qtest: fix make check complaint in crypto module
[qemu/ar7.git] / hw / i386 / pc.c
blob93ff49c60b61066968fd7d4983db220de218c941
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
72 /* debug PC/ISA interrupts */
73 //#define DEBUG_IRQ
75 #ifdef DEBUG_IRQ
76 #define DPRINTF(fmt, ...) \
77 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
78 #else
79 #define DPRINTF(fmt, ...)
80 #endif
82 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
83 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
84 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
85 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
86 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88 #define E820_NR_ENTRIES 16
90 struct e820_entry {
91 uint64_t address;
92 uint64_t length;
93 uint32_t type;
94 } QEMU_PACKED __attribute((__aligned__(4)));
96 struct e820_table {
97 uint32_t count;
98 struct e820_entry entry[E820_NR_ENTRIES];
99 } QEMU_PACKED __attribute((__aligned__(4)));
101 static struct e820_table e820_reserve;
102 static struct e820_entry *e820_table;
103 static unsigned e820_entries;
104 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106 void gsi_handler(void *opaque, int n, int level)
108 GSIState *s = opaque;
110 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
111 if (n < ISA_NUM_IRQS) {
112 qemu_set_irq(s->i8259_irq[n], level);
114 qemu_set_irq(s->ioapic_irq[n], level);
117 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
118 unsigned size)
122 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 return 0xffffffffffffffffULL;
127 /* MSDOS compatibility mode FPU exception support */
128 static qemu_irq ferr_irq;
130 void pc_register_ferr_irq(qemu_irq irq)
132 ferr_irq = irq;
135 /* XXX: add IGNNE support */
136 void cpu_set_ferr(CPUX86State *s)
138 qemu_irq_raise(ferr_irq);
141 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
142 unsigned size)
144 qemu_irq_lower(ferr_irq);
147 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 return 0xffffffffffffffffULL;
152 /* TSC handling */
153 uint64_t cpu_get_tsc(CPUX86State *env)
155 return cpu_get_ticks();
158 /* IRQ handling */
159 int cpu_get_pic_interrupt(CPUX86State *env)
161 X86CPU *cpu = x86_env_get_cpu(env);
162 int intno;
164 if (!kvm_irqchip_in_kernel()) {
165 intno = apic_get_interrupt(cpu->apic_state);
166 if (intno >= 0) {
167 return intno;
169 /* read the irq from the PIC */
170 if (!apic_accept_pic_intr(cpu->apic_state)) {
171 return -1;
175 intno = pic_read_irq(isa_pic);
176 return intno;
179 static void pic_irq_request(void *opaque, int irq, int level)
181 CPUState *cs = first_cpu;
182 X86CPU *cpu = X86_CPU(cs);
184 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
185 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
186 CPU_FOREACH(cs) {
187 cpu = X86_CPU(cs);
188 if (apic_accept_pic_intr(cpu->apic_state)) {
189 apic_deliver_pic_intr(cpu->apic_state, level);
192 } else {
193 if (level) {
194 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
195 } else {
196 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
201 /* PC cmos mappings */
203 #define REG_EQUIPMENT_BYTE 0x14
205 int cmos_get_fd_drive_type(FloppyDriveType fd0)
207 int val;
209 switch (fd0) {
210 case FLOPPY_DRIVE_TYPE_144:
211 /* 1.44 Mb 3"5 drive */
212 val = 4;
213 break;
214 case FLOPPY_DRIVE_TYPE_288:
215 /* 2.88 Mb 3"5 drive */
216 val = 5;
217 break;
218 case FLOPPY_DRIVE_TYPE_120:
219 /* 1.2 Mb 5"5 drive */
220 val = 2;
221 break;
222 case FLOPPY_DRIVE_TYPE_NONE:
223 default:
224 val = 0;
225 break;
227 return val;
230 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
231 int16_t cylinders, int8_t heads, int8_t sectors)
233 rtc_set_memory(s, type_ofs, 47);
234 rtc_set_memory(s, info_ofs, cylinders);
235 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
236 rtc_set_memory(s, info_ofs + 2, heads);
237 rtc_set_memory(s, info_ofs + 3, 0xff);
238 rtc_set_memory(s, info_ofs + 4, 0xff);
239 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
240 rtc_set_memory(s, info_ofs + 6, cylinders);
241 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
242 rtc_set_memory(s, info_ofs + 8, sectors);
245 /* convert boot_device letter to something recognizable by the bios */
246 static int boot_device2nibble(char boot_device)
248 switch(boot_device) {
249 case 'a':
250 case 'b':
251 return 0x01; /* floppy boot */
252 case 'c':
253 return 0x02; /* hard drive boot */
254 case 'd':
255 return 0x03; /* CD-ROM boot */
256 case 'n':
257 return 0x04; /* Network boot */
259 return 0;
262 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
264 #define PC_MAX_BOOT_DEVICES 3
265 int nbds, bds[3] = { 0, };
266 int i;
268 nbds = strlen(boot_device);
269 if (nbds > PC_MAX_BOOT_DEVICES) {
270 error_setg(errp, "Too many boot devices for PC");
271 return;
273 for (i = 0; i < nbds; i++) {
274 bds[i] = boot_device2nibble(boot_device[i]);
275 if (bds[i] == 0) {
276 error_setg(errp, "Invalid boot device for PC: '%c'",
277 boot_device[i]);
278 return;
281 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
282 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
285 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
287 set_boot_dev(opaque, boot_device, errp);
290 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
292 int val, nb, i;
293 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
294 FLOPPY_DRIVE_TYPE_NONE };
296 /* floppy type */
297 if (floppy) {
298 for (i = 0; i < 2; i++) {
299 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
302 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
303 cmos_get_fd_drive_type(fd_type[1]);
304 rtc_set_memory(rtc_state, 0x10, val);
306 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
307 nb = 0;
308 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
309 nb++;
311 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
312 nb++;
314 switch (nb) {
315 case 0:
316 break;
317 case 1:
318 val |= 0x01; /* 1 drive, ready for boot */
319 break;
320 case 2:
321 val |= 0x41; /* 2 drives, ready for boot */
322 break;
324 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
327 typedef struct pc_cmos_init_late_arg {
328 ISADevice *rtc_state;
329 BusState *idebus[2];
330 } pc_cmos_init_late_arg;
332 typedef struct check_fdc_state {
333 ISADevice *floppy;
334 bool multiple;
335 } CheckFdcState;
337 static int check_fdc(Object *obj, void *opaque)
339 CheckFdcState *state = opaque;
340 Object *fdc;
341 uint32_t iobase;
342 Error *local_err = NULL;
344 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
345 if (!fdc) {
346 return 0;
349 iobase = object_property_get_int(obj, "iobase", &local_err);
350 if (local_err || iobase != 0x3f0) {
351 error_free(local_err);
352 return 0;
355 if (state->floppy) {
356 state->multiple = true;
357 } else {
358 state->floppy = ISA_DEVICE(obj);
360 return 0;
363 static const char * const fdc_container_path[] = {
364 "/unattached", "/peripheral", "/peripheral-anon"
368 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
369 * and ACPI objects.
371 ISADevice *pc_find_fdc0(void)
373 int i;
374 Object *container;
375 CheckFdcState state = { 0 };
377 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
378 container = container_get(qdev_get_machine(), fdc_container_path[i]);
379 object_child_foreach(container, check_fdc, &state);
382 if (state.multiple) {
383 error_report("warning: multiple floppy disk controllers with "
384 "iobase=0x3f0 have been found");
385 error_printf("the one being picked for CMOS setup might not reflect "
386 "your intent\n");
389 return state.floppy;
392 static void pc_cmos_init_late(void *opaque)
394 pc_cmos_init_late_arg *arg = opaque;
395 ISADevice *s = arg->rtc_state;
396 int16_t cylinders;
397 int8_t heads, sectors;
398 int val;
399 int i, trans;
401 val = 0;
402 if (ide_get_geometry(arg->idebus[0], 0,
403 &cylinders, &heads, &sectors) >= 0) {
404 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
405 val |= 0xf0;
407 if (ide_get_geometry(arg->idebus[0], 1,
408 &cylinders, &heads, &sectors) >= 0) {
409 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
410 val |= 0x0f;
412 rtc_set_memory(s, 0x12, val);
414 val = 0;
415 for (i = 0; i < 4; i++) {
416 /* NOTE: ide_get_geometry() returns the physical
417 geometry. It is always such that: 1 <= sects <= 63, 1
418 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
419 geometry can be different if a translation is done. */
420 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
421 &cylinders, &heads, &sectors) >= 0) {
422 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
423 assert((trans & ~3) == 0);
424 val |= trans << (i * 2);
427 rtc_set_memory(s, 0x39, val);
429 pc_cmos_init_floppy(s, pc_find_fdc0());
431 qemu_unregister_reset(pc_cmos_init_late, opaque);
434 void pc_cmos_init(PCMachineState *pcms,
435 BusState *idebus0, BusState *idebus1,
436 ISADevice *s)
438 int val;
439 static pc_cmos_init_late_arg arg;
441 /* various important CMOS locations needed by PC/Bochs bios */
443 /* memory size */
444 /* base memory (first MiB) */
445 val = MIN(pcms->below_4g_mem_size / 1024, 640);
446 rtc_set_memory(s, 0x15, val);
447 rtc_set_memory(s, 0x16, val >> 8);
448 /* extended memory (next 64MiB) */
449 if (pcms->below_4g_mem_size > 1024 * 1024) {
450 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
451 } else {
452 val = 0;
454 if (val > 65535)
455 val = 65535;
456 rtc_set_memory(s, 0x17, val);
457 rtc_set_memory(s, 0x18, val >> 8);
458 rtc_set_memory(s, 0x30, val);
459 rtc_set_memory(s, 0x31, val >> 8);
460 /* memory between 16MiB and 4GiB */
461 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
462 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
463 } else {
464 val = 0;
466 if (val > 65535)
467 val = 65535;
468 rtc_set_memory(s, 0x34, val);
469 rtc_set_memory(s, 0x35, val >> 8);
470 /* memory above 4GiB */
471 val = pcms->above_4g_mem_size / 65536;
472 rtc_set_memory(s, 0x5b, val);
473 rtc_set_memory(s, 0x5c, val >> 8);
474 rtc_set_memory(s, 0x5d, val >> 16);
476 object_property_add_link(OBJECT(pcms), "rtc_state",
477 TYPE_ISA_DEVICE,
478 (Object **)&pcms->rtc,
479 object_property_allow_set_link,
480 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
481 object_property_set_link(OBJECT(pcms), OBJECT(s),
482 "rtc_state", &error_abort);
484 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
486 val = 0;
487 val |= 0x02; /* FPU is there */
488 val |= 0x04; /* PS/2 mouse installed */
489 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
491 /* hard drives and FDC */
492 arg.rtc_state = s;
493 arg.idebus[0] = idebus0;
494 arg.idebus[1] = idebus1;
495 qemu_register_reset(pc_cmos_init_late, &arg);
498 #define TYPE_PORT92 "port92"
499 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
501 /* port 92 stuff: could be split off */
502 typedef struct Port92State {
503 ISADevice parent_obj;
505 MemoryRegion io;
506 uint8_t outport;
507 qemu_irq a20_out;
508 } Port92State;
510 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
511 unsigned size)
513 Port92State *s = opaque;
514 int oldval = s->outport;
516 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
517 s->outport = val;
518 qemu_set_irq(s->a20_out, (val >> 1) & 1);
519 if ((val & 1) && !(oldval & 1)) {
520 qemu_system_reset_request();
524 static uint64_t port92_read(void *opaque, hwaddr addr,
525 unsigned size)
527 Port92State *s = opaque;
528 uint32_t ret;
530 ret = s->outport;
531 DPRINTF("port92: read 0x%02x\n", ret);
532 return ret;
535 static void port92_init(ISADevice *dev, qemu_irq a20_out)
537 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
540 static const VMStateDescription vmstate_port92_isa = {
541 .name = "port92",
542 .version_id = 1,
543 .minimum_version_id = 1,
544 .fields = (VMStateField[]) {
545 VMSTATE_UINT8(outport, Port92State),
546 VMSTATE_END_OF_LIST()
550 static void port92_reset(DeviceState *d)
552 Port92State *s = PORT92(d);
554 s->outport &= ~1;
557 static const MemoryRegionOps port92_ops = {
558 .read = port92_read,
559 .write = port92_write,
560 .impl = {
561 .min_access_size = 1,
562 .max_access_size = 1,
564 .endianness = DEVICE_LITTLE_ENDIAN,
567 static void port92_initfn(Object *obj)
569 Port92State *s = PORT92(obj);
571 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
573 s->outport = 0;
575 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
578 static void port92_realizefn(DeviceState *dev, Error **errp)
580 ISADevice *isadev = ISA_DEVICE(dev);
581 Port92State *s = PORT92(dev);
583 isa_register_ioport(isadev, &s->io, 0x92);
586 static void port92_class_initfn(ObjectClass *klass, void *data)
588 DeviceClass *dc = DEVICE_CLASS(klass);
590 dc->realize = port92_realizefn;
591 dc->reset = port92_reset;
592 dc->vmsd = &vmstate_port92_isa;
594 * Reason: unlike ordinary ISA devices, this one needs additional
595 * wiring: its A20 output line needs to be wired up by
596 * port92_init().
598 dc->cannot_instantiate_with_device_add_yet = true;
601 static const TypeInfo port92_info = {
602 .name = TYPE_PORT92,
603 .parent = TYPE_ISA_DEVICE,
604 .instance_size = sizeof(Port92State),
605 .instance_init = port92_initfn,
606 .class_init = port92_class_initfn,
609 static void port92_register_types(void)
611 type_register_static(&port92_info);
614 type_init(port92_register_types)
616 static void handle_a20_line_change(void *opaque, int irq, int level)
618 X86CPU *cpu = opaque;
620 /* XXX: send to all CPUs ? */
621 /* XXX: add logic to handle multiple A20 line sources */
622 x86_cpu_set_a20(cpu, level);
625 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
627 int index = le32_to_cpu(e820_reserve.count);
628 struct e820_entry *entry;
630 if (type != E820_RAM) {
631 /* old FW_CFG_E820_TABLE entry -- reservations only */
632 if (index >= E820_NR_ENTRIES) {
633 return -EBUSY;
635 entry = &e820_reserve.entry[index++];
637 entry->address = cpu_to_le64(address);
638 entry->length = cpu_to_le64(length);
639 entry->type = cpu_to_le32(type);
641 e820_reserve.count = cpu_to_le32(index);
644 /* new "etc/e820" file -- include ram too */
645 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
646 e820_table[e820_entries].address = cpu_to_le64(address);
647 e820_table[e820_entries].length = cpu_to_le64(length);
648 e820_table[e820_entries].type = cpu_to_le32(type);
649 e820_entries++;
651 return e820_entries;
654 int e820_get_num_entries(void)
656 return e820_entries;
659 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
661 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
662 *address = le64_to_cpu(e820_table[idx].address);
663 *length = le64_to_cpu(e820_table[idx].length);
664 return true;
666 return false;
669 /* Enables contiguous-apic-ID mode, for compatibility */
670 static bool compat_apic_id_mode;
672 void enable_compat_apic_id_mode(void)
674 compat_apic_id_mode = true;
677 /* Calculates initial APIC ID for a specific CPU index
679 * Currently we need to be able to calculate the APIC ID from the CPU index
680 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
681 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
682 * all CPUs up to max_cpus.
684 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
686 uint32_t correct_id;
687 static bool warned;
689 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
690 if (compat_apic_id_mode) {
691 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
692 error_report("APIC IDs set in compatibility mode, "
693 "CPU topology won't match the configuration");
694 warned = true;
696 return cpu_index;
697 } else {
698 return correct_id;
702 static void pc_build_smbios(FWCfgState *fw_cfg)
704 uint8_t *smbios_tables, *smbios_anchor;
705 size_t smbios_tables_len, smbios_anchor_len;
706 struct smbios_phys_mem_area *mem_array;
707 unsigned i, array_count;
709 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
710 if (smbios_tables) {
711 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
712 smbios_tables, smbios_tables_len);
715 /* build the array of physical mem area from e820 table */
716 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
717 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
718 uint64_t addr, len;
720 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
721 mem_array[array_count].address = addr;
722 mem_array[array_count].length = len;
723 array_count++;
726 smbios_get_tables(mem_array, array_count,
727 &smbios_tables, &smbios_tables_len,
728 &smbios_anchor, &smbios_anchor_len);
729 g_free(mem_array);
731 if (smbios_anchor) {
732 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
733 smbios_tables, smbios_tables_len);
734 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
735 smbios_anchor, smbios_anchor_len);
739 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
741 FWCfgState *fw_cfg;
742 uint64_t *numa_fw_cfg;
743 int i, j;
745 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
747 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
749 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
750 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
751 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
752 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
753 * may see".
755 * So, this means we must not use max_cpus, here, but the maximum possible
756 * APIC ID value, plus one.
758 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
759 * the APIC ID, not the "CPU index"
761 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
762 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
763 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
764 acpi_tables, acpi_tables_len);
765 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
767 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
768 &e820_reserve, sizeof(e820_reserve));
769 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
770 sizeof(struct e820_entry) * e820_entries);
772 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
773 /* allocate memory for the NUMA channel: one (64bit) word for the number
774 * of nodes, one word for each VCPU->node and one word for each node to
775 * hold the amount of memory.
777 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
778 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
779 for (i = 0; i < max_cpus; i++) {
780 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
781 assert(apic_id < pcms->apic_id_limit);
782 j = numa_get_node_for_cpu(i);
783 if (j < nb_numa_nodes) {
784 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
787 for (i = 0; i < nb_numa_nodes; i++) {
788 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
789 cpu_to_le64(numa_info[i].node_mem);
791 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
792 (1 + pcms->apic_id_limit + nb_numa_nodes) *
793 sizeof(*numa_fw_cfg));
795 return fw_cfg;
798 static long get_file_size(FILE *f)
800 long where, size;
802 /* XXX: on Unix systems, using fstat() probably makes more sense */
804 where = ftell(f);
805 fseek(f, 0, SEEK_END);
806 size = ftell(f);
807 fseek(f, where, SEEK_SET);
809 return size;
812 /* setup_data types */
813 #define SETUP_NONE 0
814 #define SETUP_E820_EXT 1
815 #define SETUP_DTB 2
816 #define SETUP_PCI 3
817 #define SETUP_EFI 4
819 struct setup_data {
820 uint64_t next;
821 uint32_t type;
822 uint32_t len;
823 uint8_t data[0];
824 } __attribute__((packed));
826 static void load_linux(PCMachineState *pcms,
827 FWCfgState *fw_cfg)
829 uint16_t protocol;
830 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
831 int dtb_size, setup_data_offset;
832 uint32_t initrd_max;
833 uint8_t header[8192], *setup, *kernel, *initrd_data;
834 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
835 FILE *f;
836 char *vmode;
837 MachineState *machine = MACHINE(pcms);
838 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
839 struct setup_data *setup_data;
840 const char *kernel_filename = machine->kernel_filename;
841 const char *initrd_filename = machine->initrd_filename;
842 const char *dtb_filename = machine->dtb;
843 const char *kernel_cmdline = machine->kernel_cmdline;
845 /* Align to 16 bytes as a paranoia measure */
846 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
848 /* load the kernel header */
849 f = fopen(kernel_filename, "rb");
850 if (!f || !(kernel_size = get_file_size(f)) ||
851 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
852 MIN(ARRAY_SIZE(header), kernel_size)) {
853 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
854 kernel_filename, strerror(errno));
855 exit(1);
858 /* kernel protocol version */
859 #if 0
860 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
861 #endif
862 if (ldl_p(header+0x202) == 0x53726448) {
863 protocol = lduw_p(header+0x206);
864 } else {
865 /* This looks like a multiboot kernel. If it is, let's stop
866 treating it like a Linux kernel. */
867 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
868 kernel_cmdline, kernel_size, header)) {
869 return;
871 protocol = 0;
874 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
875 /* Low kernel */
876 real_addr = 0x90000;
877 cmdline_addr = 0x9a000 - cmdline_size;
878 prot_addr = 0x10000;
879 } else if (protocol < 0x202) {
880 /* High but ancient kernel */
881 real_addr = 0x90000;
882 cmdline_addr = 0x9a000 - cmdline_size;
883 prot_addr = 0x100000;
884 } else {
885 /* High and recent kernel */
886 real_addr = 0x10000;
887 cmdline_addr = 0x20000;
888 prot_addr = 0x100000;
891 #if 0
892 fprintf(stderr,
893 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
894 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
895 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
896 real_addr,
897 cmdline_addr,
898 prot_addr);
899 #endif
901 /* highest address for loading the initrd */
902 if (protocol >= 0x203) {
903 initrd_max = ldl_p(header+0x22c);
904 } else {
905 initrd_max = 0x37ffffff;
908 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
909 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
912 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
913 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
914 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
916 if (protocol >= 0x202) {
917 stl_p(header+0x228, cmdline_addr);
918 } else {
919 stw_p(header+0x20, 0xA33F);
920 stw_p(header+0x22, cmdline_addr-real_addr);
923 /* handle vga= parameter */
924 vmode = strstr(kernel_cmdline, "vga=");
925 if (vmode) {
926 unsigned int video_mode;
927 /* skip "vga=" */
928 vmode += 4;
929 if (!strncmp(vmode, "normal", 6)) {
930 video_mode = 0xffff;
931 } else if (!strncmp(vmode, "ext", 3)) {
932 video_mode = 0xfffe;
933 } else if (!strncmp(vmode, "ask", 3)) {
934 video_mode = 0xfffd;
935 } else {
936 video_mode = strtol(vmode, NULL, 0);
938 stw_p(header+0x1fa, video_mode);
941 /* loader type */
942 /* High nybble = B reserved for QEMU; low nybble is revision number.
943 If this code is substantially changed, you may want to consider
944 incrementing the revision. */
945 if (protocol >= 0x200) {
946 header[0x210] = 0xB0;
948 /* heap */
949 if (protocol >= 0x201) {
950 header[0x211] |= 0x80; /* CAN_USE_HEAP */
951 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
954 /* load initrd */
955 if (initrd_filename) {
956 if (protocol < 0x200) {
957 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
958 exit(1);
961 initrd_size = get_image_size(initrd_filename);
962 if (initrd_size < 0) {
963 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
964 initrd_filename, strerror(errno));
965 exit(1);
968 initrd_addr = (initrd_max-initrd_size) & ~4095;
970 initrd_data = g_malloc(initrd_size);
971 load_image(initrd_filename, initrd_data);
973 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
974 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
975 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
977 stl_p(header+0x218, initrd_addr);
978 stl_p(header+0x21c, initrd_size);
981 /* load kernel and setup */
982 setup_size = header[0x1f1];
983 if (setup_size == 0) {
984 setup_size = 4;
986 setup_size = (setup_size+1)*512;
987 if (setup_size > kernel_size) {
988 fprintf(stderr, "qemu: invalid kernel header\n");
989 exit(1);
991 kernel_size -= setup_size;
993 setup = g_malloc(setup_size);
994 kernel = g_malloc(kernel_size);
995 fseek(f, 0, SEEK_SET);
996 if (fread(setup, 1, setup_size, f) != setup_size) {
997 fprintf(stderr, "fread() failed\n");
998 exit(1);
1000 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1001 fprintf(stderr, "fread() failed\n");
1002 exit(1);
1004 fclose(f);
1006 /* append dtb to kernel */
1007 if (dtb_filename) {
1008 if (protocol < 0x209) {
1009 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1010 exit(1);
1013 dtb_size = get_image_size(dtb_filename);
1014 if (dtb_size <= 0) {
1015 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1016 dtb_filename, strerror(errno));
1017 exit(1);
1020 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1021 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1022 kernel = g_realloc(kernel, kernel_size);
1024 stq_p(header+0x250, prot_addr + setup_data_offset);
1026 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1027 setup_data->next = 0;
1028 setup_data->type = cpu_to_le32(SETUP_DTB);
1029 setup_data->len = cpu_to_le32(dtb_size);
1031 load_image_size(dtb_filename, setup_data->data, dtb_size);
1034 memcpy(setup, header, MIN(sizeof(header), setup_size));
1036 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1037 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1038 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1040 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1041 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1042 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1044 if (fw_cfg_dma_enabled(fw_cfg)) {
1045 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1046 option_rom[nb_option_roms].bootindex = 0;
1047 } else {
1048 option_rom[nb_option_roms].name = "linuxboot.bin";
1049 option_rom[nb_option_roms].bootindex = 0;
1051 nb_option_roms++;
1054 #define NE2000_NB_MAX 6
1056 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1057 0x280, 0x380 };
1058 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1060 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1062 static int nb_ne2k = 0;
1064 if (nb_ne2k == NE2000_NB_MAX)
1065 return;
1066 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1067 ne2000_irq[nb_ne2k], nd);
1068 nb_ne2k++;
1071 DeviceState *cpu_get_current_apic(void)
1073 if (current_cpu) {
1074 X86CPU *cpu = X86_CPU(current_cpu);
1075 return cpu->apic_state;
1076 } else {
1077 return NULL;
1081 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1083 X86CPU *cpu = opaque;
1085 if (level) {
1086 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1090 static int pc_present_cpus_count(PCMachineState *pcms)
1092 int i, boot_cpus = 0;
1093 for (i = 0; i < pcms->possible_cpus->len; i++) {
1094 if (pcms->possible_cpus->cpus[i].cpu) {
1095 boot_cpus++;
1098 return boot_cpus;
1101 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id,
1102 Error **errp)
1104 X86CPU *cpu = NULL;
1105 Error *local_err = NULL;
1107 cpu = X86_CPU(object_new(typename));
1109 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1110 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1112 if (local_err) {
1113 error_propagate(errp, local_err);
1114 object_unref(OBJECT(cpu));
1115 cpu = NULL;
1117 return cpu;
1120 void pc_hot_add_cpu(const int64_t id, Error **errp)
1122 X86CPU *cpu;
1123 ObjectClass *oc;
1124 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1125 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1126 Error *local_err = NULL;
1128 if (id < 0) {
1129 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1130 return;
1133 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1134 error_setg(errp, "Unable to add CPU: %" PRIi64
1135 ", resulting APIC ID (%" PRIi64 ") is too large",
1136 id, apic_id);
1137 return;
1140 assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1141 oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1142 cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1143 if (local_err) {
1144 error_propagate(errp, local_err);
1145 return;
1147 object_unref(OBJECT(cpu));
1150 void pc_cpus_init(PCMachineState *pcms)
1152 int i;
1153 CPUClass *cc;
1154 ObjectClass *oc;
1155 const char *typename;
1156 gchar **model_pieces;
1157 X86CPU *cpu = NULL;
1158 MachineState *machine = MACHINE(pcms);
1160 /* init CPUs */
1161 if (machine->cpu_model == NULL) {
1162 #ifdef TARGET_X86_64
1163 machine->cpu_model = "qemu64";
1164 #else
1165 machine->cpu_model = "qemu32";
1166 #endif
1169 model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1170 if (!model_pieces[0]) {
1171 error_report("Invalid/empty CPU model name");
1172 exit(1);
1175 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1176 if (oc == NULL) {
1177 error_report("Unable to find CPU definition: %s", model_pieces[0]);
1178 exit(1);
1180 typename = object_class_get_name(oc);
1181 cc = CPU_CLASS(oc);
1182 cc->parse_features(typename, model_pieces[1], &error_fatal);
1183 g_strfreev(model_pieces);
1185 /* Calculates the limit to CPU APIC ID values
1187 * Limit for the APIC ID value, so that all
1188 * CPU APIC IDs are < pcms->apic_id_limit.
1190 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1192 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1193 if (pcms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1194 error_report("max_cpus is too large. APIC ID of last CPU is %u",
1195 pcms->apic_id_limit - 1);
1196 exit(1);
1199 pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1200 sizeof(CPUArchId) * max_cpus);
1201 for (i = 0; i < max_cpus; i++) {
1202 pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1203 pcms->possible_cpus->len++;
1204 if (i < smp_cpus) {
1205 cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i),
1206 &error_fatal);
1207 object_unref(OBJECT(cpu));
1211 /* tell smbios about cpuid version and features */
1212 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1215 static void pc_build_feature_control_file(PCMachineState *pcms)
1217 X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1218 CPUX86State *env = &cpu->env;
1219 uint32_t unused, ecx, edx;
1220 uint64_t feature_control_bits = 0;
1221 uint64_t *val;
1223 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1224 if (ecx & CPUID_EXT_VMX) {
1225 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1228 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1229 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1230 (env->mcg_cap & MCG_LMCE_P)) {
1231 feature_control_bits |= FEATURE_CONTROL_LMCE;
1234 if (!feature_control_bits) {
1235 return;
1238 val = g_malloc(sizeof(*val));
1239 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1240 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1243 static
1244 void pc_machine_done(Notifier *notifier, void *data)
1246 PCMachineState *pcms = container_of(notifier,
1247 PCMachineState, machine_done);
1248 PCIBus *bus = pcms->bus;
1250 /* set the number of CPUs */
1251 rtc_set_memory(pcms->rtc, 0x5f, pc_present_cpus_count(pcms) - 1);
1253 if (bus) {
1254 int extra_hosts = 0;
1256 QLIST_FOREACH(bus, &bus->child, sibling) {
1257 /* look for expander root buses */
1258 if (pci_bus_is_root(bus)) {
1259 extra_hosts++;
1262 if (extra_hosts && pcms->fw_cfg) {
1263 uint64_t *val = g_malloc(sizeof(*val));
1264 *val = cpu_to_le64(extra_hosts);
1265 fw_cfg_add_file(pcms->fw_cfg,
1266 "etc/extra-pci-roots", val, sizeof(*val));
1270 acpi_setup();
1271 if (pcms->fw_cfg) {
1272 pc_build_smbios(pcms->fw_cfg);
1273 pc_build_feature_control_file(pcms);
1277 void pc_guest_info_init(PCMachineState *pcms)
1279 int i;
1281 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1282 pcms->numa_nodes = nb_numa_nodes;
1283 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1284 sizeof *pcms->node_mem);
1285 for (i = 0; i < nb_numa_nodes; i++) {
1286 pcms->node_mem[i] = numa_info[i].node_mem;
1289 pcms->machine_done.notify = pc_machine_done;
1290 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1293 /* setup pci memory address space mapping into system address space */
1294 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1295 MemoryRegion *pci_address_space)
1297 /* Set to lower priority than RAM */
1298 memory_region_add_subregion_overlap(system_memory, 0x0,
1299 pci_address_space, -1);
1302 void pc_acpi_init(const char *default_dsdt)
1304 char *filename;
1306 if (acpi_tables != NULL) {
1307 /* manually set via -acpitable, leave it alone */
1308 return;
1311 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1312 if (filename == NULL) {
1313 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1314 } else {
1315 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1316 &error_abort);
1317 Error *err = NULL;
1319 qemu_opt_set(opts, "file", filename, &error_abort);
1321 acpi_table_add_builtin(opts, &err);
1322 if (err) {
1323 error_reportf_err(err, "WARNING: failed to load %s: ",
1324 filename);
1326 g_free(filename);
1330 void xen_load_linux(PCMachineState *pcms)
1332 int i;
1333 FWCfgState *fw_cfg;
1335 assert(MACHINE(pcms)->kernel_filename != NULL);
1337 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1338 rom_set_fw(fw_cfg);
1340 load_linux(pcms, fw_cfg);
1341 for (i = 0; i < nb_option_roms; i++) {
1342 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1343 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1344 !strcmp(option_rom[i].name, "multiboot.bin"));
1345 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1347 pcms->fw_cfg = fw_cfg;
1350 void pc_memory_init(PCMachineState *pcms,
1351 MemoryRegion *system_memory,
1352 MemoryRegion *rom_memory,
1353 MemoryRegion **ram_memory)
1355 int linux_boot, i;
1356 MemoryRegion *ram, *option_rom_mr;
1357 MemoryRegion *ram_below_4g, *ram_above_4g;
1358 FWCfgState *fw_cfg;
1359 MachineState *machine = MACHINE(pcms);
1360 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1362 assert(machine->ram_size == pcms->below_4g_mem_size +
1363 pcms->above_4g_mem_size);
1365 linux_boot = (machine->kernel_filename != NULL);
1367 /* Allocate RAM. We allocate it as a single memory region and use
1368 * aliases to address portions of it, mostly for backwards compatibility
1369 * with older qemus that used qemu_ram_alloc().
1371 ram = g_malloc(sizeof(*ram));
1372 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1373 machine->ram_size);
1374 *ram_memory = ram;
1375 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1376 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1377 0, pcms->below_4g_mem_size);
1378 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1379 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1380 if (pcms->above_4g_mem_size > 0) {
1381 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1382 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1383 pcms->below_4g_mem_size,
1384 pcms->above_4g_mem_size);
1385 memory_region_add_subregion(system_memory, 0x100000000ULL,
1386 ram_above_4g);
1387 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1390 if (!pcmc->has_reserved_memory &&
1391 (machine->ram_slots ||
1392 (machine->maxram_size > machine->ram_size))) {
1393 MachineClass *mc = MACHINE_GET_CLASS(machine);
1395 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1396 mc->name);
1397 exit(EXIT_FAILURE);
1400 /* initialize hotplug memory address space */
1401 if (pcmc->has_reserved_memory &&
1402 (machine->ram_size < machine->maxram_size)) {
1403 ram_addr_t hotplug_mem_size =
1404 machine->maxram_size - machine->ram_size;
1406 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1407 error_report("unsupported amount of memory slots: %"PRIu64,
1408 machine->ram_slots);
1409 exit(EXIT_FAILURE);
1412 if (QEMU_ALIGN_UP(machine->maxram_size,
1413 TARGET_PAGE_SIZE) != machine->maxram_size) {
1414 error_report("maximum memory size must by aligned to multiple of "
1415 "%d bytes", TARGET_PAGE_SIZE);
1416 exit(EXIT_FAILURE);
1419 pcms->hotplug_memory.base =
1420 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1422 if (pcmc->enforce_aligned_dimm) {
1423 /* size hotplug region assuming 1G page max alignment per slot */
1424 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1427 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1428 hotplug_mem_size) {
1429 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1430 machine->maxram_size);
1431 exit(EXIT_FAILURE);
1434 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1435 "hotplug-memory", hotplug_mem_size);
1436 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1437 &pcms->hotplug_memory.mr);
1440 /* Initialize PC system firmware */
1441 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1443 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1444 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1445 &error_fatal);
1446 vmstate_register_ram_global(option_rom_mr);
1447 memory_region_add_subregion_overlap(rom_memory,
1448 PC_ROM_MIN_VGA,
1449 option_rom_mr,
1452 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1454 rom_set_fw(fw_cfg);
1456 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1457 uint64_t *val = g_malloc(sizeof(*val));
1458 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1459 uint64_t res_mem_end = pcms->hotplug_memory.base;
1461 if (!pcmc->broken_reserved_end) {
1462 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1464 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1465 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1468 if (linux_boot) {
1469 load_linux(pcms, fw_cfg);
1472 for (i = 0; i < nb_option_roms; i++) {
1473 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1475 pcms->fw_cfg = fw_cfg;
1477 /* Init default IOAPIC address space */
1478 pcms->ioapic_as = &address_space_memory;
1481 qemu_irq pc_allocate_cpu_irq(void)
1483 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1486 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1488 DeviceState *dev = NULL;
1490 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1491 if (pci_bus) {
1492 PCIDevice *pcidev = pci_vga_init(pci_bus);
1493 dev = pcidev ? &pcidev->qdev : NULL;
1494 } else if (isa_bus) {
1495 ISADevice *isadev = isa_vga_init(isa_bus);
1496 dev = isadev ? DEVICE(isadev) : NULL;
1498 rom_reset_order_override();
1499 return dev;
1502 static const MemoryRegionOps ioport80_io_ops = {
1503 .write = ioport80_write,
1504 .read = ioport80_read,
1505 .endianness = DEVICE_NATIVE_ENDIAN,
1506 .impl = {
1507 .min_access_size = 1,
1508 .max_access_size = 1,
1512 static const MemoryRegionOps ioportF0_io_ops = {
1513 .write = ioportF0_write,
1514 .read = ioportF0_read,
1515 .endianness = DEVICE_NATIVE_ENDIAN,
1516 .impl = {
1517 .min_access_size = 1,
1518 .max_access_size = 1,
1522 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1523 ISADevice **rtc_state,
1524 bool create_fdctrl,
1525 bool no_vmport,
1526 uint32_t hpet_irqs)
1528 int i;
1529 DriveInfo *fd[MAX_FD];
1530 DeviceState *hpet = NULL;
1531 int pit_isa_irq = 0;
1532 qemu_irq pit_alt_irq = NULL;
1533 qemu_irq rtc_irq = NULL;
1534 qemu_irq *a20_line;
1535 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1536 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1537 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1539 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1540 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1542 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1543 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1546 * Check if an HPET shall be created.
1548 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1549 * when the HPET wants to take over. Thus we have to disable the latter.
1551 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1552 /* In order to set property, here not using sysbus_try_create_simple */
1553 hpet = qdev_try_create(NULL, TYPE_HPET);
1554 if (hpet) {
1555 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1556 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1557 * IRQ8 and IRQ2.
1559 uint8_t compat = object_property_get_int(OBJECT(hpet),
1560 HPET_INTCAP, NULL);
1561 if (!compat) {
1562 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1564 qdev_init_nofail(hpet);
1565 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1567 for (i = 0; i < GSI_NUM_PINS; i++) {
1568 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1570 pit_isa_irq = -1;
1571 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1572 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1575 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1577 qemu_register_boot_set(pc_boot_set, *rtc_state);
1579 if (!xen_enabled()) {
1580 if (kvm_pit_in_kernel()) {
1581 pit = kvm_pit_init(isa_bus, 0x40);
1582 } else {
1583 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1585 if (hpet) {
1586 /* connect PIT to output control line of the HPET */
1587 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1589 pcspk_init(isa_bus, pit);
1592 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1593 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1595 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1596 i8042 = isa_create_simple(isa_bus, "i8042");
1597 i8042_setup_a20_line(i8042, a20_line[0]);
1598 if (!no_vmport) {
1599 vmport_init(isa_bus);
1600 vmmouse = isa_try_create(isa_bus, "vmmouse");
1601 } else {
1602 vmmouse = NULL;
1604 if (vmmouse) {
1605 DeviceState *dev = DEVICE(vmmouse);
1606 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1607 qdev_init_nofail(dev);
1609 port92 = isa_create_simple(isa_bus, "port92");
1610 port92_init(port92, a20_line[1]);
1611 g_free(a20_line);
1613 DMA_init(isa_bus, 0);
1615 for(i = 0; i < MAX_FD; i++) {
1616 fd[i] = drive_get(IF_FLOPPY, 0, i);
1617 create_fdctrl |= !!fd[i];
1619 if (create_fdctrl) {
1620 fdctrl_init_isa(isa_bus, fd);
1624 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1626 int i;
1628 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1629 for (i = 0; i < nb_nics; i++) {
1630 NICInfo *nd = &nd_table[i];
1632 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1633 pc_init_ne2k_isa(isa_bus, nd);
1634 } else {
1635 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1638 rom_reset_order_override();
1641 void pc_pci_device_init(PCIBus *pci_bus)
1643 int max_bus;
1644 int bus;
1646 max_bus = drive_get_max_bus(IF_SCSI);
1647 for (bus = 0; bus <= max_bus; bus++) {
1648 pci_create_simple(pci_bus, -1, "lsi53c895a");
1652 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1654 DeviceState *dev;
1655 SysBusDevice *d;
1656 unsigned int i;
1658 if (kvm_ioapic_in_kernel()) {
1659 dev = qdev_create(NULL, "kvm-ioapic");
1660 } else {
1661 dev = qdev_create(NULL, "ioapic");
1663 if (parent_name) {
1664 object_property_add_child(object_resolve_path(parent_name, NULL),
1665 "ioapic", OBJECT(dev), NULL);
1667 qdev_init_nofail(dev);
1668 d = SYS_BUS_DEVICE(dev);
1669 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1671 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1672 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1676 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1677 DeviceState *dev, Error **errp)
1679 HotplugHandlerClass *hhc;
1680 Error *local_err = NULL;
1681 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1682 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1683 PCDIMMDevice *dimm = PC_DIMM(dev);
1684 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1685 MemoryRegion *mr = ddc->get_memory_region(dimm);
1686 uint64_t align = TARGET_PAGE_SIZE;
1688 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1689 align = memory_region_get_alignment(mr);
1692 if (!pcms->acpi_dev) {
1693 error_setg(&local_err,
1694 "memory hotplug is not enabled: missing acpi device");
1695 goto out;
1698 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1699 if (local_err) {
1700 goto out;
1703 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1704 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1705 out:
1706 error_propagate(errp, local_err);
1709 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1710 DeviceState *dev, Error **errp)
1712 HotplugHandlerClass *hhc;
1713 Error *local_err = NULL;
1714 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1716 if (!pcms->acpi_dev) {
1717 error_setg(&local_err,
1718 "memory hotplug is not enabled: missing acpi device");
1719 goto out;
1722 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1723 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1725 out:
1726 error_propagate(errp, local_err);
1729 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1730 DeviceState *dev, Error **errp)
1732 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1733 PCDIMMDevice *dimm = PC_DIMM(dev);
1734 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1735 MemoryRegion *mr = ddc->get_memory_region(dimm);
1736 HotplugHandlerClass *hhc;
1737 Error *local_err = NULL;
1739 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1740 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1742 if (local_err) {
1743 goto out;
1746 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1747 object_unparent(OBJECT(dev));
1749 out:
1750 error_propagate(errp, local_err);
1753 static int pc_apic_cmp(const void *a, const void *b)
1755 CPUArchId *apic_a = (CPUArchId *)a;
1756 CPUArchId *apic_b = (CPUArchId *)b;
1758 return apic_a->arch_id - apic_b->arch_id;
1761 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1762 * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no
1763 * entry correponding to CPU's apic_id returns NULL.
1765 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu,
1766 int *idx)
1768 CPUClass *cc = CPU_GET_CLASS(cpu);
1769 CPUArchId apic_id, *found_cpu;
1771 apic_id.arch_id = cc->get_arch_id(CPU(cpu));
1772 found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1773 pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1774 pc_apic_cmp);
1775 if (found_cpu && idx) {
1776 *idx = found_cpu - pcms->possible_cpus->cpus;
1778 return found_cpu;
1781 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1782 DeviceState *dev, Error **errp)
1784 CPUArchId *found_cpu;
1785 HotplugHandlerClass *hhc;
1786 Error *local_err = NULL;
1787 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1789 if (pcms->acpi_dev) {
1790 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1791 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1792 if (local_err) {
1793 goto out;
1797 if (dev->hotplugged) {
1798 /* increment the number of CPUs */
1799 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1802 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1803 found_cpu->cpu = CPU(dev);
1804 out:
1805 error_propagate(errp, local_err);
1807 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1808 DeviceState *dev, Error **errp)
1810 int idx = -1;
1811 HotplugHandlerClass *hhc;
1812 Error *local_err = NULL;
1813 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1815 pc_find_cpu_slot(pcms, CPU(dev), &idx);
1816 assert(idx != -1);
1817 if (idx == 0) {
1818 error_setg(&local_err, "Boot CPU is unpluggable");
1819 goto out;
1822 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1823 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1825 if (local_err) {
1826 goto out;
1829 out:
1830 error_propagate(errp, local_err);
1834 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1835 DeviceState *dev, Error **errp)
1837 CPUArchId *found_cpu;
1838 HotplugHandlerClass *hhc;
1839 Error *local_err = NULL;
1840 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1842 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1843 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1845 if (local_err) {
1846 goto out;
1849 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1850 found_cpu->cpu = NULL;
1851 object_unparent(OBJECT(dev));
1853 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) - 1);
1854 out:
1855 error_propagate(errp, local_err);
1858 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1859 DeviceState *dev, Error **errp)
1861 int idx;
1862 CPUState *cs;
1863 CPUArchId *cpu_slot;
1864 X86CPUTopoInfo topo;
1865 X86CPU *cpu = X86_CPU(dev);
1866 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1868 /* if APIC ID is not set, set it based on socket/core/thread properties */
1869 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1870 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1872 if (cpu->socket_id < 0) {
1873 error_setg(errp, "CPU socket-id is not set");
1874 return;
1875 } else if (cpu->socket_id > max_socket) {
1876 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1877 cpu->socket_id, max_socket);
1878 return;
1880 if (cpu->core_id < 0) {
1881 error_setg(errp, "CPU core-id is not set");
1882 return;
1883 } else if (cpu->core_id > (smp_cores - 1)) {
1884 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1885 cpu->core_id, smp_cores - 1);
1886 return;
1888 if (cpu->thread_id < 0) {
1889 error_setg(errp, "CPU thread-id is not set");
1890 return;
1891 } else if (cpu->thread_id > (smp_threads - 1)) {
1892 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1893 cpu->thread_id, smp_threads - 1);
1894 return;
1897 topo.pkg_id = cpu->socket_id;
1898 topo.core_id = cpu->core_id;
1899 topo.smt_id = cpu->thread_id;
1900 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1903 cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx);
1904 if (!cpu_slot) {
1905 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1906 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1907 " APIC ID %" PRIu32 ", valid index range 0:%d",
1908 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1909 pcms->possible_cpus->len - 1);
1910 return;
1913 if (cpu_slot->cpu) {
1914 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1915 idx, cpu->apic_id);
1916 return;
1919 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1920 * so that query_hotpluggable_cpus would show correct values
1922 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1923 * once -smp refactoring is complete and there will be CPU private
1924 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1925 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1926 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1927 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1928 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1929 return;
1931 cpu->socket_id = topo.pkg_id;
1933 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1934 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1935 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1936 return;
1938 cpu->core_id = topo.core_id;
1940 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1941 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1942 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1943 return;
1945 cpu->thread_id = topo.smt_id;
1947 cs = CPU(cpu);
1948 cs->cpu_index = idx;
1951 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1952 DeviceState *dev, Error **errp)
1954 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1955 pc_cpu_pre_plug(hotplug_dev, dev, errp);
1959 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1960 DeviceState *dev, Error **errp)
1962 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1963 pc_dimm_plug(hotplug_dev, dev, errp);
1964 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1965 pc_cpu_plug(hotplug_dev, dev, errp);
1969 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1970 DeviceState *dev, Error **errp)
1972 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1973 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1974 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1975 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
1976 } else {
1977 error_setg(errp, "acpi: device unplug request for not supported device"
1978 " type: %s", object_get_typename(OBJECT(dev)));
1982 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1983 DeviceState *dev, Error **errp)
1985 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1986 pc_dimm_unplug(hotplug_dev, dev, errp);
1987 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1988 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
1989 } else {
1990 error_setg(errp, "acpi: device unplug for not supported device"
1991 " type: %s", object_get_typename(OBJECT(dev)));
1995 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1996 DeviceState *dev)
1998 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2000 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2001 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2002 return HOTPLUG_HANDLER(machine);
2005 return pcmc->get_hotplug_handler ?
2006 pcmc->get_hotplug_handler(machine, dev) : NULL;
2009 static void
2010 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2011 const char *name, void *opaque,
2012 Error **errp)
2014 PCMachineState *pcms = PC_MACHINE(obj);
2015 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2017 visit_type_int(v, name, &value, errp);
2020 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2021 const char *name, void *opaque,
2022 Error **errp)
2024 PCMachineState *pcms = PC_MACHINE(obj);
2025 uint64_t value = pcms->max_ram_below_4g;
2027 visit_type_size(v, name, &value, errp);
2030 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2031 const char *name, void *opaque,
2032 Error **errp)
2034 PCMachineState *pcms = PC_MACHINE(obj);
2035 Error *error = NULL;
2036 uint64_t value;
2038 visit_type_size(v, name, &value, &error);
2039 if (error) {
2040 error_propagate(errp, error);
2041 return;
2043 if (value > (1ULL << 32)) {
2044 error_setg(&error,
2045 "Machine option 'max-ram-below-4g=%"PRIu64
2046 "' expects size less than or equal to 4G", value);
2047 error_propagate(errp, error);
2048 return;
2051 if (value < (1ULL << 20)) {
2052 error_report("Warning: small max_ram_below_4g(%"PRIu64
2053 ") less than 1M. BIOS may not work..",
2054 value);
2057 pcms->max_ram_below_4g = value;
2060 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2061 void *opaque, Error **errp)
2063 PCMachineState *pcms = PC_MACHINE(obj);
2064 OnOffAuto vmport = pcms->vmport;
2066 visit_type_OnOffAuto(v, name, &vmport, errp);
2069 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2070 void *opaque, Error **errp)
2072 PCMachineState *pcms = PC_MACHINE(obj);
2074 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2077 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2079 bool smm_available = false;
2081 if (pcms->smm == ON_OFF_AUTO_OFF) {
2082 return false;
2085 if (tcg_enabled() || qtest_enabled()) {
2086 smm_available = true;
2087 } else if (kvm_enabled()) {
2088 smm_available = kvm_has_smm();
2091 if (smm_available) {
2092 return true;
2095 if (pcms->smm == ON_OFF_AUTO_ON) {
2096 error_report("System Management Mode not supported by this hypervisor.");
2097 exit(1);
2099 return false;
2102 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2103 void *opaque, Error **errp)
2105 PCMachineState *pcms = PC_MACHINE(obj);
2106 OnOffAuto smm = pcms->smm;
2108 visit_type_OnOffAuto(v, name, &smm, errp);
2111 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2112 void *opaque, Error **errp)
2114 PCMachineState *pcms = PC_MACHINE(obj);
2116 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2119 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2121 PCMachineState *pcms = PC_MACHINE(obj);
2123 return pcms->acpi_nvdimm_state.is_enabled;
2126 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2128 PCMachineState *pcms = PC_MACHINE(obj);
2130 pcms->acpi_nvdimm_state.is_enabled = value;
2133 static void pc_machine_initfn(Object *obj)
2135 PCMachineState *pcms = PC_MACHINE(obj);
2137 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2138 pc_machine_get_hotplug_memory_region_size,
2139 NULL, NULL, NULL, &error_abort);
2141 pcms->max_ram_below_4g = 0; /* use default */
2142 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2143 pc_machine_get_max_ram_below_4g,
2144 pc_machine_set_max_ram_below_4g,
2145 NULL, NULL, &error_abort);
2146 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
2147 "Maximum ram below the 4G boundary (32bit boundary)",
2148 &error_abort);
2150 pcms->smm = ON_OFF_AUTO_AUTO;
2151 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
2152 pc_machine_get_smm,
2153 pc_machine_set_smm,
2154 NULL, NULL, &error_abort);
2155 object_property_set_description(obj, PC_MACHINE_SMM,
2156 "Enable SMM (pc & q35)",
2157 &error_abort);
2159 pcms->vmport = ON_OFF_AUTO_AUTO;
2160 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
2161 pc_machine_get_vmport,
2162 pc_machine_set_vmport,
2163 NULL, NULL, &error_abort);
2164 object_property_set_description(obj, PC_MACHINE_VMPORT,
2165 "Enable vmport (pc & q35)",
2166 &error_abort);
2168 /* nvdimm is disabled on default. */
2169 pcms->acpi_nvdimm_state.is_enabled = false;
2170 object_property_add_bool(obj, PC_MACHINE_NVDIMM, pc_machine_get_nvdimm,
2171 pc_machine_set_nvdimm, &error_abort);
2174 static void pc_machine_reset(void)
2176 CPUState *cs;
2177 X86CPU *cpu;
2179 qemu_devices_reset();
2181 /* Reset APIC after devices have been reset to cancel
2182 * any changes that qemu_devices_reset() might have done.
2184 CPU_FOREACH(cs) {
2185 cpu = X86_CPU(cs);
2187 if (cpu->apic_state) {
2188 device_reset(cpu->apic_state);
2193 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2195 X86CPUTopoInfo topo;
2196 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2197 &topo);
2198 return topo.pkg_id;
2201 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2203 PCMachineState *pcms = PC_MACHINE(machine);
2204 int len = sizeof(CPUArchIdList) +
2205 sizeof(CPUArchId) * (pcms->possible_cpus->len);
2206 CPUArchIdList *list = g_malloc(len);
2208 memcpy(list, pcms->possible_cpus, len);
2209 return list;
2212 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine)
2214 int i;
2215 CPUState *cpu;
2216 HotpluggableCPUList *head = NULL;
2217 PCMachineState *pcms = PC_MACHINE(machine);
2218 const char *cpu_type;
2220 cpu = pcms->possible_cpus->cpus[0].cpu;
2221 assert(cpu); /* BSP is always present */
2222 cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu)));
2224 for (i = 0; i < pcms->possible_cpus->len; i++) {
2225 X86CPUTopoInfo topo;
2226 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2227 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2228 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2229 const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id;
2231 x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo);
2233 cpu_item->type = g_strdup(cpu_type);
2234 cpu_item->vcpus_count = 1;
2235 cpu_props->has_socket_id = true;
2236 cpu_props->socket_id = topo.pkg_id;
2237 cpu_props->has_core_id = true;
2238 cpu_props->core_id = topo.core_id;
2239 cpu_props->has_thread_id = true;
2240 cpu_props->thread_id = topo.smt_id;
2241 cpu_item->props = cpu_props;
2243 cpu = pcms->possible_cpus->cpus[i].cpu;
2244 if (cpu) {
2245 cpu_item->has_qom_path = true;
2246 cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu));
2249 list_item->value = cpu_item;
2250 list_item->next = head;
2251 head = list_item;
2253 return head;
2256 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2258 /* cpu index isn't used */
2259 CPUState *cs;
2261 CPU_FOREACH(cs) {
2262 X86CPU *cpu = X86_CPU(cs);
2264 if (!cpu->apic_state) {
2265 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2266 } else {
2267 apic_deliver_nmi(cpu->apic_state);
2272 static void pc_machine_class_init(ObjectClass *oc, void *data)
2274 MachineClass *mc = MACHINE_CLASS(oc);
2275 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2276 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2277 NMIClass *nc = NMI_CLASS(oc);
2279 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2280 pcmc->pci_enabled = true;
2281 pcmc->has_acpi_build = true;
2282 pcmc->rsdp_in_ram = true;
2283 pcmc->smbios_defaults = true;
2284 pcmc->smbios_uuid_encoded = true;
2285 pcmc->gigabyte_align = true;
2286 pcmc->has_reserved_memory = true;
2287 pcmc->kvmclock_enabled = true;
2288 pcmc->enforce_aligned_dimm = true;
2289 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2290 * to be used at the moment, 32K should be enough for a while. */
2291 pcmc->acpi_data_size = 0x20000 + 0x8000;
2292 pcmc->save_tsc_khz = true;
2293 mc->get_hotplug_handler = pc_get_hotpug_handler;
2294 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2295 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2296 mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus;
2297 mc->default_boot_order = "cad";
2298 mc->hot_add_cpu = pc_hot_add_cpu;
2299 mc->max_cpus = 255;
2300 mc->reset = pc_machine_reset;
2301 hc->pre_plug = pc_machine_device_pre_plug_cb;
2302 hc->plug = pc_machine_device_plug_cb;
2303 hc->unplug_request = pc_machine_device_unplug_request_cb;
2304 hc->unplug = pc_machine_device_unplug_cb;
2305 nc->nmi_monitor_handler = x86_nmi;
2308 static const TypeInfo pc_machine_info = {
2309 .name = TYPE_PC_MACHINE,
2310 .parent = TYPE_MACHINE,
2311 .abstract = true,
2312 .instance_size = sizeof(PCMachineState),
2313 .instance_init = pc_machine_initfn,
2314 .class_size = sizeof(PCMachineClass),
2315 .class_init = pc_machine_class_init,
2316 .interfaces = (InterfaceInfo[]) {
2317 { TYPE_HOTPLUG_HANDLER },
2318 { TYPE_NMI },
2323 static void pc_machine_register_types(void)
2325 type_register_static(&pc_machine_info);
2328 type_init(pc_machine_register_types)