tests/tcg: add user version of dumb-as-bricks semiconsole test
[qemu/ar7.git] / cpus.c
blobb472378b702127c97ba402b6cc41157803b32934
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "qemu/config-file.h"
28 #include "migration/vmstate.h"
29 #include "monitor/monitor.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-commands-misc.h"
32 #include "qapi/qapi-events-run-state.h"
33 #include "qapi/qmp/qerror.h"
34 #include "qemu/error-report.h"
35 #include "qemu/qemu-print.h"
36 #include "sysemu/tcg.h"
37 #include "sysemu/block-backend.h"
38 #include "exec/gdbstub.h"
39 #include "sysemu/dma.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/kvm.h"
42 #include "sysemu/hax.h"
43 #include "sysemu/hvf.h"
44 #include "sysemu/whpx.h"
45 #include "exec/exec-all.h"
47 #include "qemu/thread.h"
48 #include "qemu/plugin.h"
49 #include "sysemu/cpus.h"
50 #include "sysemu/qtest.h"
51 #include "qemu/main-loop.h"
52 #include "qemu/option.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/seqlock.h"
55 #include "qemu/guest-random.h"
56 #include "tcg.h"
57 #include "hw/nmi.h"
58 #include "sysemu/replay.h"
59 #include "sysemu/runstate.h"
60 #include "hw/boards.h"
61 #include "hw/hw.h"
63 #ifdef CONFIG_LINUX
65 #include <sys/prctl.h>
67 #ifndef PR_MCE_KILL
68 #define PR_MCE_KILL 33
69 #endif
71 #ifndef PR_MCE_KILL_SET
72 #define PR_MCE_KILL_SET 1
73 #endif
75 #ifndef PR_MCE_KILL_EARLY
76 #define PR_MCE_KILL_EARLY 1
77 #endif
79 #endif /* CONFIG_LINUX */
81 static QemuMutex qemu_global_mutex;
83 int64_t max_delay;
84 int64_t max_advance;
86 /* vcpu throttling controls */
87 static QEMUTimer *throttle_timer;
88 static unsigned int throttle_percentage;
90 #define CPU_THROTTLE_PCT_MIN 1
91 #define CPU_THROTTLE_PCT_MAX 99
92 #define CPU_THROTTLE_TIMESLICE_NS 10000000
94 bool cpu_is_stopped(CPUState *cpu)
96 return cpu->stopped || !runstate_is_running();
99 static bool cpu_thread_is_idle(CPUState *cpu)
101 if (cpu->stop || cpu->queued_work_first) {
102 return false;
104 if (cpu_is_stopped(cpu)) {
105 return true;
107 if (!cpu->halted || cpu_has_work(cpu) ||
108 kvm_halt_in_kernel()) {
109 return false;
111 return true;
114 static bool all_cpu_threads_idle(void)
116 CPUState *cpu;
118 CPU_FOREACH(cpu) {
119 if (!cpu_thread_is_idle(cpu)) {
120 return false;
123 return true;
126 /***********************************************************/
127 /* guest cycle counter */
129 /* Protected by TimersState seqlock */
131 static bool icount_sleep = true;
132 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
133 #define MAX_ICOUNT_SHIFT 10
135 typedef struct TimersState {
136 /* Protected by BQL. */
137 int64_t cpu_ticks_prev;
138 int64_t cpu_ticks_offset;
140 /* Protect fields that can be respectively read outside the
141 * BQL, and written from multiple threads.
143 QemuSeqLock vm_clock_seqlock;
144 QemuSpin vm_clock_lock;
146 int16_t cpu_ticks_enabled;
148 /* Conversion factor from emulated instructions to virtual clock ticks. */
149 int16_t icount_time_shift;
151 /* Compensate for varying guest execution speed. */
152 int64_t qemu_icount_bias;
154 int64_t vm_clock_warp_start;
155 int64_t cpu_clock_offset;
157 /* Only written by TCG thread */
158 int64_t qemu_icount;
160 /* for adjusting icount */
161 QEMUTimer *icount_rt_timer;
162 QEMUTimer *icount_vm_timer;
163 QEMUTimer *icount_warp_timer;
164 } TimersState;
166 static TimersState timers_state;
167 bool mttcg_enabled;
170 /* The current number of executed instructions is based on what we
171 * originally budgeted minus the current state of the decrementing
172 * icount counters in extra/u16.low.
174 static int64_t cpu_get_icount_executed(CPUState *cpu)
176 return (cpu->icount_budget -
177 (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
181 * Update the global shared timer_state.qemu_icount to take into
182 * account executed instructions. This is done by the TCG vCPU
183 * thread so the main-loop can see time has moved forward.
185 static void cpu_update_icount_locked(CPUState *cpu)
187 int64_t executed = cpu_get_icount_executed(cpu);
188 cpu->icount_budget -= executed;
190 atomic_set_i64(&timers_state.qemu_icount,
191 timers_state.qemu_icount + executed);
195 * Update the global shared timer_state.qemu_icount to take into
196 * account executed instructions. This is done by the TCG vCPU
197 * thread so the main-loop can see time has moved forward.
199 void cpu_update_icount(CPUState *cpu)
201 seqlock_write_lock(&timers_state.vm_clock_seqlock,
202 &timers_state.vm_clock_lock);
203 cpu_update_icount_locked(cpu);
204 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
205 &timers_state.vm_clock_lock);
208 static int64_t cpu_get_icount_raw_locked(void)
210 CPUState *cpu = current_cpu;
212 if (cpu && cpu->running) {
213 if (!cpu->can_do_io) {
214 error_report("Bad icount read");
215 exit(1);
217 /* Take into account what has run */
218 cpu_update_icount_locked(cpu);
220 /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
221 return atomic_read_i64(&timers_state.qemu_icount);
224 static int64_t cpu_get_icount_locked(void)
226 int64_t icount = cpu_get_icount_raw_locked();
227 return atomic_read_i64(&timers_state.qemu_icount_bias) +
228 cpu_icount_to_ns(icount);
231 int64_t cpu_get_icount_raw(void)
233 int64_t icount;
234 unsigned start;
236 do {
237 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
238 icount = cpu_get_icount_raw_locked();
239 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
241 return icount;
244 /* Return the virtual CPU time, based on the instruction counter. */
245 int64_t cpu_get_icount(void)
247 int64_t icount;
248 unsigned start;
250 do {
251 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
252 icount = cpu_get_icount_locked();
253 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
255 return icount;
258 int64_t cpu_icount_to_ns(int64_t icount)
260 return icount << atomic_read(&timers_state.icount_time_shift);
263 static int64_t cpu_get_ticks_locked(void)
265 int64_t ticks = timers_state.cpu_ticks_offset;
266 if (timers_state.cpu_ticks_enabled) {
267 ticks += cpu_get_host_ticks();
270 if (timers_state.cpu_ticks_prev > ticks) {
271 /* Non increasing ticks may happen if the host uses software suspend. */
272 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
273 ticks = timers_state.cpu_ticks_prev;
276 timers_state.cpu_ticks_prev = ticks;
277 return ticks;
280 /* return the time elapsed in VM between vm_start and vm_stop. Unless
281 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
282 * counter.
284 int64_t cpu_get_ticks(void)
286 int64_t ticks;
288 if (use_icount) {
289 return cpu_get_icount();
292 qemu_spin_lock(&timers_state.vm_clock_lock);
293 ticks = cpu_get_ticks_locked();
294 qemu_spin_unlock(&timers_state.vm_clock_lock);
295 return ticks;
298 static int64_t cpu_get_clock_locked(void)
300 int64_t time;
302 time = timers_state.cpu_clock_offset;
303 if (timers_state.cpu_ticks_enabled) {
304 time += get_clock();
307 return time;
310 /* Return the monotonic time elapsed in VM, i.e.,
311 * the time between vm_start and vm_stop
313 int64_t cpu_get_clock(void)
315 int64_t ti;
316 unsigned start;
318 do {
319 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
320 ti = cpu_get_clock_locked();
321 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
323 return ti;
326 /* enable cpu_get_ticks()
327 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
329 void cpu_enable_ticks(void)
331 seqlock_write_lock(&timers_state.vm_clock_seqlock,
332 &timers_state.vm_clock_lock);
333 if (!timers_state.cpu_ticks_enabled) {
334 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
335 timers_state.cpu_clock_offset -= get_clock();
336 timers_state.cpu_ticks_enabled = 1;
338 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
339 &timers_state.vm_clock_lock);
342 /* disable cpu_get_ticks() : the clock is stopped. You must not call
343 * cpu_get_ticks() after that.
344 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
346 void cpu_disable_ticks(void)
348 seqlock_write_lock(&timers_state.vm_clock_seqlock,
349 &timers_state.vm_clock_lock);
350 if (timers_state.cpu_ticks_enabled) {
351 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
352 timers_state.cpu_clock_offset = cpu_get_clock_locked();
353 timers_state.cpu_ticks_enabled = 0;
355 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
356 &timers_state.vm_clock_lock);
359 /* Correlation between real and virtual time is always going to be
360 fairly approximate, so ignore small variation.
361 When the guest is idle real and virtual time will be aligned in
362 the IO wait loop. */
363 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
365 static void icount_adjust(void)
367 int64_t cur_time;
368 int64_t cur_icount;
369 int64_t delta;
371 /* Protected by TimersState mutex. */
372 static int64_t last_delta;
374 /* If the VM is not running, then do nothing. */
375 if (!runstate_is_running()) {
376 return;
379 seqlock_write_lock(&timers_state.vm_clock_seqlock,
380 &timers_state.vm_clock_lock);
381 cur_time = cpu_get_clock_locked();
382 cur_icount = cpu_get_icount_locked();
384 delta = cur_icount - cur_time;
385 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
386 if (delta > 0
387 && last_delta + ICOUNT_WOBBLE < delta * 2
388 && timers_state.icount_time_shift > 0) {
389 /* The guest is getting too far ahead. Slow time down. */
390 atomic_set(&timers_state.icount_time_shift,
391 timers_state.icount_time_shift - 1);
393 if (delta < 0
394 && last_delta - ICOUNT_WOBBLE > delta * 2
395 && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
396 /* The guest is getting too far behind. Speed time up. */
397 atomic_set(&timers_state.icount_time_shift,
398 timers_state.icount_time_shift + 1);
400 last_delta = delta;
401 atomic_set_i64(&timers_state.qemu_icount_bias,
402 cur_icount - (timers_state.qemu_icount
403 << timers_state.icount_time_shift));
404 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
405 &timers_state.vm_clock_lock);
408 static void icount_adjust_rt(void *opaque)
410 timer_mod(timers_state.icount_rt_timer,
411 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
412 icount_adjust();
415 static void icount_adjust_vm(void *opaque)
417 timer_mod(timers_state.icount_vm_timer,
418 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
419 NANOSECONDS_PER_SECOND / 10);
420 icount_adjust();
423 static int64_t qemu_icount_round(int64_t count)
425 int shift = atomic_read(&timers_state.icount_time_shift);
426 return (count + (1 << shift) - 1) >> shift;
429 static void icount_warp_rt(void)
431 unsigned seq;
432 int64_t warp_start;
434 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
435 * changes from -1 to another value, so the race here is okay.
437 do {
438 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
439 warp_start = timers_state.vm_clock_warp_start;
440 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
442 if (warp_start == -1) {
443 return;
446 seqlock_write_lock(&timers_state.vm_clock_seqlock,
447 &timers_state.vm_clock_lock);
448 if (runstate_is_running()) {
449 int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
450 cpu_get_clock_locked());
451 int64_t warp_delta;
453 warp_delta = clock - timers_state.vm_clock_warp_start;
454 if (use_icount == 2) {
456 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
457 * far ahead of real time.
459 int64_t cur_icount = cpu_get_icount_locked();
460 int64_t delta = clock - cur_icount;
461 warp_delta = MIN(warp_delta, delta);
463 atomic_set_i64(&timers_state.qemu_icount_bias,
464 timers_state.qemu_icount_bias + warp_delta);
466 timers_state.vm_clock_warp_start = -1;
467 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
468 &timers_state.vm_clock_lock);
470 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
471 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
475 static void icount_timer_cb(void *opaque)
477 /* No need for a checkpoint because the timer already synchronizes
478 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
480 icount_warp_rt();
483 void qtest_clock_warp(int64_t dest)
485 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
486 AioContext *aio_context;
487 assert(qtest_enabled());
488 aio_context = qemu_get_aio_context();
489 while (clock < dest) {
490 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
491 QEMU_TIMER_ATTR_ALL);
492 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
494 seqlock_write_lock(&timers_state.vm_clock_seqlock,
495 &timers_state.vm_clock_lock);
496 atomic_set_i64(&timers_state.qemu_icount_bias,
497 timers_state.qemu_icount_bias + warp);
498 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
499 &timers_state.vm_clock_lock);
501 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
502 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
503 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
505 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
508 void qemu_start_warp_timer(void)
510 int64_t clock;
511 int64_t deadline;
513 if (!use_icount) {
514 return;
517 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
518 * do not fire, so computing the deadline does not make sense.
520 if (!runstate_is_running()) {
521 return;
524 if (replay_mode != REPLAY_MODE_PLAY) {
525 if (!all_cpu_threads_idle()) {
526 return;
529 if (qtest_enabled()) {
530 /* When testing, qtest commands advance icount. */
531 return;
534 replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
535 } else {
536 /* warp clock deterministically in record/replay mode */
537 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
538 /* vCPU is sleeping and warp can't be started.
539 It is probably a race condition: notification sent
540 to vCPU was processed in advance and vCPU went to sleep.
541 Therefore we have to wake it up for doing someting. */
542 if (replay_has_checkpoint()) {
543 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
545 return;
549 /* We want to use the earliest deadline from ALL vm_clocks */
550 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
551 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
552 ~QEMU_TIMER_ATTR_EXTERNAL);
553 if (deadline < 0) {
554 static bool notified;
555 if (!icount_sleep && !notified) {
556 warn_report("icount sleep disabled and no active timers");
557 notified = true;
559 return;
562 if (deadline > 0) {
564 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
565 * sleep. Otherwise, the CPU might be waiting for a future timer
566 * interrupt to wake it up, but the interrupt never comes because
567 * the vCPU isn't running any insns and thus doesn't advance the
568 * QEMU_CLOCK_VIRTUAL.
570 if (!icount_sleep) {
572 * We never let VCPUs sleep in no sleep icount mode.
573 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
574 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
575 * It is useful when we want a deterministic execution time,
576 * isolated from host latencies.
578 seqlock_write_lock(&timers_state.vm_clock_seqlock,
579 &timers_state.vm_clock_lock);
580 atomic_set_i64(&timers_state.qemu_icount_bias,
581 timers_state.qemu_icount_bias + deadline);
582 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
583 &timers_state.vm_clock_lock);
584 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
585 } else {
587 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
588 * "real" time, (related to the time left until the next event) has
589 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
590 * This avoids that the warps are visible externally; for example,
591 * you will not be sending network packets continuously instead of
592 * every 100ms.
594 seqlock_write_lock(&timers_state.vm_clock_seqlock,
595 &timers_state.vm_clock_lock);
596 if (timers_state.vm_clock_warp_start == -1
597 || timers_state.vm_clock_warp_start > clock) {
598 timers_state.vm_clock_warp_start = clock;
600 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
601 &timers_state.vm_clock_lock);
602 timer_mod_anticipate(timers_state.icount_warp_timer,
603 clock + deadline);
605 } else if (deadline == 0) {
606 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
610 static void qemu_account_warp_timer(void)
612 if (!use_icount || !icount_sleep) {
613 return;
616 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
617 * do not fire, so computing the deadline does not make sense.
619 if (!runstate_is_running()) {
620 return;
623 /* warp clock deterministically in record/replay mode */
624 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
625 return;
628 timer_del(timers_state.icount_warp_timer);
629 icount_warp_rt();
632 static bool icount_state_needed(void *opaque)
634 return use_icount;
637 static bool warp_timer_state_needed(void *opaque)
639 TimersState *s = opaque;
640 return s->icount_warp_timer != NULL;
643 static bool adjust_timers_state_needed(void *opaque)
645 TimersState *s = opaque;
646 return s->icount_rt_timer != NULL;
650 * Subsection for warp timer migration is optional, because may not be created
652 static const VMStateDescription icount_vmstate_warp_timer = {
653 .name = "timer/icount/warp_timer",
654 .version_id = 1,
655 .minimum_version_id = 1,
656 .needed = warp_timer_state_needed,
657 .fields = (VMStateField[]) {
658 VMSTATE_INT64(vm_clock_warp_start, TimersState),
659 VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
660 VMSTATE_END_OF_LIST()
664 static const VMStateDescription icount_vmstate_adjust_timers = {
665 .name = "timer/icount/timers",
666 .version_id = 1,
667 .minimum_version_id = 1,
668 .needed = adjust_timers_state_needed,
669 .fields = (VMStateField[]) {
670 VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
671 VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
672 VMSTATE_END_OF_LIST()
677 * This is a subsection for icount migration.
679 static const VMStateDescription icount_vmstate_timers = {
680 .name = "timer/icount",
681 .version_id = 1,
682 .minimum_version_id = 1,
683 .needed = icount_state_needed,
684 .fields = (VMStateField[]) {
685 VMSTATE_INT64(qemu_icount_bias, TimersState),
686 VMSTATE_INT64(qemu_icount, TimersState),
687 VMSTATE_END_OF_LIST()
689 .subsections = (const VMStateDescription*[]) {
690 &icount_vmstate_warp_timer,
691 &icount_vmstate_adjust_timers,
692 NULL
696 static const VMStateDescription vmstate_timers = {
697 .name = "timer",
698 .version_id = 2,
699 .minimum_version_id = 1,
700 .fields = (VMStateField[]) {
701 VMSTATE_INT64(cpu_ticks_offset, TimersState),
702 VMSTATE_UNUSED(8),
703 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
704 VMSTATE_END_OF_LIST()
706 .subsections = (const VMStateDescription*[]) {
707 &icount_vmstate_timers,
708 NULL
712 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
714 double pct;
715 double throttle_ratio;
716 int64_t sleeptime_ns, endtime_ns;
718 if (!cpu_throttle_get_percentage()) {
719 return;
722 pct = (double)cpu_throttle_get_percentage()/100;
723 throttle_ratio = pct / (1 - pct);
724 /* Add 1ns to fix double's rounding error (like 0.9999999...) */
725 sleeptime_ns = (int64_t)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS + 1);
726 endtime_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + sleeptime_ns;
727 while (sleeptime_ns > 0 && !cpu->stop) {
728 if (sleeptime_ns > SCALE_MS) {
729 qemu_cond_timedwait(cpu->halt_cond, &qemu_global_mutex,
730 sleeptime_ns / SCALE_MS);
731 } else {
732 qemu_mutex_unlock_iothread();
733 g_usleep(sleeptime_ns / SCALE_US);
734 qemu_mutex_lock_iothread();
736 sleeptime_ns = endtime_ns - qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
738 atomic_set(&cpu->throttle_thread_scheduled, 0);
741 static void cpu_throttle_timer_tick(void *opaque)
743 CPUState *cpu;
744 double pct;
746 /* Stop the timer if needed */
747 if (!cpu_throttle_get_percentage()) {
748 return;
750 CPU_FOREACH(cpu) {
751 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
752 async_run_on_cpu(cpu, cpu_throttle_thread,
753 RUN_ON_CPU_NULL);
757 pct = (double)cpu_throttle_get_percentage()/100;
758 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
759 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
762 void cpu_throttle_set(int new_throttle_pct)
764 /* Ensure throttle percentage is within valid range */
765 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
766 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
768 atomic_set(&throttle_percentage, new_throttle_pct);
770 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
771 CPU_THROTTLE_TIMESLICE_NS);
774 void cpu_throttle_stop(void)
776 atomic_set(&throttle_percentage, 0);
779 bool cpu_throttle_active(void)
781 return (cpu_throttle_get_percentage() != 0);
784 int cpu_throttle_get_percentage(void)
786 return atomic_read(&throttle_percentage);
789 void cpu_ticks_init(void)
791 seqlock_init(&timers_state.vm_clock_seqlock);
792 qemu_spin_init(&timers_state.vm_clock_lock);
793 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
794 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
795 cpu_throttle_timer_tick, NULL);
798 void configure_icount(QemuOpts *opts, Error **errp)
800 const char *option;
801 char *rem_str = NULL;
803 option = qemu_opt_get(opts, "shift");
804 if (!option) {
805 if (qemu_opt_get(opts, "align") != NULL) {
806 error_setg(errp, "Please specify shift option when using align");
808 return;
811 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
812 if (icount_sleep) {
813 timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
814 icount_timer_cb, NULL);
817 icount_align_option = qemu_opt_get_bool(opts, "align", false);
819 if (icount_align_option && !icount_sleep) {
820 error_setg(errp, "align=on and sleep=off are incompatible");
822 if (strcmp(option, "auto") != 0) {
823 errno = 0;
824 timers_state.icount_time_shift = strtol(option, &rem_str, 0);
825 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
826 error_setg(errp, "icount: Invalid shift value");
828 use_icount = 1;
829 return;
830 } else if (icount_align_option) {
831 error_setg(errp, "shift=auto and align=on are incompatible");
832 } else if (!icount_sleep) {
833 error_setg(errp, "shift=auto and sleep=off are incompatible");
836 use_icount = 2;
838 /* 125MIPS seems a reasonable initial guess at the guest speed.
839 It will be corrected fairly quickly anyway. */
840 timers_state.icount_time_shift = 3;
842 /* Have both realtime and virtual time triggers for speed adjustment.
843 The realtime trigger catches emulated time passing too slowly,
844 the virtual time trigger catches emulated time passing too fast.
845 Realtime triggers occur even when idle, so use them less frequently
846 than VM triggers. */
847 timers_state.vm_clock_warp_start = -1;
848 timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
849 icount_adjust_rt, NULL);
850 timer_mod(timers_state.icount_rt_timer,
851 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
852 timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
853 icount_adjust_vm, NULL);
854 timer_mod(timers_state.icount_vm_timer,
855 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
856 NANOSECONDS_PER_SECOND / 10);
859 /***********************************************************/
860 /* TCG vCPU kick timer
862 * The kick timer is responsible for moving single threaded vCPU
863 * emulation on to the next vCPU. If more than one vCPU is running a
864 * timer event with force a cpu->exit so the next vCPU can get
865 * scheduled.
867 * The timer is removed if all vCPUs are idle and restarted again once
868 * idleness is complete.
871 static QEMUTimer *tcg_kick_vcpu_timer;
872 static CPUState *tcg_current_rr_cpu;
874 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
876 static inline int64_t qemu_tcg_next_kick(void)
878 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
881 /* Kick the currently round-robin scheduled vCPU to next */
882 static void qemu_cpu_kick_rr_next_cpu(void)
884 CPUState *cpu;
885 do {
886 cpu = atomic_mb_read(&tcg_current_rr_cpu);
887 if (cpu) {
888 cpu_exit(cpu);
890 } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
893 /* Kick all RR vCPUs */
894 static void qemu_cpu_kick_rr_cpus(void)
896 CPUState *cpu;
898 CPU_FOREACH(cpu) {
899 cpu_exit(cpu);
903 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
907 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
909 if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
910 qemu_notify_event();
911 return;
914 if (qemu_in_vcpu_thread()) {
915 /* A CPU is currently running; kick it back out to the
916 * tcg_cpu_exec() loop so it will recalculate its
917 * icount deadline immediately.
919 qemu_cpu_kick(current_cpu);
920 } else if (first_cpu) {
921 /* qemu_cpu_kick is not enough to kick a halted CPU out of
922 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
923 * causes cpu_thread_is_idle to return false. This way,
924 * handle_icount_deadline can run.
925 * If we have no CPUs at all for some reason, we don't
926 * need to do anything.
928 async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
932 static void kick_tcg_thread(void *opaque)
934 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
935 qemu_cpu_kick_rr_next_cpu();
938 static void start_tcg_kick_timer(void)
940 assert(!mttcg_enabled);
941 if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
942 tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
943 kick_tcg_thread, NULL);
945 if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) {
946 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
950 static void stop_tcg_kick_timer(void)
952 assert(!mttcg_enabled);
953 if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) {
954 timer_del(tcg_kick_vcpu_timer);
958 /***********************************************************/
959 void hw_error(const char *fmt, ...)
961 va_list ap;
962 CPUState *cpu;
964 va_start(ap, fmt);
965 fprintf(stderr, "qemu: hardware error: ");
966 vfprintf(stderr, fmt, ap);
967 fprintf(stderr, "\n");
968 CPU_FOREACH(cpu) {
969 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
970 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU);
972 va_end(ap);
973 abort();
976 void cpu_synchronize_all_states(void)
978 CPUState *cpu;
980 CPU_FOREACH(cpu) {
981 cpu_synchronize_state(cpu);
982 /* TODO: move to cpu_synchronize_state() */
983 if (hvf_enabled()) {
984 hvf_cpu_synchronize_state(cpu);
989 void cpu_synchronize_all_post_reset(void)
991 CPUState *cpu;
993 CPU_FOREACH(cpu) {
994 cpu_synchronize_post_reset(cpu);
995 /* TODO: move to cpu_synchronize_post_reset() */
996 if (hvf_enabled()) {
997 hvf_cpu_synchronize_post_reset(cpu);
1002 void cpu_synchronize_all_post_init(void)
1004 CPUState *cpu;
1006 CPU_FOREACH(cpu) {
1007 cpu_synchronize_post_init(cpu);
1008 /* TODO: move to cpu_synchronize_post_init() */
1009 if (hvf_enabled()) {
1010 hvf_cpu_synchronize_post_init(cpu);
1015 void cpu_synchronize_all_pre_loadvm(void)
1017 CPUState *cpu;
1019 CPU_FOREACH(cpu) {
1020 cpu_synchronize_pre_loadvm(cpu);
1024 static int do_vm_stop(RunState state, bool send_stop)
1026 int ret = 0;
1028 if (runstate_is_running()) {
1029 cpu_disable_ticks();
1030 pause_all_vcpus();
1031 runstate_set(state);
1032 vm_state_notify(0, state);
1033 if (send_stop) {
1034 qapi_event_send_stop();
1038 bdrv_drain_all();
1039 ret = bdrv_flush_all();
1041 return ret;
1044 /* Special vm_stop() variant for terminating the process. Historically clients
1045 * did not expect a QMP STOP event and so we need to retain compatibility.
1047 int vm_shutdown(void)
1049 return do_vm_stop(RUN_STATE_SHUTDOWN, false);
1052 static bool cpu_can_run(CPUState *cpu)
1054 if (cpu->stop) {
1055 return false;
1057 if (cpu_is_stopped(cpu)) {
1058 return false;
1060 return true;
1063 static void cpu_handle_guest_debug(CPUState *cpu)
1065 gdb_set_stop_cpu(cpu);
1066 qemu_system_debug_request();
1067 cpu->stopped = true;
1070 #ifdef CONFIG_LINUX
1071 static void sigbus_reraise(void)
1073 sigset_t set;
1074 struct sigaction action;
1076 memset(&action, 0, sizeof(action));
1077 action.sa_handler = SIG_DFL;
1078 if (!sigaction(SIGBUS, &action, NULL)) {
1079 raise(SIGBUS);
1080 sigemptyset(&set);
1081 sigaddset(&set, SIGBUS);
1082 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
1084 perror("Failed to re-raise SIGBUS!\n");
1085 abort();
1088 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
1090 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
1091 sigbus_reraise();
1094 if (current_cpu) {
1095 /* Called asynchronously in VCPU thread. */
1096 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
1097 sigbus_reraise();
1099 } else {
1100 /* Called synchronously (via signalfd) in main thread. */
1101 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
1102 sigbus_reraise();
1107 static void qemu_init_sigbus(void)
1109 struct sigaction action;
1111 memset(&action, 0, sizeof(action));
1112 action.sa_flags = SA_SIGINFO;
1113 action.sa_sigaction = sigbus_handler;
1114 sigaction(SIGBUS, &action, NULL);
1116 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
1118 #else /* !CONFIG_LINUX */
1119 static void qemu_init_sigbus(void)
1122 #endif /* !CONFIG_LINUX */
1124 static QemuThread io_thread;
1126 /* cpu creation */
1127 static QemuCond qemu_cpu_cond;
1128 /* system init */
1129 static QemuCond qemu_pause_cond;
1131 void qemu_init_cpu_loop(void)
1133 qemu_init_sigbus();
1134 qemu_cond_init(&qemu_cpu_cond);
1135 qemu_cond_init(&qemu_pause_cond);
1136 qemu_mutex_init(&qemu_global_mutex);
1138 qemu_thread_get_self(&io_thread);
1141 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1143 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1146 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1148 if (kvm_destroy_vcpu(cpu) < 0) {
1149 error_report("kvm_destroy_vcpu failed");
1150 exit(EXIT_FAILURE);
1154 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1158 static void qemu_cpu_stop(CPUState *cpu, bool exit)
1160 g_assert(qemu_cpu_is_self(cpu));
1161 cpu->stop = false;
1162 cpu->stopped = true;
1163 if (exit) {
1164 cpu_exit(cpu);
1166 qemu_cond_broadcast(&qemu_pause_cond);
1169 static void qemu_wait_io_event_common(CPUState *cpu)
1171 atomic_mb_set(&cpu->thread_kicked, false);
1172 if (cpu->stop) {
1173 qemu_cpu_stop(cpu, false);
1175 process_queued_cpu_work(cpu);
1178 static void qemu_tcg_rr_wait_io_event(void)
1180 CPUState *cpu;
1182 while (all_cpu_threads_idle()) {
1183 stop_tcg_kick_timer();
1184 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1187 start_tcg_kick_timer();
1189 CPU_FOREACH(cpu) {
1190 qemu_wait_io_event_common(cpu);
1194 static void qemu_wait_io_event(CPUState *cpu)
1196 bool slept = false;
1198 while (cpu_thread_is_idle(cpu)) {
1199 if (!slept) {
1200 slept = true;
1201 qemu_plugin_vcpu_idle_cb(cpu);
1203 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1205 if (slept) {
1206 qemu_plugin_vcpu_resume_cb(cpu);
1209 #ifdef _WIN32
1210 /* Eat dummy APC queued by qemu_cpu_kick_thread. */
1211 if (!tcg_enabled()) {
1212 SleepEx(0, TRUE);
1214 #endif
1215 qemu_wait_io_event_common(cpu);
1218 static void *qemu_kvm_cpu_thread_fn(void *arg)
1220 CPUState *cpu = arg;
1221 int r;
1223 rcu_register_thread();
1225 qemu_mutex_lock_iothread();
1226 qemu_thread_get_self(cpu->thread);
1227 cpu->thread_id = qemu_get_thread_id();
1228 cpu->can_do_io = 1;
1229 current_cpu = cpu;
1231 r = kvm_init_vcpu(cpu);
1232 if (r < 0) {
1233 error_report("kvm_init_vcpu failed: %s", strerror(-r));
1234 exit(1);
1237 kvm_init_cpu_signals(cpu);
1239 /* signal CPU creation */
1240 cpu->created = true;
1241 qemu_cond_signal(&qemu_cpu_cond);
1242 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1244 do {
1245 if (cpu_can_run(cpu)) {
1246 r = kvm_cpu_exec(cpu);
1247 if (r == EXCP_DEBUG) {
1248 cpu_handle_guest_debug(cpu);
1251 qemu_wait_io_event(cpu);
1252 } while (!cpu->unplug || cpu_can_run(cpu));
1254 qemu_kvm_destroy_vcpu(cpu);
1255 cpu->created = false;
1256 qemu_cond_signal(&qemu_cpu_cond);
1257 qemu_mutex_unlock_iothread();
1258 rcu_unregister_thread();
1259 return NULL;
1262 static void *qemu_dummy_cpu_thread_fn(void *arg)
1264 #ifdef _WIN32
1265 error_report("qtest is not supported under Windows");
1266 exit(1);
1267 #else
1268 CPUState *cpu = arg;
1269 sigset_t waitset;
1270 int r;
1272 rcu_register_thread();
1274 qemu_mutex_lock_iothread();
1275 qemu_thread_get_self(cpu->thread);
1276 cpu->thread_id = qemu_get_thread_id();
1277 cpu->can_do_io = 1;
1278 current_cpu = cpu;
1280 sigemptyset(&waitset);
1281 sigaddset(&waitset, SIG_IPI);
1283 /* signal CPU creation */
1284 cpu->created = true;
1285 qemu_cond_signal(&qemu_cpu_cond);
1286 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1288 do {
1289 qemu_mutex_unlock_iothread();
1290 do {
1291 int sig;
1292 r = sigwait(&waitset, &sig);
1293 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1294 if (r == -1) {
1295 perror("sigwait");
1296 exit(1);
1298 qemu_mutex_lock_iothread();
1299 qemu_wait_io_event(cpu);
1300 } while (!cpu->unplug);
1302 qemu_mutex_unlock_iothread();
1303 rcu_unregister_thread();
1304 return NULL;
1305 #endif
1308 static int64_t tcg_get_icount_limit(void)
1310 int64_t deadline;
1312 if (replay_mode != REPLAY_MODE_PLAY) {
1314 * Include all the timers, because they may need an attention.
1315 * Too long CPU execution may create unnecessary delay in UI.
1317 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
1318 QEMU_TIMER_ATTR_ALL);
1320 /* Maintain prior (possibly buggy) behaviour where if no deadline
1321 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1322 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1323 * nanoseconds.
1325 if ((deadline < 0) || (deadline > INT32_MAX)) {
1326 deadline = INT32_MAX;
1329 return qemu_icount_round(deadline);
1330 } else {
1331 return replay_get_instructions();
1335 static void handle_icount_deadline(void)
1337 assert(qemu_in_vcpu_thread());
1338 if (use_icount) {
1339 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
1340 QEMU_TIMER_ATTR_ALL);
1342 if (deadline == 0) {
1343 /* Wake up other AioContexts. */
1344 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1345 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1350 static void prepare_icount_for_run(CPUState *cpu)
1352 if (use_icount) {
1353 int insns_left;
1355 /* These should always be cleared by process_icount_data after
1356 * each vCPU execution. However u16.high can be raised
1357 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1359 g_assert(cpu_neg(cpu)->icount_decr.u16.low == 0);
1360 g_assert(cpu->icount_extra == 0);
1362 cpu->icount_budget = tcg_get_icount_limit();
1363 insns_left = MIN(0xffff, cpu->icount_budget);
1364 cpu_neg(cpu)->icount_decr.u16.low = insns_left;
1365 cpu->icount_extra = cpu->icount_budget - insns_left;
1367 replay_mutex_lock();
1371 static void process_icount_data(CPUState *cpu)
1373 if (use_icount) {
1374 /* Account for executed instructions */
1375 cpu_update_icount(cpu);
1377 /* Reset the counters */
1378 cpu_neg(cpu)->icount_decr.u16.low = 0;
1379 cpu->icount_extra = 0;
1380 cpu->icount_budget = 0;
1382 replay_account_executed_instructions();
1384 replay_mutex_unlock();
1389 static int tcg_cpu_exec(CPUState *cpu)
1391 int ret;
1392 #ifdef CONFIG_PROFILER
1393 int64_t ti;
1394 #endif
1396 assert(tcg_enabled());
1397 #ifdef CONFIG_PROFILER
1398 ti = profile_getclock();
1399 #endif
1400 cpu_exec_start(cpu);
1401 ret = cpu_exec(cpu);
1402 cpu_exec_end(cpu);
1403 #ifdef CONFIG_PROFILER
1404 atomic_set(&tcg_ctx->prof.cpu_exec_time,
1405 tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti);
1406 #endif
1407 return ret;
1410 /* Destroy any remaining vCPUs which have been unplugged and have
1411 * finished running
1413 static void deal_with_unplugged_cpus(void)
1415 CPUState *cpu;
1417 CPU_FOREACH(cpu) {
1418 if (cpu->unplug && !cpu_can_run(cpu)) {
1419 qemu_tcg_destroy_vcpu(cpu);
1420 cpu->created = false;
1421 qemu_cond_signal(&qemu_cpu_cond);
1422 break;
1427 /* Single-threaded TCG
1429 * In the single-threaded case each vCPU is simulated in turn. If
1430 * there is more than a single vCPU we create a simple timer to kick
1431 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1432 * This is done explicitly rather than relying on side-effects
1433 * elsewhere.
1436 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1438 CPUState *cpu = arg;
1440 assert(tcg_enabled());
1441 rcu_register_thread();
1442 tcg_register_thread();
1444 qemu_mutex_lock_iothread();
1445 qemu_thread_get_self(cpu->thread);
1447 cpu->thread_id = qemu_get_thread_id();
1448 cpu->created = true;
1449 cpu->can_do_io = 1;
1450 qemu_cond_signal(&qemu_cpu_cond);
1451 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1453 /* wait for initial kick-off after machine start */
1454 while (first_cpu->stopped) {
1455 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1457 /* process any pending work */
1458 CPU_FOREACH(cpu) {
1459 current_cpu = cpu;
1460 qemu_wait_io_event_common(cpu);
1464 start_tcg_kick_timer();
1466 cpu = first_cpu;
1468 /* process any pending work */
1469 cpu->exit_request = 1;
1471 while (1) {
1472 qemu_mutex_unlock_iothread();
1473 replay_mutex_lock();
1474 qemu_mutex_lock_iothread();
1475 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1476 qemu_account_warp_timer();
1478 /* Run the timers here. This is much more efficient than
1479 * waking up the I/O thread and waiting for completion.
1481 handle_icount_deadline();
1483 replay_mutex_unlock();
1485 if (!cpu) {
1486 cpu = first_cpu;
1489 while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1491 atomic_mb_set(&tcg_current_rr_cpu, cpu);
1492 current_cpu = cpu;
1494 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1495 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1497 if (cpu_can_run(cpu)) {
1498 int r;
1500 qemu_mutex_unlock_iothread();
1501 prepare_icount_for_run(cpu);
1503 r = tcg_cpu_exec(cpu);
1505 process_icount_data(cpu);
1506 qemu_mutex_lock_iothread();
1508 if (r == EXCP_DEBUG) {
1509 cpu_handle_guest_debug(cpu);
1510 break;
1511 } else if (r == EXCP_ATOMIC) {
1512 qemu_mutex_unlock_iothread();
1513 cpu_exec_step_atomic(cpu);
1514 qemu_mutex_lock_iothread();
1515 break;
1517 } else if (cpu->stop) {
1518 if (cpu->unplug) {
1519 cpu = CPU_NEXT(cpu);
1521 break;
1524 cpu = CPU_NEXT(cpu);
1525 } /* while (cpu && !cpu->exit_request).. */
1527 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1528 atomic_set(&tcg_current_rr_cpu, NULL);
1530 if (cpu && cpu->exit_request) {
1531 atomic_mb_set(&cpu->exit_request, 0);
1534 if (use_icount && all_cpu_threads_idle()) {
1536 * When all cpus are sleeping (e.g in WFI), to avoid a deadlock
1537 * in the main_loop, wake it up in order to start the warp timer.
1539 qemu_notify_event();
1542 qemu_tcg_rr_wait_io_event();
1543 deal_with_unplugged_cpus();
1546 rcu_unregister_thread();
1547 return NULL;
1550 static void *qemu_hax_cpu_thread_fn(void *arg)
1552 CPUState *cpu = arg;
1553 int r;
1555 rcu_register_thread();
1556 qemu_mutex_lock_iothread();
1557 qemu_thread_get_self(cpu->thread);
1559 cpu->thread_id = qemu_get_thread_id();
1560 cpu->created = true;
1561 current_cpu = cpu;
1563 hax_init_vcpu(cpu);
1564 qemu_cond_signal(&qemu_cpu_cond);
1565 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1567 do {
1568 if (cpu_can_run(cpu)) {
1569 r = hax_smp_cpu_exec(cpu);
1570 if (r == EXCP_DEBUG) {
1571 cpu_handle_guest_debug(cpu);
1575 qemu_wait_io_event(cpu);
1576 } while (!cpu->unplug || cpu_can_run(cpu));
1577 rcu_unregister_thread();
1578 return NULL;
1581 /* The HVF-specific vCPU thread function. This one should only run when the host
1582 * CPU supports the VMX "unrestricted guest" feature. */
1583 static void *qemu_hvf_cpu_thread_fn(void *arg)
1585 CPUState *cpu = arg;
1587 int r;
1589 assert(hvf_enabled());
1591 rcu_register_thread();
1593 qemu_mutex_lock_iothread();
1594 qemu_thread_get_self(cpu->thread);
1596 cpu->thread_id = qemu_get_thread_id();
1597 cpu->can_do_io = 1;
1598 current_cpu = cpu;
1600 hvf_init_vcpu(cpu);
1602 /* signal CPU creation */
1603 cpu->created = true;
1604 qemu_cond_signal(&qemu_cpu_cond);
1605 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1607 do {
1608 if (cpu_can_run(cpu)) {
1609 r = hvf_vcpu_exec(cpu);
1610 if (r == EXCP_DEBUG) {
1611 cpu_handle_guest_debug(cpu);
1614 qemu_wait_io_event(cpu);
1615 } while (!cpu->unplug || cpu_can_run(cpu));
1617 hvf_vcpu_destroy(cpu);
1618 cpu->created = false;
1619 qemu_cond_signal(&qemu_cpu_cond);
1620 qemu_mutex_unlock_iothread();
1621 rcu_unregister_thread();
1622 return NULL;
1625 static void *qemu_whpx_cpu_thread_fn(void *arg)
1627 CPUState *cpu = arg;
1628 int r;
1630 rcu_register_thread();
1632 qemu_mutex_lock_iothread();
1633 qemu_thread_get_self(cpu->thread);
1634 cpu->thread_id = qemu_get_thread_id();
1635 current_cpu = cpu;
1637 r = whpx_init_vcpu(cpu);
1638 if (r < 0) {
1639 fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
1640 exit(1);
1643 /* signal CPU creation */
1644 cpu->created = true;
1645 qemu_cond_signal(&qemu_cpu_cond);
1646 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1648 do {
1649 if (cpu_can_run(cpu)) {
1650 r = whpx_vcpu_exec(cpu);
1651 if (r == EXCP_DEBUG) {
1652 cpu_handle_guest_debug(cpu);
1655 while (cpu_thread_is_idle(cpu)) {
1656 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1658 qemu_wait_io_event_common(cpu);
1659 } while (!cpu->unplug || cpu_can_run(cpu));
1661 whpx_destroy_vcpu(cpu);
1662 cpu->created = false;
1663 qemu_cond_signal(&qemu_cpu_cond);
1664 qemu_mutex_unlock_iothread();
1665 rcu_unregister_thread();
1666 return NULL;
1669 #ifdef _WIN32
1670 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1673 #endif
1675 /* Multi-threaded TCG
1677 * In the multi-threaded case each vCPU has its own thread. The TLS
1678 * variable current_cpu can be used deep in the code to find the
1679 * current CPUState for a given thread.
1682 static void *qemu_tcg_cpu_thread_fn(void *arg)
1684 CPUState *cpu = arg;
1686 assert(tcg_enabled());
1687 g_assert(!use_icount);
1689 rcu_register_thread();
1690 tcg_register_thread();
1692 qemu_mutex_lock_iothread();
1693 qemu_thread_get_self(cpu->thread);
1695 cpu->thread_id = qemu_get_thread_id();
1696 cpu->created = true;
1697 cpu->can_do_io = 1;
1698 current_cpu = cpu;
1699 qemu_cond_signal(&qemu_cpu_cond);
1700 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1702 /* process any pending work */
1703 cpu->exit_request = 1;
1705 do {
1706 if (cpu_can_run(cpu)) {
1707 int r;
1708 qemu_mutex_unlock_iothread();
1709 r = tcg_cpu_exec(cpu);
1710 qemu_mutex_lock_iothread();
1711 switch (r) {
1712 case EXCP_DEBUG:
1713 cpu_handle_guest_debug(cpu);
1714 break;
1715 case EXCP_HALTED:
1716 /* during start-up the vCPU is reset and the thread is
1717 * kicked several times. If we don't ensure we go back
1718 * to sleep in the halted state we won't cleanly
1719 * start-up when the vCPU is enabled.
1721 * cpu->halted should ensure we sleep in wait_io_event
1723 g_assert(cpu->halted);
1724 break;
1725 case EXCP_ATOMIC:
1726 qemu_mutex_unlock_iothread();
1727 cpu_exec_step_atomic(cpu);
1728 qemu_mutex_lock_iothread();
1729 default:
1730 /* Ignore everything else? */
1731 break;
1735 atomic_mb_set(&cpu->exit_request, 0);
1736 qemu_wait_io_event(cpu);
1737 } while (!cpu->unplug || cpu_can_run(cpu));
1739 qemu_tcg_destroy_vcpu(cpu);
1740 cpu->created = false;
1741 qemu_cond_signal(&qemu_cpu_cond);
1742 qemu_mutex_unlock_iothread();
1743 rcu_unregister_thread();
1744 return NULL;
1747 static void qemu_cpu_kick_thread(CPUState *cpu)
1749 #ifndef _WIN32
1750 int err;
1752 if (cpu->thread_kicked) {
1753 return;
1755 cpu->thread_kicked = true;
1756 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1757 if (err && err != ESRCH) {
1758 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1759 exit(1);
1761 #else /* _WIN32 */
1762 if (!qemu_cpu_is_self(cpu)) {
1763 if (whpx_enabled()) {
1764 whpx_vcpu_kick(cpu);
1765 } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1766 fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1767 __func__, GetLastError());
1768 exit(1);
1771 #endif
1774 void qemu_cpu_kick(CPUState *cpu)
1776 qemu_cond_broadcast(cpu->halt_cond);
1777 if (tcg_enabled()) {
1778 if (qemu_tcg_mttcg_enabled()) {
1779 cpu_exit(cpu);
1780 } else {
1781 qemu_cpu_kick_rr_cpus();
1783 } else {
1784 if (hax_enabled()) {
1786 * FIXME: race condition with the exit_request check in
1787 * hax_vcpu_hax_exec
1789 cpu->exit_request = 1;
1791 qemu_cpu_kick_thread(cpu);
1795 void qemu_cpu_kick_self(void)
1797 assert(current_cpu);
1798 qemu_cpu_kick_thread(current_cpu);
1801 bool qemu_cpu_is_self(CPUState *cpu)
1803 return qemu_thread_is_self(cpu->thread);
1806 bool qemu_in_vcpu_thread(void)
1808 return current_cpu && qemu_cpu_is_self(current_cpu);
1811 static __thread bool iothread_locked = false;
1813 bool qemu_mutex_iothread_locked(void)
1815 return iothread_locked;
1819 * The BQL is taken from so many places that it is worth profiling the
1820 * callers directly, instead of funneling them all through a single function.
1822 void qemu_mutex_lock_iothread_impl(const char *file, int line)
1824 QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
1826 g_assert(!qemu_mutex_iothread_locked());
1827 bql_lock(&qemu_global_mutex, file, line);
1828 iothread_locked = true;
1831 void qemu_mutex_unlock_iothread(void)
1833 g_assert(qemu_mutex_iothread_locked());
1834 iothread_locked = false;
1835 qemu_mutex_unlock(&qemu_global_mutex);
1838 static bool all_vcpus_paused(void)
1840 CPUState *cpu;
1842 CPU_FOREACH(cpu) {
1843 if (!cpu->stopped) {
1844 return false;
1848 return true;
1851 void pause_all_vcpus(void)
1853 CPUState *cpu;
1855 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1856 CPU_FOREACH(cpu) {
1857 if (qemu_cpu_is_self(cpu)) {
1858 qemu_cpu_stop(cpu, true);
1859 } else {
1860 cpu->stop = true;
1861 qemu_cpu_kick(cpu);
1865 /* We need to drop the replay_lock so any vCPU threads woken up
1866 * can finish their replay tasks
1868 replay_mutex_unlock();
1870 while (!all_vcpus_paused()) {
1871 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1872 CPU_FOREACH(cpu) {
1873 qemu_cpu_kick(cpu);
1877 qemu_mutex_unlock_iothread();
1878 replay_mutex_lock();
1879 qemu_mutex_lock_iothread();
1882 void cpu_resume(CPUState *cpu)
1884 cpu->stop = false;
1885 cpu->stopped = false;
1886 qemu_cpu_kick(cpu);
1889 void resume_all_vcpus(void)
1891 CPUState *cpu;
1893 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1894 CPU_FOREACH(cpu) {
1895 cpu_resume(cpu);
1899 void cpu_remove_sync(CPUState *cpu)
1901 cpu->stop = true;
1902 cpu->unplug = true;
1903 qemu_cpu_kick(cpu);
1904 qemu_mutex_unlock_iothread();
1905 qemu_thread_join(cpu->thread);
1906 qemu_mutex_lock_iothread();
1909 /* For temporary buffers for forming a name */
1910 #define VCPU_THREAD_NAME_SIZE 16
1912 static void qemu_tcg_init_vcpu(CPUState *cpu)
1914 char thread_name[VCPU_THREAD_NAME_SIZE];
1915 static QemuCond *single_tcg_halt_cond;
1916 static QemuThread *single_tcg_cpu_thread;
1917 static int tcg_region_inited;
1919 assert(tcg_enabled());
1921 * Initialize TCG regions--once. Now is a good time, because:
1922 * (1) TCG's init context, prologue and target globals have been set up.
1923 * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
1924 * -accel flag is processed, so the check doesn't work then).
1926 if (!tcg_region_inited) {
1927 tcg_region_inited = 1;
1928 tcg_region_init();
1931 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1932 cpu->thread = g_malloc0(sizeof(QemuThread));
1933 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1934 qemu_cond_init(cpu->halt_cond);
1936 if (qemu_tcg_mttcg_enabled()) {
1937 /* create a thread per vCPU with TCG (MTTCG) */
1938 parallel_cpus = true;
1939 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1940 cpu->cpu_index);
1942 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1943 cpu, QEMU_THREAD_JOINABLE);
1945 } else {
1946 /* share a single thread for all cpus with TCG */
1947 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1948 qemu_thread_create(cpu->thread, thread_name,
1949 qemu_tcg_rr_cpu_thread_fn,
1950 cpu, QEMU_THREAD_JOINABLE);
1952 single_tcg_halt_cond = cpu->halt_cond;
1953 single_tcg_cpu_thread = cpu->thread;
1955 #ifdef _WIN32
1956 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1957 #endif
1958 } else {
1959 /* For non-MTTCG cases we share the thread */
1960 cpu->thread = single_tcg_cpu_thread;
1961 cpu->halt_cond = single_tcg_halt_cond;
1962 cpu->thread_id = first_cpu->thread_id;
1963 cpu->can_do_io = 1;
1964 cpu->created = true;
1968 static void qemu_hax_start_vcpu(CPUState *cpu)
1970 char thread_name[VCPU_THREAD_NAME_SIZE];
1972 cpu->thread = g_malloc0(sizeof(QemuThread));
1973 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1974 qemu_cond_init(cpu->halt_cond);
1976 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1977 cpu->cpu_index);
1978 qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
1979 cpu, QEMU_THREAD_JOINABLE);
1980 #ifdef _WIN32
1981 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1982 #endif
1985 static void qemu_kvm_start_vcpu(CPUState *cpu)
1987 char thread_name[VCPU_THREAD_NAME_SIZE];
1989 cpu->thread = g_malloc0(sizeof(QemuThread));
1990 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1991 qemu_cond_init(cpu->halt_cond);
1992 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1993 cpu->cpu_index);
1994 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1995 cpu, QEMU_THREAD_JOINABLE);
1998 static void qemu_hvf_start_vcpu(CPUState *cpu)
2000 char thread_name[VCPU_THREAD_NAME_SIZE];
2002 /* HVF currently does not support TCG, and only runs in
2003 * unrestricted-guest mode. */
2004 assert(hvf_enabled());
2006 cpu->thread = g_malloc0(sizeof(QemuThread));
2007 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2008 qemu_cond_init(cpu->halt_cond);
2010 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
2011 cpu->cpu_index);
2012 qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
2013 cpu, QEMU_THREAD_JOINABLE);
2016 static void qemu_whpx_start_vcpu(CPUState *cpu)
2018 char thread_name[VCPU_THREAD_NAME_SIZE];
2020 cpu->thread = g_malloc0(sizeof(QemuThread));
2021 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2022 qemu_cond_init(cpu->halt_cond);
2023 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
2024 cpu->cpu_index);
2025 qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
2026 cpu, QEMU_THREAD_JOINABLE);
2027 #ifdef _WIN32
2028 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2029 #endif
2032 static void qemu_dummy_start_vcpu(CPUState *cpu)
2034 char thread_name[VCPU_THREAD_NAME_SIZE];
2036 cpu->thread = g_malloc0(sizeof(QemuThread));
2037 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2038 qemu_cond_init(cpu->halt_cond);
2039 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
2040 cpu->cpu_index);
2041 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
2042 QEMU_THREAD_JOINABLE);
2045 void qemu_init_vcpu(CPUState *cpu)
2047 MachineState *ms = MACHINE(qdev_get_machine());
2049 cpu->nr_cores = ms->smp.cores;
2050 cpu->nr_threads = ms->smp.threads;
2051 cpu->stopped = true;
2052 cpu->random_seed = qemu_guest_random_seed_thread_part1();
2054 if (!cpu->as) {
2055 /* If the target cpu hasn't set up any address spaces itself,
2056 * give it the default one.
2058 cpu->num_ases = 1;
2059 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
2062 if (kvm_enabled()) {
2063 qemu_kvm_start_vcpu(cpu);
2064 } else if (hax_enabled()) {
2065 qemu_hax_start_vcpu(cpu);
2066 } else if (hvf_enabled()) {
2067 qemu_hvf_start_vcpu(cpu);
2068 } else if (tcg_enabled()) {
2069 qemu_tcg_init_vcpu(cpu);
2070 } else if (whpx_enabled()) {
2071 qemu_whpx_start_vcpu(cpu);
2072 } else {
2073 qemu_dummy_start_vcpu(cpu);
2076 while (!cpu->created) {
2077 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
2081 void cpu_stop_current(void)
2083 if (current_cpu) {
2084 current_cpu->stop = true;
2085 cpu_exit(current_cpu);
2089 int vm_stop(RunState state)
2091 if (qemu_in_vcpu_thread()) {
2092 qemu_system_vmstop_request_prepare();
2093 qemu_system_vmstop_request(state);
2095 * FIXME: should not return to device code in case
2096 * vm_stop() has been requested.
2098 cpu_stop_current();
2099 return 0;
2102 return do_vm_stop(state, true);
2106 * Prepare for (re)starting the VM.
2107 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
2108 * running or in case of an error condition), 0 otherwise.
2110 int vm_prepare_start(void)
2112 RunState requested;
2114 qemu_vmstop_requested(&requested);
2115 if (runstate_is_running() && requested == RUN_STATE__MAX) {
2116 return -1;
2119 /* Ensure that a STOP/RESUME pair of events is emitted if a
2120 * vmstop request was pending. The BLOCK_IO_ERROR event, for
2121 * example, according to documentation is always followed by
2122 * the STOP event.
2124 if (runstate_is_running()) {
2125 qapi_event_send_stop();
2126 qapi_event_send_resume();
2127 return -1;
2130 /* We are sending this now, but the CPUs will be resumed shortly later */
2131 qapi_event_send_resume();
2133 cpu_enable_ticks();
2134 runstate_set(RUN_STATE_RUNNING);
2135 vm_state_notify(1, RUN_STATE_RUNNING);
2136 return 0;
2139 void vm_start(void)
2141 if (!vm_prepare_start()) {
2142 resume_all_vcpus();
2146 /* does a state transition even if the VM is already stopped,
2147 current state is forgotten forever */
2148 int vm_stop_force_state(RunState state)
2150 if (runstate_is_running()) {
2151 return vm_stop(state);
2152 } else {
2153 runstate_set(state);
2155 bdrv_drain_all();
2156 /* Make sure to return an error if the flush in a previous vm_stop()
2157 * failed. */
2158 return bdrv_flush_all();
2162 void list_cpus(const char *optarg)
2164 /* XXX: implement xxx_cpu_list for targets that still miss it */
2165 #if defined(cpu_list)
2166 cpu_list();
2167 #endif
2170 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
2171 bool has_cpu, int64_t cpu_index, Error **errp)
2173 FILE *f;
2174 uint32_t l;
2175 CPUState *cpu;
2176 uint8_t buf[1024];
2177 int64_t orig_addr = addr, orig_size = size;
2179 if (!has_cpu) {
2180 cpu_index = 0;
2183 cpu = qemu_get_cpu(cpu_index);
2184 if (cpu == NULL) {
2185 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
2186 "a CPU number");
2187 return;
2190 f = fopen(filename, "wb");
2191 if (!f) {
2192 error_setg_file_open(errp, errno, filename);
2193 return;
2196 while (size != 0) {
2197 l = sizeof(buf);
2198 if (l > size)
2199 l = size;
2200 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
2201 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
2202 " specified", orig_addr, orig_size);
2203 goto exit;
2205 if (fwrite(buf, 1, l, f) != l) {
2206 error_setg(errp, QERR_IO_ERROR);
2207 goto exit;
2209 addr += l;
2210 size -= l;
2213 exit:
2214 fclose(f);
2217 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
2218 Error **errp)
2220 FILE *f;
2221 uint32_t l;
2222 uint8_t buf[1024];
2224 f = fopen(filename, "wb");
2225 if (!f) {
2226 error_setg_file_open(errp, errno, filename);
2227 return;
2230 while (size != 0) {
2231 l = sizeof(buf);
2232 if (l > size)
2233 l = size;
2234 cpu_physical_memory_read(addr, buf, l);
2235 if (fwrite(buf, 1, l, f) != l) {
2236 error_setg(errp, QERR_IO_ERROR);
2237 goto exit;
2239 addr += l;
2240 size -= l;
2243 exit:
2244 fclose(f);
2247 void qmp_inject_nmi(Error **errp)
2249 nmi_monitor_handle(monitor_get_cpu_index(), errp);
2252 void dump_drift_info(void)
2254 if (!use_icount) {
2255 return;
2258 qemu_printf("Host - Guest clock %"PRIi64" ms\n",
2259 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
2260 if (icount_align_option) {
2261 qemu_printf("Max guest delay %"PRIi64" ms\n",
2262 -max_delay / SCALE_MS);
2263 qemu_printf("Max guest advance %"PRIi64" ms\n",
2264 max_advance / SCALE_MS);
2265 } else {
2266 qemu_printf("Max guest delay NA\n");
2267 qemu_printf("Max guest advance NA\n");