TXCTRL1_1STOP 0x04
104 #define TXCTRL1_1HSTOP 0x08
105 #define TXCTRL1_2STOP 0x0c
106 #define TXCTRL1_STPMSK 0x0c
107 #define TXCTRL1_CLK1X 0x00
108 #define TXCTRL1_CLK16X 0x40
109 #define TXCTRL1_CLK32X 0x80
110 #define TXCTRL1_CLK64X 0xc0
111 #define TXCTRL1_CLKMSK 0xc0
113 #define TXCTRL2_TXCRC 0x01
114 #define TXCTRL2_TXEN 0x08
115 #define TXCTRL2_BITMSK 0x60
116 #define TXCTRL2_5BITS 0x00
117 #define TXCTRL2_7BITS 0x20
118 #define TXCTRL2_6BITS 0x40
119 #define TXCTRL2_8BITS 0x60
124 #define MINTR_VIS 0x01
125 #define MINTR_NV 0x02
126 #define MINTR_STATUSHI 0x10
127 #define MINTR_SOFTIACK 0x20
128 #define MINTR_RST_MASK 0xc0
129 #define MINTR_RST_B 0x40
130 #define MINTR_RST_A 0x80
131 #define MINTR_RST_ALL 0xc0
133 #define MISC1_ENC_MASK 0x60
135 #define CLOCK_TRXC 0x08
139 #define MISC2_BRG_EN 0x01
140 #define MISC2_BRG_SRC 0x02
141 #define MISC2_LCL_LOOP 0x10
142 #define MISC2_PLLCMD0 0x20
143 #define MISC2_PLLCMD1 0x40
144 #define MISC2_PLLCMD2 0x80
146 #define EXTINT_DCD 0x08
147 #define EXTINT_SYNCINT 0x10
148 #define EXTINT_CTSINT 0x20
149 #define EXTINT_TXUNDRN 0x40
150 #define EXTINT_BRKINT 0x80
153 #define STATUS_RXAV 0x01
154 #define STATUS_ZERO 0x02
155 #define STATUS_TXEMPTY 0x04
156 #define STATUS_DCD 0x08
157 #define STATUS_SYNC 0x10
158 #define STATUS_CTS 0x20
159 #define STATUS_TXUNDRN 0x40
160 #define STATUS_BRK 0x80
162 #define SPEC_ALLSENT 0x01
163 #define SPEC_BITS8 0x06
165 #define IVEC_TXINTB 0x00
166 #define IVEC_LONOINT 0x06
167 #define IVEC_LORXINTA 0x0c
168 #define IVEC_LORXINTB 0x04
169 #define IVEC_LOTXINTA 0x08
170 #define IVEC_HINOINT 0x60
171 #define IVEC_HIRXINTA 0x30
172 #define IVEC_HIRXINTB 0x20
173 #define IVEC_HITXINTA 0x10
175 #define INTR_EXTINTB 0x01
176 #define INTR_TXINTB 0x02
177 #define INTR_RXINTB 0x04
178 #define INTR_EXTINTA 0x08
179 #define INTR_TXINTA 0x10
180 #define INTR_RXINTA 0x20
188 #define MISC_2CLKMISS 0x40
195 static uint8_t sunkbd_layout_dip_switch(const char *sunkbd_layout
);
196 static void handle_kbd_command(ESCCChannelState
*s
, int val
);
197 static int serial_can_receive(void *opaque
);
198 static void serial_receive_byte(ESCCChannelState
*s
, int ch
);
200 static int reg_shift(ESCCState
*s
)
202 return s
->bit_swap
? s
->it_shift
+ 1 : s
->it_shift
;
205 static int chn_shift(ESCCState
*s
)
207 return s
->bit_swap
? s
->it_shift
: s
->it_shift
+ 1;
210 static void clear_queue(void *opaque
)
212 ESCCChannelState
*s
= opaque
;
213 ESCCSERIOQueue
*q
= &s
->queue
;
214 q
->rptr
= q
->wptr
= q
->count
= 0;
217 static void put_queue(void *opaque
, int b
)
219 ESCCChannelState
*s
= opaque
;
220 ESCCSERIOQueue
*q
= &s
->queue
;
222 trace_escc_put_queue(CHN_C(s
), b
);
223 if (q
->count
>= ESCC_SERIO_QUEUE_SIZE
) {
226 q
->data
[q
->wptr
] = b
;
227 if (++q
->wptr
== ESCC_SERIO_QUEUE_SIZE
) {
231 serial_receive_byte(s
, 0);
234 static uint32_t get_queue(void *opaque
)
236 ESCCChannelState
*s
= opaque
;
237 ESCCSERIOQueue
*q
= &s
->queue
;
243 val
= q
->data
[q
->rptr
];
244 if (++q
->rptr
== ESCC_SERIO_QUEUE_SIZE
) {
249 trace_escc_get_queue(CHN_C(s
), val
);
251 serial_receive_byte(s
, 0);
256 static int escc_update_irq_chn(ESCCChannelState
*s
)
258 if ((((s
->wregs
[W_INTR
] & INTR_TXINT
) && (s
->txint
== 1)) ||
259 /* tx ints enabled, pending */
260 ((((s
->wregs
[W_INTR
] & INTR_RXMODEMSK
) == INTR_RXINT1ST
) ||
261 ((s
->wregs
[W_INTR
] & INTR_RXMODEMSK
) == INTR_RXINTALL
)) &&
263 /* rx ints enabled, pending */
264 ((s
->wregs
[W_EXTINT
] & EXTINT_BRKINT
) &&
265 (s
->rregs
[R_STATUS
] & STATUS_BRK
)))) {
272 static void escc_update_irq(ESCCChannelState
*s
)
276 irq
= escc_update_irq_chn(s
);
277 irq
|= escc_update_irq_chn(s
->otherchn
);
279 trace_escc_update_irq(irq
);
280 qemu_set_irq(s
->irq
, irq
);
283 static void escc_reset_chn(ESCCChannelState
*s
)
287 s
->rxint
= s
->txint
= 0;
288 s
->rxint_under_svc
= s
->txint_under_svc
= 0;
289 s
->e0_mode
= s
->led_mode
= s
->caps_lock_mode
= s
->num_lock_mode
= 0;
293 static void escc_soft_reset_chn(ESCCChannelState
*s
)
298 s
->wregs
[W_INTR
] &= INTR_PAR_SPEC
| INTR_WTRQ_TXRX
;
299 s
->wregs
[W_RXCTRL
] &= ~RXCTRL_RXEN
;
301 s
->wregs
[W_TXCTRL1
] |= TXCTRL1_1STOP
;
302 s
->wregs
[W_TXCTRL2
] &= TXCTRL2_TXCRC
| TXCTRL2_8BITS
;
303 s
->wregs
[W_MINTR
] &= ~MINTR_SOFTIACK
;
304 s
->wregs
[W_MISC1
] &= MISC1_ENC_MASK
;
306 s
->wregs
[W_MISC2
] &= MISC2_BRG_EN
| MISC2_BRG_SRC
|
307 MISC2_PLLCMD1
| MISC2_PLLCMD2
;
308 s
->wregs
[W_MISC2
] |= MISC2_PLLCMD0
;
309 /* Enable most interrupts */
310 s
->wregs
[W_EXTINT
] = EXTINT_DCD
| EXTINT_SYNCINT
| EXTINT_CTSINT
|
311 EXTINT_TXUNDRN
| EXTINT_BRKINT
;
313 s
->rregs
[R_STATUS
] &= STATUS_DCD
| STATUS_SYNC
| STATUS_CTS
| STATUS_BRK
;
314 s
->rregs
[R_STATUS
] |= STATUS_TXEMPTY
| STATUS_TXUNDRN
;
316 s
->rregs
[R_STATUS
] |= STATUS_DCD
| STATUS_SYNC
| STATUS_CTS
;
318 s
->rregs
[R_SPEC
] &= SPEC_ALLSENT
;
319 s
->rregs
[R_SPEC
] |= SPEC_BITS8
;
320 s
->rregs
[R_INTR
] = 0;
321 s
->rregs
[R_MISC
] &= MISC_2CLKMISS
;
324 static void escc_hard_reset_chn(ESCCChannelState
*s
)
326 escc_soft_reset_chn(s
);
329 * Hard reset is almost identical to soft reset above, except that the
330 * values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14
331 * (W_MISC2) have extra bits forced to 0/1
333 s
->wregs
[W_MINTR
] &= MINTR_VIS
| MINTR_NV
;
334 s
->wregs
[W_MINTR
] |= MINTR_RST_B
| MINTR_RST_A
;
335 s
->wregs
[W_MISC1
] = 0;
336 s
->wregs
[W_CLOCK
] = CLOCK_TRXC
;
337 s
->wregs
[W_MISC2
] &= MISC2_PLLCMD1
| MISC2_PLLCMD2
;
338 s
->wregs
[W_MISC2
] |= MISC2_LCL_LOOP
| MISC2_PLLCMD0
;
341 static void escc_reset(DeviceState
*d
)
343 ESCCState
*s
= ESCC(d
);
346 for (i
= 0; i
< 2; i
++) {
347 ESCCChannelState
*cs
= &s
->chn
[i
];
350 * According to the ESCC datasheet "Miscellaneous Questions" section
351 * on page 384, the values of the ESCC registers are not guaranteed on
352 * power-on until an explicit hardware or software reset has been
353 * issued. For now we zero the registers so that a device reset always
354 * returns the emulated device to a fixed state.
356 for (j
= 0; j
< ESCC_SERIAL_REGS
; j
++) {
362 * ...but there is an exception. The "Transmit Interrupts and Transmit
363 * Buffer Empty Bit" section on page 50 of the ESCC datasheet says of
364 * the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset
365 * (including a hardware reset by software), or a channel reset, this
366 * bit is set to 1". The Sun PROM checks this bit early on startup and
367 * gets stuck in an infinite loop if it is not set.
369 cs
->rregs
[R_STATUS
] |= STATUS_TXEMPTY
;
375 static inline void set_rxint(ESCCChannelState
*s
)
379 * XXX: missing daisy chaining: escc_chn_b rx should have a lower priority
380 * than chn_a rx/tx/special_condition service
382 s
->rxint_under_svc
= 1;
383 if (s
->chn
== escc_chn_a
) {
384 s
->rregs
[R_INTR
] |= INTR_RXINTA
;
385 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
) {
386 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HIRXINTA
;
388 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LORXINTA
;
391 s
->otherchn
->rregs
[R_INTR
] |= INTR_RXINTB
;
392 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
) {
393 s
->rregs
[R_IVEC
] = IVEC_HIRXINTB
;
395 s
->rregs
[R_IVEC
] = IVEC_LORXINTB
;
401 static inline void set_txint(ESCCChannelState
*s
)
404 if (!s
->rxint_under_svc
) {
405 s
->txint_under_svc
= 1;
406 if (s
->chn
== escc_chn_a
) {
407 if (s
->wregs
[W_INTR
] & INTR_TXINT
) {
408 s
->rregs
[R_INTR
] |= INTR_TXINTA
;
410 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
) {
411 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HITXINTA
;
413 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LOTXINTA
;
416 s
->rregs
[R_IVEC
] = IVEC_TXINTB
;
417 if (s
->wregs
[W_INTR
] & INTR_TXINT
) {
418 s
->otherchn
->rregs
[R_INTR
] |= INTR_TXINTB
;
425 static inline void clr_rxint(ESCCChannelState
*s
)
428 s
->rxint_under_svc
= 0;
429 if (s
->chn
== escc_chn_a
) {
430 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
) {
431 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HINOINT
;
433 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LONOINT
;
435 s
->rregs
[R_INTR
] &= ~INTR_RXINTA
;
437 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
) {
438 s
->rregs
[R_IVEC
] = IVEC_HINOINT
;
440 s
->rregs
[R_IVEC
] = IVEC_LONOINT
;
442 s
->otherchn
->rregs
[R_INTR
] &= ~INTR_RXINTB
;
450 static inline void clr_txint(ESCCChannelState
*s
)
453 s
->txint_under_svc
= 0;
454 if (s
->chn
== escc_chn_a
) {
455 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
) {
456 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HINOINT
;
458 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LONOINT
;
460 s
->rregs
[R_INTR
] &= ~INTR_TXINTA
;
462 s
->otherchn
->rregs
[R_INTR
] &= ~INTR_TXINTB
;
463 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
) {
464 s
->rregs
[R_IVEC
] = IVEC_HINOINT
;
466 s
->rregs
[R_IVEC
] = IVEC_LONOINT
;
468 s
->otherchn
->rregs
[R_INTR
] &= ~INTR_TXINTB
;
476 static void escc_update_parameters(ESCCChannelState
*s
)
478 int speed
, parity
, data_bits
, stop_bits
;
479 QEMUSerialSetParams ssp
;
481 if (!qemu_chr_fe_backend_connected(&s
->chr
) || s
->type
!= escc_serial
) {
485 if (s
->wregs
[W_TXCTRL1
] & TXCTRL1_PAREN
) {
486 if (s
->wregs
[W_TXCTRL1
] & TXCTRL1_PAREV
) {
494 if ((s
->wregs
[W_TXCTRL1
] & TXCTRL1_STPMSK
) == TXCTRL1_2STOP
) {
499 switch (s
->wregs
[W_TXCTRL2
] & TXCTRL2_BITMSK
) {
514 speed
= s
->clock
/ ((s
->wregs
[W_BRGLO
] | (s
->wregs
[W_BRGHI
] << 8)) + 2);
515 switch (s
->wregs
[W_TXCTRL1
] & TXCTRL1_CLKMSK
) {
531 ssp
.data_bits
= data_bits
;
532 ssp
.stop_bits
= stop_bits
;
533 trace_escc_update_parameters(CHN_C(s
), speed
, parity
, data_bits
, stop_bits
);
534 qemu_chr_fe_ioctl(&s
->chr
, CHR_IOCTL_SERIAL_SET_PARAMS
, &ssp
);
537 static void escc_mem_write(void *opaque
, hwaddr addr
,
538 uint64_t val
, unsigned size
)
540 ESCCState
*serial
= opaque
;
546 saddr
= (addr
>> reg_shift(serial
)) & 1;
547 channel
= (addr
>> chn_shift(serial
)) & 1;
548 s
= &serial
->chn
[channel
];
551 trace_escc_mem_writeb_ctrl(CHN_C(s
), s
->reg
, val
& 0xff);
555 newreg
= val
& CMD_PTR_MASK
;
565 if (s
->rxint_under_svc
) {
566 s
->rxint_under_svc
= 0;
570 } else if (s
->txint_under_svc
) {
571 s
->txint_under_svc
= 0;
580 s
->wregs
[s
->reg
] = val
;
581 if (val
& RXCTRL_HUNT
) {
582 s
->rregs
[R_STATUS
] |= STATUS_SYNC
;
585 case W_INTR
... W_IVEC
:
586 case W_SYNC1
... W_TXBUF
:
587 case W_MISC1
... W_CLOCK
:
588 case W_MISC2
... W_EXTINT
:
589 s
->wregs
[s
->reg
] = val
;
592 s
->wregs
[s
->reg
] = val
;
594 * The ESCC datasheet states that SPEC_ALLSENT is always set in
595 * sync mode, and set in async mode when all characters have
596 * cleared the transmitter. Since writes to SERIAL_DATA use the
597 * blocking qemu_chr_fe_write_all() function to write each
598 * character, the guest can never see the state when async data
599 * is in the process of being transmitted so we can set this bit
600 * unconditionally regardless of the state of the W_TXCTRL1 mode
603 s
->rregs
[R_SPEC
] |= SPEC_ALLSENT
;
604 escc_update_parameters(s
);
607 s
->wregs
[s
->reg
] = val
;
608 escc_update_parameters(s
);
612 s
->wregs
[s
->reg
] = val
;
613 s
->rregs
[s
->reg
] = val
;
614 escc_update_parameters(s
);
617 switch (val
& MINTR_RST_MASK
) {
622 trace_escc_soft_reset_chn(CHN_C(&serial
->chn
[0]));
623 escc_soft_reset_chn(&serial
->chn
[0]);
626 trace_escc_soft_reset_chn(CHN_C(&serial
->chn
[1]));
627 escc_soft_reset_chn(&serial
->chn
[1]);
630 trace_escc_hard_reset();
631 escc_hard_reset_chn(&serial
->chn
[0]);
632 escc_hard_reset_chn(&serial
->chn
[1]);
646 trace_escc_mem_writeb_data(CHN_C(s
), val
);
648 * Lower the irq when data is written to the Tx buffer and no other
649 * interrupts are currently pending. The irq will be raised again once
650 * the Tx buffer becomes empty below.
655 if (s
->wregs
[W_TXCTRL2
] & TXCTRL2_TXEN
) { /* tx enabled */
656 if (s
->wregs
[W_MISC2
] & MISC2_LCL_LOOP
) {
657 serial_receive_byte(s
, s
->tx
);
658 } else if (qemu_chr_fe_backend_connected(&s
->chr
)) {
660 * XXX this blocks entire thread. Rewrite to use
661 * qemu_chr_fe_write and background I/O callbacks
663 qemu_chr_fe_write_all(&s
->chr
, &s
->tx
, 1);
664 } else if (s
->type
== escc_kbd
&& !s
->disabled
) {
665 handle_kbd_command(s
, val
);
668 s
->rregs
[R_STATUS
] |= STATUS_TXEMPTY
; /* Tx buffer empty */
669 s
->rregs
[R_SPEC
] |= SPEC_ALLSENT
; /* All sent */
677 static uint64_t escc_mem_read(void *opaque
, hwaddr addr
,
680 ESCCState
*serial
= opaque
;
686 saddr
= (addr
>> reg_shift(serial
)) & 1;
687 channel
= (addr
>> chn_shift(serial
)) & 1;
688 s
= &serial
->chn
[channel
];
691 trace_escc_mem_readb_ctrl(CHN_C(s
), s
->reg
, s
->rregs
[s
->reg
]);
692 ret
= s
->rregs
[s
->reg
];
696 s
->rregs
[R_STATUS
] &= ~STATUS_RXAV
;
698 if (s
->type
== escc_kbd
|| s
->type
== escc_mouse
) {
703 trace_escc_mem_readb_data(CHN_C(s
), ret
);
704 qemu_chr_fe_accept_input(&s
->chr
);
712 static const MemoryRegionOps escc_mem_ops
= {
713 .read
= escc_mem_read
,
714 .write
= escc_mem_write
,
715 .endianness
= DEVICE_NATIVE_ENDIAN
,
717 .min_access_size
= 1,
718 .max_access_size
= 1,
722 static int serial_can_receive(void *opaque
)
724 ESCCChannelState
*s
= opaque
;
727 if (((s
->wregs
[W_RXCTRL
] & RXCTRL_RXEN
) == 0) /* Rx not enabled */
728 || ((s
->rregs
[R_STATUS
] & STATUS_RXAV
) == STATUS_RXAV
)) {
729 /* char already available */
737 static void serial_receive_byte(ESCCChannelState
*s
, int ch
)
739 trace_escc_serial_receive_byte(CHN_C(s
), ch
);
740 s
->rregs
[R_STATUS
] |= STATUS_RXAV
;
745 static void serial_receive_break(ESCCChannelState
*s
)
747 s
->rregs
[R_STATUS
] |= STATUS_BRK
;
751 static void serial_receive1(void *opaque
, const uint8_t *buf
, int size
)
753 ESCCChannelState
*s
= opaque
;
754 serial_receive_byte(s
, buf
[0]);
757 static void serial_event(void *opaque
, QEMUChrEvent event
)
759 ESCCChannelState
*s
= opaque
;
760 if (event
== CHR_EVENT_BREAK
) {
761 serial_receive_break(s
);
765 static const VMStateDescription vmstate_escc_chn
= {
768 .minimum_version_id
= 1,
769 .fields
= (const VMStateField
[]) {
770 VMSTATE_UINT32(vmstate_dummy
, ESCCChannelState
),
771 VMSTATE_UINT32(reg
, ESCCChannelState
),
772 VMSTATE_UINT32(rxint
, ESCCChannelState
),
773 VMSTATE_UINT32(txint
, ESCCChannelState
),
774 VMSTATE_UINT32(rxint_under_svc
, ESCCChannelState
),
775 VMSTATE_UINT32(txint_under_svc
, ESCCChannelState
),
776 VMSTATE_UINT8(rx
, ESCCChannelState
),
777 VMSTATE_UINT8(tx
, ESCCChannelState
),
778 VMSTATE_BUFFER(wregs
, ESCCChannelState
),
779 VMSTATE_BUFFER(rregs
, ESCCChannelState
),
780 VMSTATE_END_OF_LIST()
784 static const VMStateDescription vmstate_escc
= {
787 .minimum_version_id
= 1,
788 .fields
= (const VMStateField
[]) {
789 VMSTATE_STRUCT_ARRAY(chn
, ESCCState
, 2, 2, vmstate_escc_chn
,
791 VMSTATE_END_OF_LIST()
795 static void sunkbd_handle_event(DeviceState
*dev
, QemuConsole
*src
,
798 ESCCChannelState
*s
= (ESCCChannelState
*)dev
;
802 assert(evt
->type
== INPUT_EVENT_KIND_KEY
);
803 key
= evt
->u
.key
.data
;
804 qcode
= qemu_input_key_value_to_qcode(key
->key
);
805 trace_escc_sunkbd_event_in(qcode
, QKeyCode_str(qcode
),
808 if (qcode
== Q_KEY_CODE_CAPS_LOCK
) {
810 s
->caps_lock_mode
^= 1;
811 if (s
->caps_lock_mode
== 2) {
812 return; /* Drop second press */
815 s
->caps_lock_mode
^= 2;
816 if (s
->caps_lock_mode
== 3) {
817 return; /* Drop first release */
822 if (qcode
== Q_KEY_CODE_NUM_LOCK
) {
824 s
->num_lock_mode
^= 1;
825 if (s
->num_lock_mode
== 2) {
826 return; /* Drop second press */
829 s
->num_lock_mode
^= 2;
830 if (s
->num_lock_mode
== 3) {
831 return; /* Drop first release */
836 if (qcode
>= qemu_input_map_qcode_to_sun_len
) {
840 keycode
= qemu_input_map_qcode_to_sun
[qcode
];
844 trace_escc_sunkbd_event_out(keycode
);
845 put_queue(s
, keycode
);
848 static const QemuInputHandler sunkbd_handler
= {
849 .name
= "sun keyboard",
850 .mask
= INPUT_EVENT_MASK_KEY
,
851 .event
= sunkbd_handle_event
,
854 static uint8_t sunkbd_layout_dip_switch(const char *kbd_layout
)
856 /* Return the value of the dip-switches in a SUN Type 5 keyboard */
857 static uint8_t ret
= 0xff;
859 if ((ret
== 0xff) && kbd_layout
) {
861 struct layout_values
{
866 * Dip values from table 3-16 Layouts for Type 4, 5 and 5c Keyboards
869 {"en-us", 0x21}, /* U.S.A. (US5.kt) */
870 /* 0x22 is some other US (US_UNIX5.kt) */
871 {"fr", 0x23}, /* France (France5.kt) */
872 {"da", 0x24}, /* Denmark (Denmark5.kt) */
873 {"de", 0x25}, /* Germany (Germany5.kt) */
874 {"it", 0x26}, /* Italy (Italy5.kt) */
875 {"nl", 0x27}, /* The Netherlands (Netherland5.kt) */
876 {"no", 0x28}, /* Norway (Norway.kt) */
877 {"pt", 0x29}, /* Portugal (Portugal5.kt) */
878 {"es", 0x2a}, /* Spain (Spain5.kt) */
879 {"sv", 0x2b}, /* Sweden (Sweden5.kt) */
880 {"fr-ch", 0x2c}, /* Switzerland/French (Switzer_Fr5.kt) */
881 {"de-ch", 0x2d}, /* Switzerland/German (Switzer_Ge5.kt) */
882 {"en-gb", 0x2e}, /* Great Britain (UK5.kt) */
883 {"ko", 0x2f}, /* Korea (Korea5.kt) */
884 {"tw", 0x30}, /* Taiwan (Taiwan5.kt) */
885 {"ja", 0x31}, /* Japan (Japan5.kt) */
886 {"fr-ca", 0x32}, /* Canada/French (Canada_Fr5.kt) */
887 {"hu", 0x33}, /* Hungary (Hungary5.kt) */
888 {"pl", 0x34}, /* Poland (Poland5.kt) */
889 {"cz", 0x35}, /* Czech (Czech5.kt) */
890 {"ru", 0x36}, /* Russia (Russia5.kt) */
891 {"lv", 0x37}, /* Latvia (Latvia5.kt) */
892 {"tr", 0x38}, /* Turkey-Q5 (TurkeyQ5.kt) */
893 {"gr", 0x39}, /* Greece (Greece5.kt) */
894 {"ar", 0x3a}, /* Arabic (Arabic5.kt) */
895 {"lt", 0x3b}, /* Lithuania (Lithuania5.kt) */
896 {"nl-be", 0x3c}, /* Belgium (Belgian5.kt) */
897 {"be", 0x3c}, /* Belgium (Belgian5.kt) */
901 i
< sizeof(languages
) / sizeof(struct layout_values
);
903 if (!strcmp(kbd_layout
, languages
[i
].lang
)) {
904 ret
= languages
[i
].dip
;
909 /* Found no known language code */
910 if ((kbd_layout
[0] >= '0') && (kbd_layout
[0] <= '9')) {
913 /* As a fallback we also accept numeric dip switch value */
914 if (!qemu_strtoui(kbd_layout
, NULL
, 0, &tmp
)) {
921 /* Final fallback if keyboard_layout was not set or recognized */
922 ret
= 0x21; /* en-us layout */
927 static void handle_kbd_command(ESCCChannelState
*s
, int val
)
929 trace_escc_kbd_command(val
);
930 if (s
->led_mode
) { /* Ignore led byte */
935 case 1: /* Reset, return type code */
938 put_queue(s
, 4); /* Type 4 */
941 case 0xe: /* Set leds */
944 case 7: /* Query layout */
948 put_queue(s
, sunkbd_layout_dip_switch(s
->sunkbd_layout
));
955 static void sunmouse_event(void *opaque
,
956 int dx
, int dy
, int dz
, int buttons_state
)
958 ESCCChannelState
*s
= opaque
;
961 trace_escc_sunmouse_event(dx
, dy
, buttons_state
);
962 ch
= 0x80 | 0x7; /* protocol start byte, no buttons pressed */
964 if (buttons_state
& MOUSE_EVENT_LBUTTON
) {
967 if (buttons_state
& MOUSE_EVENT_MBUTTON
) {
970 if (buttons_state
& MOUSE_EVENT_RBUTTON
) {
980 } else if (ch
< -127) {
984 put_queue(s
, ch
& 0xff);
990 } else if (ch
< -127) {
994 put_queue(s
, ch
& 0xff);
996 /* MSC protocol specifies two extra motion bytes */
1002 static void escc_init1(Object
*obj
)
1004 ESCCState
*s
= ESCC(obj
);
1005 SysBusDevice
*dev
= SYS_BUS_DEVICE(obj
);
1008 for (i
= 0; i
< 2; i
++) {
1009 sysbus_init_irq(dev
, &s
->chn
[i
].irq
);
1010 s
->chn
[i
].chn
= 1 - i
;
1012 s
->chn
[0].otherchn
= &s
->chn
[1];
1013 s
->chn
[1].otherchn
= &s
->chn
[0];
1015 sysbus_init_mmio(dev
, &s
->mmio
);
1018 static void escc_realize(DeviceState
*dev
, Error
**errp
)
1020 ESCCState
*s
= ESCC(dev
);
1023 s
->chn
[0].disabled
= s
->disabled
;
1024 s
->chn
[1].disabled
= s
->disabled
;
1026 memory_region_init_io(&s
->mmio
, OBJECT(dev
), &escc_mem_ops
, s
, "escc",
1027 ESCC_SIZE
<< s
->it_shift
);
1029 for (i
= 0; i
< 2; i
++) {
1030 if (qemu_chr_fe_backend_connected(&s
->chn
[i
].chr
)) {
1031 s
->chn
[i
].clock
= s
->frequency
/ 2;
1032 qemu_chr_fe_set_handlers(&s
->chn
[i
].chr
, serial_can_receive
,
1033 serial_receive1
, serial_event
, NULL
,
1034 &s
->chn
[i
], NULL
, true);
1038 if (s
->chn
[0].type
== escc_mouse
) {
1039 qemu_add_mouse_event_handler(sunmouse_event
, &s
->chn
[0], 0,
1042 if (s
->chn
[1].type
== escc_kbd
) {
1043 s
->chn
[1].hs
= qemu_input_handler_register((DeviceState
*)(&s
->chn
[1]),
1048 static Property escc_properties
[] = {
1049 DEFINE_PROP_UINT32("frequency", ESCCState
, frequency
, 0),
1050 DEFINE_PROP_UINT32("it_shift", ESCCState
, it_shift
, 0),
1051 DEFINE_PROP_BOOL("bit_swap", ESCCState
, bit_swap
, false),
1052 DEFINE_PROP_UINT32("disabled", ESCCState
, disabled
, 0),
1053 DEFINE_PROP_UINT32("chnBtype", ESCCState
, chn
[0].type
, 0),
1054 DEFINE_PROP_UINT32("chnAtype", ESCCState
, chn
[1].type
, 0),
1055 DEFINE_PROP_CHR("chrB", ESCCState
, chn
[0].chr
),
1056 DEFINE_PROP_CHR("chrA", ESCCState
, chn
[1].chr
),
1057 DEFINE_PROP_STRING("chnA-sunkbd-layout", ESCCState
, chn
[1].sunkbd_layout
),
1058 DEFINE_PROP_END_OF_LIST(),
1061 static void escc_class_init(ObjectClass
*klass
, void *data
)
1063 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1065 dc
->reset
= escc_reset
;
1066 dc
->realize
= escc_realize
;
1067 dc
->vmsd
= &vmstate_escc
;
1068 device_class_set_props(dc
, escc_properties
);
1069 set_bit(DEVICE_CATEGORY_INPUT
, dc
->categories
);
1072 static const TypeInfo escc_info
= {
1074 .parent
= TYPE_SYS_BUS_DEVICE
,
1075 .instance_size
= sizeof(ESCCState
),
1076 .instance_init
= escc_init1
,
1077 .class_init
= escc_class_init
,
1080 static void escc_register_types(void)
1082 type_register_static(&escc_info
);
1085 type_init(escc_register_types
)